intel_ringbuffer.c 92 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  47. {
  48. if (ringbuf->last_retired_head != -1) {
  49. ringbuf->head = ringbuf->last_retired_head;
  50. ringbuf->last_retired_head = -1;
  51. }
  52. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  53. ringbuf->tail, ringbuf->size);
  54. }
  55. bool intel_engine_stopped(struct intel_engine_cs *engine)
  56. {
  57. struct drm_i915_private *dev_priv = engine->i915;
  58. return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
  59. }
  60. static void __intel_ring_advance(struct intel_engine_cs *engine)
  61. {
  62. struct intel_ringbuffer *ringbuf = engine->buffer;
  63. ringbuf->tail &= ringbuf->size - 1;
  64. if (intel_engine_stopped(engine))
  65. return;
  66. engine->write_tail(engine, ringbuf->tail);
  67. }
  68. static int
  69. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  70. u32 invalidate_domains,
  71. u32 flush_domains)
  72. {
  73. struct intel_engine_cs *engine = req->engine;
  74. u32 cmd;
  75. int ret;
  76. cmd = MI_FLUSH;
  77. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  78. cmd |= MI_NO_WRITE_FLUSH;
  79. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  80. cmd |= MI_READ_FLUSH;
  81. ret = intel_ring_begin(req, 2);
  82. if (ret)
  83. return ret;
  84. intel_ring_emit(engine, cmd);
  85. intel_ring_emit(engine, MI_NOOP);
  86. intel_ring_advance(engine);
  87. return 0;
  88. }
  89. static int
  90. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  91. u32 invalidate_domains,
  92. u32 flush_domains)
  93. {
  94. struct intel_engine_cs *engine = req->engine;
  95. u32 cmd;
  96. int ret;
  97. /*
  98. * read/write caches:
  99. *
  100. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  101. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  102. * also flushed at 2d versus 3d pipeline switches.
  103. *
  104. * read-only caches:
  105. *
  106. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  107. * MI_READ_FLUSH is set, and is always flushed on 965.
  108. *
  109. * I915_GEM_DOMAIN_COMMAND may not exist?
  110. *
  111. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  112. * invalidated when MI_EXE_FLUSH is set.
  113. *
  114. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  115. * invalidated with every MI_FLUSH.
  116. *
  117. * TLBs:
  118. *
  119. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  120. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  121. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  122. * are flushed at any MI_FLUSH.
  123. */
  124. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  125. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  126. cmd &= ~MI_NO_WRITE_FLUSH;
  127. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  128. cmd |= MI_EXE_FLUSH;
  129. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  130. (IS_G4X(req->i915) || IS_GEN5(req->i915)))
  131. cmd |= MI_INVALIDATE_ISP;
  132. ret = intel_ring_begin(req, 2);
  133. if (ret)
  134. return ret;
  135. intel_ring_emit(engine, cmd);
  136. intel_ring_emit(engine, MI_NOOP);
  137. intel_ring_advance(engine);
  138. return 0;
  139. }
  140. /**
  141. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  142. * implementing two workarounds on gen6. From section 1.4.7.1
  143. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  144. *
  145. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  146. * produced by non-pipelined state commands), software needs to first
  147. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  148. * 0.
  149. *
  150. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  151. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  152. *
  153. * And the workaround for these two requires this workaround first:
  154. *
  155. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  156. * BEFORE the pipe-control with a post-sync op and no write-cache
  157. * flushes.
  158. *
  159. * And this last workaround is tricky because of the requirements on
  160. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  161. * volume 2 part 1:
  162. *
  163. * "1 of the following must also be set:
  164. * - Render Target Cache Flush Enable ([12] of DW1)
  165. * - Depth Cache Flush Enable ([0] of DW1)
  166. * - Stall at Pixel Scoreboard ([1] of DW1)
  167. * - Depth Stall ([13] of DW1)
  168. * - Post-Sync Operation ([13] of DW1)
  169. * - Notify Enable ([8] of DW1)"
  170. *
  171. * The cache flushes require the workaround flush that triggered this
  172. * one, so we can't use it. Depth stall would trigger the same.
  173. * Post-sync nonzero is what triggered this second workaround, so we
  174. * can't use that one either. Notify enable is IRQs, which aren't
  175. * really our business. That leaves only stall at scoreboard.
  176. */
  177. static int
  178. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  179. {
  180. struct intel_engine_cs *engine = req->engine;
  181. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  182. int ret;
  183. ret = intel_ring_begin(req, 6);
  184. if (ret)
  185. return ret;
  186. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  187. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  188. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  189. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  190. intel_ring_emit(engine, 0); /* low dword */
  191. intel_ring_emit(engine, 0); /* high dword */
  192. intel_ring_emit(engine, MI_NOOP);
  193. intel_ring_advance(engine);
  194. ret = intel_ring_begin(req, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
  199. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  200. intel_ring_emit(engine, 0);
  201. intel_ring_emit(engine, 0);
  202. intel_ring_emit(engine, MI_NOOP);
  203. intel_ring_advance(engine);
  204. return 0;
  205. }
  206. static int
  207. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  208. u32 invalidate_domains, u32 flush_domains)
  209. {
  210. struct intel_engine_cs *engine = req->engine;
  211. u32 flags = 0;
  212. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  213. int ret;
  214. /* Force SNB workarounds for PIPE_CONTROL flushes */
  215. ret = intel_emit_post_sync_nonzero_flush(req);
  216. if (ret)
  217. return ret;
  218. /* Just flush everything. Experiments have shown that reducing the
  219. * number of bits based on the write domains has little performance
  220. * impact.
  221. */
  222. if (flush_domains) {
  223. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  224. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  225. /*
  226. * Ensure that any following seqno writes only happen
  227. * when the render cache is indeed flushed.
  228. */
  229. flags |= PIPE_CONTROL_CS_STALL;
  230. }
  231. if (invalidate_domains) {
  232. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  233. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  234. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  238. /*
  239. * TLB invalidate requires a post-sync write.
  240. */
  241. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  242. }
  243. ret = intel_ring_begin(req, 4);
  244. if (ret)
  245. return ret;
  246. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  247. intel_ring_emit(engine, flags);
  248. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  249. intel_ring_emit(engine, 0);
  250. intel_ring_advance(engine);
  251. return 0;
  252. }
  253. static int
  254. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  255. {
  256. struct intel_engine_cs *engine = req->engine;
  257. int ret;
  258. ret = intel_ring_begin(req, 4);
  259. if (ret)
  260. return ret;
  261. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  262. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  263. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  264. intel_ring_emit(engine, 0);
  265. intel_ring_emit(engine, 0);
  266. intel_ring_advance(engine);
  267. return 0;
  268. }
  269. static int
  270. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  271. u32 invalidate_domains, u32 flush_domains)
  272. {
  273. struct intel_engine_cs *engine = req->engine;
  274. u32 flags = 0;
  275. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  276. int ret;
  277. /*
  278. * Ensure that any following seqno writes only happen when the render
  279. * cache is indeed flushed.
  280. *
  281. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  282. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  283. * don't try to be clever and just set it unconditionally.
  284. */
  285. flags |= PIPE_CONTROL_CS_STALL;
  286. /* Just flush everything. Experiments have shown that reducing the
  287. * number of bits based on the write domains has little performance
  288. * impact.
  289. */
  290. if (flush_domains) {
  291. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  292. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  293. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  294. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  295. }
  296. if (invalidate_domains) {
  297. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  298. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  299. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  300. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  304. /*
  305. * TLB invalidate requires a post-sync write.
  306. */
  307. flags |= PIPE_CONTROL_QW_WRITE;
  308. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  309. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  310. /* Workaround: we must issue a pipe_control with CS-stall bit
  311. * set before a pipe_control command that has the state cache
  312. * invalidate bit set. */
  313. gen7_render_ring_cs_stall_wa(req);
  314. }
  315. ret = intel_ring_begin(req, 4);
  316. if (ret)
  317. return ret;
  318. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  319. intel_ring_emit(engine, flags);
  320. intel_ring_emit(engine, scratch_addr);
  321. intel_ring_emit(engine, 0);
  322. intel_ring_advance(engine);
  323. return 0;
  324. }
  325. static int
  326. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  327. u32 flags, u32 scratch_addr)
  328. {
  329. struct intel_engine_cs *engine = req->engine;
  330. int ret;
  331. ret = intel_ring_begin(req, 6);
  332. if (ret)
  333. return ret;
  334. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  335. intel_ring_emit(engine, flags);
  336. intel_ring_emit(engine, scratch_addr);
  337. intel_ring_emit(engine, 0);
  338. intel_ring_emit(engine, 0);
  339. intel_ring_emit(engine, 0);
  340. intel_ring_advance(engine);
  341. return 0;
  342. }
  343. static int
  344. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  345. u32 invalidate_domains, u32 flush_domains)
  346. {
  347. u32 flags = 0;
  348. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  349. int ret;
  350. flags |= PIPE_CONTROL_CS_STALL;
  351. if (flush_domains) {
  352. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  353. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  354. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  355. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  356. }
  357. if (invalidate_domains) {
  358. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  359. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  360. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  361. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_QW_WRITE;
  365. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  366. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  367. ret = gen8_emit_pipe_control(req,
  368. PIPE_CONTROL_CS_STALL |
  369. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  370. 0);
  371. if (ret)
  372. return ret;
  373. }
  374. return gen8_emit_pipe_control(req, flags, scratch_addr);
  375. }
  376. static void ring_write_tail(struct intel_engine_cs *engine,
  377. u32 value)
  378. {
  379. struct drm_i915_private *dev_priv = engine->i915;
  380. I915_WRITE_TAIL(engine, value);
  381. }
  382. u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
  383. {
  384. struct drm_i915_private *dev_priv = engine->i915;
  385. u64 acthd;
  386. if (INTEL_GEN(dev_priv) >= 8)
  387. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  388. RING_ACTHD_UDW(engine->mmio_base));
  389. else if (INTEL_GEN(dev_priv) >= 4)
  390. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  391. else
  392. acthd = I915_READ(ACTHD);
  393. return acthd;
  394. }
  395. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  396. {
  397. struct drm_i915_private *dev_priv = engine->i915;
  398. u32 addr;
  399. addr = dev_priv->status_page_dmah->busaddr;
  400. if (INTEL_GEN(dev_priv) >= 4)
  401. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  402. I915_WRITE(HWS_PGA, addr);
  403. }
  404. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  405. {
  406. struct drm_i915_private *dev_priv = engine->i915;
  407. i915_reg_t mmio;
  408. /* The ring status page addresses are no longer next to the rest of
  409. * the ring registers as of gen7.
  410. */
  411. if (IS_GEN7(dev_priv)) {
  412. switch (engine->id) {
  413. case RCS:
  414. mmio = RENDER_HWS_PGA_GEN7;
  415. break;
  416. case BCS:
  417. mmio = BLT_HWS_PGA_GEN7;
  418. break;
  419. /*
  420. * VCS2 actually doesn't exist on Gen7. Only shut up
  421. * gcc switch check warning
  422. */
  423. case VCS2:
  424. case VCS:
  425. mmio = BSD_HWS_PGA_GEN7;
  426. break;
  427. case VECS:
  428. mmio = VEBOX_HWS_PGA_GEN7;
  429. break;
  430. }
  431. } else if (IS_GEN6(dev_priv)) {
  432. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  433. } else {
  434. /* XXX: gen8 returns to sanity */
  435. mmio = RING_HWS_PGA(engine->mmio_base);
  436. }
  437. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  438. POSTING_READ(mmio);
  439. /*
  440. * Flush the TLB for this page
  441. *
  442. * FIXME: These two bits have disappeared on gen8, so a question
  443. * arises: do we still need this and if so how should we go about
  444. * invalidating the TLB?
