tlb.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. #include <linux/init.h>
  2. #include <linux/mm.h>
  3. #include <linux/spinlock.h>
  4. #include <linux/smp.h>
  5. #include <linux/interrupt.h>
  6. #include <linux/module.h>
  7. #include <linux/cpu.h>
  8. #include <asm/tlbflush.h>
  9. #include <asm/mmu_context.h>
  10. #include <asm/cache.h>
  11. #include <asm/apic.h>
  12. #include <asm/uv/uv.h>
  13. #include <linux/debugfs.h>
  14. DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
  15. = { &init_mm, 0, };
  16. /*
  17. * Smarter SMP flushing macros.
  18. * c/o Linus Torvalds.
  19. *
  20. * These mean you can really definitely utterly forget about
  21. * writing to user space from interrupts. (Its not allowed anyway).
  22. *
  23. * Optimizations Manfred Spraul <manfred@colorfullife.com>
  24. *
  25. * More scalable flush, from Andi Kleen
  26. *
  27. * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  28. */
  29. struct flush_tlb_info {
  30. struct mm_struct *flush_mm;
  31. unsigned long flush_start;
  32. unsigned long flush_end;
  33. };
  34. /*
  35. * We cannot call mmdrop() because we are in interrupt context,
  36. * instead update mm->cpu_vm_mask.
  37. */
  38. void leave_mm(int cpu)
  39. {
  40. struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
  41. if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
  42. BUG();
  43. if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
  44. cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
  45. load_cr3(swapper_pg_dir);
  46. /*
  47. * This gets called in the idle path where RCU
  48. * functions differently. Tracing normally
  49. * uses RCU, so we have to call the tracepoint
  50. * specially here.
  51. */
  52. trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
  53. }
  54. }
  55. EXPORT_SYMBOL_GPL(leave_mm);
  56. /*
  57. * The flush IPI assumes that a thread switch happens in this order:
  58. * [cpu0: the cpu that switches]
  59. * 1) switch_mm() either 1a) or 1b)
  60. * 1a) thread switch to a different mm
  61. * 1a1) set cpu_tlbstate to TLBSTATE_OK
  62. * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
  63. * if cpu0 was in lazy tlb mode.
  64. * 1a2) update cpu active_mm
  65. * Now cpu0 accepts tlb flushes for the new mm.
  66. * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
  67. * Now the other cpus will send tlb flush ipis.
  68. * 1a4) change cr3.
  69. * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
  70. * Stop ipi delivery for the old mm. This is not synchronized with
  71. * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
  72. * mm, and in the worst case we perform a superfluous tlb flush.
  73. * 1b) thread switch without mm change
  74. * cpu active_mm is correct, cpu0 already handles flush ipis.
  75. * 1b1) set cpu_tlbstate to TLBSTATE_OK
  76. * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  77. * Atomically set the bit [other cpus will start sending flush ipis],
  78. * and test the bit.
  79. * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  80. * 2) switch %%esp, ie current
  81. *
  82. * The interrupt must handle 2 special cases:
  83. * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  84. * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  85. * runs in kernel space, the cpu could load tlb entries for user space
  86. * pages.
  87. *
  88. * The good news is that cpu_tlbstate is local to each cpu, no
  89. * write/read ordering problems.
  90. */
  91. /*
  92. * TLB flush funcation:
  93. * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  94. * 2) Leave the mm if we are in the lazy tlb mode.
  95. */
  96. static void flush_tlb_func(void *info)
  97. {
  98. struct flush_tlb_info *f = info;
  99. inc_irq_stat(irq_tlb_count);
  100. if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
  101. return;
  102. if (!f->flush_end)
  103. f->flush_end = f->flush_start + PAGE_SIZE;
  104. count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
  105. if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
  106. if (f->flush_end == TLB_FLUSH_ALL) {
  107. local_flush_tlb();
  108. trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
  109. } else {
  110. unsigned long addr;
  111. unsigned long nr_pages =
  112. f->flush_end - f->flush_start / PAGE_SIZE;
  113. addr = f->flush_start;
  114. while (addr < f->flush_end) {
  115. __flush_tlb_single(addr);
  116. addr += PAGE_SIZE;
  117. }
  118. trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
  119. }
  120. } else
  121. leave_mm(smp_processor_id());
  122. }
  123. void native_flush_tlb_others(const struct cpumask *cpumask,
  124. struct mm_struct *mm, unsigned long start,
  125. unsigned long end)
  126. {
  127. struct flush_tlb_info info;
  128. info.flush_mm = mm;
  129. info.flush_start = start;
  130. info.flush_end = end;
  131. count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
  132. if (is_uv_system()) {
  133. unsigned int cpu;
  134. cpu = smp_processor_id();
  135. cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
  136. if (cpumask)
  137. smp_call_function_many(cpumask, flush_tlb_func,
  138. &info, 1);
  139. return;
  140. }
  141. smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
  142. }
  143. void flush_tlb_current_task(void)
  144. {
  145. struct mm_struct *mm = current->mm;
  146. preempt_disable();
  147. count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
  148. local_flush_tlb();
  149. trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
  150. if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
  151. flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
  152. preempt_enable();
  153. }
  154. /*
  155. * See Documentation/x86/tlb.txt for details. We choose 33
  156. * because it is large enough to cover the vast majority (at
  157. * least 95%) of allocations, and is small enough that we are
  158. * confident it will not cause too much overhead. Each single
  159. * flush is about 100 ns, so this caps the maximum overhead at
  160. * _about_ 3,000 ns.
