pci-epf-test.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591
  1. // SPDX-License-Identifier: GPL-2.0
  2. /**
  3. * Test driver to test endpoint functionality
  4. *
  5. * Copyright (C) 2017 Texas Instruments
  6. * Author: Kishon Vijay Abraham I <kishon@ti.com>
  7. */
  8. #include <linux/crc32.h>
  9. #include <linux/delay.h>
  10. #include <linux/io.h>
  11. #include <linux/module.h>
  12. #include <linux/slab.h>
  13. #include <linux/pci_ids.h>
  14. #include <linux/random.h>
  15. #include <linux/pci-epc.h>
  16. #include <linux/pci-epf.h>
  17. #include <linux/pci_regs.h>
  18. #define IRQ_TYPE_LEGACY 0
  19. #define IRQ_TYPE_MSI 1
  20. #define IRQ_TYPE_MSIX 2
  21. #define COMMAND_RAISE_LEGACY_IRQ BIT(0)
  22. #define COMMAND_RAISE_MSI_IRQ BIT(1)
  23. #define COMMAND_RAISE_MSIX_IRQ BIT(2)
  24. #define COMMAND_READ BIT(3)
  25. #define COMMAND_WRITE BIT(4)
  26. #define COMMAND_COPY BIT(5)
  27. #define STATUS_READ_SUCCESS BIT(0)
  28. #define STATUS_READ_FAIL BIT(1)
  29. #define STATUS_WRITE_SUCCESS BIT(2)
  30. #define STATUS_WRITE_FAIL BIT(3)
  31. #define STATUS_COPY_SUCCESS BIT(4)
  32. #define STATUS_COPY_FAIL BIT(5)
  33. #define STATUS_IRQ_RAISED BIT(6)
  34. #define STATUS_SRC_ADDR_INVALID BIT(7)
  35. #define STATUS_DST_ADDR_INVALID BIT(8)
  36. #define TIMER_RESOLUTION 1
  37. static struct workqueue_struct *kpcitest_workqueue;
  38. struct pci_epf_test {
  39. void *reg[6];
  40. struct pci_epf *epf;
  41. enum pci_barno test_reg_bar;
  42. bool linkup_notifier;
  43. bool msix_available;
  44. struct delayed_work cmd_handler;
  45. };
  46. struct pci_epf_test_reg {
  47. u32 magic;
  48. u32 command;
  49. u32 status;
  50. u64 src_addr;
  51. u64 dst_addr;
  52. u32 size;
  53. u32 checksum;
  54. u32 irq_type;
  55. u32 irq_number;
  56. } __packed;
  57. static struct pci_epf_header test_header = {
  58. .vendorid = PCI_ANY_ID,
  59. .deviceid = PCI_ANY_ID,
  60. .baseclass_code = PCI_CLASS_OTHERS,
  61. .interrupt_pin = PCI_INTERRUPT_INTA,
  62. };
  63. struct pci_epf_test_data {
  64. enum pci_barno test_reg_bar;
  65. bool linkup_notifier;
  66. };
  67. static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 };
  68. static int pci_epf_test_copy(struct pci_epf_test *epf_test)
  69. {
  70. int ret;
  71. void __iomem *src_addr;
  72. void __iomem *dst_addr;
  73. phys_addr_t src_phys_addr;
  74. phys_addr_t dst_phys_addr;
  75. struct pci_epf *epf = epf_test->epf;
  76. struct device *dev = &epf->dev;
  77. struct pci_epc *epc = epf->epc;
  78. enum pci_barno test_reg_bar = epf_test->test_reg_bar;
  79. struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
  80. src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size);
  81. if (!src_addr) {
  82. dev_err(dev, "Failed to allocate source address\n");
  83. reg->status = STATUS_SRC_ADDR_INVALID;
  84. ret = -ENOMEM;
  85. goto err;
  86. }
  87. ret = pci_epc_map_addr(epc, epf->func_no, src_phys_addr, reg->src_addr,
  88. reg->size);
  89. if (ret) {
  90. dev_err(dev, "Failed to map source address\n");
  91. reg->status = STATUS_SRC_ADDR_INVALID;
  92. goto err_src_addr;
  93. }
  94. dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size);
  95. if (!dst_addr) {
  96. dev_err(dev, "Failed to allocate destination address\n");
  97. reg->status = STATUS_DST_ADDR_INVALID;
  98. ret = -ENOMEM;