  445. */
  446. if (IS_GEN(dev_priv, 6, 7)) {
  447. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  448. /* ring should be idle before issuing a sync flush*/
  449. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  450. I915_WRITE(reg,
  451. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  452. INSTPM_SYNC_FLUSH));
  453. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  454. 1000))
  455. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  456. engine->name);
  457. }
  458. }
  459. static bool stop_ring(struct intel_engine_cs *engine)
  460. {
  461. struct drm_i915_private *dev_priv = engine->i915;
  462. if (!IS_GEN2(dev_priv)) {
  463. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  464. if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
  465. DRM_ERROR("%s : timed out trying to stop ring\n",
  466. engine->name);
  467. /* Sometimes we observe that the idle flag is not
  468. * set even though the ring is empty. So double
  469. * check before giving up.
  470. */
  471. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  472. return false;
  473. }
  474. }
  475. I915_WRITE_CTL(engine, 0);
  476. I915_WRITE_HEAD(engine, 0);
  477. engine->write_tail(engine, 0);
  478. if (!IS_GEN2(dev_priv)) {
  479. (void)I915_READ_CTL(engine);
  480. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  481. }
  482. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  483. }
  484. void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
  485. {
  486. memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
  487. }
  488. static int init_ring_common(struct intel_engine_cs *engine)
  489. {
  490. struct drm_i915_private *dev_priv = engine->i915;
  491. struct intel_ringbuffer *ringbuf = engine->buffer;
  492. struct drm_i915_gem_object *obj = ringbuf->obj;
  493. int ret = 0;
  494. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  495. if (!stop_ring(engine)) {
  496. /* G45 ring initialization often fails to reset head to zero */
  497. DRM_DEBUG_KMS("%s head not reset to zero "
  498. "ctl %08x head %08x tail %08x start %08x\n",
  499. engine->name,
  500. I915_READ_CTL(engine),
  501. I915_READ_HEAD(engine),
  502. I915_READ_TAIL(engine),
  503. I915_READ_START(engine));
  504. if (!stop_ring(engine)) {
  505. DRM_ERROR("failed to set %s head to zero "
  506. "ctl %08x head %08x tail %08x start %08x\n",
  507. engine->name,
  508. I915_READ_CTL(engine),
  509. I915_READ_HEAD(engine),
  510. I915_READ_TAIL(engine),
  511. I915_READ_START(engine));
  512. ret = -EIO;
  513. goto out;
  514. }
  515. }
  516. if (I915_NEED_GFX_HWS(dev_priv))
  517. intel_ring_setup_status_page(engine);
  518. else
  519. ring_setup_phys_status_page(engine);
  520. /* Enforce ordering by reading HEAD register back */
  521. I915_READ_HEAD(engine);
  522. /* Initialize the ring. This must happen _after_ we've cleared the ring
  523. * registers with the above sequence (the readback of the HEAD registers
  524. * also enforces ordering), otherwise the hw might lose the new ring
  525. * register values. */
  526. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  527. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  528. if (I915_READ_HEAD(engine))
  529. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  530. engine->name, I915_READ_HEAD(engine));
  531. I915_WRITE_HEAD(engine, 0);
  532. (void)I915_READ_HEAD(engine);
  533. I915_WRITE_CTL(engine,
  534. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  535. | RING_VALID);
  536. /* If the head is still not zero, the ring is dead */
  537. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  538. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  539. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  540. DRM_ERROR("%s initialization failed "
  541. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  542. engine->name,
  543. I915_READ_CTL(engine),
  544. I915_READ_CTL(engine) & RING_VALID,
  545. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  546. I915_READ_START(engine),
  547. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  548. ret = -EIO;
  549. goto out;
  550. }
  551. ringbuf->last_retired_head = -1;
  552. ringbuf->head = I915_READ_HEAD(engine);
  553. ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  554. intel_ring_update_space(ringbuf);
  555. intel_engine_init_hangcheck(engine);
  556. out:
  557. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  558. return ret;
  559. }
  560. void
  561. intel_fini_pipe_control(struct intel_engine_cs *engine)
  562. {
  563. if (engine->scratch.obj == NULL)
  564. return;
  565. if (INTEL_GEN(engine->i915) >= 5) {
  566. kunmap(sg_page(engine->scratch.obj->pages->sgl));
  567. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  568. }
  569. drm_gem_object_unreference(&engine->scratch.obj->base);
  570. engine->scratch.obj = NULL;
  571. }
  572. int
  573. intel_init_pipe_control(struct intel_engine_cs *engine)
  574. {
  575. int ret;
  576. WARN_ON(engine->scratch.obj);
  577. engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
  578. if (IS_ERR(engine->scratch.obj)) {
  579. DRM_ERROR("Failed to allocate seqno page\n");
  580. ret = PTR_ERR(engine->scratch.obj);
  581. engine->scratch.obj = NULL;
  582. goto err;
  583. }
  584. ret = i915_gem_object_set_cache_level(engine->scratch.obj,
  585. I915_CACHE_LLC);
  586. if (ret)
  587. goto err_unref;
  588. ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
  589. if (ret)
  590. goto err_unref;
  591. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
  592. engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
  593. if (engine->scratch.cpu_page == NULL) {
  594. ret = -ENOMEM;
  595. goto err_unpin;
  596. }
  597. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  598. engine->name, engine->scratch.gtt_offset);
  599. return 0;
  600. err_unpin:
  601. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  602. err_unref:
  603. drm_gem_object_unreference(&engine->scratch.obj->base);
  604. err:
  605. return ret;
  606. }
  607. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  608. {
  609. struct intel_engine_cs *engine = req->engine;
  610. struct i915_workarounds *w = &req->i915->workarounds;
  611. int ret, i;
  612. if (w->count == 0)
  613. return 0;
  614. engine->gpu_caches_dirty = true;
  615. ret = intel_ring_flush_all_caches(req);
  616. if (ret)
  617. return ret;
  618. ret = intel_ring_begin(req, (w->count * 2 + 2));
  619. if (ret)
  620. return ret;
  621. intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
  622. for (i = 0; i < w->count; i++) {
  623. intel_ring_emit_reg(engine, w->reg[i].addr);
  624. intel_ring_emit(engine, w->reg[i].value);
  625. }
  626. intel_ring_emit(engine, MI_NOOP);
  627. intel_ring_advance(engine);
  628. engine->gpu_caches_dirty = true;
  629. ret = intel_ring_flush_all_caches(req);
  630. if (ret)
  631. return ret;
  632. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  633. return 0;
  634. }
  635. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  636. {
  637. int ret;
  638. ret = intel_ring_workarounds_emit(req);
  639. if (ret != 0)
  640. return ret;
  641. ret = i915_gem_render_state_init(req);
  642. if (ret)
  643. return ret;
  644. return 0;
  645. }
  646. static int wa_add(struct drm_i915_private *dev_priv,
  647. i915_reg_t addr,
  648. const u32 mask, const u32 val)
  649. {
  650. const u32 idx = dev_priv->workarounds.count;
  651. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  652. return -ENOSPC;
  653. dev_priv->workarounds.reg[idx].addr = addr;
  654. dev_priv->workarounds.reg[idx].value = val;
  655. dev_priv->workarounds.reg[idx].mask = mask;
  656. dev_priv->workarounds.count++;
  657. return 0;
  658. }
  659. #define WA_REG(addr, mask, val) do { \
  660. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  661. if (r) \
  662. return r; \
  663. } while (0)
  664. #define WA_SET_BIT_MASKED(addr, mask) \
  665. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  666. #define WA_CLR_BIT_MASKED(addr, mask) \
  667. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  668. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  669. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  670. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  671. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  672. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  673. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  674. i915_reg_t reg)
  675. {
  676. struct drm_i915_private *dev_priv = engine->i915;
  677. struct i915_workarounds *wa = &dev_priv->workarounds;
  678. const uint32_t index = wa->hw_whitelist_count[engine->id];
  679. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  680. return -EINVAL;
  681. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  682. i915_mmio_reg_offset(reg));
  683. wa->hw_whitelist_count[engine->id]++;
  684. return 0;
  685. }
  686. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  687. {
  688. struct drm_i915_private *dev_priv = engine->i915;
  689. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  690. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  691. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  692. /* WaDisablePartialInstShootdown:bdw,chv */
  693. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  694. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  695. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  696. * workaround for for a possible hang in the unlikely event a TLB
  697. * invalidation occurs during a PSD flush.
  698. */
  699. /* WaForceEnableNonCoherent:bdw,chv */
  700. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  701. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  702. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  703. HDC_FORCE_NON_COHERENT);
  704. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  705. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  706. * polygons in the same 8x4 pixel/sample area to be processed without
  707. * stalling waiting for the earlier ones to write to Hierarchical Z
  708. * buffer."
  709. *
  710. * This optimization is off by default for BDW and CHV; turn it on.
  711. */
  712. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  713. /* Wa4x4STCOptimizationDisable:bdw,chv */
  714. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  715. /*
  716. * BSpec recommends 8x4 when MSAA is used,
  717. * however in practice 16x4 seems fastest.
  718. *
  719. * Note that PS/WM thread counts depend on the WIZ hashing
  720. * disable bit, which we don't touch here, but it's good
  721. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  722. */
  723. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  724. GEN6_WIZ_HASHING_MASK,
  725. GEN6_WIZ_HASHING_16x4);
  726. return 0;
  727. }
  728. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  729. {
  730. struct drm_i915_private *dev_priv = engine->i915;
  731. int ret;
  732. ret = gen8_init_workarounds(engine);
  733. if (ret)
  734. return ret;
  735. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  736. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  737. /* WaDisableDopClockGating:bdw */
  738. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  739. DOP_CLOCK_GATING_DISABLE);
  740. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  741. GEN8_SAMPLER_POWER_BYPASS_DIS);
  742. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  743. /* WaForceContextSaveRestoreNonCoherent:bdw */
  744. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  745. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  746. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  747. return 0;
  748. }
  749. static int chv_init_workarounds(struct intel_engine_cs *engine)
  750. {
  751. struct drm_i915_private *dev_priv = engine->i915;
  752. int ret;
  753. ret = gen8_init_workarounds(engine);
  754. if (ret)
  755. return ret;
  756. /* WaDisableThreadStallDopClockGating:chv */
  757. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  758. /* Improve HiZ throughput on CHV. */
  759. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  760. return 0;
  761. }
  762. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  763. {
  764. struct drm_i915_private *dev_priv = engine->i915;
  765. int ret;
  766. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  767. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  768. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  769. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  770. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  771. /* WaDisableKillLogic:bxt,skl,kbl */
  772. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  773. ECOCHK_DIS_TLB);
  774. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  775. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  776. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  777. FLOW_CONTROL_ENABLE |
  778. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  779. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  780. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  781. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  782. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  783. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  784. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  785. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  786. GEN9_DG_MIRROR_FIX_ENABLE);
  787. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  788. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  789. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  790. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  791. GEN9_RHWO_OPTIMIZATION_DISABLE);
  792. /*
  793. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  794. * but we do that in per ctx batchbuffer as there is an issue
  795. * with this register not getting restored on ctx restore
  796. */
  797. }
  798. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
  799. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  800. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  801. GEN9_ENABLE_YV12_BUGFIX |
  802. GEN9_ENABLE_GPGPU_PREEMPTION);
  803. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  804. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  805. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  806. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  807. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  808. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  809. GEN9_CCS_TLB_PREFETCH_ENABLE);
  810. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  811. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
  812. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  813. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  814. PIXEL_MASK_CAMMING_DISABLE);
  815. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  816. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  817. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  818. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  819. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  820. * both tied to WaForceContextSaveRestoreNonCoherent
  821. * in some hsds for skl. We keep the tie for all gen9. The
  822. * documentation is a bit hazy and so we want to get common behaviour,
  823. * even though there is no clear evidence we would need both on kbl/bxt.
