segment.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * Written by Ryusuke Konishi.
  17. *
  18. */
  19. #include <linux/pagemap.h>
  20. #include <linux/buffer_head.h>
  21. #include <linux/writeback.h>
  22. #include <linux/bitops.h>
  23. #include <linux/bio.h>
  24. #include <linux/completion.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/backing-dev.h>
  27. #include <linux/freezer.h>
  28. #include <linux/kthread.h>
  29. #include <linux/crc32.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/slab.h>
  32. #include "nilfs.h"
  33. #include "btnode.h"
  34. #include "page.h"
  35. #include "segment.h"
  36. #include "sufile.h"
  37. #include "cpfile.h"
  38. #include "ifile.h"
  39. #include "segbuf.h"
  40. /*
  41. * Segment constructor
  42. */
  43. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  44. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  45. appended in collection retry loop */
  46. /* Construction mode */
  47. enum {
  48. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  49. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  50. a logical segment without a super root */
  51. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  52. creating a checkpoint */
  53. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  54. a checkpoint */
  55. };
  56. /* Stage numbers of dirty block collection */
  57. enum {
  58. NILFS_ST_INIT = 0,
  59. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  60. NILFS_ST_FILE,
  61. NILFS_ST_IFILE,
  62. NILFS_ST_CPFILE,
  63. NILFS_ST_SUFILE,
  64. NILFS_ST_DAT,
  65. NILFS_ST_SR, /* Super root */
  66. NILFS_ST_DSYNC, /* Data sync blocks */
  67. NILFS_ST_DONE,
  68. };
  69. #define CREATE_TRACE_POINTS
  70. #include <trace/events/nilfs2.h>
  71. /*
  72. * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
  73. * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
  74. * the variable must use them because transition of stage count must involve
  75. * trace events (trace_nilfs2_collection_stage_transition).
  76. *
  77. * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
  78. * produce tracepoint events. It is provided just for making the intention
  79. * clear.
  80. */
  81. static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
  82. {
  83. sci->sc_stage.scnt++;
  84. trace_nilfs2_collection_stage_transition(sci);
  85. }
  86. static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
  87. {
  88. sci->sc_stage.scnt = next_scnt;
  89. trace_nilfs2_collection_stage_transition(sci);
  90. }
  91. static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
  92. {
  93. return sci->sc_stage.scnt;
  94. }
  95. /* State flags of collection */
  96. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  97. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  98. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  99. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  100. /* Operations depending on the construction mode and file type */
  101. struct nilfs_sc_operations {
  102. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  103. struct inode *);
  104. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  105. struct inode *);
  106. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  107. struct inode *);
  108. void (*write_data_binfo)(struct nilfs_sc_info *,
  109. struct nilfs_segsum_pointer *,
  110. union nilfs_binfo *);
  111. void (*write_node_binfo)(struct nilfs_sc_info *,
  112. struct nilfs_segsum_pointer *,
  113. union nilfs_binfo *);
  114. };
  115. /*
  116. * Other definitions
  117. */
  118. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  119. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  120. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  121. static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
  122. #define nilfs_cnt32_gt(a, b) \
  123. (typecheck(__u32, a) && typecheck(__u32, b) && \
  124. ((__s32)(b) - (__s32)(a) < 0))
  125. #define nilfs_cnt32_ge(a, b) \
  126. (typecheck(__u32, a) && typecheck(__u32, b) && \
  127. ((__s32)(a) - (__s32)(b) >= 0))
  128. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  129. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  130. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  131. {
  132. struct nilfs_transaction_info *cur_ti = current->journal_info;
  133. void *save = NULL;
  134. if (cur_ti) {
  135. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  136. return ++cur_ti->ti_count;
  137. else {
  138. /*
  139. * If journal_info field is occupied by other FS,
  140. * it is saved and will be restored on
  141. * nilfs_transaction_commit().
  142. */
  143. printk(KERN_WARNING
  144. "NILFS warning: journal info from a different "
  145. "FS\n");
  146. save = current->journal_info;
  147. }
  148. }
  149. if (!ti) {
  150. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  151. if (!ti)
  152. return -ENOMEM;
  153. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  154. } else {
  155. ti->ti_flags = 0;
  156. }
  157. ti->ti_count = 0;
  158. ti->ti_save = save;
  159. ti->ti_magic = NILFS_TI_MAGIC;
  160. current->journal_info = ti;
  161. return 0;
  162. }
  163. /**
  164. * nilfs_transaction_begin - start indivisible file operations.
  165. * @sb: super block
  166. * @ti: nilfs_transaction_info
  167. * @vacancy_check: flags for vacancy rate checks
  168. *
  169. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  170. * the segment semaphore, to make a segment construction and write tasks
  171. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  172. * The region enclosed by these two functions can be nested. To avoid a
  173. * deadlock, the semaphore is only acquired or released in the outermost call.
  174. *
  175. * This function allocates a nilfs_transaction_info struct to keep context
  176. * information on it. It is initialized and hooked onto the current task in
  177. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  178. * instead; otherwise a new struct is assigned from a slab.
  179. *
  180. * When @vacancy_check flag is set, this function will check the amount of
  181. * free space, and will wait for the GC to reclaim disk space if low capacity.
  182. *
  183. * Return Value: On success, 0 is returned. On error, one of the following
  184. * negative error code is returned.
  185. *
  186. * %-ENOMEM - Insufficient memory available.
  187. *
  188. * %-ENOSPC - No space left on device
  189. */
  190. int nilfs_transaction_begin(struct super_block *sb,
  191. struct nilfs_transaction_info *ti,
  192. int vacancy_check)
  193. {
  194. struct the_nilfs *nilfs;
  195. int ret = nilfs_prepare_segment_lock(ti);
  196. struct nilfs_transaction_info *trace_ti;
  197. if (unlikely(ret < 0))
  198. return ret;
  199. if (ret > 0) {
  200. trace_ti = current->journal_info;
  201. trace_nilfs2_transaction_transition(sb, trace_ti,
  202. trace_ti->ti_count, trace_ti->ti_flags,
  203. TRACE_NILFS2_TRANSACTION_BEGIN);
  204. return 0;
  205. }
  206. sb_start_intwrite(sb);
  207. nilfs = sb->s_fs_info;
  208. down_read(&nilfs->ns_segctor_sem);
  209. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  210. up_read(&nilfs->ns_segctor_sem);
  211. ret = -ENOSPC;
  212. goto failed;
  213. }
  214. trace_ti = current->journal_info;
  215. trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
  216. trace_ti->ti_flags,
  217. TRACE_NILFS2_TRANSACTION_BEGIN);
  218. return 0;
  219. failed:
  220. ti = current->journal_info;
  221. current->journal_info = ti->ti_save;
  222. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  223. kmem_cache_free(nilfs_transaction_cachep, ti);
  224. sb_end_intwrite(sb);
  225. return ret;
  226. }
  227. /**
  228. * nilfs_transaction_commit - commit indivisible file operations.
  229. * @sb: super block
  230. *
  231. * nilfs_transaction_commit() releases the read semaphore which is
  232. * acquired by nilfs_transaction_begin(). This is only performed
  233. * in outermost call of this function. If a commit flag is set,
  234. * nilfs_transaction_commit() sets a timer to start the segment
  235. * constructor. If a sync flag is set, it starts construction
  236. * directly.