  99. goto err_src_map_addr;
  100. }
  101. ret = pci_epc_map_addr(epc, epf->func_no, dst_phys_addr, reg->dst_addr,
  102. reg->size);
  103. if (ret) {
  104. dev_err(dev, "Failed to map destination address\n");
  105. reg->status = STATUS_DST_ADDR_INVALID;
  106. goto err_dst_addr;
  107. }
  108. memcpy(dst_addr, src_addr, reg->size);
  109. pci_epc_unmap_addr(epc, epf->func_no, dst_phys_addr);
  110. err_dst_addr:
  111. pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size);
  112. err_src_map_addr:
  113. pci_epc_unmap_addr(epc, epf->func_no, src_phys_addr);
  114. err_src_addr:
  115. pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size);
  116. err:
  117. return ret;
  118. }
  119. static int pci_epf_test_read(struct pci_epf_test *epf_test)
  120. {
  121. int ret;
  122. void __iomem *src_addr;
  123. void *buf;
  124. u32 crc32;
  125. phys_addr_t phys_addr;
  126. struct pci_epf *epf = epf_test->epf;
  127. struct device *dev = &epf->dev;
  128. struct pci_epc *epc = epf->epc;
  129. enum pci_barno test_reg_bar = epf_test->test_reg_bar;
  130. struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
  131. src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
  132. if (!src_addr) {
  133. dev_err(dev, "Failed to allocate address\n");
  134. reg->status = STATUS_SRC_ADDR_INVALID;
  135. ret = -ENOMEM;
  136. goto err;
  137. }
  138. ret = pci_epc_map_addr(epc, epf->func_no, phys_addr, reg->src_addr,
  139. reg->size);
  140. if (ret) {
  141. dev_err(dev, "Failed to map address\n");
  142. reg->status = STATUS_SRC_ADDR_INVALID;
  143. goto err_addr;
  144. }
  145. buf = kzalloc(reg->size, GFP_KERNEL);
  146. if (!buf) {
  147. ret = -ENOMEM;
  148. goto err_map_addr;
  149. }
  150. memcpy(buf, src_addr, reg->size);
  151. crc32 = crc32_le(~0, buf, reg->size);
  152. if (crc32 != reg->checksum)
  153. ret = -EIO;
  154. kfree(buf);
  155. err_map_addr:
  156. pci_epc_unmap_addr(epc, epf->func_no, phys_addr);
  157. err_addr:
  158. pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size);
  159. err:
  160. return ret;
  161. }
  162. static int pci_epf_test_write(struct pci_epf_test *epf_test)
  163. {
  164. int ret;
  165. void __iomem *dst_addr;
  166. void *buf;
  167. phys_addr_t phys_addr;
  168. struct pci_epf *epf = epf_test->epf;
  169. struct device *dev = &epf->dev;
  170. struct pci_epc *epc = epf->epc;
  171. enum pci_barno test_reg_bar = epf_test->test_reg_bar;
  172. struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
  173. dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
  174. if (!dst_addr) {
  175. dev_err(dev, "Failed to allocate address\n");
  176. reg->status = STATUS_DST_ADDR_INVALID;
  177. ret = -ENOMEM;
  178. goto err;
  179. }
  180. ret = pci_epc_map_addr(epc, epf->func_no, phys_addr, reg->dst_addr,
  181. reg->size);
  182. if (ret) {
  183. dev_err(dev, "Failed to map address\n");
  184. reg->status = STATUS_DST_ADDR_INVALID;
  185. goto err_addr;
  186. }
  187. buf = kzalloc(reg->size, GFP_KERNEL);
  188. if (!buf) {
  189. ret = -ENOMEM;
  190. goto err_map_addr;
  191. }
  192. get_random_bytes(buf, reg->size);
  193. reg->checksum = crc32_le(~0, buf, reg->size);
  194. memcpy(dst_addr, buf, reg->size);
  195. /*
  196. * wait 1ms inorder for the write to complete. Without this delay L3
  197. * error in observed in the host system.