  824. * This area has been source of system hangs so we play it safe
  825. * and mimic the skl regardless of what bspec says.
  826. *
  827. * Use Force Non-Coherent whenever executing a 3D context. This
  828. * is a workaround for a possible hang in the unlikely event
  829. * a TLB invalidation occurs during a PSD flush.
  830. */
  831. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  832. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  833. HDC_FORCE_NON_COHERENT);
  834. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  835. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  836. BDW_DISABLE_HDC_INVALIDATION);
  837. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  838. if (IS_SKYLAKE(dev_priv) ||
  839. IS_KABYLAKE(dev_priv) ||
  840. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  841. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  842. GEN8_SAMPLER_POWER_BYPASS_DIS);
  843. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  844. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  845. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  846. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  847. GEN8_LQSC_FLUSH_COHERENT_LINES));
  848. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  849. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  850. if (ret)
  851. return ret;
  852. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  853. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  854. if (ret)
  855. return ret;
  856. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  857. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  858. if (ret)
  859. return ret;
  860. return 0;
  861. }
  862. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  863. {
  864. struct drm_i915_private *dev_priv = engine->i915;
  865. u8 vals[3] = { 0, 0, 0 };
  866. unsigned int i;
  867. for (i = 0; i < 3; i++) {
  868. u8 ss;
  869. /*
  870. * Only consider slices where one, and only one, subslice has 7
  871. * EUs
  872. */
  873. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  874. continue;
  875. /*
  876. * subslice_7eu[i] != 0 (because of the check above) and
  877. * ss_max == 4 (maximum number of subslices possible per slice)
  878. *
  879. * -> 0 <= ss <= 3;
  880. */
  881. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  882. vals[i] = 3 - ss;
  883. }
  884. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  885. return 0;
  886. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  887. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  888. GEN9_IZ_HASHING_MASK(2) |
  889. GEN9_IZ_HASHING_MASK(1) |
  890. GEN9_IZ_HASHING_MASK(0),
  891. GEN9_IZ_HASHING(2, vals[2]) |
  892. GEN9_IZ_HASHING(1, vals[1]) |
  893. GEN9_IZ_HASHING(0, vals[0]));
  894. return 0;
  895. }
  896. static int skl_init_workarounds(struct intel_engine_cs *engine)
  897. {
  898. struct drm_i915_private *dev_priv = engine->i915;
  899. int ret;
  900. ret = gen9_init_workarounds(engine);
  901. if (ret)
  902. return ret;
  903. /*
  904. * Actual WA is to disable percontext preemption granularity control
  905. * until D0 which is the default case so this is equivalent to
  906. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  907. */
  908. if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
  909. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  910. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  911. }
  912. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
  913. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  914. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  915. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  916. }
  917. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  918. * involving this register should also be added to WA batch as required.
  919. */
  920. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
  921. /* WaDisableLSQCROPERFforOCL:skl */
  922. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  923. GEN8_LQSC_RO_PERF_DIS);
  924. /* WaEnableGapsTsvCreditFix:skl */
  925. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
  926. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  927. GEN9_GAPS_TSV_CREDIT_DISABLE));
  928. }
  929. /* WaDisablePowerCompilerClockGating:skl */
  930. if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
  931. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  932. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  933. /* WaBarrierPerformanceFixDisable:skl */
  934. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
  935. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  936. HDC_FENCE_DEST_SLM_DISABLE |
  937. HDC_BARRIER_PERFORMANCE_DISABLE);
  938. /* WaDisableSbeCacheDispatchPortSharing:skl */
  939. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
  940. WA_SET_BIT_MASKED(
  941. GEN7_HALF_SLICE_CHICKEN1,
  942. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  943. /* WaDisableGafsUnitClkGating:skl */
  944. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  945. /* WaDisableLSQCROPERFforOCL:skl */
  946. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  947. if (ret)
  948. return ret;
  949. return skl_tune_iz_hashing(engine);
  950. }
  951. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  952. {
  953. struct drm_i915_private *dev_priv = engine->i915;
  954. int ret;
  955. ret = gen9_init_workarounds(engine);
  956. if (ret)
  957. return ret;
  958. /* WaStoreMultiplePTEenable:bxt */
  959. /* This is a requirement according to Hardware specification */
  960. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  961. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  962. /* WaSetClckGatingDisableMedia:bxt */
  963. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  964. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  965. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  966. }
  967. /* WaDisableThreadStallDopClockGating:bxt */
  968. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  969. STALL_DOP_GATING_DISABLE);
  970. /* WaDisablePooledEuLoadBalancingFix:bxt */
  971. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  972. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  973. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  974. }
  975. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  976. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  977. WA_SET_BIT_MASKED(
  978. GEN7_HALF_SLICE_CHICKEN1,
  979. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  980. }
  981. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  982. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  983. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  984. /* WaDisableLSQCROPERFforOCL:bxt */
  985. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  986. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  987. if (ret)
  988. return ret;
  989. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  990. if (ret)
  991. return ret;
  992. }
  993. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  994. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  995. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  996. L3_HIGH_PRIO_CREDITS(2));
  997. /* WaInsertDummyPushConstPs:bxt */
  998. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  999. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  1000. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  1001. return 0;
  1002. }
  1003. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  1004. {
  1005. struct drm_i915_private *dev_priv = engine->i915;
  1006. int ret;
  1007. ret = gen9_init_workarounds(engine);
  1008. if (ret)
  1009. return ret;
  1010. /* WaEnableGapsTsvCreditFix:kbl */
  1011. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  1012. GEN9_GAPS_TSV_CREDIT_DISABLE));
  1013. /* WaDisableDynamicCreditSharing:kbl */
  1014. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  1015. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  1016. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  1017. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  1018. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  1019. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  1020. HDC_FENCE_DEST_SLM_DISABLE);
  1021. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  1022. * involving this register should also be added to WA batch as required.
  1023. */
  1024. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
  1025. /* WaDisableLSQCROPERFforOCL:kbl */
  1026. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  1027. GEN8_LQSC_RO_PERF_DIS);
  1028. /* WaInsertDummyPushConstPs:kbl */
  1029. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  1030. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  1031. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  1032. /* WaDisableGafsUnitClkGating:kbl */
  1033. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  1034. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  1035. WA_SET_BIT_MASKED(
  1036. GEN7_HALF_SLICE_CHICKEN1,
  1037. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  1038. /* WaDisableLSQCROPERFforOCL:kbl */
  1039. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  1040. if (ret)
  1041. return ret;
  1042. return 0;
  1043. }
  1044. int init_workarounds_ring(struct intel_engine_cs *engine)
  1045. {
  1046. struct drm_i915_private *dev_priv = engine->i915;
  1047. WARN_ON(engine->id != RCS);
  1048. dev_priv->workarounds.count = 0;
  1049. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  1050. if (IS_BROADWELL(dev_priv))
  1051. return bdw_init_workarounds(engine);
  1052. if (IS_CHERRYVIEW(dev_priv))
  1053. return chv_init_workarounds(engine);
  1054. if (IS_SKYLAKE(dev_priv))
  1055. return skl_init_workarounds(engine);
  1056. if (IS_BROXTON(dev_priv))
  1057. return bxt_init_workarounds(engine);
  1058. if (IS_KABYLAKE(dev_priv))
  1059. return kbl_init_workarounds(engine);
  1060. return 0;
  1061. }
  1062. static int init_render_ring(struct intel_engine_cs *engine)
  1063. {
  1064. struct drm_i915_private *dev_priv = engine->i915;
  1065. int ret = init_ring_common(engine);
  1066. if (ret)
  1067. return ret;
  1068. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1069. if (IS_GEN(dev_priv, 4, 6))
  1070. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1071. /* We need to disable the AsyncFlip performance optimisations in order
  1072. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1073. * programmed to '1' on all products.
  1074. *
  1075. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1076. */
  1077. if (IS_GEN(dev_priv, 6, 7))
  1078. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1079. /* Required for the hardware to program scanline values for waiting */
  1080. /* WaEnableFlushTlbInvalidationMode:snb */
  1081. if (IS_GEN6(dev_priv))
  1082. I915_WRITE(GFX_MODE,
  1083. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1084. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1085. if (IS_GEN7(dev_priv))
  1086. I915_WRITE(GFX_MODE_GEN7,
  1087. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1088. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1089. if (IS_GEN6(dev_priv)) {
  1090. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1091. * "If this bit is set, STCunit will have LRA as replacement
  1092. * policy. [...] This bit must be reset. LRA replacement
  1093. * policy is not supported."
  1094. */
  1095. I915_WRITE(CACHE_MODE_0,
  1096. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1097. }
  1098. if (IS_GEN(dev_priv, 6, 7))
  1099. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1100. if (HAS_L3_DPF(dev_priv))
  1101. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
  1102. return init_workarounds_ring(engine);
  1103. }
  1104. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1105. {
  1106. struct drm_i915_private *dev_priv = engine->i915;
  1107. if (dev_priv->semaphore_obj) {
  1108. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1109. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1110. dev_priv->semaphore_obj = NULL;
  1111. }
  1112. intel_fini_pipe_control(engine);
  1113. }
  1114. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1115. unsigned int num_dwords)
  1116. {
  1117. #define MBOX_UPDATE_DWORDS 8
  1118. struct intel_engine_cs *signaller = signaller_req->engine;
  1119. struct drm_i915_private *dev_priv = signaller_req->i915;
  1120. struct intel_engine_cs *waiter;
  1121. enum intel_engine_id id;
  1122. int ret, num_rings;
  1123. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1124. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1125. #undef MBOX_UPDATE_DWORDS
  1126. ret = intel_ring_begin(signaller_req, num_dwords);
  1127. if (ret)
  1128. return ret;
  1129. for_each_engine_id(waiter, dev_priv, id) {
  1130. u32 seqno;
  1131. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1132. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1133. continue;
  1134. seqno = i915_gem_request_get_seqno(signaller_req);
  1135. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1136. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1137. PIPE_CONTROL_QW_WRITE |
  1138. PIPE_CONTROL_CS_STALL);
  1139. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1140. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1141. intel_ring_emit(signaller, seqno);
  1142. intel_ring_emit(signaller, 0);
  1143. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1144. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1145. intel_ring_emit(signaller, 0);
  1146. }
  1147. return 0;
  1148. }
  1149. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1150. unsigned int num_dwords)
  1151. {
  1152. #define MBOX_UPDATE_DWORDS 6
  1153. struct intel_engine_cs *signaller = signaller_req->engine;
  1154. struct drm_i915_private *dev_priv = signaller_req->i915;
  1155. struct intel_engine_cs *waiter;
  1156. enum intel_engine_id id;
  1157. int ret, num_rings;
  1158. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1159. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1160. #undef MBOX_UPDATE_DWORDS
  1161. ret = intel_ring_begin(signaller_req, num_dwords);
  1162. if (ret)
  1163. return ret;
  1164. for_each_engine_id(waiter, dev_priv, id) {
  1165. u32 seqno;
  1166. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1167. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1168. continue;
  1169. seqno = i915_gem_request_get_seqno(signaller_req);
  1170. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1171. MI_FLUSH_DW_OP_STOREDW);
  1172. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1173. MI_FLUSH_DW_USE_GTT);
  1174. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1175. intel_ring_emit(signaller, seqno);
  1176. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1177. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1178. intel_ring_emit(signaller, 0);
  1179. }
  1180. return 0;
  1181. }
  1182. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1183. unsigned int num_dwords)
  1184. {
  1185. struct intel_engine_cs *signaller = signaller_req->engine;
  1186. struct drm_i915_private *dev_priv = signaller_req->i915;
  1187. struct intel_engine_cs *useless;
  1188. enum intel_engine_id id;
  1189. int ret, num_rings;
  1190. #define MBOX_UPDATE_DWORDS 3
  1191. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1192. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1193. #undef MBOX_UPDATE_DWORDS
  1194. ret = intel_ring_begin(signaller_req, num_dwords);
  1195. if (ret)
  1196. return ret;
  1197. for_each_engine_id(useless, dev_priv, id) {
  1198. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
  1199. if (i915_mmio_reg_valid(mbox_reg)) {
  1200. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1201. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1202. intel_ring_emit_reg(signaller, mbox_reg);
  1203. intel_ring_emit(signaller, seqno);
  1204. }
  1205. }
  1206. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1207. if (num_rings % 2 == 0)
  1208. intel_ring_emit(signaller, MI_NOOP);
  1209. return 0;
  1210. }
  1211. /**
  1212. * gen6_add_request - Update the semaphore mailbox registers
  1213. *
  1214. * @request - request to write to the ring
  1215. *
  1216. * Update the mailbox registers in the *other* rings with the current seqno.
