pgtable_64.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904
  1. /*
  2. * This file contains ioremap and related functions for 64-bit machines.
  3. *
  4. * Derived from arch/ppc64/mm/init.c
  5. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  6. *
  7. * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
  8. * and Cort Dougan (PReP) (cort@cs.nmt.edu)
  9. * Copyright (C) 1996 Paul Mackerras
  10. *
  11. * Derived from "arch/i386/mm/init.c"
  12. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  13. *
  14. * Dave Engebretsen <engebret@us.ibm.com>
  15. * Rework for PPC64 port.
  16. *
  17. * This program is free software; you can redistribute it and/or
  18. * modify it under the terms of the GNU General Public License
  19. * as published by the Free Software Foundation; either version
  20. * 2 of the License, or (at your option) any later version.
  21. *
  22. */
  23. #include <linux/signal.h>
  24. #include <linux/sched.h>
  25. #include <linux/kernel.h>
  26. #include <linux/errno.h>
  27. #include <linux/string.h>
  28. #include <linux/export.h>
  29. #include <linux/types.h>
  30. #include <linux/mman.h>
  31. #include <linux/mm.h>
  32. #include <linux/swap.h>
  33. #include <linux/stddef.h>
  34. #include <linux/vmalloc.h>
  35. #include <linux/bootmem.h>
  36. #include <linux/memblock.h>
  37. #include <linux/slab.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/page.h>
  40. #include <asm/prom.h>
  41. #include <asm/io.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/pgtable.h>
  44. #include <asm/mmu.h>
  45. #include <asm/smp.h>
  46. #include <asm/machdep.h>
  47. #include <asm/tlb.h>
  48. #include <asm/processor.h>
  49. #include <asm/cputable.h>
  50. #include <asm/sections.h>
  51. #include <asm/firmware.h>
  52. #include "mmu_decl.h"
  53. #define CREATE_TRACE_POINTS
  54. #include <trace/events/thp.h>
  55. /* Some sanity checking */
  56. #if TASK_SIZE_USER64 > PGTABLE_RANGE
  57. #error TASK_SIZE_USER64 exceeds pagetable range
  58. #endif
  59. #ifdef CONFIG_PPC_STD_MMU_64
  60. #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
  61. #error TASK_SIZE_USER64 exceeds user VSID range
  62. #endif
  63. #endif
  64. unsigned long ioremap_bot = IOREMAP_BASE;
  65. #ifdef CONFIG_PPC_MMU_NOHASH
  66. static __ref void *early_alloc_pgtable(unsigned long size)
  67. {
  68. void *pt;
  69. if (init_bootmem_done)
  70. pt = __alloc_bootmem(size, size, __pa(MAX_DMA_ADDRESS));
  71. else
  72. pt = __va(memblock_alloc_base(size, size,
  73. __pa(MAX_DMA_ADDRESS)));
  74. memset(pt, 0, size);
  75. return pt;
  76. }
  77. #endif /* CONFIG_PPC_MMU_NOHASH */
  78. /*
  79. * map_kernel_page currently only called by __ioremap
  80. * map_kernel_page adds an entry to the ioremap page table
  81. * and adds an entry to the HPT, possibly bolting it
  82. */
  83. int map_kernel_page(unsigned long ea, unsigned long pa, int flags)
  84. {
  85. pgd_t *pgdp;
  86. pud_t *pudp;
  87. pmd_t *pmdp;
  88. pte_t *ptep;
  89. if (slab_is_available()) {
  90. pgdp = pgd_offset_k(ea);
  91. pudp = pud_alloc(&init_mm, pgdp, ea);
  92. if (!pudp)
  93. return -ENOMEM;
  94. pmdp = pmd_alloc(&init_mm, pudp, ea);
  95. if (!pmdp)
  96. return -ENOMEM;
  97. ptep = pte_alloc_kernel(pmdp, ea);
  98. if (!ptep)
  99. return -ENOMEM;
  100. set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
  101. __pgprot(flags)));
  102. } else {
  103. #ifdef CONFIG_PPC_MMU_NOHASH
  104. /* Warning ! This will blow up if bootmem is not initialized
  105. * which our ppc64 code is keen to do that, we'll need to
  106. * fix it and/or be more careful
  107. */
  108. pgdp = pgd_offset_k(ea);
  109. #ifdef PUD_TABLE_SIZE
  110. if (pgd_none(*pgdp)) {
  111. pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
  112. BUG_ON(pudp == NULL);
  113. pgd_populate(&init_mm, pgdp, pudp);
  114. }
  115. #endif /* PUD_TABLE_SIZE */
  116. pudp = pud_offset(pgdp, ea);
  117. if (pud_none(*pudp)) {
  118. pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
  119. BUG_ON(pmdp == NULL);
  120. pud_populate(&init_mm, pudp, pmdp);
  121. }
  122. pmdp = pmd_offset(pudp, ea);
  123. if (!pmd_present(*pmdp)) {
  124. ptep = early_alloc_pgtable(PAGE_SIZE);
  125. BUG_ON(ptep == NULL);
  126. pmd_populate_kernel(&init_mm, pmdp, ptep);
  127. }
  128. ptep = pte_offset_kernel(pmdp, ea);
  129. set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
  130. __pgprot(flags)));
  131. #else /* CONFIG_PPC_MMU_NOHASH */
  132. /*
  133. * If the mm subsystem is not fully up, we cannot create a
  134. * linux page table entry for this mapping. Simply bolt an
  135. * entry in the hardware page table.