  198. */
  199. usleep_range(1000, 2000);
  200. kfree(buf);
  201. err_map_addr:
  202. pci_epc_unmap_addr(epc, epf->func_no, phys_addr);
  203. err_addr:
  204. pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size);
  205. err:
  206. return ret;
  207. }
  208. static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test, u8 irq_type,
  209. u16 irq)
  210. {
  211. struct pci_epf *epf = epf_test->epf;
  212. struct device *dev = &epf->dev;
  213. struct pci_epc *epc = epf->epc;
  214. enum pci_barno test_reg_bar = epf_test->test_reg_bar;
  215. struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
  216. reg->status |= STATUS_IRQ_RAISED;
  217. switch (irq_type) {
  218. case IRQ_TYPE_LEGACY:
  219. pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_LEGACY, 0);
  220. break;
  221. case IRQ_TYPE_MSI:
  222. pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSI, irq);
  223. break;
  224. case IRQ_TYPE_MSIX:
  225. pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSIX, irq);
  226. break;
  227. default:
  228. dev_err(dev, "Failed to raise IRQ, unknown type\n");
  229. break;
  230. }
  231. }
  232. static void pci_epf_test_cmd_handler(struct work_struct *work)
  233. {
  234. int ret;
  235. int count;
  236. u32 command;
  237. struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test,
  238. cmd_handler.work);
  239. struct pci_epf *epf = epf_test->epf;
  240. struct device *dev = &epf->dev;
  241. struct pci_epc *epc = epf->epc;
  242. enum pci_barno test_reg_bar = epf_test->test_reg_bar;
  243. struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
  244. command = reg->command;
  245. if (!command)
  246. goto reset_handler;
  247. reg->command = 0;
  248. reg->status = 0;
  249. if (reg->irq_type > IRQ_TYPE_MSIX) {
  250. dev_err(dev, "Failed to detect IRQ type\n");
  251. goto reset_handler;
  252. }
  253. if (command & COMMAND_RAISE_LEGACY_IRQ) {
  254. reg->status = STATUS_IRQ_RAISED;
  255. pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_LEGACY, 0);
  256. goto reset_handler;
  257. }
  258. if (command & COMMAND_WRITE) {
  259. ret = pci_epf_test_write(epf_test);
  260. if (ret)
  261. reg->status |= STATUS_WRITE_FAIL;
  262. else
  263. reg->status |= STATUS_WRITE_SUCCESS;
  264. pci_epf_test_raise_irq(epf_test, reg->irq_type,
  265. reg->irq_number);
  266. goto reset_handler;
  267. }
  268. if (command & COMMAND_READ) {
  269. ret = pci_epf_test_read(epf_test);
  270. if (!ret)
  271. reg->status |= STATUS_READ_SUCCESS;
  272. else
  273. reg->status |= STATUS_READ_FAIL;
  274. pci_epf_test_raise_irq(epf_test, reg->irq_type,
  275. reg->irq_number);
  276. goto reset_handler;
  277. }
  278. if (command & COMMAND_COPY) {
  279. ret = pci_epf_test_copy(epf_test);
  280. if (!ret)
  281. reg->status |= STATUS_COPY_SUCCESS;
  282. else
  283. reg->status |= STATUS_COPY_FAIL;
  284. pci_epf_test_raise_irq(epf_test, reg->irq_type,
  285. reg->irq_number);
  286. goto reset_handler;
  287. }
  288. if (command & COMMAND_RAISE_MSI_IRQ) {
  289. count = pci_epc_get_msi(epc, epf->func_no);
  290. if (reg->irq_number > count || count <= 0)
  291. goto reset_handler;
  292. reg->status = STATUS_IRQ_RAISED;
  293. pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSI,
  294. reg->irq_number);
  295. goto reset_handler;
  296. }
  297. if (command & COMMAND_RAISE_MSIX_IRQ) {