  1217. * This acts like a signal in the canonical semaphore.
  1218. */
  1219. static int
  1220. gen6_add_request(struct drm_i915_gem_request *req)
  1221. {
  1222. struct intel_engine_cs *engine = req->engine;
  1223. int ret;
  1224. if (engine->semaphore.signal)
  1225. ret = engine->semaphore.signal(req, 4);
  1226. else
  1227. ret = intel_ring_begin(req, 4);
  1228. if (ret)
  1229. return ret;
  1230. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1231. intel_ring_emit(engine,
  1232. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1233. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1234. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1235. __intel_ring_advance(engine);
  1236. return 0;
  1237. }
  1238. static int
  1239. gen8_render_add_request(struct drm_i915_gem_request *req)
  1240. {
  1241. struct intel_engine_cs *engine = req->engine;
  1242. int ret;
  1243. if (engine->semaphore.signal)
  1244. ret = engine->semaphore.signal(req, 8);
  1245. else
  1246. ret = intel_ring_begin(req, 8);
  1247. if (ret)
  1248. return ret;
  1249. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  1250. intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1251. PIPE_CONTROL_CS_STALL |
  1252. PIPE_CONTROL_QW_WRITE));
  1253. intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
  1254. intel_ring_emit(engine, 0);
  1255. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1256. /* We're thrashing one dword of HWS. */
  1257. intel_ring_emit(engine, 0);
  1258. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1259. intel_ring_emit(engine, MI_NOOP);
  1260. __intel_ring_advance(engine);
  1261. return 0;
  1262. }
  1263. static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
  1264. u32 seqno)
  1265. {
  1266. return dev_priv->last_seqno < seqno;
  1267. }
  1268. /**
  1269. * intel_ring_sync - sync the waiter to the signaller on seqno
  1270. *
  1271. * @waiter - ring that is waiting
  1272. * @signaller - ring which has, or will signal
  1273. * @seqno - seqno which the waiter will block on
  1274. */
  1275. static int
  1276. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1277. struct intel_engine_cs *signaller,
  1278. u32 seqno)
  1279. {
  1280. struct intel_engine_cs *waiter = waiter_req->engine;
  1281. struct drm_i915_private *dev_priv = waiter_req->i915;
  1282. struct i915_hw_ppgtt *ppgtt;
  1283. int ret;
  1284. ret = intel_ring_begin(waiter_req, 4);
  1285. if (ret)
  1286. return ret;
  1287. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1288. MI_SEMAPHORE_GLOBAL_GTT |
  1289. MI_SEMAPHORE_SAD_GTE_SDD);
  1290. intel_ring_emit(waiter, seqno);
  1291. intel_ring_emit(waiter,
  1292. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1293. intel_ring_emit(waiter,
  1294. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1295. intel_ring_advance(waiter);
  1296. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1297. * pagetables and we must reload them before executing the batch.
  1298. * We do this on the i915_switch_context() following the wait and
  1299. * before the dispatch.
  1300. */
  1301. ppgtt = waiter_req->ctx->ppgtt;
  1302. if (ppgtt && waiter_req->engine->id != RCS)
  1303. ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
  1304. return 0;
  1305. }
  1306. static int
  1307. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1308. struct intel_engine_cs *signaller,
  1309. u32 seqno)
  1310. {
  1311. struct intel_engine_cs *waiter = waiter_req->engine;
  1312. u32 dw1 = MI_SEMAPHORE_MBOX |
  1313. MI_SEMAPHORE_COMPARE |
  1314. MI_SEMAPHORE_REGISTER;
  1315. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1316. int ret;
  1317. /* Throughout all of the GEM code, seqno passed implies our current
  1318. * seqno is >= the last seqno executed. However for hardware the
  1319. * comparison is strictly greater than.
  1320. */
  1321. seqno -= 1;
  1322. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1323. ret = intel_ring_begin(waiter_req, 4);
  1324. if (ret)
  1325. return ret;
  1326. /* If seqno wrap happened, omit the wait with no-ops */
  1327. if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
  1328. intel_ring_emit(waiter, dw1 | wait_mbox);
  1329. intel_ring_emit(waiter, seqno);
  1330. intel_ring_emit(waiter, 0);
  1331. intel_ring_emit(waiter, MI_NOOP);
  1332. } else {
  1333. intel_ring_emit(waiter, MI_NOOP);
  1334. intel_ring_emit(waiter, MI_NOOP);
  1335. intel_ring_emit(waiter, MI_NOOP);
  1336. intel_ring_emit(waiter, MI_NOOP);
  1337. }
  1338. intel_ring_advance(waiter);
  1339. return 0;
  1340. }
  1341. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1342. do { \
  1343. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1344. PIPE_CONTROL_DEPTH_STALL); \
  1345. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1346. intel_ring_emit(ring__, 0); \
  1347. intel_ring_emit(ring__, 0); \
  1348. } while (0)
  1349. static int
  1350. pc_render_add_request(struct drm_i915_gem_request *req)
  1351. {
  1352. struct intel_engine_cs *engine = req->engine;
  1353. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1354. int ret;
  1355. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1356. * incoherent with writes to memory, i.e. completely fubar,
  1357. * so we need to use PIPE_NOTIFY instead.
  1358. *
  1359. * However, we also need to workaround the qword write
  1360. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1361. * memory before requesting an interrupt.
  1362. */
  1363. ret = intel_ring_begin(req, 32);
  1364. if (ret)
  1365. return ret;
  1366. intel_ring_emit(engine,
  1367. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1368. PIPE_CONTROL_WRITE_FLUSH |
  1369. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1370. intel_ring_emit(engine,
  1371. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1372. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1373. intel_ring_emit(engine, 0);
  1374. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1375. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1376. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1377. scratch_addr += 2 * CACHELINE_BYTES;
  1378. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1379. scratch_addr += 2 * CACHELINE_BYTES;
  1380. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1381. scratch_addr += 2 * CACHELINE_BYTES;
  1382. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1383. scratch_addr += 2 * CACHELINE_BYTES;
  1384. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1385. intel_ring_emit(engine,
  1386. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1387. PIPE_CONTROL_WRITE_FLUSH |
  1388. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1389. PIPE_CONTROL_NOTIFY);
  1390. intel_ring_emit(engine,
  1391. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1392. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1393. intel_ring_emit(engine, 0);
  1394. __intel_ring_advance(engine);
  1395. return 0;
  1396. }
  1397. static void
  1398. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1399. {
  1400. struct drm_i915_private *dev_priv = engine->i915;
  1401. /* Workaround to force correct ordering between irq and seqno writes on
  1402. * ivb (and maybe also on snb) by reading from a CS register (like
  1403. * ACTHD) before reading the status page.
  1404. *
  1405. * Note that this effectively stalls the read by the time it takes to
  1406. * do a memory transaction, which more or less ensures that the write
  1407. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1408. * Alternatively we could delay the interrupt from the CS ring to give
  1409. * the write time to land, but that would incur a delay after every
  1410. * batch i.e. much more frequent than a delay when waiting for the
  1411. * interrupt (with the same net latency).
  1412. *
  1413. * Also note that to prevent whole machine hangs on gen7, we have to
  1414. * take the spinlock to guard against concurrent cacheline access.