  136. *
  137. */
  138. if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
  139. mmu_io_psize, mmu_kernel_ssize)) {
  140. printk(KERN_ERR "Failed to do bolted mapping IO "
  141. "memory at %016lx !\n", pa);
  142. return -ENOMEM;
  143. }
  144. #endif /* !CONFIG_PPC_MMU_NOHASH */
  145. }
  146. #ifdef CONFIG_PPC_BOOK3E_64
  147. /*
  148. * With hardware tablewalk, a sync is needed to ensure that
  149. * subsequent accesses see the PTE we just wrote. Unlike userspace
  150. * mappings, we can't tolerate spurious faults, so make sure
  151. * the new PTE will be seen the first time.
  152. */
  153. mb();
  154. #else
  155. smp_wmb();
  156. #endif
  157. return 0;
  158. }
  159. /**
  160. * __ioremap_at - Low level function to establish the page tables
  161. * for an IO mapping
  162. */
  163. void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
  164. unsigned long flags)
  165. {
  166. unsigned long i;
  167. /* Make sure we have the base flags */
  168. if ((flags & _PAGE_PRESENT) == 0)
  169. flags |= pgprot_val(PAGE_KERNEL);
  170. /* Non-cacheable page cannot be coherent */
  171. if (flags & _PAGE_NO_CACHE)
  172. flags &= ~_PAGE_COHERENT;
  173. /* We don't support the 4K PFN hack with ioremap */
  174. if (flags & _PAGE_4K_PFN)
  175. return NULL;
  176. WARN_ON(pa & ~PAGE_MASK);
  177. WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
  178. WARN_ON(size & ~PAGE_MASK);
  179. for (i = 0; i < size; i += PAGE_SIZE)
  180. if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
  181. return NULL;
  182. return (void __iomem *)ea;
  183. }
  184. /**
  185. * __iounmap_from - Low level function to tear down the page tables
  186. * for an IO mapping. This is used for mappings that
  187. * are manipulated manually, like partial unmapping of
  188. * PCI IOs or ISA space.
  189. */
  190. void __iounmap_at(void *ea, unsigned long size)
  191. {
  192. WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
  193. WARN_ON(size & ~PAGE_MASK);
  194. unmap_kernel_range((unsigned long)ea, size);
  195. }
  196. void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
  197. unsigned long flags, void *caller)
  198. {
  199. phys_addr_t paligned;
  200. void __iomem *ret;
  201. /*
  202. * Choose an address to map it to.
  203. * Once the imalloc system is running, we use it.