  298. count = pci_epc_get_msix(epc, epf->func_no);
  299. if (reg->irq_number > count || count <= 0)
  300. goto reset_handler;
  301. reg->status = STATUS_IRQ_RAISED;
  302. pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSIX,
  303. reg->irq_number);
  304. goto reset_handler;
  305. }
  306. reset_handler:
  307. queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
  308. msecs_to_jiffies(1));
  309. }
  310. static void pci_epf_test_linkup(struct pci_epf *epf)
  311. {
  312. struct pci_epf_test *epf_test = epf_get_drvdata(epf);
  313. queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
  314. msecs_to_jiffies(1));
  315. }
  316. static void pci_epf_test_unbind(struct pci_epf *epf)
  317. {
  318. struct pci_epf_test *epf_test = epf_get_drvdata(epf);
  319. struct pci_epc *epc = epf->epc;
  320. struct pci_epf_bar *epf_bar;
  321. int bar;
  322. cancel_delayed_work(&epf_test->cmd_handler);
  323. pci_epc_stop(epc);
  324. for (bar = BAR_0; bar <= BAR_5; bar++) {
  325. epf_bar = &epf->bar[bar];
  326. if (epf_test->reg[bar]) {
  327. pci_epf_free_space(epf, epf_test->reg[bar], bar);
  328. pci_epc_clear_bar(epc, epf->func_no, epf_bar);
  329. }
  330. }
  331. }
  332. static int pci_epf_test_set_bar(struct pci_epf *epf)
  333. {
  334. int bar;
  335. int ret;
  336. struct pci_epf_bar *epf_bar;
  337. struct pci_epc *epc = epf->epc;
  338. struct device *dev = &epf->dev;
  339. struct pci_epf_test *epf_test = epf_get_drvdata(epf);
  340. enum pci_barno test_reg_bar = epf_test->test_reg_bar;
  341. for (bar = BAR_0; bar <= BAR_5; bar++) {
  342. epf_bar = &epf->bar[bar];
  343. epf_bar->flags |= upper_32_bits(epf_bar->size) ?
  344. PCI_BASE_ADDRESS_MEM_TYPE_64 :
  345. PCI_BASE_ADDRESS_MEM_TYPE_32;
  346. ret = pci_epc_set_bar(epc, epf->func_no, epf_bar);
  347. if (ret) {
  348. pci_epf_free_space(epf, epf_test->reg[bar], bar);
  349. dev_err(dev, "Failed to set BAR%d\n", bar);
  350. if (bar == test_reg_bar)
  351. return ret;
  352. }
  353. /*
  354. * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64
  355. * if the specific implementation required a 64-bit BAR,
  356. * even if we only requested a 32-bit BAR.
  357. */
  358. if (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64)
  359. bar++;
  360. }
  361. return 0;
  362. }
  363. static int pci_epf_test_alloc_space(struct pci_epf *epf)
  364. {
  365. struct pci_epf_test *epf_test = epf_get_drvdata(epf);
  366. struct device *dev = &epf->dev;
  367. void *base;
  368. int bar;
  369. enum pci_barno test_reg_bar = epf_test->test_reg_bar;
  370. base = pci_epf_alloc_space(epf, sizeof(struct pci_epf_test_reg),
  371. test_reg_bar);
  372. if (!base) {
  373. dev_err(dev, "Failed to allocated register space\n");
  374. return -ENOMEM;
  375. }
  376. epf_test->reg[test_reg_bar] = base;
  377. for (bar = BAR_0; bar <= BAR_5; bar++) {
  378. if (bar == test_reg_bar)
  379. continue;
  380. base = pci_epf_alloc_space(epf, bar_size[bar], bar);
  381. if (!base)
  382. dev_err(dev, "Failed to allocate space for BAR%d\n",
  383. bar);
  384. epf_test->reg[bar] = base;
  385. }
  386. return 0;
  387. }
  388. static int pci_epf_test_bind(struct pci_epf *epf)
  389. {
  390. int ret;
  391. struct pci_epf_test *epf_test = epf_get_drvdata(epf);
  392. struct pci_epf_header *header = epf->header;
  393. struct pci_epc *epc = epf->epc;
  394. struct device *dev = &epf->dev;