  237. */
  238. int nilfs_transaction_commit(struct super_block *sb)
  239. {
  240. struct nilfs_transaction_info *ti = current->journal_info;
  241. struct the_nilfs *nilfs = sb->s_fs_info;
  242. int err = 0;
  243. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  244. ti->ti_flags |= NILFS_TI_COMMIT;
  245. if (ti->ti_count > 0) {
  246. ti->ti_count--;
  247. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  248. ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
  249. return 0;
  250. }
  251. if (nilfs->ns_writer) {
  252. struct nilfs_sc_info *sci = nilfs->ns_writer;
  253. if (ti->ti_flags & NILFS_TI_COMMIT)
  254. nilfs_segctor_start_timer(sci);
  255. if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
  256. nilfs_segctor_do_flush(sci, 0);
  257. }
  258. up_read(&nilfs->ns_segctor_sem);
  259. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  260. ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
  261. current->journal_info = ti->ti_save;
  262. if (ti->ti_flags & NILFS_TI_SYNC)
  263. err = nilfs_construct_segment(sb);
  264. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  265. kmem_cache_free(nilfs_transaction_cachep, ti);
  266. sb_end_intwrite(sb);
  267. return err;
  268. }
  269. void nilfs_transaction_abort(struct super_block *sb)
  270. {
  271. struct nilfs_transaction_info *ti = current->journal_info;
  272. struct the_nilfs *nilfs = sb->s_fs_info;
  273. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  274. if (ti->ti_count > 0) {
  275. ti->ti_count--;
  276. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  277. ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
  278. return;
  279. }
  280. up_read(&nilfs->ns_segctor_sem);
  281. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  282. ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
  283. current->journal_info = ti->ti_save;
  284. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  285. kmem_cache_free(nilfs_transaction_cachep, ti);
  286. sb_end_intwrite(sb);
  287. }
  288. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  289. {
  290. struct the_nilfs *nilfs = sb->s_fs_info;
  291. struct nilfs_sc_info *sci = nilfs->ns_writer;
  292. if (!sci || !sci->sc_flush_request)
  293. return;
  294. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  295. up_read(&nilfs->ns_segctor_sem);
  296. down_write(&nilfs->ns_segctor_sem);
  297. if (sci->sc_flush_request &&
  298. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  299. struct nilfs_transaction_info *ti = current->journal_info;
  300. ti->ti_flags |= NILFS_TI_WRITER;
  301. nilfs_segctor_do_immediate_flush(sci);
  302. ti->ti_flags &= ~NILFS_TI_WRITER;
  303. }
  304. downgrade_write(&nilfs->ns_segctor_sem);
  305. }
  306. static void nilfs_transaction_lock(struct super_block *sb,
  307. struct nilfs_transaction_info *ti,
  308. int gcflag)
  309. {
  310. struct nilfs_transaction_info *cur_ti = current->journal_info;
  311. struct the_nilfs *nilfs = sb->s_fs_info;
  312. struct nilfs_sc_info *sci = nilfs->ns_writer;
  313. WARN_ON(cur_ti);
  314. ti->ti_flags = NILFS_TI_WRITER;
  315. ti->ti_count = 0;
  316. ti->ti_save = cur_ti;
  317. ti->ti_magic = NILFS_TI_MAGIC;
  318. current->journal_info = ti;
  319. for (;;) {
  320. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  321. ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
  322. down_write(&nilfs->ns_segctor_sem);
  323. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
  324. break;
  325. nilfs_segctor_do_immediate_flush(sci);
  326. up_write(&nilfs->ns_segctor_sem);
  327. yield();
  328. }
  329. if (gcflag)
  330. ti->ti_flags |= NILFS_TI_GC;
  331. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  332. ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
  333. }
  334. static void nilfs_transaction_unlock(struct super_block *sb)
  335. {
  336. struct nilfs_transaction_info *ti = current->journal_info;
  337. struct the_nilfs *nilfs = sb->s_fs_info;
  338. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  339. BUG_ON(ti->ti_count > 0);
  340. up_write(&nilfs->ns_segctor_sem);
  341. current->journal_info = ti->ti_save;
  342. trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
  343. ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
  344. }
  345. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  346. struct nilfs_segsum_pointer *ssp,
  347. unsigned int bytes)
  348. {
  349. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  350. unsigned int blocksize = sci->sc_super->s_blocksize;
  351. void *p;
  352. if (unlikely(ssp->offset + bytes > blocksize)) {
  353. ssp->offset = 0;
  354. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  355. &segbuf->sb_segsum_buffers));
  356. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  357. }
  358. p = ssp->bh->b_data + ssp->offset;
  359. ssp->offset += bytes;
  360. return p;
  361. }
  362. /**
  363. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  364. * @sci: nilfs_sc_info
  365. */
  366. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  367. {
  368. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  369. struct buffer_head *sumbh;
  370. unsigned int sumbytes;
  371. unsigned int flags = 0;
  372. int err;
  373. if (nilfs_doing_gc())
  374. flags = NILFS_SS_GC;
  375. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
  376. if (unlikely(err))
  377. return err;
  378. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  379. sumbytes = segbuf->sb_sum.sumbytes;
  380. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  381. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  382. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  383. return 0;
  384. }
  385. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  386. {
  387. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  388. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  389. return -E2BIG; /* The current segment is filled up
  390. (internal code) */
  391. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  392. return nilfs_segctor_reset_segment_buffer(sci);
  393. }
  394. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  395. {
  396. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  397. int err;
  398. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  399. err = nilfs_segctor_feed_segment(sci);
  400. if (err)
  401. return err;
  402. segbuf = sci->sc_curseg;
  403. }
  404. err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
  405. if (likely(!err))
  406. segbuf->sb_sum.flags |= NILFS_SS_SR;
  407. return err;
  408. }
  409. /*
  410. * Functions for making segment summary and payloads
  411. */
  412. static int nilfs_segctor_segsum_block_required(
  413. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  414. unsigned int binfo_size)
  415. {
  416. unsigned int blocksize = sci->sc_super->s_blocksize;
  417. /* Size of finfo and binfo is enough small against blocksize */
  418. return ssp->offset + binfo_size +
  419. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  420. blocksize;
  421. }
  422. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  423. struct inode *inode)
  424. {
  425. sci->sc_curseg->sb_sum.nfinfo++;
  426. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  427. nilfs_segctor_map_segsum_entry(
  428. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  429. if (NILFS_I(inode)->i_root &&
  430. !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  431. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  432. /* skip finfo */
  433. }
  434. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  435. struct inode *inode)
  436. {
  437. struct nilfs_finfo *finfo;
  438. struct nilfs_inode_info *ii;
  439. struct nilfs_segment_buffer *segbuf;
  440. __u64 cno;
  441. if (sci->sc_blk_cnt == 0)
  442. return;
  443. ii = NILFS_I(inode);
  444. if (test_bit(NILFS_I_GCINODE, &ii->i_state))
  445. cno = ii->i_cno;
  446. else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
  447. cno = 0;
  448. else
  449. cno = sci->sc_cno;
  450. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  451. sizeof(*finfo));
  452. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  453. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  454. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  455. finfo->fi_cno = cpu_to_le64(cno);
  456. segbuf = sci->sc_curseg;
  457. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  458. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  459. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  460. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  461. }
  462. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  463. struct buffer_head *bh,
  464. struct inode *inode,
  465. unsigned int binfo_size)
  466. {
  467. struct nilfs_segment_buffer *segbuf;
  468. int required, err = 0;
  469. retry:
  470. segbuf = sci->sc_curseg;
  471. required = nilfs_segctor_segsum_block_required(
  472. sci, &sci->sc_binfo_ptr, binfo_size);
  473. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  474. nilfs_segctor_end_finfo(sci, inode);
  475. err = nilfs_segctor_feed_segment(sci);
  476. if (err)
  477. return err;
  478. goto retry;
  479. }
  480. if (unlikely(required)) {
  481. err = nilfs_segbuf_extend_segsum(segbuf);
  482. if (unlikely(err))
  483. goto failed;
  484. }
  485. if (sci->sc_blk_cnt == 0)
  486. nilfs_segctor_begin_finfo(sci, inode);
  487. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  488. /* Substitution to vblocknr is delayed until update_blocknr() */
  489. nilfs_segbuf_add_file_buffer(segbuf, bh);
  490. sci->sc_blk_cnt++;
  491. failed:
  492. return err;
  493. }
  494. /*
  495. * Callback functions that enumerate, mark, and collect dirty blocks
  496. */
  497. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  498. struct buffer_head *bh, struct inode *inode)
  499. {
  500. int err;
  501. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  502. if (err < 0)
  503. return err;
  504. err = nilfs_segctor_add_file_block(sci, bh, inode,
  505. sizeof(struct nilfs_binfo_v));
  506. if (!err)
  507. sci->sc_datablk_cnt++;
  508. return err;
  509. }
  510. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  511. struct buffer_head *bh,
  512. struct inode *inode)
  513. {
  514. return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  515. }
  516. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  517. struct buffer_head *bh,
  518. struct inode *inode)
  519. {
  520. WARN_ON(!buffer_dirty(bh));
  521. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  522. }
  523. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  524. struct nilfs_segsum_pointer *ssp,
  525. union nilfs_binfo *binfo)
  526. {
  527. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  528. sci, ssp, sizeof(*binfo_v));
  529. *binfo_v = binfo->bi_v;
  530. }
  531. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  532. struct nilfs_segsum_pointer *ssp,
  533. union nilfs_binfo *binfo)
  534. {
  535. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  536. sci, ssp, sizeof(*vblocknr));
  537. *vblocknr = binfo->bi_v.bi_vblocknr;
  538. }
  539. static const struct nilfs_sc_operations nilfs_sc_file_ops = {
  540. .collect_data = nilfs_collect_file_data,
  541. .collect_node = nilfs_collect_file_node,
  542. .collect_bmap = nilfs_collect_file_bmap,
  543. .write_data_binfo = nilfs_write_file_data_binfo,
  544. .write_node_binfo = nilfs_write_file_node_binfo,
  545. };
  546. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  547. struct buffer_head *bh, struct inode *inode)
  548. {
  549. int err;
  550. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  551. if (err < 0)
  552. return err;
  553. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  554. if (!err)
  555. sci->sc_datablk_cnt++;
  556. return err;
  557. }
  558. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  559. struct buffer_head *bh, struct inode *inode)
  560. {
  561. WARN_ON(!buffer_dirty(bh));
  562. return nilfs_segctor_add_file_block(sci, bh, inode,
  563. sizeof(struct nilfs_binfo_dat));
  564. }
  565. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  566. struct nilfs_segsum_pointer *ssp,
  567. union nilfs_binfo *binfo)
  568. {
  569. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  570. sizeof(*blkoff));
  571. *blkoff = binfo->bi_dat.bi_blkoff;
  572. }
  573. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  574. struct nilfs_segsum_pointer *ssp,
  575. union nilfs_binfo *binfo)
  576. {
  577. struct nilfs_binfo_dat *binfo_dat =
  578. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  579. *binfo_dat = binfo->bi_dat;
  580. }
  581. static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
  582. .collect_data = nilfs_collect_dat_data,
  583. .collect_node = nilfs_collect_file_node,
  584. .collect_bmap = nilfs_collect_dat_bmap,
  585. .write_data_binfo = nilfs_write_dat_data_binfo,
  586. .write_node_binfo = nilfs_write_dat_node_binfo,
  587. };
  588. static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  589. .collect_data = nilfs_collect_file_data,
  590. .collect_node = NULL,
  591. .collect_bmap = NULL,
  592. .write_data_binfo = nilfs_write_file_data_binfo,
  593. .write_node_binfo = NULL,
  594. };
  595. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  596. struct list_head *listp,
  597. size_t nlimit,
  598. loff_t start, loff_t end)
  599. {
  600. struct address_space *mapping = inode->i_mapping;
  601. struct pagevec pvec;
  602. pgoff_t index = 0, last = ULONG_MAX;
  603. size_t ndirties = 0;
  604. int i;
  605. if (unlikely(start != 0 || end != LLONG_MAX)) {
  606. /*
  607. * A valid range is given for sync-ing data pages. The
  608. * range is rounded to per-page; extra dirty buffers
  609. * may be included if blocksize < pagesize.