  204. * Before that, we map using addresses going
  205. * up from ioremap_bot. imalloc will use
  206. * the addresses from ioremap_bot through
  207. * IMALLOC_END
  208. *
  209. */
  210. paligned = addr & PAGE_MASK;
  211. size = PAGE_ALIGN(addr + size) - paligned;
  212. if ((size == 0) || (paligned == 0))
  213. return NULL;
  214. if (mem_init_done) {
  215. struct vm_struct *area;
  216. area = __get_vm_area_caller(size, VM_IOREMAP,
  217. ioremap_bot, IOREMAP_END,
  218. caller);
  219. if (area == NULL)
  220. return NULL;
  221. area->phys_addr = paligned;
  222. ret = __ioremap_at(paligned, area->addr, size, flags);
  223. if (!ret)
  224. vunmap(area->addr);
  225. } else {
  226. ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
  227. if (ret)
  228. ioremap_bot += size;
  229. }
  230. if (ret)
  231. ret += addr & ~PAGE_MASK;
  232. return ret;
  233. }
  234. void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
  235. unsigned long flags)
  236. {
  237. return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
  238. }
  239. void __iomem * ioremap(phys_addr_t addr, unsigned long size)
  240. {
  241. unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
  242. void *caller = __builtin_return_address(0);
  243. if (ppc_md.ioremap)
  244. return ppc_md.ioremap(addr, size, flags, caller);
  245. return __ioremap_caller(addr, size, flags, caller);
  246. }
  247. void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
  248. {
  249. unsigned long flags = _PAGE_NO_CACHE;
  250. void *caller = __builtin_return_address(0);
  251. if (ppc_md.ioremap)
  252. return ppc_md.ioremap(addr, size, flags, caller);
  253. return __ioremap_caller(addr, size, flags, caller);
  254. }
  255. void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
  256. unsigned long flags)
  257. {
  258. void *caller = __builtin_return_address(0);
  259. /* writeable implies dirty for kernel addresses */
  260. if (flags & _PAGE_RW)
  261. flags |= _PAGE_DIRTY;
  262. /* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
  263. flags &= ~(_PAGE_USER | _PAGE_EXEC);
  264. #ifdef _PAGE_BAP_SR
  265. /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
  266. * which means that we just cleared supervisor access... oops ;-) This
  267. * restores it
  268. */
  269. flags |= _PAGE_BAP_SR;
  270. #endif
  271. if (ppc_md.ioremap)
  272. return ppc_md.ioremap(addr, size, flags, caller);
  273. return __ioremap_caller(addr, size, flags, caller);
  274. }
  275. /*
  276. * Unmap an IO region and remove it from imalloc'd list.
  277. * Access to IO memory should be serialized by driver.
  278. */
  279. void __iounmap(volatile void __iomem *token)
  280. {
  281. void *addr;
  282. if (!mem_init_done)
  283. return;
  284. addr = (void *) ((unsigned long __force)
  285. PCI_FIX_ADDR(token) & PAGE_MASK);
  286. if ((unsigned long)addr < ioremap_bot) {
  287. printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
  288. " at 0x%p\n", addr);
  289. return;
  290. }
  291. vunmap(addr);
  292. }
  293. void iounmap(volatile void __iomem *token)
  294. {
  295. if (ppc_md.iounmap)
  296. ppc_md.iounmap(token);
  297. else
  298. __iounmap(token);
  299. }
  300. EXPORT_SYMBOL(ioremap);
  301. EXPORT_SYMBOL(ioremap_wc);
  302. EXPORT_SYMBOL(ioremap_prot);
  303. EXPORT_SYMBOL(__ioremap);
  304. EXPORT_SYMBOL(__ioremap_at);
  305. EXPORT_SYMBOL(iounmap);
  306. EXPORT_SYMBOL(__iounmap);
  307. EXPORT_SYMBOL(__iounmap_at);
  308. /*
  309. * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
  310. * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
  311. */
  312. struct page *pmd_page(pmd_t pmd)
  313. {
  314. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  315. if (pmd_trans_huge(pmd))
  316. return pfn_to_page(pmd_pfn(pmd));
  317. #endif
  318. return virt_to_page(pmd_page_vaddr(pmd));
  319. }
  320. #ifdef CONFIG_PPC_64K_PAGES
  321. static pte_t *get_from_cache(struct mm_struct *mm)
  322. {
  323. void *pte_frag, *ret;
  324. spin_lock(&mm->page_table_lock);
  325. ret = mm->context.pte_frag;
  326. if (ret) {
  327. pte_frag = ret + PTE_FRAG_SIZE;
  328. /*
  329. * If we have taken up all the fragments mark PTE page NULL
  330. */
  331. if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
  332. pte_frag = NULL;
  333. mm->context.pte_frag = pte_frag;
  334. }
  335. spin_unlock(&mm->page_table_lock);
  336. return (pte_t *)ret;
  337. }
  338. static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
  339. {
  340. void *ret = NULL;
  341. struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
  342. __GFP_REPEAT | __GFP_ZERO);
  343. if (!page)
  344. return NULL;
  345. if (!kernel && !pgtable_page_ctor(page)) {
  346. __free_page(page);
  347. return NULL;
  348. }
  349. ret = page_address(page);
  350. spin_lock(&mm->page_table_lock);
  351. /*
  352. * If we find pgtable_page set, we return
  353. * the allocated page with single fragement
  354. * count.