  1415. */
  1416. spin_lock_irq(&dev_priv->uncore.lock);
  1417. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1418. spin_unlock_irq(&dev_priv->uncore.lock);
  1419. }
  1420. static u32
  1421. ring_get_seqno(struct intel_engine_cs *engine)
  1422. {
  1423. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  1424. }
  1425. static void
  1426. ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1427. {
  1428. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  1429. }
  1430. static u32
  1431. pc_render_get_seqno(struct intel_engine_cs *engine)
  1432. {
  1433. return engine->scratch.cpu_page[0];
  1434. }
  1435. static void
  1436. pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1437. {
  1438. engine->scratch.cpu_page[0] = seqno;
  1439. }
  1440. static bool
  1441. gen5_ring_get_irq(struct intel_engine_cs *engine)
  1442. {
  1443. struct drm_i915_private *dev_priv = engine->i915;
  1444. unsigned long flags;
  1445. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1446. return false;
  1447. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1448. if (engine->irq_refcount++ == 0)
  1449. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1450. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1451. return true;
  1452. }
  1453. static void
  1454. gen5_ring_put_irq(struct intel_engine_cs *engine)
  1455. {
  1456. struct drm_i915_private *dev_priv = engine->i915;
  1457. unsigned long flags;
  1458. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1459. if (--engine->irq_refcount == 0)
  1460. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1461. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1462. }
  1463. static bool
  1464. i9xx_ring_get_irq(struct intel_engine_cs *engine)
  1465. {
  1466. struct drm_i915_private *dev_priv = engine->i915;
  1467. unsigned long flags;
  1468. if (!intel_irqs_enabled(dev_priv))
  1469. return false;
  1470. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1471. if (engine->irq_refcount++ == 0) {
  1472. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1473. I915_WRITE(IMR, dev_priv->irq_mask);
  1474. POSTING_READ(IMR);
  1475. }
  1476. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1477. return true;
  1478. }
  1479. static void
  1480. i9xx_ring_put_irq(struct intel_engine_cs *engine)
  1481. {
  1482. struct drm_i915_private *dev_priv = engine->i915;
  1483. unsigned long flags;
  1484. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1485. if (--engine->irq_refcount == 0) {
  1486. dev_priv->irq_mask |= engine->irq_enable_mask;
  1487. I915_WRITE(IMR, dev_priv->irq_mask);
  1488. POSTING_READ(IMR);
  1489. }
  1490. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1491. }
  1492. static bool
  1493. i8xx_ring_get_irq(struct intel_engine_cs *engine)
  1494. {
  1495. struct drm_i915_private *dev_priv = engine->i915;
  1496. unsigned long flags;
  1497. if (!intel_irqs_enabled(dev_priv))
  1498. return false;
  1499. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1500. if (engine->irq_refcount++ == 0) {
  1501. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1502. I915_WRITE16(IMR, dev_priv->irq_mask);
  1503. POSTING_READ16(IMR);
  1504. }
  1505. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1506. return true;
  1507. }
  1508. static void
  1509. i8xx_ring_put_irq(struct intel_engine_cs *engine)
  1510. {
  1511. struct drm_i915_private *dev_priv = engine->i915;
  1512. unsigned long flags;
  1513. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1514. if (--engine->irq_refcount == 0) {
  1515. dev_priv->irq_mask |= engine->irq_enable_mask;
  1516. I915_WRITE16(IMR, dev_priv->irq_mask);
  1517. POSTING_READ16(IMR);
  1518. }
  1519. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1520. }
  1521. static int
  1522. bsd_ring_flush(struct drm_i915_gem_request *req,
  1523. u32 invalidate_domains,
  1524. u32 flush_domains)
  1525. {
  1526. struct intel_engine_cs *engine = req->engine;
  1527. int ret;
  1528. ret = intel_ring_begin(req, 2);
  1529. if (ret)
  1530. return ret;
  1531. intel_ring_emit(engine, MI_FLUSH);
  1532. intel_ring_emit(engine, MI_NOOP);
  1533. intel_ring_advance(engine);
  1534. return 0;
  1535. }
  1536. static int
  1537. i9xx_add_request(struct drm_i915_gem_request *req)
  1538. {
  1539. struct intel_engine_cs *engine = req->engine;
  1540. int ret;
  1541. ret = intel_ring_begin(req, 4);
  1542. if (ret)
  1543. return ret;
  1544. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1545. intel_ring_emit(engine,
  1546. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1547. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1548. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1549. __intel_ring_advance(engine);
  1550. return 0;
  1551. }
  1552. static bool
  1553. gen6_ring_get_irq(struct intel_engine_cs *engine)
  1554. {
  1555. struct drm_i915_private *dev_priv = engine->i915;
  1556. unsigned long flags;
  1557. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1558. return false;
  1559. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1560. if (engine->irq_refcount++ == 0) {
  1561. if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
  1562. I915_WRITE_IMR(engine,
  1563. ~(engine->irq_enable_mask |
  1564. GT_PARITY_ERROR(dev_priv)));
  1565. else
  1566. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1567. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1568. }
  1569. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1570. return true;
  1571. }
  1572. static void
  1573. gen6_ring_put_irq(struct intel_engine_cs *engine)
  1574. {
  1575. struct drm_i915_private *dev_priv = engine->i915;
  1576. unsigned long flags;
  1577. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1578. if (--engine->irq_refcount == 0) {
  1579. if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
  1580. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
  1581. else
  1582. I915_WRITE_IMR(engine, ~0);
  1583. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1584. }
  1585. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1586. }
  1587. static bool
  1588. hsw_vebox_get_irq(struct intel_engine_cs *engine)
  1589. {
  1590. struct drm_i915_private *dev_priv = engine->i915;
  1591. unsigned long flags;
  1592. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1593. return false;
  1594. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1595. if (engine->irq_refcount++ == 0) {
  1596. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1597. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1598. }
  1599. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1600. return true;
  1601. }
  1602. static void
  1603. hsw_vebox_put_irq(struct intel_engine_cs *engine)
  1604. {
  1605. struct drm_i915_private *dev_priv = engine->i915;
  1606. unsigned long flags;
  1607. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1608. if (--engine->irq_refcount == 0) {
  1609. I915_WRITE_IMR(engine, ~0);
  1610. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1611. }
  1612. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1613. }
  1614. static bool
  1615. gen8_ring_get_irq(struct intel_engine_cs *engine)
  1616. {
  1617. struct drm_i915_private *dev_priv = engine->i915;
  1618. unsigned long flags;
  1619. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1620. return false;
  1621. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1622. if (engine->irq_refcount++ == 0) {
  1623. if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
  1624. I915_WRITE_IMR(engine,
  1625. ~(engine->irq_enable_mask |
  1626. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1627. } else {
  1628. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1629. }
  1630. POSTING_READ(RING_IMR(engine->mmio_base));
  1631. }
  1632. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1633. return true;
  1634. }
  1635. static void
  1636. gen8_ring_put_irq(struct intel_engine_cs *engine)
  1637. {
  1638. struct drm_i915_private *dev_priv = engine->i915;
  1639. unsigned long flags;
  1640. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1641. if (--engine->irq_refcount == 0) {
  1642. if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
  1643. I915_WRITE_IMR(engine,
  1644. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1645. } else {
  1646. I915_WRITE_IMR(engine, ~0);
  1647. }
  1648. POSTING_READ(RING_IMR(engine->mmio_base));
  1649. }
  1650. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1651. }
  1652. static int
  1653. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1654. u64 offset, u32 length,
  1655. unsigned dispatch_flags)
  1656. {
  1657. struct intel_engine_cs *engine = req->engine;
  1658. int ret;
  1659. ret = intel_ring_begin(req, 2);
  1660. if (ret)
  1661. return ret;
  1662. intel_ring_emit(engine,
  1663. MI_BATCH_BUFFER_START |
  1664. MI_BATCH_GTT |
  1665. (dispatch_flags & I915_DISPATCH_SECURE ?
  1666. 0 : MI_BATCH_NON_SECURE_I965));
  1667. intel_ring_emit(engine, offset);
  1668. intel_ring_advance(engine);
  1669. return 0;
  1670. }
  1671. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1672. #define I830_BATCH_LIMIT (256*1024)
  1673. #define I830_TLB_ENTRIES (2)
  1674. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1675. static int
  1676. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1677. u64 offset, u32 len,
  1678. unsigned dispatch_flags)
  1679. {
  1680. struct intel_engine_cs *engine = req->engine;
  1681. u32 cs_offset = engine->scratch.gtt_offset;
  1682. int ret;
  1683. ret = intel_ring_begin(req, 6);
  1684. if (ret)
  1685. return ret;
  1686. /* Evict the invalid PTE TLBs */
  1687. intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1688. intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1689. intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1690. intel_ring_emit(engine, cs_offset);
  1691. intel_ring_emit(engine, 0xdeadbeef);
  1692. intel_ring_emit(engine, MI_NOOP);
  1693. intel_ring_advance(engine);
  1694. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1695. if (len > I830_BATCH_LIMIT)
  1696. return -ENOSPC;
  1697. ret = intel_ring_begin(req, 6 + 2);
  1698. if (ret)
  1699. return ret;
  1700. /* Blit the batch (which has now all relocs applied) to the
  1701. * stable batch scratch bo area (so that the CS never
  1702. * stumbles over its tlb invalidation bug) ...
  1703. */
  1704. intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1705. intel_ring_emit(engine,
  1706. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1707. intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1708. intel_ring_emit(engine, cs_offset);
  1709. intel_ring_emit(engine, 4096);
  1710. intel_ring_emit(engine, offset);
  1711. intel_ring_emit(engine, MI_FLUSH);
  1712. intel_ring_emit(engine, MI_NOOP);
  1713. intel_ring_advance(engine);
  1714. /* ... and execute it. */
  1715. offset = cs_offset;
  1716. }
  1717. ret = intel_ring_begin(req, 2);
  1718. if (ret)
  1719. return ret;
  1720. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1721. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1722. 0 : MI_BATCH_NON_SECURE));
  1723. intel_ring_advance(engine);
  1724. return 0;
  1725. }
  1726. static int
  1727. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1728. u64 offset, u32 len,
  1729. unsigned dispatch_flags)
  1730. {
  1731. struct intel_engine_cs *engine = req->engine;
  1732. int ret;
  1733. ret = intel_ring_begin(req, 2);
  1734. if (ret)
  1735. return ret;
  1736. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1737. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1738. 0 : MI_BATCH_NON_SECURE));
  1739. intel_ring_advance(engine);
  1740. return 0;
  1741. }
  1742. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1743. {
  1744. struct drm_i915_private *dev_priv = engine->i915;
  1745. if (!dev_priv->status_page_dmah)
  1746. return;
  1747. drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
  1748. engine->status_page.page_addr = NULL;
  1749. }
  1750. static void cleanup_status_page(struct intel_engine_cs *engine)
  1751. {
  1752. struct drm_i915_gem_object *obj;
  1753. obj = engine->status_page.obj;
  1754. if (obj == NULL)
  1755. return;
  1756. kunmap(sg_page(obj->pages->sgl));
  1757. i915_gem_object_ggtt_unpin(obj);
  1758. drm_gem_object_unreference(&obj->base);
  1759. engine->status_page.obj = NULL;
  1760. }
  1761. static int init_status_page(struct intel_engine_cs *engine)
  1762. {
  1763. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1764. if (obj == NULL) {
  1765. unsigned flags;
  1766. int ret;
  1767. obj = i915_gem_object_create(engine->i915->dev, 4096);
  1768. if (IS_ERR(obj)) {
  1769. DRM_ERROR("Failed to allocate status page\n");
  1770. return PTR_ERR(obj);
  1771. }
  1772. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1773. if (ret)
  1774. goto err_unref;
  1775. flags = 0;
  1776. if (!HAS_LLC(engine->i915))
  1777. /* On g33, we cannot place HWS above 256MiB, so
  1778. * restrict its pinning to the low mappable arena.
  1779. * Though this restriction is not documented for
  1780. * gen4, gen5, or byt, they also behave similarly
  1781. * and hang if the HWS is placed at the top of the
  1782. * GTT. To generalise, it appears that all !llc
  1783. * platforms have issues with us placing the HWS
  1784. * above the mappable region (even though we never
  1785. * actualy map it).
  1786. */
  1787. flags |= PIN_MAPPABLE;
  1788. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1789. if (ret) {
  1790. err_unref:
  1791. drm_gem_object_unreference(&obj->base);
  1792. return ret;
  1793. }
  1794. engine->status_page.obj = obj;
  1795. }
  1796. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1797. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1798. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1799. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1800. engine->name, engine->status_page.gfx_addr);
  1801. return 0;
  1802. }
  1803. static int init_phys_status_page(struct intel_engine_cs *engine)
  1804. {
  1805. struct drm_i915_private *dev_priv = engine->i915;
  1806. if (!dev_priv->status_page_dmah) {
  1807. dev_priv->status_page_dmah =
  1808. drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
  1809. if (!dev_priv->status_page_dmah)
  1810. return -ENOMEM;
  1811. }
  1812. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1813. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1814. return 0;
  1815. }
  1816. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1817. {
  1818. GEM_BUG_ON(ringbuf->vma == NULL);
  1819. GEM_BUG_ON(ringbuf->virtual_start == NULL);
  1820. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1821. i915_gem_object_unpin_map(ringbuf->obj);
  1822. else
  1823. i915_vma_unpin_iomap(ringbuf->vma);
  1824. ringbuf->virtual_start = NULL;
  1825. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1826. ringbuf->vma = NULL;
  1827. }
  1828. int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
  1829. struct intel_ringbuffer *ringbuf)
  1830. {
  1831. struct drm_i915_gem_object *obj = ringbuf->obj;
  1832. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1833. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1834. void *addr;
  1835. int ret;
  1836. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1837. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1838. if (ret)
  1839. return ret;
  1840. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1841. if (ret)
  1842. goto err_unpin;
  1843. addr = i915_gem_object_pin_map(obj);
  1844. if (IS_ERR(addr)) {
  1845. ret = PTR_ERR(addr);
  1846. goto err_unpin;
  1847. }
  1848. } else {
  1849. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1850. flags | PIN_MAPPABLE);
  1851. if (ret)
  1852. return ret;
  1853. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1854. if (ret)
  1855. goto err_unpin;
  1856. /* Access through the GTT requires the device to be awake. */
  1857. assert_rpm_wakelock_held(dev_priv);
  1858. addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1859. if (IS_ERR(addr)) {
  1860. ret = PTR_ERR(addr);
  1861. goto err_unpin;
  1862. }
  1863. }
  1864. ringbuf->virtual_start = addr;
  1865. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1866. return 0;
  1867. err_unpin:
  1868. i915_gem_object_ggtt_unpin(obj);
  1869. return ret;
  1870. }
  1871. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1872. {
  1873. drm_gem_object_unreference(&ringbuf->obj->base);
  1874. ringbuf->obj = NULL;
  1875. }
  1876. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1877. struct intel_ringbuffer *ringbuf)
  1878. {
  1879. struct drm_i915_gem_object *obj;
  1880. obj = NULL;
  1881. if (!HAS_LLC(dev))
  1882. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1883. if (obj == NULL)
  1884. obj = i915_gem_object_create(dev, ringbuf->size);
  1885. if (IS_ERR(obj))
  1886. return PTR_ERR(obj);
  1887. /* mark ring buffers as read-only from GPU side by default */
  1888. obj->gt_ro = 1;
  1889. ringbuf->obj = obj;
  1890. return 0;
  1891. }
  1892. struct intel_ringbuffer *
  1893. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1894. {
  1895. struct intel_ringbuffer *ring;
  1896. int ret;
  1897. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1898. if (ring == NULL) {
  1899. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1900. engine->name);
  1901. return ERR_PTR(-ENOMEM);
  1902. }
  1903. ring->engine = engine;
  1904. list_add(&ring->link, &engine->buffers);
  1905. ring->size = size;
  1906. /* Workaround an erratum on the i830 which causes a hang if
  1907. * the TAIL pointer points to within the last 2 cachelines
  1908. * of the buffer.
  1909. */
  1910. ring->effective_size = size;
  1911. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1912. ring->effective_size -= 2 * CACHELINE_BYTES;
  1913. ring->last_retired_head = -1;
  1914. intel_ring_update_space(ring);
  1915. ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
  1916. if (ret) {
  1917. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1918. engine->name, ret);
  1919. list_del(&ring->link);
  1920. kfree(ring);
  1921. return ERR_PTR(ret);
  1922. }
  1923. return ring;
  1924. }
  1925. void
  1926. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1927. {
  1928. intel_destroy_ringbuffer_obj(ring);
  1929. list_del(&ring->link);
  1930. kfree(ring);
  1931. }
  1932. static int intel_ring_context_pin(struct i915_gem_context *ctx,
  1933. struct intel_engine_cs *engine)
  1934. {
  1935. struct intel_context *ce = &ctx->engine[engine->id];
  1936. int ret;
  1937. lockdep_assert_held(&ctx->i915->dev->struct_mutex);
  1938. if (ce->pin_count++)
  1939. return 0;
  1940. if (ce->state) {
  1941. ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
  1942. if (ret)
  1943. goto error;
  1944. }
  1945. i915_gem_context_reference(ctx);
  1946. return 0;
  1947. error:
  1948. ce->pin_count = 0;
  1949. return ret;
  1950. }
  1951. static void intel_ring_context_unpin(struct i915_gem_context *ctx,
  1952. struct intel_engine_cs *engine)
  1953. {
  1954. struct intel_context *ce = &ctx->engine[engine->id];
  1955. lockdep_assert_held(&ctx->i915->dev->struct_mutex);
  1956. if (--ce->pin_count)
  1957. return;
  1958. if (ce->state)
  1959. i915_gem_object_ggtt_unpin(ce->state);
  1960. i915_gem_context_unreference(ctx);
  1961. }
  1962. static int intel_init_ring_buffer(struct drm_device *dev,
  1963. struct intel_engine_cs *engine)
  1964. {
  1965. struct drm_i915_private *dev_priv = to_i915(dev);
  1966. struct intel_ringbuffer *ringbuf;
  1967. int ret;
  1968. WARN_ON(engine->buffer);
  1969. engine->i915 = dev_priv;
  1970. INIT_LIST_HEAD(&engine->active_list);
  1971. INIT_LIST_HEAD(&engine->request_list);
  1972. INIT_LIST_HEAD(&engine->execlist_queue);
  1973. INIT_LIST_HEAD(&engine->buffers);
  1974. i915_gem_batch_pool_init(dev, &engine->batch_pool);
  1975. memset(engine->semaphore.sync_seqno, 0,
  1976. sizeof(engine->semaphore.sync_seqno));
  1977. init_waitqueue_head(&engine->irq_queue);
  1978. /* We may need to do things with the shrinker which
  1979. * require us to immediately switch back to the default
  1980. * context. This can cause a problem as pinning the
  1981. * default context also requires GTT space which may not
  1982. * be available. To avoid this we always pin the default
  1983. * context.
  1984. */
  1985. ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
  1986. if (ret)
  1987. goto error;
  1988. ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
  1989. if (IS_ERR(ringbuf)) {
  1990. ret = PTR_ERR(ringbuf);
  1991. goto error;
  1992. }
  1993. engine->buffer = ringbuf;
  1994. if (I915_NEED_GFX_HWS(dev_priv)) {
  1995. ret = init_status_page(engine);
  1996. if (ret)
  1997. goto error;
  1998. } else {
  1999. WARN_ON(engine->id != RCS);
  2000. ret = init_phys_status_page(engine);
  2001. if (ret)
  2002. goto error;
  2003. }
  2004. ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
  2005. if (ret) {
  2006. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  2007. engine->name, ret);
  2008. intel_destroy_ringbuffer_obj(ringbuf);
  2009. goto error;
  2010. }
  2011. ret = i915_cmd_parser_init_ring(engine);
  2012. if (ret)
  2013. goto error;
  2014. return 0;
  2015. error:
  2016. intel_cleanup_engine(engine);
  2017. return ret;
  2018. }
  2019. void intel_cleanup_engine(struct intel_engine_cs *engine)
  2020. {
  2021. struct drm_i915_private *dev_priv;
  2022. if (!intel_engine_initialized(engine))
  2023. return;
  2024. dev_priv = engine->i915;
  2025. if (engine->buffer) {
  2026. intel_stop_engine(engine);
  2027. WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  2028. intel_unpin_ringbuffer_obj(engine->buffer);
  2029. intel_ringbuffer_free(engine->buffer);
  2030. engine->buffer = NULL;
  2031. }
  2032. if (engine->cleanup)
  2033. engine->cleanup(engine);
  2034. if (I915_NEED_GFX_HWS(dev_priv)) {
  2035. cleanup_status_page(engine);
  2036. } else {
  2037. WARN_ON(engine->id != RCS);
  2038. cleanup_phys_status_page(engine);
  2039. }
  2040. i915_cmd_parser_fini_ring(engine);
  2041. i915_gem_batch_pool_fini(&engine->batch_pool);
  2042. intel_ring_context_unpin(dev_priv->kernel_context, engine);
  2043. engine->i915 = NULL;
  2044. }
  2045. int intel_engine_idle(struct intel_engine_cs *engine)
  2046. {
  2047. struct drm_i915_gem_request *req;
  2048. /* Wait upon the last request to be completed */
  2049. if (list_empty(&engine->request_list))
  2050. return 0;
  2051. req = list_entry(engine->request_list.prev,
  2052. struct drm_i915_gem_request,
  2053. list);
  2054. /* Make sure we do not trigger any retires */
  2055. return __i915_wait_request(req,
  2056. req->i915->mm.interruptible,
  2057. NULL, NULL);
  2058. }
  2059. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  2060. {
  2061. int ret;
  2062. /* Flush enough space to reduce the likelihood of waiting after
  2063. * we start building the request - in which case we will just
  2064. * have to repeat work.
  2065. */
  2066. request->reserved_space += LEGACY_REQUEST_SIZE;
  2067. request->ringbuf = request->engine->buffer;
  2068. ret = intel_ring_begin(request, 0);
  2069. if (ret)
  2070. return ret;
  2071. request->reserved_space -= LEGACY_REQUEST_SIZE;
  2072. return 0;
  2073. }
  2074. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  2075. {
  2076. struct intel_ringbuffer *ringbuf = req->ringbuf;
  2077. struct intel_engine_cs *engine = req->engine;
  2078. struct drm_i915_gem_request *target;
  2079. intel_ring_update_space(ringbuf);
  2080. if (ringbuf->space >= bytes)
  2081. return 0;
  2082. /*
  2083. * Space is reserved in the ringbuffer for finalising the request,
  2084. * as that cannot be allowed to fail. During request finalisation,
  2085. * reserved_space is set to 0 to stop the overallocation and the
  2086. * assumption is that then we never need to wait (which has the
  2087. * risk of failing with EINTR).
  2088. *
  2089. * See also i915_gem_request_alloc() and i915_add_request().
  2090. */
  2091. GEM_BUG_ON(!req->reserved_space);
  2092. list_for_each_entry(target, &engine->request_list, list) {
  2093. unsigned space;
  2094. /*
  2095. * The request queue is per-engine, so can contain requests
  2096. * from multiple ringbuffers. Here, we must ignore any that
  2097. * aren't from the ringbuffer we're considering.
  2098. */
  2099. if (target->ringbuf != ringbuf)
  2100. continue;
  2101. /* Would completion of this request free enough space? */
  2102. space = __intel_ring_space(target->postfix, ringbuf->tail,
  2103. ringbuf->size);
  2104. if (space >= bytes)
  2105. break;
  2106. }
  2107. if (WARN_ON(&target->list == &engine->request_list))
  2108. return -ENOSPC;
  2109. return i915_wait_request(target);
  2110. }
  2111. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  2112. {
  2113. struct intel_ringbuffer *ringbuf = req->ringbuf;
  2114. int remain_actual = ringbuf->size - ringbuf->tail;
  2115. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  2116. int bytes = num_dwords * sizeof(u32);
  2117. int total_bytes, wait_bytes;
  2118. bool need_wrap = false;
  2119. total_bytes = bytes + req->reserved_space;
  2120. if (unlikely(bytes > remain_usable)) {
  2121. /*
  2122. * Not enough space for the basic request. So need to flush
  2123. * out the remainder and then wait for base + reserved.
  2124. */
  2125. wait_bytes = remain_actual + total_bytes;
  2126. need_wrap = true;
  2127. } else if (unlikely(total_bytes > remain_usable)) {
  2128. /*
  2129. * The base request will fit but the reserved space
  2130. * falls off the end. So we don't need an immediate wrap
  2131. * and only need to effectively wait for the reserved
  2132. * size space from the start of ringbuffer.
  2133. */
  2134. wait_bytes = remain_actual + req->reserved_space;
  2135. } else {
  2136. /* No wrapping required, just waiting. */
  2137. wait_bytes = total_bytes;
  2138. }
  2139. if (wait_bytes > ringbuf->space) {
  2140. int ret = wait_for_space(req, wait_bytes);
  2141. if (unlikely(ret))
  2142. return ret;
  2143. intel_ring_update_space(ringbuf);
  2144. if (unlikely(ringbuf->space < wait_bytes))
  2145. return -EAGAIN;
  2146. }
  2147. if (unlikely(need_wrap)) {
  2148. GEM_BUG_ON(remain_actual > ringbuf->space);
  2149. GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
  2150. /* Fill the tail with MI_NOOP */
  2151. memset(ringbuf->virtual_start + ringbuf->tail,
  2152. 0, remain_actual);
  2153. ringbuf->tail = 0;
  2154. ringbuf->space -= remain_actual;
  2155. }
  2156. ringbuf->space -= bytes;
  2157. GEM_BUG_ON(ringbuf->space < 0);
  2158. return 0;
  2159. }
  2160. /* Align the ring tail to a cacheline boundary */
  2161. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2162. {
  2163. struct intel_engine_cs *engine = req->engine;
  2164. int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2165. int ret;
  2166. if (num_dwords == 0)
  2167. return 0;
  2168. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2169. ret = intel_ring_begin(req, num_dwords);
  2170. if (ret)
  2171. return ret;
  2172. while (num_dwords--)
  2173. intel_ring_emit(engine, MI_NOOP);
  2174. intel_ring_advance(engine);
  2175. return 0;
  2176. }
  2177. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2178. {
  2179. struct drm_i915_private *dev_priv = engine->i915;
  2180. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2181. * so long as the semaphore value in the register/page is greater
  2182. * than the sync value), so whenever we reset the seqno,
  2183. * so long as we reset the tracking semaphore value to 0, it will
  2184. * always be before the next request's seqno. If we don't reset
  2185. * the semaphore value, then when the seqno moves backwards all
  2186. * future waits will complete instantly (causing rendering corruption).
