sch_fq.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847
  1. /*
  2. * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
  3. *
  4. * Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. *
  11. * Meant to be mostly used for localy generated traffic :
  12. * Fast classification depends on skb->sk being set before reaching us.
  13. * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
  14. * All packets belonging to a socket are considered as a 'flow'.
  15. *
  16. * Flows are dynamically allocated and stored in a hash table of RB trees
  17. * They are also part of one Round Robin 'queues' (new or old flows)
  18. *
  19. * Burst avoidance (aka pacing) capability :
  20. *
  21. * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
  22. * bunch of packets, and this packet scheduler adds delay between
  23. * packets to respect rate limitation.
  24. *
  25. * enqueue() :
  26. * - lookup one RB tree (out of 1024 or more) to find the flow.
  27. * If non existent flow, create it, add it to the tree.
  28. * Add skb to the per flow list of skb (fifo).
  29. * - Use a special fifo for high prio packets
  30. *
  31. * dequeue() : serves flows in Round Robin
  32. * Note : When a flow becomes empty, we do not immediately remove it from
  33. * rb trees, for performance reasons (its expected to send additional packets,
  34. * or SLAB cache will reuse socket for another flow)
  35. */
  36. #include <linux/module.h>
  37. #include <linux/types.h>
  38. #include <linux/kernel.h>
  39. #include <linux/jiffies.h>
  40. #include <linux/string.h>
  41. #include <linux/in.h>
  42. #include <linux/errno.h>
  43. #include <linux/init.h>
  44. #include <linux/skbuff.h>
  45. #include <linux/slab.h>
  46. #include <linux/rbtree.h>
  47. #include <linux/hash.h>
  48. #include <linux/prefetch.h>
  49. #include <linux/vmalloc.h>
  50. #include <net/netlink.h>
  51. #include <net/pkt_sched.h>
  52. #include <net/sock.h>
  53. #include <net/tcp_states.h>
  54. /*
  55. * Per flow structure, dynamically allocated
  56. */
  57. struct fq_flow {
  58. struct sk_buff *head; /* list of skbs for this flow : first skb */
  59. union {
  60. struct sk_buff *tail; /* last skb in the list */
  61. unsigned long age; /* jiffies when flow was emptied, for gc */
  62. };
  63. struct rb_node fq_node; /* anchor in fq_root[] trees */
  64. struct sock *sk;
  65. int qlen; /* number of packets in flow queue */
  66. int credit;
  67. u32 socket_hash; /* sk_hash */
  68. struct fq_flow *next; /* next pointer in RR lists, or &detached */
  69. struct rb_node rate_node; /* anchor in q->delayed tree */
  70. u64 time_next_packet;
  71. };
  72. struct fq_flow_head {
  73. struct fq_flow *first;
  74. struct fq_flow *last;
  75. };
  76. struct fq_sched_data {
  77. struct fq_flow_head new_flows;
  78. struct fq_flow_head old_flows;
  79. struct rb_root delayed; /* for rate limited flows */
  80. u64 time_next_delayed_flow;
  81. struct fq_flow internal; /* for non classified or high prio packets */
  82. u32 quantum;
  83. u32 initial_quantum;
  84. u32 flow_refill_delay;
  85. u32 flow_max_rate; /* optional max rate per flow */
  86. u32 flow_plimit; /* max packets per flow */
  87. struct rb_root *fq_root;
  88. u8 rate_enable;
  89. u8 fq_trees_log;
  90. u32 flows;
  91. u32 inactive_flows;
  92. u32 throttled_flows;
  93. u64 stat_gc_flows;
  94. u64 stat_internal_packets;
  95. u64 stat_tcp_retrans;
  96. u64 stat_throttled;
  97. u64 stat_flows_plimit;
  98. u64 stat_pkts_too_long;
  99. u64 stat_allocation_errors;