  161. *
  162. * This is in units of pages.
  163. */
  164. static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
  165. void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
  166. unsigned long end, unsigned long vmflag)
  167. {
  168. unsigned long addr;
  169. /* do a global flush by default */
  170. unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
  171. preempt_disable();
  172. if (current->active_mm != mm)
  173. goto out;
  174. if (!current->mm) {
  175. leave_mm(smp_processor_id());
  176. goto out;
  177. }
  178. if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
  179. base_pages_to_flush = (end - start) >> PAGE_SHIFT;
  180. if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
  181. base_pages_to_flush = TLB_FLUSH_ALL;
  182. count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
  183. local_flush_tlb();
  184. } else {
  185. /* flush range by one by one 'invlpg' */
  186. for (addr = start; addr < end; addr += PAGE_SIZE) {
  187. count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
  188. __flush_tlb_single(addr);
  189. }
  190. }
  191. trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
  192. out:
  193. if (base_pages_to_flush == TLB_FLUSH_ALL) {
  194. start = 0UL;
  195. end = TLB_FLUSH_ALL;
  196. }
  197. if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
  198. flush_tlb_others(mm_cpumask(mm), mm, start, end);
  199. preempt_enable();
  200. }
  201. void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
  202. {
  203. struct mm_struct *mm = vma->vm_mm;
  204. preempt_disable();
  205. if (current->active_mm == mm) {
  206. if (current->mm)
  207. __flush_tlb_one(start);
  208. else
  209. leave_mm(smp_processor_id());
  210. }
  211. if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
  212. flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
  213. preempt_enable();
  214. }
  215. static void do_flush_tlb_all(void *info)
  216. {
  217. count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
  218. __flush_tlb_all();
  219. if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
  220. leave_mm(smp_processor_id());
  221. }
  222. void flush_tlb_all(void)
  223. {
  224. count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
  225. on_each_cpu(do_flush_tlb_all, NULL, 1);
  226. }
  227. static void do_kernel_range_flush(void *info)
  228. {
  229. struct flush_tlb_info *f = info;
  230. unsigned long addr;
  231. /* flush range by one by one 'invlpg' */
  232. for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
  233. __flush_tlb_single(addr);
  234. }
  235. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  236. {
  237. /* Balance as user space task's flush, a bit conservative */
  238. if (end == TLB_FLUSH_ALL ||
  239. (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
  240. on_each_cpu(do_flush_tlb_all, NULL, 1);
  241. } else {
  242. struct flush_tlb_info info;
  243. info.flush_start = start;
  244. info.flush_end = end;
  245. on_each_cpu(do_kernel_range_flush, &info, 1);
  246. }
  247. }
  248. static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
  249. size_t count, loff_t *ppos)
  250. {
  251. char buf[32];
  252. unsigned int len;
  253. len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
  254. return simple_read_from_buffer(user_buf, count, ppos, buf, len);
  255. }
  256. static ssize_t tlbflush_write_file(struct file *file,
  257. const char __user *user_buf, size_t count, loff_t *ppos)
  258. {
  259. char buf[32];
  260. ssize_t len;
  261. int ceiling;
  262. len = min(count, sizeof(buf) - 1);
  263. if (copy_from_user(buf, user_buf, len))
  264. return -EFAULT;
  265. buf[len] = '\0';
  266. if (kstrtoint(buf, 0, &ceiling))
  267. return -EINVAL;
  268. if (ceiling < 0)
  269. return -EINVAL;
  270. tlb_single_page_flush_ceiling = ceiling;
  271. return count;
  272. }
  273. static const struct file_operations fops_tlbflush = {
  274. .read = tlbflush_read_file,
  275. .write = tlbflush_write_file,
  276. .llseek = default_llseek,
  277. };
  278. static int __init create_tlb_single_page_flush_ceiling(void)
  279. {
  280. debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
  281. arch_debugfs_dir, NULL, &fops_tlbflush);
  282. return 0;
  283. }
  284. late_initcall(create_tlb_single_page_flush_ceiling);