  355. */
  356. if (likely(!mm->context.pte_frag)) {
  357. atomic_set(&page->_count, PTE_FRAG_NR);
  358. mm->context.pte_frag = ret + PTE_FRAG_SIZE;
  359. }
  360. spin_unlock(&mm->page_table_lock);
  361. return (pte_t *)ret;
  362. }
  363. pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
  364. {
  365. pte_t *pte;
  366. pte = get_from_cache(mm);
  367. if (pte)
  368. return pte;
  369. return __alloc_for_cache(mm, kernel);
  370. }
  371. void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
  372. {
  373. struct page *page = virt_to_page(table);
  374. if (put_page_testzero(page)) {
  375. if (!kernel)
  376. pgtable_page_dtor(page);
  377. free_hot_cold_page(page, 0);
  378. }
  379. }
  380. #ifdef CONFIG_SMP
  381. static void page_table_free_rcu(void *table)
  382. {
  383. struct page *page = virt_to_page(table);
  384. if (put_page_testzero(page)) {
  385. pgtable_page_dtor(page);
  386. free_hot_cold_page(page, 0);
  387. }
  388. }
  389. void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
  390. {
  391. unsigned long pgf = (unsigned long)table;
  392. BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
  393. pgf |= shift;
  394. tlb_remove_table(tlb, (void *)pgf);
  395. }
  396. void __tlb_remove_table(void *_table)
  397. {
  398. void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
  399. unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
  400. if (!shift)
  401. /* PTE page needs special handling */
  402. page_table_free_rcu(table);
  403. else {
  404. BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
  405. kmem_cache_free(PGT_CACHE(shift), table);
  406. }
  407. }
  408. #else
  409. void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
  410. {
  411. if (!shift) {
  412. /* PTE page needs special handling */
  413. struct page *page = virt_to_page(table);
  414. if (put_page_testzero(page)) {
  415. pgtable_page_dtor(page);
  416. free_hot_cold_page(page, 0);
  417. }
  418. } else {
  419. BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
  420. kmem_cache_free(PGT_CACHE(shift), table);
  421. }
  422. }
  423. #endif
  424. #endif /* CONFIG_PPC_64K_PAGES */
  425. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  426. /*
  427. * This is called when relaxing access to a hugepage. It's also called in the page
  428. * fault path when we don't hit any of the major fault cases, ie, a minor
  429. * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
  430. * handled those two for us, we additionally deal with missing execute
  431. * permission here on some processors
  432. */
  433. int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
  434. pmd_t *pmdp, pmd_t entry, int dirty)
  435. {
  436. int changed;
  437. #ifdef CONFIG_DEBUG_VM
  438. WARN_ON(!pmd_trans_huge(*pmdp));
  439. assert_spin_locked(&vma->vm_mm->page_table_lock);
  440. #endif
  441. changed = !pmd_same(*(pmdp), entry);
  442. if (changed) {
  443. __ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
  444. /*
  445. * Since we are not supporting SW TLB systems, we don't
  446. * have any thing similar to flush_tlb_page_nohash()
  447. */
  448. }
  449. return changed;
  450. }
  451. unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
  452. pmd_t *pmdp, unsigned long clr,
  453. unsigned long set)
  454. {
  455. unsigned long old, tmp;
  456. #ifdef CONFIG_DEBUG_VM
  457. WARN_ON(!pmd_trans_huge(*pmdp));
  458. assert_spin_locked(&mm->page_table_lock);
  459. #endif
  460. #ifdef PTE_ATOMIC_UPDATES
  461. __asm__ __volatile__(
  462. "1: ldarx %0,0,%3\n\
  463. andi. %1,%0,%6\n\
  464. bne- 1b \n\
  465. andc %1,%0,%4 \n\
  466. or %1,%1,%7\n\
  467. stdcx. %1,0,%3 \n\
  468. bne- 1b"
  469. : "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
  470. : "r" (pmdp), "r" (clr), "m" (*pmdp), "i" (_PAGE_BUSY), "r" (set)