  100. struct qdisc_watchdog watchdog;
  101. };
  102. /* special value to mark a detached flow (not on old/new list) */
  103. static struct fq_flow detached, throttled;
  104. static void fq_flow_set_detached(struct fq_flow *f)
  105. {
  106. f->next = &detached;
  107. f->age = jiffies;
  108. }
  109. static bool fq_flow_is_detached(const struct fq_flow *f)
  110. {
  111. return f->next == &detached;
  112. }
  113. static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
  114. {
  115. struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
  116. while (*p) {
  117. struct fq_flow *aux;
  118. parent = *p;
  119. aux = container_of(parent, struct fq_flow, rate_node);
  120. if (f->time_next_packet >= aux->time_next_packet)
  121. p = &parent->rb_right;
  122. else
  123. p = &parent->rb_left;
  124. }
  125. rb_link_node(&f->rate_node, parent, p);
  126. rb_insert_color(&f->rate_node, &q->delayed);
  127. q->throttled_flows++;
  128. q->stat_throttled++;
  129. f->next = &throttled;
  130. if (q->time_next_delayed_flow > f->time_next_packet)
  131. q->time_next_delayed_flow = f->time_next_packet;
  132. }
  133. static struct kmem_cache *fq_flow_cachep __read_mostly;
  134. static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
  135. {
  136. if (head->first)
  137. head->last->next = flow;
  138. else
  139. head->first = flow;
  140. head->last = flow;
  141. flow->next = NULL;
  142. }
  143. /* limit number of collected flows per round */
  144. #define FQ_GC_MAX 8
  145. #define FQ_GC_AGE (3*HZ)
  146. static bool fq_gc_candidate(const struct fq_flow *f)
  147. {
  148. return fq_flow_is_detached(f) &&
  149. time_after(jiffies, f->age + FQ_GC_AGE);
  150. }
  151. static void fq_gc(struct fq_sched_data *q,
  152. struct rb_root *root,
  153. struct sock *sk)
  154. {
  155. struct fq_flow *f, *tofree[FQ_GC_MAX];
  156. struct rb_node **p, *parent;
  157. int fcnt = 0;
  158. p = &root->rb_node;
  159. parent = NULL;
  160. while (*p) {
  161. parent = *p;
  162. f = container_of(parent, struct fq_flow, fq_node);
  163. if (f->sk == sk)
  164. break;
  165. if (fq_gc_candidate(f)) {
  166. tofree[fcnt++] = f;
  167. if (fcnt == FQ_GC_MAX)
  168. break;
  169. }
  170. if (f->sk > sk)
  171. p = &parent->rb_right;
  172. else
  173. p = &parent->rb_left;
  174. }
  175. q->flows -= fcnt;
  176. q->inactive_flows -= fcnt;
  177. q->stat_gc_flows += fcnt;
  178. while (fcnt) {
  179. struct fq_flow *f = tofree[--fcnt];
  180. rb_erase(&f->fq_node, root);
  181. kmem_cache_free(fq_flow_cachep, f);
  182. }
  183. }
  184. static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
  185. {
  186. struct rb_node **p, *parent;
  187. struct sock *sk = skb->sk;
  188. struct rb_root *root;
  189. struct fq_flow *f;
  190. /* warning: no starvation prevention... */
  191. if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
  192. return &q->internal;
  193. if (unlikely(!sk)) {
  194. /* By forcing low order bit to 1, we make sure to not
  195. * collide with a local flow (socket pointers are word aligned)
  196. */
  197. sk = (struct sock *)(skb_get_hash(skb) | 1L);
  198. }
  199. root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
  200. if (q->flows >= (2U << q->fq_trees_log) &&
  201. q->inactive_flows > q->flows/2)
  202. fq_gc(q, root, sk);
  203. p = &root->rb_node;
  204. parent = NULL;
  205. while (*p) {
  206. parent = *p;
  207. f = container_of(parent, struct fq_flow, fq_node);
  208. if (f->sk == sk) {
  209. /* socket might have been reallocated, so check
  210. * if its sk_hash is the same.