  2187. */
  2188. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  2189. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2190. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2191. if (HAS_VEBOX(dev_priv))
  2192. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2193. }
  2194. if (dev_priv->semaphore_obj) {
  2195. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2196. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2197. void *semaphores = kmap(page);
  2198. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2199. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2200. kunmap(page);
  2201. }
  2202. memset(engine->semaphore.sync_seqno, 0,
  2203. sizeof(engine->semaphore.sync_seqno));
  2204. engine->set_seqno(engine, seqno);
  2205. engine->last_submitted_seqno = seqno;
  2206. engine->hangcheck.seqno = seqno;
  2207. }
  2208. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2209. u32 value)
  2210. {
  2211. struct drm_i915_private *dev_priv = engine->i915;
  2212. /* Every tail move must follow the sequence below */
  2213. /* Disable notification that the ring is IDLE. The GT
  2214. * will then assume that it is busy and bring it out of rc6.
  2215. */
  2216. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2217. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2218. /* Clear the context id. Here be magic! */
  2219. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2220. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2221. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2222. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2223. 50))
  2224. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2225. /* Now that the ring is fully powered up, update the tail */
  2226. I915_WRITE_TAIL(engine, value);
  2227. POSTING_READ(RING_TAIL(engine->mmio_base));
  2228. /* Let the ring send IDLE messages to the GT again,
  2229. * and so let it sleep to conserve power when idle.
  2230. */
  2231. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2232. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2233. }
  2234. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2235. u32 invalidate, u32 flush)
  2236. {
  2237. struct intel_engine_cs *engine = req->engine;
  2238. uint32_t cmd;
  2239. int ret;
  2240. ret = intel_ring_begin(req, 4);
  2241. if (ret)
  2242. return ret;
  2243. cmd = MI_FLUSH_DW;
  2244. if (INTEL_GEN(req->i915) >= 8)
  2245. cmd += 1;
  2246. /* We always require a command barrier so that subsequent
  2247. * commands, such as breadcrumb interrupts, are strictly ordered
  2248. * wrt the contents of the write cache being flushed to memory
  2249. * (and thus being coherent from the CPU).
  2250. */
  2251. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2252. /*
  2253. * Bspec vol 1c.5 - video engine command streamer:
  2254. * "If ENABLED, all TLBs will be invalidated once the flush
  2255. * operation is complete. This bit is only valid when the
  2256. * Post-Sync Operation field is a value of 1h or 3h."
  2257. */
  2258. if (invalidate & I915_GEM_GPU_DOMAINS)
  2259. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2260. intel_ring_emit(engine, cmd);
  2261. intel_ring_emit(engine,
  2262. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2263. if (INTEL_GEN(req->i915) >= 8) {
  2264. intel_ring_emit(engine, 0); /* upper addr */
  2265. intel_ring_emit(engine, 0); /* value */
  2266. } else {
  2267. intel_ring_emit(engine, 0);
  2268. intel_ring_emit(engine, MI_NOOP);
  2269. }
  2270. intel_ring_advance(engine);
  2271. return 0;
  2272. }
  2273. static int
  2274. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2275. u64 offset, u32 len,
  2276. unsigned dispatch_flags)
  2277. {
  2278. struct intel_engine_cs *engine = req->engine;
  2279. bool ppgtt = USES_PPGTT(engine->dev) &&
  2280. !(dispatch_flags & I915_DISPATCH_SECURE);
  2281. int ret;
  2282. ret = intel_ring_begin(req, 4);
  2283. if (ret)
  2284. return ret;
  2285. /* FIXME(BDW): Address space and security selectors. */
  2286. intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2287. (dispatch_flags & I915_DISPATCH_RS ?
  2288. MI_BATCH_RESOURCE_STREAMER : 0));
  2289. intel_ring_emit(engine, lower_32_bits(offset));
  2290. intel_ring_emit(engine, upper_32_bits(offset));
  2291. intel_ring_emit(engine, MI_NOOP);
  2292. intel_ring_advance(engine);
  2293. return 0;
  2294. }
  2295. static int
  2296. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2297. u64 offset, u32 len,
  2298. unsigned dispatch_flags)
  2299. {
  2300. struct intel_engine_cs *engine = req->engine;
  2301. int ret;
  2302. ret = intel_ring_begin(req, 2);
  2303. if (ret)
  2304. return ret;
  2305. intel_ring_emit(engine,
  2306. MI_BATCH_BUFFER_START |
  2307. (dispatch_flags & I915_DISPATCH_SECURE ?
  2308. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2309. (dispatch_flags & I915_DISPATCH_RS ?
  2310. MI_BATCH_RESOURCE_STREAMER : 0));
  2311. /* bit0-7 is the length on GEN6+ */
  2312. intel_ring_emit(engine, offset);
  2313. intel_ring_advance(engine);
  2314. return 0;
  2315. }
  2316. static int
  2317. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2318. u64 offset, u32 len,
  2319. unsigned dispatch_flags)
  2320. {
  2321. struct intel_engine_cs *engine = req->engine;
  2322. int ret;
  2323. ret = intel_ring_begin(req, 2);
  2324. if (ret)
  2325. return ret;
  2326. intel_ring_emit(engine,
  2327. MI_BATCH_BUFFER_START |
  2328. (dispatch_flags & I915_DISPATCH_SECURE ?
  2329. 0 : MI_BATCH_NON_SECURE_I965));
  2330. /* bit0-7 is the length on GEN6+ */
  2331. intel_ring_emit(engine, offset);
  2332. intel_ring_advance(engine);
  2333. return 0;
  2334. }
  2335. /* Blitter support (SandyBridge+) */
  2336. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2337. u32 invalidate, u32 flush)
  2338. {
  2339. struct intel_engine_cs *engine = req->engine;
  2340. uint32_t cmd;
  2341. int ret;
  2342. ret = intel_ring_begin(req, 4);
  2343. if (ret)
  2344. return ret;
  2345. cmd = MI_FLUSH_DW;
  2346. if (INTEL_GEN(req->i915) >= 8)
  2347. cmd += 1;
  2348. /* We always require a command barrier so that subsequent
  2349. * commands, such as breadcrumb interrupts, are strictly ordered
  2350. * wrt the contents of the write cache being flushed to memory
  2351. * (and thus being coherent from the CPU).
  2352. */
  2353. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2354. /*
  2355. * Bspec vol 1c.3 - blitter engine command streamer:
  2356. * "If ENABLED, all TLBs will be invalidated once the flush
  2357. * operation is complete. This bit is only valid when the
  2358. * Post-Sync Operation field is a value of 1h or 3h."
  2359. */
  2360. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2361. cmd |= MI_INVALIDATE_TLB;
  2362. intel_ring_emit(engine, cmd);
  2363. intel_ring_emit(engine,
  2364. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2365. if (INTEL_GEN(req->i915) >= 8) {
  2366. intel_ring_emit(engine, 0); /* upper addr */
  2367. intel_ring_emit(engine, 0); /* value */
  2368. } else {
  2369. intel_ring_emit(engine, 0);
  2370. intel_ring_emit(engine, MI_NOOP);
  2371. }
  2372. intel_ring_advance(engine);
  2373. return 0;
  2374. }
  2375. int intel_init_render_ring_buffer(struct drm_device *dev)
  2376. {
  2377. struct drm_i915_private *dev_priv = dev->dev_private;
  2378. struct intel_engine_cs *engine = &dev_priv->engine[RCS];
  2379. struct drm_i915_gem_object *obj;
  2380. int ret;
  2381. engine->name = "render ring";
  2382. engine->id = RCS;
  2383. engine->exec_id = I915_EXEC_RENDER;
  2384. engine->hw_id = 0;
  2385. engine->mmio_base = RENDER_RING_BASE;
  2386. if (INTEL_GEN(dev_priv) >= 8) {
  2387. if (i915_semaphore_is_enabled(dev_priv)) {
  2388. obj = i915_gem_object_create(dev, 4096);
  2389. if (IS_ERR(obj)) {
  2390. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2391. i915.semaphores = 0;
  2392. } else {
  2393. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2394. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2395. if (ret != 0) {
  2396. drm_gem_object_unreference(&obj->base);
  2397. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2398. i915.semaphores = 0;
  2399. } else
  2400. dev_priv->semaphore_obj = obj;
  2401. }
  2402. }
  2403. engine->init_context = intel_rcs_ctx_init;
  2404. engine->add_request = gen8_render_add_request;
  2405. engine->flush = gen8_render_ring_flush;
  2406. engine->irq_get = gen8_ring_get_irq;
  2407. engine->irq_put = gen8_ring_put_irq;
  2408. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2409. engine->get_seqno = ring_get_seqno;
  2410. engine->set_seqno = ring_set_seqno;
  2411. if (i915_semaphore_is_enabled(dev_priv)) {
  2412. WARN_ON(!dev_priv->semaphore_obj);
  2413. engine->semaphore.sync_to = gen8_ring_sync;
  2414. engine->semaphore.signal = gen8_rcs_signal;
  2415. GEN8_RING_SEMAPHORE_INIT(engine);
  2416. }
  2417. } else if (INTEL_GEN(dev_priv) >= 6) {
  2418. engine->init_context = intel_rcs_ctx_init;
  2419. engine->add_request = gen6_add_request;
  2420. engine->flush = gen7_render_ring_flush;
  2421. if (IS_GEN6(dev_priv))
  2422. engine->flush = gen6_render_ring_flush;
  2423. engine->irq_get = gen6_ring_get_irq;
  2424. engine->irq_put = gen6_ring_put_irq;
  2425. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2426. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2427. engine->get_seqno = ring_get_seqno;
  2428. engine->set_seqno = ring_set_seqno;
  2429. if (i915_semaphore_is_enabled(dev_priv)) {
  2430. engine->semaphore.sync_to = gen6_ring_sync;
  2431. engine->semaphore.signal = gen6_signal;
  2432. /*
  2433. * The current semaphore is only applied on pre-gen8
  2434. * platform. And there is no VCS2 ring on the pre-gen8
  2435. * platform. So the semaphore between RCS and VCS2 is
  2436. * initialized as INVALID. Gen8 will initialize the
  2437. * sema between VCS2 and RCS later.
  2438. */
  2439. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2440. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2441. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2442. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2443. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2444. engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2445. engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2446. engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2447. engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2448. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2449. }
  2450. } else if (IS_GEN5(dev_priv)) {
  2451. engine->add_request = pc_render_add_request;
  2452. engine->flush = gen4_render_ring_flush;
  2453. engine->get_seqno = pc_render_get_seqno;
  2454. engine->set_seqno = pc_render_set_seqno;
  2455. engine->irq_get = gen5_ring_get_irq;
  2456. engine->irq_put = gen5_ring_put_irq;
  2457. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2458. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2459. } else {
  2460. engine->add_request = i9xx_add_request;
  2461. if (INTEL_GEN(dev_priv) < 4)
  2462. engine->flush = gen2_render_ring_flush;
  2463. else
  2464. engine->flush = gen4_render_ring_flush;
  2465. engine->get_seqno = ring_get_seqno;
  2466. engine->set_seqno = ring_set_seqno;
  2467. if (IS_GEN2(dev_priv)) {
  2468. engine->irq_get = i8xx_ring_get_irq;
  2469. engine->irq_put = i8xx_ring_put_irq;
  2470. } else {
  2471. engine->irq_get = i9xx_ring_get_irq;
  2472. engine->irq_put = i9xx_ring_put_irq;
  2473. }
  2474. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2475. }
  2476. engine->write_tail = ring_write_tail;
  2477. if (IS_HASWELL(dev_priv))
  2478. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2479. else if (IS_GEN8(dev_priv))
  2480. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2481. else if (INTEL_GEN(dev_priv) >= 6)
  2482. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2483. else if (INTEL_GEN(dev_priv) >= 4)
  2484. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2485. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2486. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2487. else
  2488. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2489. engine->init_hw = init_render_ring;
  2490. engine->cleanup = render_ring_cleanup;
  2491. /* Workaround batchbuffer to combat CS tlb bug. */
  2492. if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2493. obj = i915_gem_object_create(dev, I830_WA_SIZE);
  2494. if (IS_ERR(obj)) {
  2495. DRM_ERROR("Failed to allocate batch bo\n");
  2496. return PTR_ERR(obj);
  2497. }
  2498. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2499. if (ret != 0) {
  2500. drm_gem_object_unreference(&obj->base);
  2501. DRM_ERROR("Failed to ping batch bo\n");
  2502. return ret;
  2503. }
  2504. engine->scratch.obj = obj;
  2505. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2506. }
  2507. ret = intel_init_ring_buffer(dev, engine);
  2508. if (ret)
  2509. return ret;
  2510. if (INTEL_GEN(dev_priv) >= 5) {
  2511. ret = intel_init_pipe_control(engine);
  2512. if (ret)
  2513. return ret;
  2514. }
  2515. return 0;
  2516. }
  2517. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2518. {
  2519. struct drm_i915_private *dev_priv = dev->dev_private;
  2520. struct intel_engine_cs *engine = &dev_priv->engine[VCS];
  2521. engine->name = "bsd ring";
  2522. engine->id = VCS;
  2523. engine->exec_id = I915_EXEC_BSD;
  2524. engine->hw_id = 1;
  2525. engine->write_tail = ring_write_tail;
  2526. if (INTEL_GEN(dev_priv) >= 6) {
  2527. engine->mmio_base = GEN6_BSD_RING_BASE;
  2528. /* gen6 bsd needs a special wa for tail updates */
  2529. if (IS_GEN6(dev_priv))
  2530. engine->write_tail = gen6_bsd_ring_write_tail;
  2531. engine->flush = gen6_bsd_ring_flush;
  2532. engine->add_request = gen6_add_request;
  2533. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2534. engine->get_seqno = ring_get_seqno;
  2535. engine->set_seqno = ring_set_seqno;
  2536. if (INTEL_GEN(dev_priv) >= 8) {
  2537. engine->irq_enable_mask =
  2538. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2539. engine->irq_get = gen8_ring_get_irq;
  2540. engine->irq_put = gen8_ring_put_irq;
  2541. engine->dispatch_execbuffer =
  2542. gen8_ring_dispatch_execbuffer;
  2543. if (i915_semaphore_is_enabled(dev_priv)) {
  2544. engine->semaphore.sync_to = gen8_ring_sync;
  2545. engine->semaphore.signal = gen8_xcs_signal;
  2546. GEN8_RING_SEMAPHORE_INIT(engine);
  2547. }
  2548. } else {
  2549. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2550. engine->irq_get = gen6_ring_get_irq;
  2551. engine->irq_put = gen6_ring_put_irq;
  2552. engine->dispatch_execbuffer =
  2553. gen6_ring_dispatch_execbuffer;
  2554. if (i915_semaphore_is_enabled(dev_priv)) {
  2555. engine->semaphore.sync_to = gen6_ring_sync;
  2556. engine->semaphore.signal = gen6_signal;
  2557. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2558. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2559. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2560. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2561. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2562. engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2563. engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2564. engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2565. engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2566. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2567. }
  2568. }
  2569. } else {
  2570. engine->mmio_base = BSD_RING_BASE;
  2571. engine->flush = bsd_ring_flush;
  2572. engine->add_request = i9xx_add_request;
  2573. engine->get_seqno = ring_get_seqno;
  2574. engine->set_seqno = ring_set_seqno;
  2575. if (IS_GEN5(dev_priv)) {
  2576. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2577. engine->irq_get = gen5_ring_get_irq;
  2578. engine->irq_put = gen5_ring_put_irq;
  2579. } else {
  2580. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2581. engine->irq_get = i9xx_ring_get_irq;
  2582. engine->irq_put = i9xx_ring_put_irq;
  2583. }
  2584. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2585. }
  2586. engine->init_hw = init_ring_common;
  2587. return intel_init_ring_buffer(dev, engine);
  2588. }
  2589. /**
  2590. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2591. */
  2592. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2593. {
  2594. struct drm_i915_private *dev_priv = dev->dev_private;
  2595. struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
  2596. engine->name = "bsd2 ring";
  2597. engine->id = VCS2;
  2598. engine->exec_id = I915_EXEC_BSD;
  2599. engine->hw_id = 4;
  2600. engine->write_tail = ring_write_tail;
  2601. engine->mmio_base = GEN8_BSD2_RING_BASE;
  2602. engine->flush = gen6_bsd_ring_flush;
  2603. engine->add_request = gen6_add_request;
  2604. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2605. engine->get_seqno = ring_get_seqno;
  2606. engine->set_seqno = ring_set_seqno;
  2607. engine->irq_enable_mask =
  2608. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2609. engine->irq_get = gen8_ring_get_irq;
  2610. engine->irq_put = gen8_ring_put_irq;
  2611. engine->dispatch_execbuffer =
  2612. gen8_ring_dispatch_execbuffer;
  2613. if (i915_semaphore_is_enabled(dev_priv)) {
  2614. engine->semaphore.sync_to = gen8_ring_sync;
  2615. engine->semaphore.signal = gen8_xcs_signal;
  2616. GEN8_RING_SEMAPHORE_INIT(engine);
  2617. }
  2618. engine->init_hw = init_ring_common;
  2619. return intel_init_ring_buffer(dev, engine);
  2620. }
  2621. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2622. {
  2623. struct drm_i915_private *dev_priv = dev->dev_private;
  2624. struct intel_engine_cs *engine = &dev_priv->engine[BCS];
  2625. engine->name = "blitter ring";
  2626. engine->id = BCS;
  2627. engine->exec_id = I915_EXEC_BLT;
  2628. engine->hw_id = 2;
  2629. engine->mmio_base = BLT_RING_BASE;
  2630. engine->write_tail = ring_write_tail;
  2631. engine->flush = gen6_ring_flush;
  2632. engine->add_request = gen6_add_request;
  2633. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2634. engine->get_seqno = ring_get_seqno;
  2635. engine->set_seqno = ring_set_seqno;
  2636. if (INTEL_GEN(dev_priv) >= 8) {
  2637. engine->irq_enable_mask =
  2638. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2639. engine->irq_get = gen8_ring_get_irq;
  2640. engine->irq_put = gen8_ring_put_irq;
  2641. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2642. if (i915_semaphore_is_enabled(dev_priv)) {
  2643. engine->semaphore.sync_to = gen8_ring_sync;
  2644. engine->semaphore.signal = gen8_xcs_signal;
  2645. GEN8_RING_SEMAPHORE_INIT(engine);
  2646. }
  2647. } else {
  2648. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2649. engine->irq_get = gen6_ring_get_irq;
  2650. engine->irq_put = gen6_ring_put_irq;
  2651. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2652. if (i915_semaphore_is_enabled(dev_priv)) {
  2653. engine->semaphore.signal = gen6_signal;
  2654. engine->semaphore.sync_to = gen6_ring_sync;
  2655. /*
  2656. * The current semaphore is only applied on pre-gen8
  2657. * platform. And there is no VCS2 ring on the pre-gen8
  2658. * platform. So the semaphore between BCS and VCS2 is
  2659. * initialized as INVALID. Gen8 will initialize the
  2660. * sema between BCS and VCS2 later.
  2661. */
  2662. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2663. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2664. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2665. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2666. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2667. engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2668. engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2669. engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2670. engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2671. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2672. }
  2673. }
  2674. engine->init_hw = init_ring_common;
  2675. return intel_init_ring_buffer(dev, engine);
  2676. }
  2677. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2678. {
  2679. struct drm_i915_private *dev_priv = dev->dev_private;
  2680. struct intel_engine_cs *engine = &dev_priv->engine[VECS];
  2681. engine->name = "video enhancement ring";
  2682. engine->id = VECS;
  2683. engine->exec_id = I915_EXEC_VEBOX;
  2684. engine->hw_id = 3;
  2685. engine->mmio_base = VEBOX_RING_BASE;
  2686. engine->write_tail = ring_write_tail;
  2687. engine->flush = gen6_ring_flush;
  2688. engine->add_request = gen6_add_request;
  2689. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2690. engine->get_seqno = ring_get_seqno;
  2691. engine->set_seqno = ring_set_seqno;
  2692. if (INTEL_GEN(dev_priv) >= 8) {
  2693. engine->irq_enable_mask =
  2694. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2695. engine->irq_get = gen8_ring_get_irq;
  2696. engine->irq_put = gen8_ring_put_irq;
  2697. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2698. if (i915_semaphore_is_enabled(dev_priv)) {
  2699. engine->semaphore.sync_to = gen8_ring_sync;
  2700. engine->semaphore.signal = gen8_xcs_signal;
  2701. GEN8_RING_SEMAPHORE_INIT(engine);
  2702. }
  2703. } else {
  2704. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2705. engine->irq_get = hsw_vebox_get_irq;
  2706. engine->irq_put = hsw_vebox_put_irq;
  2707. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2708. if (i915_semaphore_is_enabled(dev_priv)) {
  2709. engine->semaphore.sync_to = gen6_ring_sync;
  2710. engine->semaphore.signal = gen6_signal;
  2711. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2712. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2713. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2714. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2715. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2716. engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2717. engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2718. engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2719. engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2720. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2721. }
  2722. }
  2723. engine->init_hw = init_ring_common;
  2724. return intel_init_ring_buffer(dev, engine);
  2725. }
  2726. int
  2727. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2728. {
  2729. struct intel_engine_cs *engine = req->engine;
  2730. int ret;
  2731. if (!engine->gpu_caches_dirty)
  2732. return 0;
  2733. ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2734. if (ret)
  2735. return ret;
  2736. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2737. engine->gpu_caches_dirty = false;
  2738. return 0;
  2739. }
  2740. int
  2741. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2742. {
  2743. struct intel_engine_cs *engine = req->engine;
  2744. uint32_t flush_domains;
  2745. int ret;
  2746. flush_domains = 0;
  2747. if (engine->gpu_caches_dirty)
  2748. flush_domains = I915_GEM_GPU_DOMAINS;
  2749. ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2750. if (ret)
  2751. return ret;
  2752. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2753. engine->gpu_caches_dirty = false;
  2754. return 0;
  2755. }
  2756. void
  2757. intel_stop_engine(struct intel_engine_cs *engine)
  2758. {
  2759. int ret;
  2760. if (!intel_engine_initialized(engine))
  2761. return;
  2762. ret = intel_engine_idle(engine);
  2763. if (ret)
  2764. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2765. engine->name, ret);
  2766. stop_ring(engine);
  2767. }