  610. */
  611. index = start >> PAGE_SHIFT;
  612. last = end >> PAGE_SHIFT;
  613. }
  614. pagevec_init(&pvec, 0);
  615. repeat:
  616. if (unlikely(index > last) ||
  617. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  618. min_t(pgoff_t, last - index,
  619. PAGEVEC_SIZE - 1) + 1))
  620. return ndirties;
  621. for (i = 0; i < pagevec_count(&pvec); i++) {
  622. struct buffer_head *bh, *head;
  623. struct page *page = pvec.pages[i];
  624. if (unlikely(page->index > last))
  625. break;
  626. lock_page(page);
  627. if (!page_has_buffers(page))
  628. create_empty_buffers(page, 1 << inode->i_blkbits, 0);
  629. unlock_page(page);
  630. bh = head = page_buffers(page);
  631. do {
  632. if (!buffer_dirty(bh) || buffer_async_write(bh))
  633. continue;
  634. get_bh(bh);
  635. list_add_tail(&bh->b_assoc_buffers, listp);
  636. ndirties++;
  637. if (unlikely(ndirties >= nlimit)) {
  638. pagevec_release(&pvec);
  639. cond_resched();
  640. return ndirties;
  641. }
  642. } while (bh = bh->b_this_page, bh != head);
  643. }
  644. pagevec_release(&pvec);
  645. cond_resched();
  646. goto repeat;
  647. }
  648. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  649. struct list_head *listp)
  650. {
  651. struct nilfs_inode_info *ii = NILFS_I(inode);
  652. struct address_space *mapping = &ii->i_btnode_cache;
  653. struct pagevec pvec;
  654. struct buffer_head *bh, *head;
  655. unsigned int i;
  656. pgoff_t index = 0;
  657. pagevec_init(&pvec, 0);
  658. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  659. PAGEVEC_SIZE)) {
  660. for (i = 0; i < pagevec_count(&pvec); i++) {
  661. bh = head = page_buffers(pvec.pages[i]);
  662. do {
  663. if (buffer_dirty(bh) &&
  664. !buffer_async_write(bh)) {
  665. get_bh(bh);
  666. list_add_tail(&bh->b_assoc_buffers,
  667. listp);
  668. }
  669. bh = bh->b_this_page;
  670. } while (bh != head);
  671. }
  672. pagevec_release(&pvec);
  673. cond_resched();
  674. }
  675. }
  676. static void nilfs_dispose_list(struct the_nilfs *nilfs,
  677. struct list_head *head, int force)
  678. {
  679. struct nilfs_inode_info *ii, *n;
  680. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  681. unsigned int nv = 0;
  682. while (!list_empty(head)) {
  683. spin_lock(&nilfs->ns_inode_lock);
  684. list_for_each_entry_safe(ii, n, head, i_dirty) {
  685. list_del_init(&ii->i_dirty);
  686. if (force) {
  687. if (unlikely(ii->i_bh)) {
  688. brelse(ii->i_bh);
  689. ii->i_bh = NULL;
  690. }
  691. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  692. set_bit(NILFS_I_QUEUED, &ii->i_state);
  693. list_add_tail(&ii->i_dirty,
  694. &nilfs->ns_dirty_files);
  695. continue;
  696. }
  697. ivec[nv++] = ii;
  698. if (nv == SC_N_INODEVEC)
  699. break;
  700. }
  701. spin_unlock(&nilfs->ns_inode_lock);
  702. for (pii = ivec; nv > 0; pii++, nv--)
  703. iput(&(*pii)->vfs_inode);
  704. }
  705. }
  706. static void nilfs_iput_work_func(struct work_struct *work)
  707. {
  708. struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
  709. sc_iput_work);
  710. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  711. nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
  712. }
  713. static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
  714. struct nilfs_root *root)
  715. {
  716. int ret = 0;
  717. if (nilfs_mdt_fetch_dirty(root->ifile))
  718. ret++;
  719. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  720. ret++;
  721. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  722. ret++;
  723. if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
  724. ret++;
  725. return ret;
  726. }
  727. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  728. {
  729. return list_empty(&sci->sc_dirty_files) &&
  730. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  731. sci->sc_nfreesegs == 0 &&
  732. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  733. }
  734. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  735. {
  736. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  737. int ret = 0;
  738. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  739. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  740. spin_lock(&nilfs->ns_inode_lock);
  741. if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
  742. ret++;
  743. spin_unlock(&nilfs->ns_inode_lock);
  744. return ret;
  745. }
  746. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  747. {
  748. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  749. nilfs_mdt_clear_dirty(sci->sc_root->ifile);
  750. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  751. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  752. nilfs_mdt_clear_dirty(nilfs->ns_dat);
  753. }
  754. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  755. {
  756. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  757. struct buffer_head *bh_cp;
  758. struct nilfs_checkpoint *raw_cp;
  759. int err;
  760. /* XXX: this interface will be changed */
  761. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  762. &raw_cp, &bh_cp);
  763. if (likely(!err)) {
  764. /* The following code is duplicated with cpfile. But, it is
  765. needed to collect the checkpoint even if it was not newly
  766. created */
  767. mark_buffer_dirty(bh_cp);
  768. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  769. nilfs_cpfile_put_checkpoint(
  770. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  771. } else
  772. WARN_ON(err == -EINVAL || err == -ENOENT);
  773. return err;
  774. }
  775. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  776. {
  777. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  778. struct buffer_head *bh_cp;
  779. struct nilfs_checkpoint *raw_cp;
  780. int err;
  781. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  782. &raw_cp, &bh_cp);
  783. if (unlikely(err)) {
  784. WARN_ON(err == -EINVAL || err == -ENOENT);
  785. goto failed_ibh;
  786. }
  787. raw_cp->cp_snapshot_list.ssl_next = 0;
  788. raw_cp->cp_snapshot_list.ssl_prev = 0;
  789. raw_cp->cp_inodes_count =
  790. cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
  791. raw_cp->cp_blocks_count =
  792. cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
  793. raw_cp->cp_nblk_inc =
  794. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  795. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  796. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  797. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  798. nilfs_checkpoint_clear_minor(raw_cp);
  799. else
  800. nilfs_checkpoint_set_minor(raw_cp);
  801. nilfs_write_inode_common(sci->sc_root->ifile,
  802. &raw_cp->cp_ifile_inode, 1);
  803. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  804. return 0;
  805. failed_ibh:
  806. return err;
  807. }
  808. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  809. struct nilfs_inode_info *ii)
  810. {
  811. struct buffer_head *ibh;
  812. struct nilfs_inode *raw_inode;
  813. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  814. ibh = ii->i_bh;
  815. BUG_ON(!ibh);
  816. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  817. ibh);
  818. nilfs_bmap_write(ii->i_bmap, raw_inode);
  819. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  820. }
  821. }
  822. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
  823. {
  824. struct nilfs_inode_info *ii;
  825. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  826. nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
  827. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  828. }
  829. }
  830. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  831. struct the_nilfs *nilfs)
  832. {
  833. struct buffer_head *bh_sr;
  834. struct nilfs_super_root *raw_sr;
  835. unsigned int isz, srsz;
  836. bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
  837. raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
  838. isz = nilfs->ns_inode_size;
  839. srsz = NILFS_SR_BYTES(isz);
  840. raw_sr->sr_bytes = cpu_to_le16(srsz);
  841. raw_sr->sr_nongc_ctime
  842. = cpu_to_le64(nilfs_doing_gc() ?
  843. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  844. raw_sr->sr_flags = 0;
  845. nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
  846. NILFS_SR_DAT_OFFSET(isz), 1);
  847. nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
  848. NILFS_SR_CPFILE_OFFSET(isz), 1);
  849. nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
  850. NILFS_SR_SUFILE_OFFSET(isz), 1);
  851. memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
  852. }
  853. static void nilfs_redirty_inodes(struct list_head *head)
  854. {
  855. struct nilfs_inode_info *ii;
  856. list_for_each_entry(ii, head, i_dirty) {
  857. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  858. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  859. }
  860. }
  861. static void nilfs_drop_collected_inodes(struct list_head *head)
  862. {
  863. struct nilfs_inode_info *ii;
  864. list_for_each_entry(ii, head, i_dirty) {
  865. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  866. continue;
  867. clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
  868. set_bit(NILFS_I_UPDATED, &ii->i_state);
  869. }
  870. }
  871. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  872. struct inode *inode,
  873. struct list_head *listp,
  874. int (*collect)(struct nilfs_sc_info *,
  875. struct buffer_head *,
  876. struct inode *))
  877. {
  878. struct buffer_head *bh, *n;
  879. int err = 0;
  880. if (collect) {
  881. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  882. list_del_init(&bh->b_assoc_buffers);
  883. err = collect(sci, bh, inode);
  884. brelse(bh);
  885. if (unlikely(err))
  886. goto dispose_buffers;
  887. }
  888. return 0;
  889. }
  890. dispose_buffers:
  891. while (!list_empty(listp)) {
  892. bh = list_first_entry(listp, struct buffer_head,
  893. b_assoc_buffers);
  894. list_del_init(&bh->b_assoc_buffers);
  895. brelse(bh);
  896. }
  897. return err;
  898. }
  899. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  900. {