  211. * It not, we need to refill credit with
  212. * initial quantum
  213. */
  214. if (unlikely(skb->sk &&
  215. f->socket_hash != sk->sk_hash)) {
  216. f->credit = q->initial_quantum;
  217. f->socket_hash = sk->sk_hash;
  218. f->time_next_packet = 0ULL;
  219. }
  220. return f;
  221. }
  222. if (f->sk > sk)
  223. p = &parent->rb_right;
  224. else
  225. p = &parent->rb_left;
  226. }
  227. f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
  228. if (unlikely(!f)) {
  229. q->stat_allocation_errors++;
  230. return &q->internal;
  231. }
  232. fq_flow_set_detached(f);
  233. f->sk = sk;
  234. if (skb->sk)
  235. f->socket_hash = sk->sk_hash;
  236. f->credit = q->initial_quantum;
  237. rb_link_node(&f->fq_node, parent, p);
  238. rb_insert_color(&f->fq_node, root);
  239. q->flows++;
  240. q->inactive_flows++;
  241. return f;
  242. }
  243. /* remove one skb from head of flow queue */
  244. static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
  245. {
  246. struct sk_buff *skb = flow->head;
  247. if (skb) {
  248. flow->head = skb->next;
  249. skb->next = NULL;
  250. flow->qlen--;
  251. qdisc_qstats_backlog_dec(sch, skb);
  252. sch->q.qlen--;
  253. }
  254. return skb;
  255. }
  256. /* We might add in the future detection of retransmits
  257. * For the time being, just return false
  258. */
  259. static bool skb_is_retransmit(struct sk_buff *skb)
  260. {
  261. return false;
  262. }
  263. /* add skb to flow queue
  264. * flow queue is a linked list, kind of FIFO, except for TCP retransmits
  265. * We special case tcp retransmits to be transmitted before other packets.
  266. * We rely on fact that TCP retransmits are unlikely, so we do not waste
  267. * a separate queue or a pointer.
  268. * head-> [retrans pkt 1]
  269. * [retrans pkt 2]
  270. * [ normal pkt 1]
  271. * [ normal pkt 2]
  272. * [ normal pkt 3]
  273. * tail-> [ normal pkt 4]
  274. */
  275. static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
  276. {
  277. struct sk_buff *prev, *head = flow->head;
  278. skb->next = NULL;
  279. if (!head) {
  280. flow->head = skb;
  281. flow->tail = skb;
  282. return;
  283. }
  284. if (likely(!skb_is_retransmit(skb))) {
  285. flow->tail->next = skb;
  286. flow->tail = skb;
  287. return;
  288. }
  289. /* This skb is a tcp retransmit,
  290. * find the last retrans packet in the queue
  291. */
  292. prev = NULL;
  293. while (skb_is_retransmit(head)) {
  294. prev = head;
  295. head = head->next;
  296. if (!head)
  297. break;
  298. }
  299. if (!prev) { /* no rtx packet in queue, become the new head */
  300. skb->next = flow->head;
  301. flow->head = skb;
  302. } else {
  303. if (prev == flow->tail)
  304. flow->tail = skb;
  305. else
  306. skb->next = prev->next;
  307. prev->next = skb;
  308. }
  309. }
  310. static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
  311. {
  312. struct fq_sched_data *q = qdisc_priv(sch);
  313. struct fq_flow *f;
  314. if (unlikely(sch->q.qlen >= sch->limit))
  315. return qdisc_drop(skb, sch);
  316. f = fq_classify(skb, q);
  317. if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
  318. q->stat_flows_plimit++;
  319. return qdisc_drop(skb, sch);
  320. }
  321. f->qlen++;
  322. if (skb_is_retransmit(skb))
  323. q->stat_tcp_retrans++;
  324. qdisc_qstats_backlog_inc(sch, skb);
  325. if (fq_flow_is_detached(f)) {
  326. fq_flow_add_tail(&q->new_flows, f);
  327. if (time_after(jiffies, f->age + q->flow_refill_delay))
  328. f->credit = max_t(u32, f->credit, q->quantum);
  329. q->inactive_flows--;
  330. }
  331. /* Note: this overwrites f->age */
  332. flow_queue_add(f, skb);
  333. if (unlikely(f == &q->internal)) {
  334. q->stat_internal_packets++;
  335. }
  336. sch->q.qlen++;
  337. return NET_XMIT_SUCCESS;
  338. }
  339. static void fq_check_throttled(struct fq_sched_data *q, u64 now)
  340. {
  341. struct rb_node *p;
  342. if (q->time_next_delayed_flow > now)
  343. return;
  344. q->time_next_delayed_flow = ~0ULL;
  345. while ((p = rb_first(&q->delayed)) != NULL) {
  346. struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
  347. if (f->time_next_packet > now) {
  348. q->time_next_delayed_flow = f->time_next_packet;
  349. break;
  350. }
  351. rb_erase(p, &q->delayed);
  352. q->throttled_flows--;
  353. fq_flow_add_tail(&q->old_flows, f);
  354. }
  355. }
  356. static struct sk_buff *fq_dequeue(struct Qdisc *sch)
  357. {
  358. struct fq_sched_data *q = qdisc_priv(sch);
  359. u64 now = ktime_get_ns();
  360. struct fq_flow_head *head;
  361. struct sk_buff *skb;
  362. struct fq_flow *f;
  363. u32 rate;
  364. skb = fq_dequeue_head(sch, &q->internal);
  365. if (skb)
  366. goto out;
  367. fq_check_throttled(q, now);
  368. begin:
  369. head = &q->new_flows;
  370. if (!head->first) {
  371. head = &q->old_flows;
  372. if (!head->first) {
  373. if (q->time_next_delayed_flow != ~0ULL)
  374. qdisc_watchdog_schedule_ns(&q->watchdog,
  375. q->time_next_delayed_flow,
  376. false);
  377. return NULL;
  378. }
  379. }
  380. f = head->first;
  381. if (f->credit <= 0) {
  382. f->credit += q->quantum;
  383. head->first = f->next;
  384. fq_flow_add_tail(&q->old_flows, f);
  385. goto begin;
  386. }
  387. if (unlikely(f->head && now < f->time_next_packet)) {
  388. head->first = f->next;
  389. fq_flow_set_throttled(q, f);
  390. goto begin;
  391. }
  392. skb = fq_dequeue_head(sch, f);
  393. if (!skb) {
  394. head->first = f->next;
  395. /* force a pass through old_flows to prevent starvation */
  396. if ((head == &q->new_flows) && q->old_flows.first) {
  397. fq_flow_add_tail(&q->old_flows, f);
  398. } else {
  399. fq_flow_set_detached(f);
  400. q->inactive_flows++;
  401. }
  402. goto begin;
  403. }
  404. prefetch(&skb->end);
  405. f->time_next_packet = now;
  406. f->credit -= qdisc_pkt_len(skb);
  407. if (f->credit > 0 || !q->rate_enable)
  408. goto out;
  409. rate = q->flow_max_rate;
  410. if (skb->sk && skb->sk->sk_state != TCP_TIME_WAIT)
  411. rate = min(skb->sk->sk_pacing_rate, rate);
  412. if (rate != ~0U) {
  413. u32 plen = max(qdisc_pkt_len(skb), q->quantum);
  414. u64 len = (u64)plen * NSEC_PER_SEC;
  415. if (likely(rate))
  416. do_div(len, rate);
  417. /* Since socket rate can change later,
  418. * clamp the delay to 125 ms.
  419. * TODO: maybe segment the too big skb, as in commit
  420. * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
  421. */
  422. if (unlikely(len > 125 * NSEC_PER_MSEC)) {
  423. len = 125 * NSEC_PER_MSEC;
  424. q->stat_pkts_too_long++;
  425. }
  426. f->time_next_packet = now + len;
  427. }
  428. out:
  429. qdisc_bstats_update(sch, skb);
  430. return skb;
  431. }
  432. static void fq_reset(struct Qdisc *sch)
  433. {
  434. struct fq_sched_data *q = qdisc_priv(sch);
  435. struct rb_root *root;
  436. struct sk_buff *skb;
  437. struct rb_node *p;
  438. struct fq_flow *f;
  439. unsigned int idx;
  440. while ((skb = fq_dequeue_head(sch, &q->internal)) != NULL)
  441. kfree_skb(skb);
  442. if (!q->fq_root)
  443. return;
  444. for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
  445. root = &q->fq_root[idx];
  446. while ((p = rb_first(root)) != NULL) {
  447. f = container_of(p, struct fq_flow, fq_node);
  448. rb_erase(p, root);
  449. while ((skb = fq_dequeue_head(sch, f)) != NULL)
  450. kfree_skb(skb);
  451. kmem_cache_free(fq_flow_cachep, f);
  452. }
  453. }
  454. q->new_flows.first = NULL;
  455. q->old_flows.first = NULL;
  456. q->delayed = RB_ROOT;
  457. q->flows = 0;
  458. q->inactive_flows = 0;
  459. q->throttled_flows = 0;
  460. }
  461. static void fq_rehash(struct fq_sched_data *q,
  462. struct rb_root *old_array, u32 old_log,
  463. struct rb_root *new_array, u32 new_log)
  464. {
  465. struct rb_node *op, **np, *parent;
  466. struct rb_root *oroot, *nroot;
  467. struct fq_flow *of, *nf;
  468. int fcnt = 0;
  469. u32 idx;
  470. for (idx = 0; idx < (1U << old_log); idx++) {
  471. oroot = &old_array[idx];
  472. while ((op = rb_first(oroot)) != NULL) {
  473. rb_erase(op, oroot);
  474. of = container_of(op, struct fq_flow, fq_node);
  475. if (fq_gc_candidate(of)) {
  476. fcnt++;
  477. kmem_cache_free(fq_flow_cachep, of);
  478. continue;
  479. }
  480. nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
  481. np = &nroot->rb_node;
  482. parent = NULL;
  483. while (*np) {
  484. parent = *np;
  485. nf = container_of(parent, struct fq_flow, fq_node);
  486. BUG_ON(nf->sk == of->sk);
  487. if (nf->sk > of->sk)
  488. np = &parent->rb_right;
  489. else
  490. np = &parent->rb_left;
  491. }
  492. rb_link_node(&of->fq_node, parent, np);
  493. rb_insert_color(&of->fq_node, nroot);
  494. }
  495. }
  496. q->flows -= fcnt;
  497. q->inactive_flows -= fcnt;
  498. q->stat_gc_flows += fcnt;
  499. }
  500. static void *fq_alloc_node(size_t sz, int node)
  501. {
  502. void *ptr;
  503. ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
  504. if (!ptr)
  505. ptr = vmalloc_node(sz, node);
  506. return ptr;
  507. }
  508. static void fq_free(void *addr)
  509. {
  510. kvfree(addr);
  511. }
  512. static int fq_resize(struct Qdisc *sch, u32 log)
  513. {
  514. struct fq_sched_data *q = qdisc_priv(sch);
  515. struct rb_root *array;
  516. void *old_fq_root;
  517. u32 idx;
  518. if (q->fq_root && log == q->fq_trees_log)
  519. return 0;
  520. /* If XPS was setup, we can allocate memory on right NUMA node */
  521. array = fq_alloc_node(sizeof(struct rb_root) << log,
  522. netdev_queue_numa_node_read(sch->dev_queue));
  523. if (!array)
  524. return -ENOMEM;
  525. for (idx = 0; idx < (1U << log); idx++)
  526. array[idx] = RB_ROOT;
  527. sch_tree_lock(sch);
  528. old_fq_root = q->fq_root;
  529. if (old_fq_root)
  530. fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
  531. q->fq_root = array;
  532. q->fq_trees_log = log;
  533. sch_tree_unlock(sch);
  534. fq_free(old_fq_root);
  535. return 0;
  536. }
  537. static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
  538. [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
  539. [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
  540. [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
  541. [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
  542. [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
  543. [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
  544. [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
  545. [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
  546. [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
  547. };
  548. static int fq_change(struct Qdisc *sch, struct nlattr *opt)
  549. {
  550. struct fq_sched_data *q = qdisc_priv(sch);
  551. struct nlattr *tb[TCA_FQ_MAX + 1];
  552. int err, drop_count = 0;
  553. u32 fq_log;
  554. if (!opt)
  555. return -EINVAL;
  556. err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
  557. if (err < 0)
  558. return err;
  559. sch_tree_lock(sch);
  560. fq_log = q->fq_trees_log;
  561. if (tb[TCA_FQ_BUCKETS_LOG]) {
  562. u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
  563. if (nval >= 1 && nval <= ilog2(256*1024))
  564. fq_log = nval;
  565. else
  566. err = -EINVAL;
  567. }
  568. if (tb[TCA_FQ_PLIMIT])
  569. sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
  570. if (tb[TCA_FQ_FLOW_PLIMIT])
  571. q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
  572. if (tb[TCA_FQ_QUANTUM])
  573. q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
  574. if (tb[TCA_FQ_INITIAL_QUANTUM])
  575. q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
  576. if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
  577. pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
  578. nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
  579. if (tb[TCA_FQ_FLOW_MAX_RATE])
  580. q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
  581. if (tb[TCA_FQ_RATE_ENABLE]) {
  582. u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
  583. if (enable <= 1)
  584. q->rate_enable = enable;
  585. else
  586. err = -EINVAL;
  587. }
  588. if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
  589. u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
  590. q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
  591. }
  592. if (!err) {
  593. sch_tree_unlock(sch);
  594. err = fq_resize(sch, fq_log);