  395. if (WARN_ON_ONCE(!epc))
  396. return -EINVAL;
  397. if (epc->features & EPC_FEATURE_NO_LINKUP_NOTIFIER)
  398. epf_test->linkup_notifier = false;
  399. else
  400. epf_test->linkup_notifier = true;
  401. epf_test->msix_available = epc->features & EPC_FEATURE_MSIX_AVAILABLE;
  402. epf_test->test_reg_bar = EPC_FEATURE_GET_BAR(epc->features);
  403. ret = pci_epc_write_header(epc, epf->func_no, header);
  404. if (ret) {
  405. dev_err(dev, "Configuration header write failed\n");
  406. return ret;
  407. }
  408. ret = pci_epf_test_alloc_space(epf);
  409. if (ret)
  410. return ret;
  411. ret = pci_epf_test_set_bar(epf);
  412. if (ret)
  413. return ret;
  414. ret = pci_epc_set_msi(epc, epf->func_no, epf->msi_interrupts);
  415. if (ret) {
  416. dev_err(dev, "MSI configuration failed\n");
  417. return ret;
  418. }
  419. if (epf_test->msix_available) {
  420. ret = pci_epc_set_msix(epc, epf->func_no, epf->msix_interrupts);
  421. if (ret) {
  422. dev_err(dev, "MSI-X configuration failed\n");
  423. return ret;
  424. }
  425. }
  426. if (!epf_test->linkup_notifier)
  427. queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work);
  428. return 0;
  429. }
  430. static const struct pci_epf_device_id pci_epf_test_ids[] = {
  431. {
  432. .name = "pci_epf_test",
  433. },
  434. {},
  435. };
  436. static int pci_epf_test_probe(struct pci_epf *epf)
  437. {
  438. struct pci_epf_test *epf_test;
  439. struct device *dev = &epf->dev;
  440. const struct pci_epf_device_id *match;
  441. struct pci_epf_test_data *data;
  442. enum pci_barno test_reg_bar = BAR_0;
  443. bool linkup_notifier = true;
  444. match = pci_epf_match_device(pci_epf_test_ids, epf);
  445. data = (struct pci_epf_test_data *)match->driver_data;
  446. if (data) {
  447. test_reg_bar = data->test_reg_bar;
  448. linkup_notifier = data->linkup_notifier;
  449. }
  450. epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL);
  451. if (!epf_test)
  452. return -ENOMEM;
  453. epf->header = &test_header;
  454. epf_test->epf = epf;
  455. epf_test->test_reg_bar = test_reg_bar;
  456. epf_test->linkup_notifier = linkup_notifier;
  457. INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler);
  458. epf_set_drvdata(epf, epf_test);
  459. return 0;
  460. }
  461. static struct pci_epf_ops ops = {
  462. .unbind = pci_epf_test_unbind,
  463. .bind = pci_epf_test_bind,
  464. .linkup = pci_epf_test_linkup,
  465. };
  466. static struct pci_epf_driver test_driver = {
  467. .driver.name = "pci_epf_test",
  468. .probe = pci_epf_test_probe,
  469. .id_table = pci_epf_test_ids,
  470. .ops = &ops,
  471. .owner = THIS_MODULE,
  472. };
  473. static int __init pci_epf_test_init(void)
  474. {
  475. int ret;
  476. kpcitest_workqueue = alloc_workqueue("kpcitest",
  477. WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
  478. ret = pci_epf_register_driver(&test_driver);
  479. if (ret) {
  480. pr_err("Failed to register pci epf test driver --> %d\n", ret);
  481. return ret;
  482. }
  483. return 0;
  484. }
  485. module_init(pci_epf_test_init);
  486. static void __exit pci_epf_test_exit(void)
  487. {
  488. pci_epf_unregister_driver(&test_driver);
  489. }
  490. module_exit(pci_epf_test_exit);
  491. MODULE_DESCRIPTION("PCI EPF TEST DRIVER");
  492. MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
  493. MODULE_LICENSE("GPL v2");