  471. : "cc" );
  472. #else
  473. old = pmd_val(*pmdp);
  474. *pmdp = __pmd((old & ~clr) | set);
  475. #endif
  476. trace_hugepage_update(addr, old, clr, set);
  477. if (old & _PAGE_HASHPTE)
  478. hpte_do_hugepage_flush(mm, addr, pmdp, old);
  479. return old;
  480. }
  481. pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
  482. pmd_t *pmdp)
  483. {
  484. pmd_t pmd;
  485. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  486. if (pmd_trans_huge(*pmdp)) {
  487. pmd = pmdp_get_and_clear(vma->vm_mm, address, pmdp);
  488. } else {
  489. /*
  490. * khugepaged calls this for normal pmd
  491. */
  492. pmd = *pmdp;
  493. pmd_clear(pmdp);
  494. /*
  495. * Wait for all pending hash_page to finish. This is needed
  496. * in case of subpage collapse. When we collapse normal pages
  497. * to hugepage, we first clear the pmd, then invalidate all
  498. * the PTE entries. The assumption here is that any low level
  499. * page fault will see a none pmd and take the slow path that
  500. * will wait on mmap_sem. But we could very well be in a
  501. * hash_page with local ptep pointer value. Such a hash page
  502. * can result in adding new HPTE entries for normal subpages.
  503. * That means we could be modifying the page content as we
  504. * copy them to a huge page. So wait for parallel hash_page
  505. * to finish before invalidating HPTE entries. We can do this
  506. * by sending an IPI to all the cpus and executing a dummy
  507. * function there.
  508. */
  509. kick_all_cpus_sync();
  510. /*
  511. * Now invalidate the hpte entries in the range
  512. * covered by pmd. This make sure we take a
  513. * fault and will find the pmd as none, which will
  514. * result in a major fault which takes mmap_sem and
  515. * hence wait for collapse to complete. Without this
  516. * the __collapse_huge_page_copy can result in copying
  517. * the old content.
  518. */
  519. flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
  520. }
  521. return pmd;
  522. }
  523. int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  524. unsigned long address, pmd_t *pmdp)
  525. {
  526. return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
  527. }
  528. /*
  529. * We currently remove entries from the hashtable regardless of whether
  530. * the entry was young or dirty. The generic routines only flush if the
  531. * entry was young or dirty which is not good enough.
  532. *
  533. * We should be more intelligent about this but for the moment we override
  534. * these functions and force a tlb flush unconditionally
  535. */
  536. int pmdp_clear_flush_young(struct vm_area_struct *vma,
  537. unsigned long address, pmd_t *pmdp)
  538. {
  539. return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
  540. }
  541. /*
  542. * We mark the pmd splitting and invalidate all the hpte
  543. * entries for this hugepage.
  544. */
  545. void pmdp_splitting_flush(struct vm_area_struct *vma,
  546. unsigned long address, pmd_t *pmdp)
  547. {
  548. unsigned long old, tmp;
  549. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  550. #ifdef CONFIG_DEBUG_VM
  551. WARN_ON(!pmd_trans_huge(*pmdp));
  552. assert_spin_locked(&vma->vm_mm->page_table_lock);
  553. #endif
  554. #ifdef PTE_ATOMIC_UPDATES
  555. __asm__ __volatile__(
  556. "1: ldarx %0,0,%3\n\
  557. andi. %1,%0,%6\n\
  558. bne- 1b \n\
  559. ori %1,%0,%4 \n\
  560. stdcx. %1,0,%3 \n\
  561. bne- 1b"
  562. : "=&r" (old), "=&r" (tmp), "=m" (*pmdp)
  563. : "r" (pmdp), "i" (_PAGE_SPLITTING), "m" (*pmdp), "i" (_PAGE_BUSY)
  564. : "cc" );
  565. #else
  566. old = pmd_val(*pmdp);
  567. *pmdp = __pmd(old | _PAGE_SPLITTING);
  568. #endif
  569. /*
  570. * If we didn't had the splitting flag set, go and flush the
  571. * HPTE entries.