  595. sch_tree_lock(sch);
  596. }
  597. while (sch->q.qlen > sch->limit) {
  598. struct sk_buff *skb = fq_dequeue(sch);
  599. if (!skb)
  600. break;
  601. kfree_skb(skb);
  602. drop_count++;
  603. }
  604. qdisc_tree_decrease_qlen(sch, drop_count);
  605. sch_tree_unlock(sch);
  606. return err;
  607. }
  608. static void fq_destroy(struct Qdisc *sch)
  609. {
  610. struct fq_sched_data *q = qdisc_priv(sch);
  611. fq_reset(sch);
  612. fq_free(q->fq_root);
  613. qdisc_watchdog_cancel(&q->watchdog);
  614. }
  615. static int fq_init(struct Qdisc *sch, struct nlattr *opt)
  616. {
  617. struct fq_sched_data *q = qdisc_priv(sch);
  618. int err;
  619. sch->limit = 10000;
  620. q->flow_plimit = 100;
  621. q->quantum = 2 * psched_mtu(qdisc_dev(sch));
  622. q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
  623. q->flow_refill_delay = msecs_to_jiffies(40);
  624. q->flow_max_rate = ~0U;
  625. q->rate_enable = 1;
  626. q->new_flows.first = NULL;
  627. q->old_flows.first = NULL;
  628. q->delayed = RB_ROOT;
  629. q->fq_root = NULL;
  630. q->fq_trees_log = ilog2(1024);
  631. qdisc_watchdog_init(&q->watchdog, sch);
  632. if (opt)
  633. err = fq_change(sch, opt);
  634. else
  635. err = fq_resize(sch, q->fq_trees_log);
  636. return err;
  637. }
  638. static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
  639. {
  640. struct fq_sched_data *q = qdisc_priv(sch);
  641. struct nlattr *opts;
  642. opts = nla_nest_start(skb, TCA_OPTIONS);
  643. if (opts == NULL)
  644. goto nla_put_failure;
  645. /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
  646. if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
  647. nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
  648. nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
  649. nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
  650. nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
  651. nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
  652. nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
  653. jiffies_to_usecs(q->flow_refill_delay)) ||
  654. nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
  655. goto nla_put_failure;
  656. return nla_nest_end(skb, opts);
  657. nla_put_failure:
  658. return -1;
  659. }
  660. static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
  661. {
  662. struct fq_sched_data *q = qdisc_priv(sch);
  663. u64 now = ktime_get_ns();
  664. struct tc_fq_qd_stats st = {
  665. .gc_flows = q->stat_gc_flows,
  666. .highprio_packets = q->stat_internal_packets,
  667. .tcp_retrans = q->stat_tcp_retrans,
  668. .throttled = q->stat_throttled,
  669. .flows_plimit = q->stat_flows_plimit,
  670. .pkts_too_long = q->stat_pkts_too_long,
  671. .allocation_errors = q->stat_allocation_errors,
  672. .flows = q->flows,
  673. .inactive_flows = q->inactive_flows,
  674. .throttled_flows = q->throttled_flows,
  675. .time_next_delayed_flow = q->time_next_delayed_flow - now,
  676. };
  677. return gnet_stats_copy_app(d, &st, sizeof(st));
  678. }
  679. static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
  680. .id = "fq",
  681. .priv_size = sizeof(struct fq_sched_data),
  682. .enqueue = fq_enqueue,
  683. .dequeue = fq_dequeue,
  684. .peek = qdisc_peek_dequeued,
  685. .init = fq_init,
  686. .reset = fq_reset,
  687. .destroy = fq_destroy,
  688. .change = fq_change,
  689. .dump = fq_dump,
  690. .dump_stats = fq_dump_stats,
  691. .owner = THIS_MODULE,
  692. };
  693. static int __init fq_module_init(void)
  694. {
  695. int ret;
  696. fq_flow_cachep = kmem_cache_create("fq_flow_cache",
  697. sizeof(struct fq_flow),
  698. 0, 0, NULL);
  699. if (!fq_flow_cachep)
  700. return -ENOMEM;
  701. ret = register_qdisc(&fq_qdisc_ops);
  702. if (ret)
  703. kmem_cache_destroy(fq_flow_cachep);
  704. return ret;
  705. }
  706. static void __exit fq_module_exit(void)
  707. {
  708. unregister_qdisc(&fq_qdisc_ops);
  709. kmem_cache_destroy(fq_flow_cachep);
  710. }
  711. module_init(fq_module_init)
  712. module_exit(fq_module_exit)
  713. MODULE_AUTHOR("Eric Dumazet");
  714. MODULE_LICENSE("GPL");