  901. /* Remaining number of blocks within segment buffer */
  902. return sci->sc_segbuf_nblocks -
  903. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  904. }
  905. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  906. struct inode *inode,
  907. const struct nilfs_sc_operations *sc_ops)
  908. {
  909. LIST_HEAD(data_buffers);
  910. LIST_HEAD(node_buffers);
  911. int err;
  912. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  913. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  914. n = nilfs_lookup_dirty_data_buffers(
  915. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  916. if (n > rest) {
  917. err = nilfs_segctor_apply_buffers(
  918. sci, inode, &data_buffers,
  919. sc_ops->collect_data);
  920. BUG_ON(!err); /* always receive -E2BIG or true error */
  921. goto break_or_fail;
  922. }
  923. }
  924. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  925. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  926. err = nilfs_segctor_apply_buffers(
  927. sci, inode, &data_buffers, sc_ops->collect_data);
  928. if (unlikely(err)) {
  929. /* dispose node list */
  930. nilfs_segctor_apply_buffers(
  931. sci, inode, &node_buffers, NULL);
  932. goto break_or_fail;
  933. }
  934. sci->sc_stage.flags |= NILFS_CF_NODE;
  935. }
  936. /* Collect node */
  937. err = nilfs_segctor_apply_buffers(
  938. sci, inode, &node_buffers, sc_ops->collect_node);
  939. if (unlikely(err))
  940. goto break_or_fail;
  941. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  942. err = nilfs_segctor_apply_buffers(
  943. sci, inode, &node_buffers, sc_ops->collect_bmap);
  944. if (unlikely(err))
  945. goto break_or_fail;
  946. nilfs_segctor_end_finfo(sci, inode);
  947. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  948. break_or_fail:
  949. return err;
  950. }
  951. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  952. struct inode *inode)
  953. {
  954. LIST_HEAD(data_buffers);
  955. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  956. int err;
  957. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  958. sci->sc_dsync_start,
  959. sci->sc_dsync_end);
  960. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  961. nilfs_collect_file_data);
  962. if (!err) {
  963. nilfs_segctor_end_finfo(sci, inode);
  964. BUG_ON(n > rest);
  965. /* always receive -E2BIG or true error if n > rest */
  966. }
  967. return err;
  968. }
  969. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  970. {
  971. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  972. struct list_head *head;
  973. struct nilfs_inode_info *ii;
  974. size_t ndone;
  975. int err = 0;
  976. switch (nilfs_sc_cstage_get(sci)) {
  977. case NILFS_ST_INIT:
  978. /* Pre-processes */
  979. sci->sc_stage.flags = 0;
  980. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  981. sci->sc_nblk_inc = 0;
  982. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  983. if (mode == SC_LSEG_DSYNC) {
  984. nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
  985. goto dsync_mode;
  986. }
  987. }
  988. sci->sc_stage.dirty_file_ptr = NULL;
  989. sci->sc_stage.gc_inode_ptr = NULL;
  990. if (mode == SC_FLUSH_DAT) {
  991. nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
  992. goto dat_stage;
  993. }
  994. nilfs_sc_cstage_inc(sci); /* Fall through */
  995. case NILFS_ST_GC:
  996. if (nilfs_doing_gc()) {
  997. head = &sci->sc_gc_inodes;
  998. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  999. head, i_dirty);
  1000. list_for_each_entry_continue(ii, head, i_dirty) {
  1001. err = nilfs_segctor_scan_file(
  1002. sci, &ii->vfs_inode,
  1003. &nilfs_sc_file_ops);
  1004. if (unlikely(err)) {
  1005. sci->sc_stage.gc_inode_ptr = list_entry(
  1006. ii->i_dirty.prev,
  1007. struct nilfs_inode_info,
  1008. i_dirty);
  1009. goto break_or_fail;
  1010. }
  1011. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  1012. }
  1013. sci->sc_stage.gc_inode_ptr = NULL;
  1014. }
  1015. nilfs_sc_cstage_inc(sci); /* Fall through */
  1016. case NILFS_ST_FILE:
  1017. head = &sci->sc_dirty_files;
  1018. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  1019. i_dirty);
  1020. list_for_each_entry_continue(ii, head, i_dirty) {
  1021. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  1022. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  1023. &nilfs_sc_file_ops);
  1024. if (unlikely(err)) {
  1025. sci->sc_stage.dirty_file_ptr =
  1026. list_entry(ii->i_dirty.prev,
  1027. struct nilfs_inode_info,
  1028. i_dirty);
  1029. goto break_or_fail;
  1030. }
  1031. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  1032. /* XXX: required ? */
  1033. }
  1034. sci->sc_stage.dirty_file_ptr = NULL;
  1035. if (mode == SC_FLUSH_FILE) {
  1036. nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
  1037. return 0;
  1038. }
  1039. nilfs_sc_cstage_inc(sci);
  1040. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  1041. /* Fall through */
  1042. case NILFS_ST_IFILE:
  1043. err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
  1044. &nilfs_sc_file_ops);
  1045. if (unlikely(err))
  1046. break;
  1047. nilfs_sc_cstage_inc(sci);
  1048. /* Creating a checkpoint */
  1049. err = nilfs_segctor_create_checkpoint(sci);
  1050. if (unlikely(err))
  1051. break;
  1052. /* Fall through */
  1053. case NILFS_ST_CPFILE:
  1054. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1055. &nilfs_sc_file_ops);
  1056. if (unlikely(err))
  1057. break;
  1058. nilfs_sc_cstage_inc(sci); /* Fall through */
  1059. case NILFS_ST_SUFILE:
  1060. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1061. sci->sc_nfreesegs, &ndone);
  1062. if (unlikely(err)) {
  1063. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1064. sci->sc_freesegs, ndone,
  1065. NULL);
  1066. break;
  1067. }
  1068. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1069. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1070. &nilfs_sc_file_ops);
  1071. if (unlikely(err))
  1072. break;
  1073. nilfs_sc_cstage_inc(sci); /* Fall through */
  1074. case NILFS_ST_DAT:
  1075. dat_stage:
  1076. err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
  1077. &nilfs_sc_dat_ops);
  1078. if (unlikely(err))
  1079. break;
  1080. if (mode == SC_FLUSH_DAT) {
  1081. nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
  1082. return 0;
  1083. }
  1084. nilfs_sc_cstage_inc(sci); /* Fall through */
  1085. case NILFS_ST_SR:
  1086. if (mode == SC_LSEG_SR) {
  1087. /* Appending a super root */
  1088. err = nilfs_segctor_add_super_root(sci);
  1089. if (unlikely(err))
  1090. break;
  1091. }
  1092. /* End of a logical segment */
  1093. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1094. nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
  1095. return 0;
  1096. case NILFS_ST_DSYNC:
  1097. dsync_mode:
  1098. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1099. ii = sci->sc_dsync_inode;
  1100. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1101. break;
  1102. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1103. if (unlikely(err))
  1104. break;
  1105. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1106. nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
  1107. return 0;
  1108. case NILFS_ST_DONE:
  1109. return 0;
  1110. default:
  1111. BUG();
  1112. }
  1113. break_or_fail:
  1114. return err;
  1115. }
  1116. /**
  1117. * nilfs_segctor_begin_construction - setup segment buffer to make a new log
  1118. * @sci: nilfs_sc_info
  1119. * @nilfs: nilfs object
  1120. */
  1121. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1122. struct the_nilfs *nilfs)
  1123. {
  1124. struct nilfs_segment_buffer *segbuf, *prev;
  1125. __u64 nextnum;
  1126. int err, alloc = 0;
  1127. segbuf = nilfs_segbuf_new(sci->sc_super);
  1128. if (unlikely(!segbuf))
  1129. return -ENOMEM;
  1130. if (list_empty(&sci->sc_write_logs)) {
  1131. nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1132. nilfs->ns_pseg_offset, nilfs);
  1133. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1134. nilfs_shift_to_next_segment(nilfs);
  1135. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1136. }
  1137. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1138. nextnum = nilfs->ns_nextnum;
  1139. if (nilfs->ns_segnum == nilfs->ns_nextnum)
  1140. /* Start from the head of a new full segment */
  1141. alloc++;
  1142. } else {
  1143. /* Continue logs */
  1144. prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1145. nilfs_segbuf_map_cont(segbuf, prev);
  1146. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
  1147. nextnum = prev->sb_nextnum;
  1148. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1149. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1150. segbuf->sb_sum.seg_seq++;
  1151. alloc++;
  1152. }
  1153. }
  1154. err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
  1155. if (err)
  1156. goto failed;
  1157. if (alloc) {
  1158. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1159. if (err)
  1160. goto failed;
  1161. }
  1162. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1163. BUG_ON(!list_empty(&sci->sc_segbufs));
  1164. list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
  1165. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1166. return 0;
  1167. failed:
  1168. nilfs_segbuf_free(segbuf);
  1169. return err;
  1170. }
  1171. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1172. struct the_nilfs *nilfs, int nadd)
  1173. {
  1174. struct nilfs_segment_buffer *segbuf, *prev;
  1175. struct inode *sufile = nilfs->ns_sufile;
  1176. __u64 nextnextnum;
  1177. LIST_HEAD(list);
  1178. int err, ret, i;
  1179. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1180. /*
  1181. * Since the segment specified with nextnum might be allocated during
  1182. * the previous construction, the buffer including its segusage may
  1183. * not be dirty. The following call ensures that the buffer is dirty
  1184. * and will pin the buffer on memory until the sufile is written.