  572. */
  573. trace_hugepage_splitting(address, old);
  574. if (!(old & _PAGE_SPLITTING)) {
  575. /* We need to flush the hpte */
  576. if (old & _PAGE_HASHPTE)
  577. hpte_do_hugepage_flush(vma->vm_mm, address, pmdp, old);
  578. }
  579. /*
  580. * This ensures that generic code that rely on IRQ disabling
  581. * to prevent a parallel THP split work as expected.
  582. */
  583. kick_all_cpus_sync();
  584. }
  585. /*
  586. * We want to put the pgtable in pmd and use pgtable for tracking
  587. * the base page size hptes
  588. */
  589. void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
  590. pgtable_t pgtable)
  591. {
  592. pgtable_t *pgtable_slot;
  593. assert_spin_locked(&mm->page_table_lock);
  594. /*
  595. * we store the pgtable in the second half of PMD
  596. */
  597. pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
  598. *pgtable_slot = pgtable;
  599. /*
  600. * expose the deposited pgtable to other cpus.
  601. * before we set the hugepage PTE at pmd level
  602. * hash fault code looks at the deposted pgtable
  603. * to store hash index values.
  604. */
  605. smp_wmb();
  606. }
  607. pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
  608. {
  609. pgtable_t pgtable;
  610. pgtable_t *pgtable_slot;
  611. assert_spin_locked(&mm->page_table_lock);
  612. pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
  613. pgtable = *pgtable_slot;
  614. /*
  615. * Once we withdraw, mark the entry NULL.
  616. */
  617. *pgtable_slot = NULL;
  618. /*
  619. * We store HPTE information in the deposited PTE fragment.
  620. * zero out the content on withdraw.
  621. */
  622. memset(pgtable, 0, PTE_FRAG_SIZE);
  623. return pgtable;
  624. }
  625. /*
  626. * set a new huge pmd. We should not be called for updating
  627. * an existing pmd entry. That should go via pmd_hugepage_update.
  628. */
  629. void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  630. pmd_t *pmdp, pmd_t pmd)
  631. {
  632. #ifdef CONFIG_DEBUG_VM
  633. WARN_ON(pmd_val(*pmdp) & _PAGE_PRESENT);
  634. assert_spin_locked(&mm->page_table_lock);
  635. WARN_ON(!pmd_trans_huge(pmd));
  636. #endif
  637. trace_hugepage_set_pmd(addr, pmd);
  638. return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
  639. }
  640. void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
  641. pmd_t *pmdp)
  642. {
  643. pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
  644. }
  645. /*
  646. * A linux hugepage PMD was changed and the corresponding hash table entries
  647. * neesd to be flushed.
  648. */
  649. void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
  650. pmd_t *pmdp, unsigned long old_pmd)
  651. {
  652. int ssize, i;
  653. unsigned long s_addr;
  654. int max_hpte_count;
  655. unsigned int psize, valid;
  656. unsigned char *hpte_slot_array;
  657. unsigned long hidx, vpn, vsid, hash, shift, slot;
  658. /*
  659. * Flush all the hptes mapping this hugepage
  660. */
  661. s_addr = addr & HPAGE_PMD_MASK;
  662. hpte_slot_array = get_hpte_slot_array(pmdp);
  663. /*
  664. * IF we try to do a HUGE PTE update after a withdraw is done.