  1185. */
  1186. err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
  1187. if (unlikely(err))
  1188. return err;
  1189. for (i = 0; i < nadd; i++) {
  1190. /* extend segment info */
  1191. err = -ENOMEM;
  1192. segbuf = nilfs_segbuf_new(sci->sc_super);
  1193. if (unlikely(!segbuf))
  1194. goto failed;
  1195. /* map this buffer to region of segment on-disk */
  1196. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1197. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1198. /* allocate the next next full segment */
  1199. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1200. if (unlikely(err))
  1201. goto failed_segbuf;
  1202. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1203. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1204. list_add_tail(&segbuf->sb_list, &list);
  1205. prev = segbuf;
  1206. }
  1207. list_splice_tail(&list, &sci->sc_segbufs);
  1208. return 0;
  1209. failed_segbuf:
  1210. nilfs_segbuf_free(segbuf);
  1211. failed:
  1212. list_for_each_entry(segbuf, &list, sb_list) {
  1213. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1214. WARN_ON(ret); /* never fails */
  1215. }
  1216. nilfs_destroy_logs(&list);
  1217. return err;
  1218. }
  1219. static void nilfs_free_incomplete_logs(struct list_head *logs,
  1220. struct the_nilfs *nilfs)
  1221. {
  1222. struct nilfs_segment_buffer *segbuf, *prev;
  1223. struct inode *sufile = nilfs->ns_sufile;
  1224. int ret;
  1225. segbuf = NILFS_FIRST_SEGBUF(logs);
  1226. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1227. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1228. WARN_ON(ret); /* never fails */
  1229. }
  1230. if (atomic_read(&segbuf->sb_err)) {
  1231. /* Case 1: The first segment failed */
  1232. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1233. /* Case 1a: Partial segment appended into an existing
  1234. segment */
  1235. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1236. segbuf->sb_fseg_end);
  1237. else /* Case 1b: New full segment */
  1238. set_nilfs_discontinued(nilfs);
  1239. }
  1240. prev = segbuf;
  1241. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1242. if (prev->sb_nextnum != segbuf->sb_nextnum) {
  1243. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1244. WARN_ON(ret); /* never fails */
  1245. }
  1246. if (atomic_read(&segbuf->sb_err) &&
  1247. segbuf->sb_segnum != nilfs->ns_nextnum)
  1248. /* Case 2: extended segment (!= next) failed */
  1249. nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
  1250. prev = segbuf;
  1251. }
  1252. }
  1253. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1254. struct inode *sufile)
  1255. {
  1256. struct nilfs_segment_buffer *segbuf;
  1257. unsigned long live_blocks;
  1258. int ret;
  1259. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1260. live_blocks = segbuf->sb_sum.nblocks +
  1261. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1262. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1263. live_blocks,
  1264. sci->sc_seg_ctime);
  1265. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1266. }
  1267. }
  1268. static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
  1269. {
  1270. struct nilfs_segment_buffer *segbuf;
  1271. int ret;
  1272. segbuf = NILFS_FIRST_SEGBUF(logs);
  1273. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1274. segbuf->sb_pseg_start -
  1275. segbuf->sb_fseg_start, 0);
  1276. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1277. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1278. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1279. 0, 0);
  1280. WARN_ON(ret); /* always succeed */
  1281. }
  1282. }
  1283. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1284. struct nilfs_segment_buffer *last,
  1285. struct inode *sufile)
  1286. {
  1287. struct nilfs_segment_buffer *segbuf = last;
  1288. int ret;
  1289. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1290. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1291. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1292. WARN_ON(ret);
  1293. }
  1294. nilfs_truncate_logs(&sci->sc_segbufs, last);
  1295. }
  1296. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1297. struct the_nilfs *nilfs, int mode)
  1298. {
  1299. struct nilfs_cstage prev_stage = sci->sc_stage;
  1300. int err, nadd = 1;
  1301. /* Collection retry loop */
  1302. for (;;) {
  1303. sci->sc_nblk_this_inc = 0;
  1304. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1305. err = nilfs_segctor_reset_segment_buffer(sci);
  1306. if (unlikely(err))
  1307. goto failed;
  1308. err = nilfs_segctor_collect_blocks(sci, mode);
  1309. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1310. if (!err)
  1311. break;
  1312. if (unlikely(err != -E2BIG))
  1313. goto failed;
  1314. /* The current segment is filled up */
  1315. if (mode != SC_LSEG_SR ||
  1316. nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
  1317. break;
  1318. nilfs_clear_logs(&sci->sc_segbufs);
  1319. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1320. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1321. sci->sc_freesegs,
  1322. sci->sc_nfreesegs,
  1323. NULL);
  1324. WARN_ON(err); /* do not happen */
  1325. sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
  1326. }
  1327. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1328. if (unlikely(err))
  1329. return err;
  1330. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1331. sci->sc_stage = prev_stage;
  1332. }
  1333. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1334. return 0;
  1335. failed:
  1336. return err;
  1337. }
  1338. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1339. struct buffer_head *new_bh)
  1340. {
  1341. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1342. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1343. /* The caller must release old_bh */
  1344. }
  1345. static int
  1346. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1347. struct nilfs_segment_buffer *segbuf,
  1348. int mode)
  1349. {
  1350. struct inode *inode = NULL;
  1351. sector_t blocknr;
  1352. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1353. unsigned long nblocks = 0, ndatablk = 0;
  1354. const struct nilfs_sc_operations *sc_op = NULL;
  1355. struct nilfs_segsum_pointer ssp;
  1356. struct nilfs_finfo *finfo = NULL;
  1357. union nilfs_binfo binfo;
  1358. struct buffer_head *bh, *bh_org;
  1359. ino_t ino = 0;
  1360. int err = 0;
  1361. if (!nfinfo)
  1362. goto out;
  1363. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1364. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1365. ssp.offset = sizeof(struct nilfs_segment_summary);
  1366. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1367. if (bh == segbuf->sb_super_root)
  1368. break;
  1369. if (!finfo) {
  1370. finfo = nilfs_segctor_map_segsum_entry(
  1371. sci, &ssp, sizeof(*finfo));
  1372. ino = le64_to_cpu(finfo->fi_ino);
  1373. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1374. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1375. inode = bh->b_page->mapping->host;
  1376. if (mode == SC_LSEG_DSYNC)
  1377. sc_op = &nilfs_sc_dsync_ops;
  1378. else if (ino == NILFS_DAT_INO)
  1379. sc_op = &nilfs_sc_dat_ops;
  1380. else /* file blocks */
  1381. sc_op = &nilfs_sc_file_ops;
  1382. }
  1383. bh_org = bh;
  1384. get_bh(bh_org);
  1385. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1386. &binfo);
  1387. if (bh != bh_org)
  1388. nilfs_list_replace_buffer(bh_org, bh);
  1389. brelse(bh_org);
  1390. if (unlikely(err))
  1391. goto failed_bmap;
  1392. if (ndatablk > 0)
  1393. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1394. else
  1395. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1396. blocknr++;
  1397. if (--nblocks == 0) {
  1398. finfo = NULL;
  1399. if (--nfinfo == 0)
  1400. break;
  1401. } else if (ndatablk > 0)
  1402. ndatablk--;
  1403. }
  1404. out:
  1405. return 0;
  1406. failed_bmap:
  1407. return err;
  1408. }
  1409. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1410. {
  1411. struct nilfs_segment_buffer *segbuf;
  1412. int err;
  1413. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1414. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1415. if (unlikely(err))
  1416. return err;
  1417. nilfs_segbuf_fill_in_segsum(segbuf);
  1418. }
  1419. return 0;
  1420. }
  1421. static void nilfs_begin_page_io(struct page *page)
  1422. {
  1423. if (!page || PageWriteback(page))
  1424. /* For split b-tree node pages, this function may be called
  1425. twice. We ignore the 2nd or later calls by this check. */
  1426. return;
  1427. lock_page(page);
  1428. clear_page_dirty_for_io(page);
  1429. set_page_writeback(page);
  1430. unlock_page(page);
  1431. }
  1432. static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
  1433. {
  1434. struct nilfs_segment_buffer *segbuf;
  1435. struct page *bd_page = NULL, *fs_page = NULL;
  1436. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1437. struct buffer_head *bh;
  1438. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1439. b_assoc_buffers) {
  1440. if (bh->b_page != bd_page) {
  1441. if (bd_page) {
  1442. lock_page(bd_page);
  1443. clear_page_dirty_for_io(bd_page);
  1444. set_page_writeback(bd_page);
  1445. unlock_page(bd_page);
  1446. }
  1447. bd_page = bh->b_page;
  1448. }
  1449. }
  1450. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1451. b_assoc_buffers) {
  1452. set_buffer_async_write(bh);
  1453. if (bh == segbuf->sb_super_root) {
  1454. if (bh->b_page != bd_page) {
  1455. lock_page(bd_page);
  1456. clear_page_dirty_for_io(bd_page);
  1457. set_page_writeback(bd_page);
  1458. unlock_page(bd_page);
  1459. bd_page = bh->b_page;
  1460. }
  1461. break;
  1462. }
  1463. if (bh->b_page != fs_page) {
  1464. nilfs_begin_page_io(fs_page);
  1465. fs_page = bh->b_page;
  1466. }
  1467. }
  1468. }
  1469. if (bd_page) {
  1470. lock_page(bd_page);
  1471. clear_page_dirty_for_io(bd_page);
  1472. set_page_writeback(bd_page);
  1473. unlock_page(bd_page);
  1474. }
  1475. nilfs_begin_page_io(fs_page);
  1476. }
  1477. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1478. struct the_nilfs *nilfs)
  1479. {
  1480. int ret;
  1481. ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
  1482. list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
  1483. return ret;
  1484. }
  1485. static void nilfs_end_page_io(struct page *page, int err)
  1486. {
  1487. if (!page)
  1488. return;
  1489. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1490. /*
  1491. * For b-tree node pages, this function may be called twice
  1492. * or more because they might be split in a segment.
  1493. */
  1494. if (PageDirty(page)) {
  1495. /*
  1496. * For pages holding split b-tree node buffers, dirty
  1497. * flag on the buffers may be cleared discretely.
  1498. * In that case, the page is once redirtied for
  1499. * remaining buffers, and it must be cancelled if
  1500. * all the buffers get cleaned later.
  1501. */
  1502. lock_page(page);
  1503. if (nilfs_page_buffers_clean(page))
  1504. __nilfs_clear_page_dirty(page);
  1505. unlock_page(page);
  1506. }
  1507. return;
  1508. }
  1509. if (!err) {
  1510. if (!nilfs_page_buffers_clean(page))
  1511. __set_page_dirty_nobuffers(page);
  1512. ClearPageError(page);
  1513. } else {
  1514. __set_page_dirty_nobuffers(page);
  1515. SetPageError(page);
  1516. }
  1517. end_page_writeback(page);
  1518. }
  1519. static void nilfs_abort_logs(struct list_head *logs, int err)
  1520. {
  1521. struct nilfs_segment_buffer *segbuf;
  1522. struct page *bd_page = NULL, *fs_page = NULL;
  1523. struct buffer_head *bh;
  1524. if (list_empty(logs))
  1525. return;
  1526. list_for_each_entry(segbuf, logs, sb_list) {
  1527. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1528. b_assoc_buffers) {
  1529. if (bh->b_page != bd_page) {
  1530. if (bd_page)
  1531. end_page_writeback(bd_page);
  1532. bd_page = bh->b_page;
  1533. }
  1534. }
  1535. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1536. b_assoc_buffers) {
  1537. clear_buffer_async_write(bh);
  1538. if (bh == segbuf->sb_super_root) {
  1539. if (bh->b_page != bd_page) {
  1540. end_page_writeback(bd_page);
  1541. bd_page = bh->b_page;
  1542. }
  1543. break;
  1544. }
  1545. if (bh->b_page != fs_page) {
  1546. nilfs_end_page_io(fs_page, err);
  1547. fs_page = bh->b_page;
  1548. }
  1549. }
  1550. }
  1551. if (bd_page)
  1552. end_page_writeback(bd_page);
  1553. nilfs_end_page_io(fs_page, err);
  1554. }
  1555. static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
  1556. struct the_nilfs *nilfs, int err)
  1557. {
  1558. LIST_HEAD(logs);
  1559. int ret;
  1560. list_splice_tail_init(&sci->sc_write_logs, &logs);
  1561. ret = nilfs_wait_on_logs(&logs);
  1562. nilfs_abort_logs(&logs, ret ? : err);
  1563. list_splice_tail_init(&sci->sc_segbufs, &logs);
  1564. nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
  1565. nilfs_free_incomplete_logs(&logs, nilfs);
  1566. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1567. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1568. sci->sc_freesegs,
  1569. sci->sc_nfreesegs,
  1570. NULL);
  1571. WARN_ON(ret); /* do not happen */
  1572. }
  1573. nilfs_destroy_logs(&logs);
  1574. }
  1575. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1576. struct nilfs_segment_buffer *segbuf)
  1577. {
  1578. nilfs->ns_segnum = segbuf->sb_segnum;
  1579. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1580. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1581. + segbuf->sb_sum.nblocks;
  1582. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1583. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1584. }
  1585. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1586. {
  1587. struct nilfs_segment_buffer *segbuf;
  1588. struct page *bd_page = NULL, *fs_page = NULL;
  1589. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1590. int update_sr = false;
  1591. list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
  1592. struct buffer_head *bh;
  1593. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1594. b_assoc_buffers) {
  1595. set_buffer_uptodate(bh);
  1596. clear_buffer_dirty(bh);
  1597. if (bh->b_page != bd_page) {
  1598. if (bd_page)
  1599. end_page_writeback(bd_page);
  1600. bd_page = bh->b_page;
  1601. }
  1602. }
  1603. /*
  1604. * We assume that the buffers which belong to the same page
  1605. * continue over the buffer list.
  1606. * Under this assumption, the last BHs of pages is
  1607. * identifiable by the discontinuity of bh->b_page
  1608. * (page != fs_page).
  1609. *
  1610. * For B-tree node blocks, however, this assumption is not
  1611. * guaranteed. The cleanup code of B-tree node pages needs
  1612. * special care.
  1613. */
  1614. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1615. b_assoc_buffers) {
  1616. const unsigned long set_bits = (1 << BH_Uptodate);
  1617. const unsigned long clear_bits =
  1618. (1 << BH_Dirty | 1 << BH_Async_Write |
  1619. 1 << BH_Delay | 1 << BH_NILFS_Volatile |
  1620. 1 << BH_NILFS_Redirected);
  1621. set_mask_bits(&bh->b_state, clear_bits, set_bits);
  1622. if (bh == segbuf->sb_super_root) {
  1623. if (bh->b_page != bd_page) {
  1624. end_page_writeback(bd_page);
  1625. bd_page = bh->b_page;
  1626. }
  1627. update_sr = true;
  1628. break;
  1629. }
  1630. if (bh->b_page != fs_page) {
  1631. nilfs_end_page_io(fs_page, 0);
  1632. fs_page = bh->b_page;
  1633. }
  1634. }
  1635. if (!nilfs_segbuf_simplex(segbuf)) {
  1636. if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
  1637. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1638. sci->sc_lseg_stime = jiffies;
  1639. }
  1640. if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
  1641. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1642. }
  1643. }
  1644. /*
  1645. * Since pages may continue over multiple segment buffers,
  1646. * end of the last page must be checked outside of the loop.
  1647. */
  1648. if (bd_page)
  1649. end_page_writeback(bd_page);
  1650. nilfs_end_page_io(fs_page, 0);
  1651. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1652. if (nilfs_doing_gc())
  1653. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1654. else
  1655. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1656. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1657. segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1658. nilfs_set_next_segment(nilfs, segbuf);
  1659. if (update_sr) {
  1660. nilfs->ns_flushed_device = 0;
  1661. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1662. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1663. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1664. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1665. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1666. nilfs_segctor_clear_metadata_dirty(sci);
  1667. } else
  1668. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1669. }
  1670. static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
  1671. {
  1672. int ret;
  1673. ret = nilfs_wait_on_logs(&sci->sc_write_logs);
  1674. if (!ret) {
  1675. nilfs_segctor_complete_write(sci);
  1676. nilfs_destroy_logs(&sci->sc_write_logs);
  1677. }
  1678. return ret;
  1679. }
  1680. static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
  1681. struct the_nilfs *nilfs)
  1682. {
  1683. struct nilfs_inode_info *ii, *n;
  1684. struct inode *ifile = sci->sc_root->ifile;
  1685. spin_lock(&nilfs->ns_inode_lock);
  1686. retry:
  1687. list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
  1688. if (!ii->i_bh) {
  1689. struct buffer_head *ibh;
  1690. int err;
  1691. spin_unlock(&nilfs->ns_inode_lock);
  1692. err = nilfs_ifile_get_inode_block(
  1693. ifile, ii->vfs_inode.i_ino, &ibh);
  1694. if (unlikely(err)) {
  1695. nilfs_warning(sci->sc_super, __func__,
  1696. "failed to get inode block.");
  1697. return err;
  1698. }
  1699. mark_buffer_dirty(ibh);
  1700. nilfs_mdt_mark_dirty(ifile);
  1701. spin_lock(&nilfs->ns_inode_lock);
  1702. if (likely(!ii->i_bh))
  1703. ii->i_bh = ibh;
  1704. else
  1705. brelse(ibh);
  1706. goto retry;
  1707. }
  1708. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1709. set_bit(NILFS_I_BUSY, &ii->i_state);
  1710. list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1711. }
  1712. spin_unlock(&nilfs->ns_inode_lock);
  1713. return 0;
  1714. }
  1715. static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
  1716. struct the_nilfs *nilfs)
  1717. {
  1718. struct nilfs_inode_info *ii, *n;
  1719. int during_mount = !(sci->sc_super->s_flags & MS_ACTIVE);
  1720. int defer_iput = false;
  1721. spin_lock(&nilfs->ns_inode_lock);
  1722. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1723. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1724. test_bit(NILFS_I_DIRTY, &ii->i_state))
  1725. continue;
  1726. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1727. brelse(ii->i_bh);
  1728. ii->i_bh = NULL;
  1729. list_del_init(&ii->i_dirty);
  1730. if (!ii->vfs_inode.i_nlink || during_mount) {
  1731. /*
  1732. * Defer calling iput() to avoid deadlocks if
  1733. * i_nlink == 0 or mount is not yet finished.
  1734. */
  1735. list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
  1736. defer_iput = true;
  1737. } else {
  1738. spin_unlock(&nilfs->ns_inode_lock);
  1739. iput(&ii->vfs_inode);
  1740. spin_lock(&nilfs->ns_inode_lock);
  1741. }
  1742. }
  1743. spin_unlock(&nilfs->ns_inode_lock);
  1744. if (defer_iput)
  1745. schedule_work(&sci->sc_iput_work);
  1746. }
  1747. /*
  1748. * Main procedure of segment constructor
  1749. */
  1750. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1751. {
  1752. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  1753. int err;
  1754. nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
  1755. sci->sc_cno = nilfs->ns_cno;
  1756. err = nilfs_segctor_collect_dirty_files(sci, nilfs);
  1757. if (unlikely(err))
  1758. goto out;
  1759. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  1760. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1761. if (nilfs_segctor_clean(sci))
  1762. goto out;
  1763. do {
  1764. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1765. err = nilfs_segctor_begin_construction(sci, nilfs);
  1766. if (unlikely(err))
  1767. goto out;
  1768. /* Update time stamp */
  1769. sci->sc_seg_ctime = get_seconds();
  1770. err = nilfs_segctor_collect(sci, nilfs, mode);
  1771. if (unlikely(err))
  1772. goto failed;
  1773. /* Avoid empty segment */
  1774. if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
  1775. nilfs_segbuf_empty(sci->sc_curseg)) {
  1776. nilfs_segctor_abort_construction(sci, nilfs, 1);
  1777. goto out;
  1778. }
  1779. err = nilfs_segctor_assign(sci, mode);
  1780. if (unlikely(err))
  1781. goto failed;
  1782. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1783. nilfs_segctor_fill_in_file_bmap(sci);
  1784. if (mode == SC_LSEG_SR &&
  1785. nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
  1786. err = nilfs_segctor_fill_in_checkpoint(sci);
  1787. if (unlikely(err))
  1788. goto failed_to_write;
  1789. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1790. }
  1791. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1792. /* Write partial segments */
  1793. nilfs_segctor_prepare_write(sci);
  1794. nilfs_add_checksums_on_logs(&sci->sc_segbufs,
  1795. nilfs->ns_crc_seed);
  1796. err = nilfs_segctor_write(sci, nilfs);
  1797. if (unlikely(err))
  1798. goto failed_to_write;
  1799. if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
  1800. nilfs->ns_blocksize_bits != PAGE_SHIFT) {
  1801. /*
  1802. * At this point, we avoid double buffering
  1803. * for blocksize < pagesize because page dirty
  1804. * flag is turned off during write and dirty
  1805. * buffers are not properly collected for
  1806. * pages crossing over segments.
  1807. */
  1808. err = nilfs_segctor_wait(sci);
  1809. if (err)
  1810. goto failed_to_write;
  1811. }
  1812. } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
  1813. out:
  1814. nilfs_segctor_drop_written_files(sci, nilfs);
  1815. return err;
  1816. failed_to_write:
  1817. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1818. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1819. failed:
  1820. if (nilfs_doing_gc())
  1821. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1822. nilfs_segctor_abort_construction(sci, nilfs, err);
  1823. goto out;
  1824. }
  1825. /**
  1826. * nilfs_segctor_start_timer - set timer of background write
  1827. * @sci: nilfs_sc_info
  1828. *
  1829. * If the timer has already been set, it ignores the new request.
  1830. * This function MUST be called within a section locking the segment
  1831. * semaphore.
  1832. */
  1833. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1834. {
  1835. spin_lock(&sci->sc_state_lock);
  1836. if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1837. sci->sc_timer.expires = jiffies + sci->sc_interval;
  1838. add_timer(&sci->sc_timer);
  1839. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1840. }
  1841. spin_unlock(&sci->sc_state_lock);
  1842. }
  1843. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1844. {
  1845. spin_lock(&sci->sc_state_lock);
  1846. if (!(sci->sc_flush_request & (1 << bn))) {
  1847. unsigned long prev_req = sci->sc_flush_request;
  1848. sci->sc_flush_request |= (1 << bn);
  1849. if (!prev_req)
  1850. wake_up(&sci->sc_wait_daemon);
  1851. }
  1852. spin_unlock(&sci->sc_state_lock);
  1853. }
  1854. /**
  1855. * nilfs_flush_segment - trigger a segment construction for resource control
  1856. * @sb: super block
  1857. * @ino: inode number of the file to be flushed out.
  1858. */
  1859. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1860. {
  1861. struct the_nilfs *nilfs = sb->s_fs_info;
  1862. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1863. if (!sci || nilfs_doing_construction())
  1864. return;
  1865. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1866. /* assign bit 0 to data files */
  1867. }
  1868. struct nilfs_segctor_wait_request {
  1869. wait_queue_t wq;
  1870. __u32 seq;
  1871. int err;
  1872. atomic_t done;
  1873. };
  1874. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  1875. {
  1876. struct nilfs_segctor_wait_request wait_req;
  1877. int err = 0;
  1878. spin_lock(&sci->sc_state_lock);
  1879. init_wait(&wait_req.wq);
  1880. wait_req.err = 0;
  1881. atomic_set(&wait_req.done, 0);
  1882. wait_req.seq = ++sci->sc_seq_request;
  1883. spin_unlock(&sci->sc_state_lock);
  1884. init_waitqueue_entry(&wait_req.wq, current);
  1885. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  1886. set_current_state(TASK_INTERRUPTIBLE);
  1887. wake_up(&sci->sc_wait_daemon);
  1888. for (;;) {
  1889. if (atomic_read(&wait_req.done)) {
  1890. err = wait_req.err;
  1891. break;
  1892. }
  1893. if (!signal_pending(current)) {
  1894. schedule();
  1895. continue;
  1896. }
  1897. err = -ERESTARTSYS;
  1898. break;
  1899. }
  1900. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  1901. return err;
  1902. }
  1903. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  1904. {
  1905. struct nilfs_segctor_wait_request *wrq, *n;
  1906. unsigned long flags;
  1907. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  1908. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  1909. wq.task_list) {
  1910. if (!atomic_read(&wrq->done) &&
  1911. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  1912. wrq->err = err;
  1913. atomic_set(&wrq->done, 1);
  1914. }
  1915. if (atomic_read(&wrq->done)) {
  1916. wrq->wq.func(&wrq->wq,
  1917. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  1918. 0, NULL);
  1919. }
  1920. }
  1921. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  1922. }
  1923. /**
  1924. * nilfs_construct_segment - construct a logical segment
  1925. * @sb: super block
  1926. *
  1927. * Return Value: On success, 0 is retured. On errors, one of the following
  1928. * negative error code is returned.
  1929. *
  1930. * %-EROFS - Read only filesystem.
  1931. *
  1932. * %-EIO - I/O error
  1933. *
  1934. * %-ENOSPC - No space left on device (only in a panic state).
  1935. *
  1936. * %-ERESTARTSYS - Interrupted.
  1937. *
  1938. * %-ENOMEM - Insufficient memory available.
  1939. */
  1940. int nilfs_construct_segment(struct super_block *sb)
  1941. {
  1942. struct the_nilfs *nilfs = sb->s_fs_info;
  1943. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1944. struct nilfs_transaction_info *ti;
  1945. int err;
  1946. if (!sci)
  1947. return -EROFS;
  1948. /* A call inside transactions causes a deadlock. */
  1949. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  1950. err = nilfs_segctor_sync(sci);
  1951. return err;
  1952. }
  1953. /**
  1954. * nilfs_construct_dsync_segment - construct a data-only logical segment
  1955. * @sb: super block
  1956. * @inode: inode whose data blocks should be written out
  1957. * @start: start byte offset
  1958. * @end: end byte offset (inclusive)
  1959. *
  1960. * Return Value: On success, 0 is retured. On errors, one of the following
  1961. * negative error code is returned.
  1962. *
  1963. * %-EROFS - Read only filesystem.
  1964. *
  1965. * %-EIO - I/O error
  1966. *
  1967. * %-ENOSPC - No space left on device (only in a panic state).
  1968. *
  1969. * %-ERESTARTSYS - Interrupted.
  1970. *
  1971. * %-ENOMEM - Insufficient memory available.
  1972. */
  1973. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  1974. loff_t start, loff_t end)
  1975. {
  1976. struct the_nilfs *nilfs = sb->s_fs_info;
  1977. struct nilfs_sc_info *sci = nilfs->ns_writer;
  1978. struct nilfs_inode_info *ii;
  1979. struct nilfs_transaction_info ti;
  1980. int err = 0;
  1981. if (!sci)
  1982. return -EROFS;
  1983. nilfs_transaction_lock(sb, &ti, 0);
  1984. ii = NILFS_I(inode);
  1985. if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
  1986. nilfs_test_opt(nilfs, STRICT_ORDER) ||
  1987. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  1988. nilfs_discontinued(nilfs)) {
  1989. nilfs_transaction_unlock(sb);
  1990. err = nilfs_segctor_sync(sci);
  1991. return err;
  1992. }
  1993. spin_lock(&nilfs->ns_inode_lock);
  1994. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  1995. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  1996. spin_unlock(&nilfs->ns_inode_lock);
  1997. nilfs_transaction_unlock(sb);
  1998. return 0;
  1999. }
  2000. spin_unlock(&nilfs->ns_inode_lock);
  2001. sci->sc_dsync_inode = ii;
  2002. sci->sc_dsync_start = start;
  2003. sci->sc_dsync_end = end;
  2004. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2005. if (!err)
  2006. nilfs->ns_flushed_device = 0;
  2007. nilfs_transaction_unlock(sb);
  2008. return err;
  2009. }
  2010. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2011. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  2012. /**
  2013. * nilfs_segctor_accept - record accepted sequence count of log-write requests
  2014. * @sci: segment constructor object
  2015. */
  2016. static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
  2017. {
  2018. spin_lock(&sci->sc_state_lock);
  2019. sci->sc_seq_accepted = sci->sc_seq_request;
  2020. spin_unlock(&sci->sc_state_lock);
  2021. del_timer_sync(&sci->sc_timer);
  2022. }
  2023. /**
  2024. * nilfs_segctor_notify - notify the result of request to caller threads
  2025. * @sci: segment constructor object
  2026. * @mode: mode of log forming
  2027. * @err: error code to be notified
  2028. */
  2029. static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
  2030. {
  2031. /* Clear requests (even when the construction failed) */
  2032. spin_lock(&sci->sc_state_lock);
  2033. if (mode == SC_LSEG_SR) {
  2034. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2035. sci->sc_seq_done = sci->sc_seq_accepted;
  2036. nilfs_segctor_wakeup(sci, err);
  2037. sci->sc_flush_request = 0;
  2038. } else {
  2039. if (mode == SC_FLUSH_FILE)
  2040. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2041. else if (mode == SC_FLUSH_DAT)
  2042. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2043. /* re-enable timer if checkpoint creation was not done */
  2044. if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2045. time_before(jiffies, sci->sc_timer.expires))
  2046. add_timer(&sci->sc_timer);
  2047. }
  2048. spin_unlock(&sci->sc_state_lock);
  2049. }
  2050. /**
  2051. * nilfs_segctor_construct - form logs and write them to disk
  2052. * @sci: segment constructor object
  2053. * @mode: mode of log forming
  2054. */
  2055. static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
  2056. {
  2057. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2058. struct nilfs_super_block **sbp;
  2059. int err = 0;
  2060. nilfs_segctor_accept(sci);
  2061. if (nilfs_discontinued(nilfs))
  2062. mode = SC_LSEG_SR;
  2063. if (!nilfs_segctor_confirm(sci))
  2064. err = nilfs_segctor_do_construct(sci, mode);
  2065. if (likely(!err)) {
  2066. if (mode != SC_FLUSH_DAT)
  2067. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2068. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2069. nilfs_discontinued(nilfs)) {
  2070. down_write(&nilfs->ns_sem);
  2071. err = -EIO;
  2072. sbp = nilfs_prepare_super(sci->sc_super,
  2073. nilfs_sb_will_flip(nilfs));
  2074. if (likely(sbp)) {
  2075. nilfs_set_log_cursor(sbp[0], nilfs);
  2076. err = nilfs_commit_super(sci->sc_super,
  2077. NILFS_SB_COMMIT);
  2078. }
  2079. up_write(&nilfs->ns_sem);
  2080. }
  2081. }
  2082. nilfs_segctor_notify(sci, mode, err);
  2083. return err;
  2084. }
  2085. static void nilfs_construction_timeout(unsigned long data)
  2086. {
  2087. struct task_struct *p = (struct task_struct *)data;
  2088. wake_up_process(p);
  2089. }
  2090. static void
  2091. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2092. {
  2093. struct nilfs_inode_info *ii, *n;
  2094. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2095. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2096. continue;
  2097. list_del_init(&ii->i_dirty);
  2098. truncate_inode_pages(&ii->vfs_inode.i_data, 0);
  2099. nilfs_btnode_cache_clear(&ii->i_btnode_cache);
  2100. iput(&ii->vfs_inode);
  2101. }
  2102. }
  2103. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2104. void **kbufs)
  2105. {
  2106. struct the_nilfs *nilfs = sb->s_fs_info;
  2107. struct nilfs_sc_info *sci = nilfs->ns_writer;
  2108. struct nilfs_transaction_info ti;
  2109. int err;
  2110. if (unlikely(!sci))
  2111. return -EROFS;
  2112. nilfs_transaction_lock(sb, &ti, 1);
  2113. err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
  2114. if (unlikely(err))
  2115. goto out_unlock;
  2116. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2117. if (unlikely(err)) {
  2118. nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
  2119. goto out_unlock;
  2120. }
  2121. sci->sc_freesegs = kbufs[4];
  2122. sci->sc_nfreesegs = argv[4].v_nmembs;
  2123. list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
  2124. for (;;) {
  2125. err = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2126. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2127. if (likely(!err))
  2128. break;
  2129. nilfs_warning(sb, __func__,
  2130. "segment construction failed. (err=%d)", err);
  2131. set_current_state(TASK_INTERRUPTIBLE);
  2132. schedule_timeout(sci->sc_interval);
  2133. }
  2134. if (nilfs_test_opt(nilfs, DISCARD)) {
  2135. int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
  2136. sci->sc_nfreesegs);
  2137. if (ret) {
  2138. printk(KERN_WARNING
  2139. "NILFS warning: error %d on discard request, "
  2140. "turning discards off for the device\n", ret);
  2141. nilfs_clear_opt(nilfs, DISCARD);
  2142. }
  2143. }
  2144. out_unlock:
  2145. sci->sc_freesegs = NULL;
  2146. sci->sc_nfreesegs = 0;
  2147. nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
  2148. nilfs_transaction_unlock(sb);
  2149. return err;
  2150. }
  2151. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2152. {
  2153. struct nilfs_transaction_info ti;
  2154. nilfs_transaction_lock(sci->sc_super, &ti, 0);
  2155. nilfs_segctor_construct(sci, mode);
  2156. /*
  2157. * Unclosed segment should be retried. We do this using sc_timer.
  2158. * Timeout of sc_timer will invoke complete construction which leads
  2159. * to close the current logical segment.
  2160. */
  2161. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2162. nilfs_segctor_start_timer(sci);
  2163. nilfs_transaction_unlock(sci->sc_super);
  2164. }
  2165. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2166. {
  2167. int mode = 0;
  2168. spin_lock(&sci->sc_state_lock);
  2169. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2170. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2171. spin_unlock(&sci->sc_state_lock);
  2172. if (mode) {
  2173. nilfs_segctor_do_construct(sci, mode);
  2174. spin_lock(&sci->sc_state_lock);
  2175. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2176. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2177. spin_unlock(&sci->sc_state_lock);
  2178. }
  2179. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2180. }
  2181. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2182. {
  2183. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2184. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2185. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2186. return SC_FLUSH_FILE;
  2187. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2188. return SC_FLUSH_DAT;
  2189. }
  2190. return SC_LSEG_SR;
  2191. }
  2192. /**
  2193. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2194. * @arg: pointer to a struct nilfs_sc_info.
  2195. *
  2196. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2197. * to execute segment constructions.
  2198. */
  2199. static int nilfs_segctor_thread(void *arg)
  2200. {
  2201. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2202. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2203. int timeout = 0;
  2204. sci->sc_timer.data = (unsigned long)current;
  2205. sci->sc_timer.function = nilfs_construction_timeout;
  2206. /* start sync. */
  2207. sci->sc_task = current;
  2208. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2209. printk(KERN_INFO
  2210. "segctord starting. Construction interval = %lu seconds, "
  2211. "CP frequency < %lu seconds\n",
  2212. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2213. spin_lock(&sci->sc_state_lock);
  2214. loop:
  2215. for (;;) {
  2216. int mode;
  2217. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2218. goto end_thread;
  2219. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2220. mode = SC_LSEG_SR;
  2221. else if (!sci->sc_flush_request)
  2222. break;
  2223. else
  2224. mode = nilfs_segctor_flush_mode(sci);
  2225. spin_unlock(&sci->sc_state_lock);
  2226. nilfs_segctor_thread_construct(sci, mode);
  2227. spin_lock(&sci->sc_state_lock);
  2228. timeout = 0;
  2229. }
  2230. if (freezing(current)) {
  2231. spin_unlock(&sci->sc_state_lock);
  2232. try_to_freeze();
  2233. spin_lock(&sci->sc_state_lock);
  2234. } else {
  2235. DEFINE_WAIT(wait);
  2236. int should_sleep = 1;
  2237. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2238. TASK_INTERRUPTIBLE);
  2239. if (sci->sc_seq_request != sci->sc_seq_done)
  2240. should_sleep = 0;
  2241. else if (sci->sc_flush_request)
  2242. should_sleep = 0;
  2243. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2244. should_sleep = time_before(jiffies,
  2245. sci->sc_timer.expires);
  2246. if (should_sleep) {
  2247. spin_unlock(&sci->sc_state_lock);
  2248. schedule();
  2249. spin_lock(&sci->sc_state_lock);
  2250. }
  2251. finish_wait(&sci->sc_wait_daemon, &wait);
  2252. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2253. time_after_eq(jiffies, sci->sc_timer.expires));
  2254. if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
  2255. set_nilfs_discontinued(nilfs);
  2256. }
  2257. goto loop;
  2258. end_thread:
  2259. spin_unlock(&sci->sc_state_lock);
  2260. /* end sync. */
  2261. sci->sc_task = NULL;
  2262. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2263. return 0;
  2264. }
  2265. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2266. {
  2267. struct task_struct *t;
  2268. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2269. if (IS_ERR(t)) {
  2270. int err = PTR_ERR(t);
  2271. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2272. err);
  2273. return err;
  2274. }
  2275. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2276. return 0;
  2277. }
  2278. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2279. __acquires(&sci->sc_state_lock)
  2280. __releases(&sci->sc_state_lock)
  2281. {
  2282. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2283. while (sci->sc_task) {
  2284. wake_up(&sci->sc_wait_daemon);
  2285. spin_unlock(&sci->sc_state_lock);
  2286. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2287. spin_lock(&sci->sc_state_lock);
  2288. }
  2289. }
  2290. /*
  2291. * Setup & clean-up functions
  2292. */
  2293. static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
  2294. struct nilfs_root *root)
  2295. {
  2296. struct the_nilfs *nilfs = sb->s_fs_info;
  2297. struct nilfs_sc_info *sci;
  2298. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2299. if (!sci)
  2300. return NULL;
  2301. sci->sc_super = sb;
  2302. nilfs_get_root(root);
  2303. sci->sc_root = root;
  2304. init_waitqueue_head(&sci->sc_wait_request);
  2305. init_waitqueue_head(&sci->sc_wait_daemon);
  2306. init_waitqueue_head(&sci->sc_wait_task);
  2307. spin_lock_init(&sci->sc_state_lock);
  2308. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2309. INIT_LIST_HEAD(&sci->sc_segbufs);
  2310. INIT_LIST_HEAD(&sci->sc_write_logs);
  2311. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2312. INIT_LIST_HEAD(&sci->sc_iput_queue);
  2313. INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
  2314. init_timer(&sci->sc_timer);
  2315. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2316. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2317. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2318. if (nilfs->ns_interval)
  2319. sci->sc_interval = HZ * nilfs->ns_interval;
  2320. if (nilfs->ns_watermark)
  2321. sci->sc_watermark = nilfs->ns_watermark;
  2322. return sci;
  2323. }
  2324. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2325. {
  2326. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2327. /* The segctord thread was stopped and its timer was removed.
  2328. But some tasks remain. */
  2329. do {
  2330. struct nilfs_transaction_info ti;
  2331. nilfs_transaction_lock(sci->sc_super, &ti, 0);
  2332. ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2333. nilfs_transaction_unlock(sci->sc_super);
  2334. flush_work(&sci->sc_iput_work);
  2335. } while (ret && retrycount-- > 0);
  2336. }
  2337. /**
  2338. * nilfs_segctor_destroy - destroy the segment constructor.
  2339. * @sci: nilfs_sc_info
  2340. *
  2341. * nilfs_segctor_destroy() kills the segctord thread and frees
  2342. * the nilfs_sc_info struct.
  2343. * Caller must hold the segment semaphore.
  2344. */
  2345. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2346. {
  2347. struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
  2348. int flag;
  2349. up_write(&nilfs->ns_segctor_sem);
  2350. spin_lock(&sci->sc_state_lock);
  2351. nilfs_segctor_kill_thread(sci);
  2352. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2353. || sci->sc_seq_request != sci->sc_seq_done);
  2354. spin_unlock(&sci->sc_state_lock);
  2355. if (flush_work(&sci->sc_iput_work))
  2356. flag = true;
  2357. if (flag || !nilfs_segctor_confirm(sci))
  2358. nilfs_segctor_write_out(sci);
  2359. if (!list_empty(&sci->sc_dirty_files)) {
  2360. nilfs_warning(sci->sc_super, __func__,
  2361. "dirty file(s) after the final construction");
  2362. nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
  2363. }
  2364. if (!list_empty(&sci->sc_iput_queue)) {
  2365. nilfs_warning(sci->sc_super, __func__,
  2366. "iput queue is not empty");
  2367. nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
  2368. }
  2369. WARN_ON(!list_empty(&sci->sc_segbufs));
  2370. WARN_ON(!list_empty(&sci->sc_write_logs));
  2371. nilfs_put_root(sci->sc_root);
  2372. down_write(&nilfs->ns_segctor_sem);
  2373. del_timer_sync(&sci->sc_timer);
  2374. kfree(sci);
  2375. }
  2376. /**
  2377. * nilfs_attach_log_writer - attach log writer
  2378. * @sb: super block instance
  2379. * @root: root object of the current filesystem tree
  2380. *
  2381. * This allocates a log writer object, initializes it, and starts the
  2382. * log writer.
  2383. *
  2384. * Return Value: On success, 0 is returned. On error, one of the following
  2385. * negative error code is returned.
  2386. *
  2387. * %-ENOMEM - Insufficient memory available.
  2388. */
  2389. int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
  2390. {
  2391. struct the_nilfs *nilfs = sb->s_fs_info;
  2392. int err;
  2393. if (nilfs->ns_writer) {
  2394. /*
  2395. * This happens if the filesystem was remounted
  2396. * read/write after nilfs_error degenerated it into a
  2397. * read-only mount.
  2398. */
  2399. nilfs_detach_log_writer(sb);
  2400. }
  2401. nilfs->ns_writer = nilfs_segctor_new(sb, root);
  2402. if (!nilfs->ns_writer)
  2403. return -ENOMEM;
  2404. err = nilfs_segctor_start_thread(nilfs->ns_writer);
  2405. if (err) {
  2406. kfree(nilfs->ns_writer);
  2407. nilfs->ns_writer = NULL;
  2408. }
  2409. return err;
  2410. }
  2411. /**
  2412. * nilfs_detach_log_writer - destroy log writer
  2413. * @sb: super block instance
  2414. *
  2415. * This kills log writer daemon, frees the log writer object, and
  2416. * destroys list of dirty files.
  2417. */
  2418. void nilfs_detach_log_writer(struct super_block *sb)
  2419. {
  2420. struct the_nilfs *nilfs = sb->s_fs_info;
  2421. LIST_HEAD(garbage_list);
  2422. down_write(&nilfs->ns_segctor_sem);
  2423. if (nilfs->ns_writer) {
  2424. nilfs_segctor_destroy(nilfs->ns_writer);
  2425. nilfs->ns_writer = NULL;
  2426. }
  2427. /* Force to free the list of dirty files */
  2428. spin_lock(&nilfs->ns_inode_lock);
  2429. if (!list_empty(&nilfs->ns_dirty_files)) {
  2430. list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
  2431. nilfs_warning(sb, __func__,
  2432. "Hit dirty file after stopped log writer");
  2433. }
  2434. spin_unlock(&nilfs->ns_inode_lock);
  2435. up_write(&nilfs->ns_segctor_sem);
  2436. nilfs_dispose_list(nilfs, &garbage_list, 1);
  2437. }