  665. * we will find the below NULL. This happens when we do
  666. * split_huge_page_pmd
  667. */
  668. if (!hpte_slot_array)
  669. return;
  670. /* get the base page size,vsid and segment size */
  671. #ifdef CONFIG_DEBUG_VM
  672. psize = get_slice_psize(mm, s_addr);
  673. BUG_ON(psize == MMU_PAGE_16M);
  674. #endif
  675. if (old_pmd & _PAGE_COMBO)
  676. psize = MMU_PAGE_4K;
  677. else
  678. psize = MMU_PAGE_64K;
  679. if (!is_kernel_addr(s_addr)) {
  680. ssize = user_segment_size(s_addr);
  681. vsid = get_vsid(mm->context.id, s_addr, ssize);
  682. WARN_ON(vsid == 0);
  683. } else {
  684. vsid = get_kernel_vsid(s_addr, mmu_kernel_ssize);
  685. ssize = mmu_kernel_ssize;
  686. }
  687. if (ppc_md.hugepage_invalidate)
  688. return ppc_md.hugepage_invalidate(vsid, s_addr,
  689. hpte_slot_array,
  690. psize, ssize);
  691. /*
  692. * No bluk hpte removal support, invalidate each entry
  693. */
  694. shift = mmu_psize_defs[psize].shift;
  695. max_hpte_count = HPAGE_PMD_SIZE >> shift;
  696. for (i = 0; i < max_hpte_count; i++) {
  697. /*
  698. * 8 bits per each hpte entries
  699. * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
  700. */
  701. valid = hpte_valid(hpte_slot_array, i);
  702. if (!valid)
  703. continue;
  704. hidx = hpte_hash_index(hpte_slot_array, i);
  705. /* get the vpn */
  706. addr = s_addr + (i * (1ul << shift));
  707. vpn = hpt_vpn(addr, vsid, ssize);
  708. hash = hpt_hash(vpn, shift, ssize);
  709. if (hidx & _PTEIDX_SECONDARY)
  710. hash = ~hash;
  711. slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
  712. slot += hidx & _PTEIDX_GROUP_IX;
  713. ppc_md.hpte_invalidate(slot, vpn, psize,
  714. MMU_PAGE_16M, ssize, 0);
  715. }
  716. }
  717. static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
  718. {
  719. pmd_val(pmd) |= pgprot_val(pgprot);
  720. return pmd;
  721. }
  722. pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
  723. {
  724. pmd_t pmd;
  725. /*
  726. * For a valid pte, we would have _PAGE_PRESENT or _PAGE_FILE always
  727. * set. We use this to check THP page at pmd level.
  728. * leaf pte for huge page, bottom two bits != 00
  729. */
  730. pmd_val(pmd) = pfn << PTE_RPN_SHIFT;
  731. pmd_val(pmd) |= _PAGE_THP_HUGE;
  732. pmd = pmd_set_protbits(pmd, pgprot);
  733. return pmd;
  734. }
  735. pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
  736. {
  737. return pfn_pmd(page_to_pfn(page), pgprot);
  738. }
  739. pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  740. {
  741. pmd_val(pmd) &= _HPAGE_CHG_MASK;
  742. pmd = pmd_set_protbits(pmd, newprot);
  743. return pmd;
  744. }
  745. /*
  746. * This is called at the end of handling a user page fault, when the
  747. * fault has been handled by updating a HUGE PMD entry in the linux page tables.
  748. * We use it to preload an HPTE into the hash table corresponding to
  749. * the updated linux HUGE PMD entry.
  750. */
  751. void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
  752. pmd_t *pmd)
  753. {
  754. return;
  755. }
  756. pmd_t pmdp_get_and_clear(struct mm_struct *mm,
  757. unsigned long addr, pmd_t *pmdp)
  758. {
  759. pmd_t old_pmd;
  760. pgtable_t pgtable;
  761. unsigned long old;
  762. pgtable_t *pgtable_slot;
  763. old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
  764. old_pmd = __pmd(old);
  765. /*
  766. * We have pmd == none and we are holding page_table_lock.
  767. * So we can safely go and clear the pgtable hash
  768. * index info.
  769. */
  770. pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
  771. pgtable = *pgtable_slot;
  772. /*
  773. * Let's zero out old valid and hash index details
  774. * hash fault look at them.
  775. */
  776. memset(pgtable, 0, PTE_FRAG_SIZE);
  777. return old_pmd;
  778. }
  779. int has_transparent_hugepage(void)
  780. {
  781. if (!mmu_has_feature(MMU_FTR_16M_PAGE))
  782. return 0;
  783. /*
  784. * We support THP only if PMD_SIZE is 16MB.
  785. */
  786. if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
  787. return 0;
  788. /*
  789. * We need to make sure that we support 16MB hugepage in a segement
  790. * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
  791. * of 64K.
  792. */
  793. /*
  794. * If we have 64K HPTE, we will be using that by default
  795. */
  796. if (mmu_psize_defs[MMU_PAGE_64K].shift &&
  797. (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
  798. return 0;
  799. /*
  800. * Ok we only have 4K HPTE
  801. */
  802. if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
  803. return 0;
  804. return 1;
  805. }
  806. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */