page.h 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. #ifndef _ASM_X86_XEN_PAGE_H
  2. #define _ASM_X86_XEN_PAGE_H
  3. #include <linux/kernel.h>
  4. #include <linux/types.h>
  5. #include <linux/spinlock.h>
  6. #include <linux/pfn.h>
  7. #include <linux/mm.h>
  8. #include <asm/uaccess.h>
  9. #include <asm/page.h>
  10. #include <asm/pgtable.h>
  11. #include <xen/interface/xen.h>
  12. #include <xen/grant_table.h>
  13. #include <xen/features.h>
  14. /* Xen machine address */
  15. typedef struct xmaddr {
  16. phys_addr_t maddr;
  17. } xmaddr_t;
  18. /* Xen pseudo-physical address */
  19. typedef struct xpaddr {
  20. phys_addr_t paddr;
  21. } xpaddr_t;
  22. #define XMADDR(x) ((xmaddr_t) { .maddr = (x) })
  23. #define XPADDR(x) ((xpaddr_t) { .paddr = (x) })
  24. /**** MACHINE <-> PHYSICAL CONVERSION MACROS ****/
  25. #define INVALID_P2M_ENTRY (~0UL)
  26. #define FOREIGN_FRAME_BIT (1UL<<(BITS_PER_LONG-1))
  27. #define IDENTITY_FRAME_BIT (1UL<<(BITS_PER_LONG-2))
  28. #define FOREIGN_FRAME(m) ((m) | FOREIGN_FRAME_BIT)
  29. #define IDENTITY_FRAME(m) ((m) | IDENTITY_FRAME_BIT)
  30. /* Maximum amount of memory we can handle in a domain in pages */
  31. #define MAX_DOMAIN_PAGES \
  32. ((unsigned long)((u64)CONFIG_XEN_MAX_DOMAIN_MEMORY * 1024 * 1024 * 1024 / PAGE_SIZE))
  33. extern unsigned long *machine_to_phys_mapping;
  34. extern unsigned long machine_to_phys_nr;
  35. extern unsigned long *xen_p2m_addr;
  36. extern unsigned long xen_p2m_size;
  37. extern unsigned long xen_max_p2m_pfn;
  38. extern unsigned long get_phys_to_machine(unsigned long pfn);
  39. extern bool set_phys_to_machine(unsigned long pfn, unsigned long mfn);
  40. extern bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn);
  41. extern unsigned long set_phys_range_identity(unsigned long pfn_s,
  42. unsigned long pfn_e);
  43. extern int set_foreign_p2m_mapping(struct gnttab_map_grant_ref *map_ops,
  44. struct gnttab_map_grant_ref *kmap_ops,
  45. struct page **pages, unsigned int count);
  46. extern int clear_foreign_p2m_mapping(struct gnttab_unmap_grant_ref *unmap_ops,
  47. struct gnttab_unmap_grant_ref *kunmap_ops,
  48. struct page **pages, unsigned int count);
  49. /*
  50. * Helper functions to write or read unsigned long values to/from
  51. * memory, when the access may fault.
  52. */
  53. static inline int xen_safe_write_ulong(unsigned long *addr, unsigned long val)
  54. {
  55. return __put_user(val, (unsigned long __user *)addr);
  56. }
  57. static inline int xen_safe_read_ulong(unsigned long *addr, unsigned long *val)
  58. {
  59. return __get_user(*val, (unsigned long __user *)addr);
  60. }
  61. /*
  62. * When to use pfn_to_mfn(), __pfn_to_mfn() or get_phys_to_machine():
  63. * - pfn_to_mfn() returns either INVALID_P2M_ENTRY or the mfn. No indicator
  64. * bits (identity or foreign) are set.
  65. * - __pfn_to_mfn() returns the found entry of the p2m table. A possibly set
  66. * identity or foreign indicator will be still set. __pfn_to_mfn() is
  67. * encapsulating get_phys_to_machine() which is called in special cases only.
  68. * - get_phys_to_machine() is to be called by __pfn_to_mfn() only in special
  69. * cases needing an extended handling.
  70. */
  71. static inline unsigned long __pfn_to_mfn(unsigned long pfn)
  72. {
  73. unsigned long mfn;
  74. if (pfn < xen_p2m_size)
  75. mfn = xen_p2m_addr[pfn];
  76. else if (unlikely(pfn < xen_max_p2m_pfn))
  77. return get_phys_to_machine(pfn);
  78. else
  79. return IDENTITY_FRAME(pfn);
  80. if (unlikely(mfn == INVALID_P2M_ENTRY))
  81. return get_phys_to_machine(pfn);
  82. return mfn;
  83. }
  84. static inline unsigned long pfn_to_mfn(unsigned long pfn)
  85. {
  86. unsigned long mfn;
  87. if (xen_feature(XENFEAT_auto_translated_physmap))
  88. return pfn;
  89. mfn = __pfn_to_mfn(pfn);
  90. if (mfn != INVALID_P2M_ENTRY)
  91. mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
  92. return mfn;
  93. }
  94. static inline int phys_to_machine_mapping_valid(unsigned long pfn)
  95. {
  96. if (xen_feature(XENFEAT_auto_translated_physmap))
  97. return 1;
  98. return __pfn_to_mfn(pfn) != INVALID_P2M_ENTRY;
  99. }
  100. static inline unsigned long mfn_to_pfn_no_overrides(unsigned long mfn)
  101. {
  102. unsigned long pfn;
  103. int ret;
  104. if (xen_feature(XENFEAT_auto_translated_physmap))
  105. return mfn;
  106. if (unlikely(mfn >= machine_to_phys_nr))
  107. return ~0;
  108. /*
  109. * The array access can fail (e.g., device space beyond end of RAM).
  110. * In such cases it doesn't matter what we return (we return garbage),
  111. * but we must handle the fault without crashing!
  112. */
  113. ret = xen_safe_read_ulong(&machine_to_phys_mapping[mfn], &pfn);
  114. if (ret < 0)
  115. return ~0;
  116. return pfn;
  117. }
  118. static inline unsigned long mfn_to_pfn(unsigned long mfn)
  119. {
  120. unsigned long pfn;
  121. if (xen_feature(XENFEAT_auto_translated_physmap))
  122. return mfn;
  123. pfn = mfn_to_pfn_no_overrides(mfn);
  124. if (__pfn_to_mfn(pfn) != mfn)
  125. pfn = ~0;
  126. /*
  127. * pfn is ~0 if there are no entries in the m2p for mfn or the
  128. * entry doesn't map back to the mfn.
  129. */
  130. if (pfn == ~0 && __pfn_to_mfn(mfn) == IDENTITY_FRAME(mfn))
  131. pfn = mfn;
  132. return pfn;
  133. }
  134. static inline xmaddr_t phys_to_machine(xpaddr_t phys)
  135. {
  136. unsigned offset = phys.paddr & ~PAGE_MASK;
  137. return XMADDR(PFN_PHYS(pfn_to_mfn(PFN_DOWN(phys.paddr))) | offset);
  138. }
  139. static inline xpaddr_t machine_to_phys(xmaddr_t machine)
  140. {
  141. unsigned offset = machine.maddr & ~PAGE_MASK;
  142. return XPADDR(PFN_PHYS(mfn_to_pfn(PFN_DOWN(machine.maddr))) | offset);
  143. }
  144. /*
  145. * We detect special mappings in one of two ways:
  146. * 1. If the MFN is an I/O page then Xen will set the m2p entry
  147. * to be outside our maximum possible pseudophys range.
  148. * 2. If the MFN belongs to a different domain then we will certainly
  149. * not have MFN in our p2m table. Conversely, if the page is ours,
  150. * then we'll have p2m(m2p(MFN))==MFN.
  151. * If we detect a special mapping then it doesn't have a 'struct page'.
  152. * We force !pfn_valid() by returning an out-of-range pointer.
  153. *
  154. * NB. These checks require that, for any MFN that is not in our reservation,
  155. * there is no PFN such that p2m(PFN) == MFN. Otherwise we can get confused if
  156. * we are foreign-mapping the MFN, and the other domain as m2p(MFN) == PFN.
  157. * Yikes! Various places must poke in INVALID_P2M_ENTRY for safety.
  158. *
  159. * NB2. When deliberately mapping foreign pages into the p2m table, you *must*
  160. * use FOREIGN_FRAME(). This will cause pte_pfn() to choke on it, as we
  161. * require. In all the cases we care about, the FOREIGN_FRAME bit is
  162. * masked (e.g., pfn_to_mfn()) so behaviour there is correct.
  163. */
  164. static inline unsigned long mfn_to_local_pfn(unsigned long mfn)
  165. {
  166. unsigned long pfn;
  167. if (xen_feature(XENFEAT_auto_translated_physmap))
  168. return mfn;
  169. pfn = mfn_to_pfn(mfn);
  170. if (__pfn_to_mfn(pfn) != mfn)
  171. return -1; /* force !pfn_valid() */
  172. return pfn;
  173. }
  174. /* VIRT <-> MACHINE conversion */
  175. #define virt_to_machine(v) (phys_to_machine(XPADDR(__pa(v))))
  176. #define virt_to_pfn(v) (PFN_DOWN(__pa(v)))
  177. #define virt_to_mfn(v) (pfn_to_mfn(virt_to_pfn(v)))
  178. #define mfn_to_virt(m) (__va(mfn_to_pfn(m) << PAGE_SHIFT))
  179. static inline unsigned long pte_mfn(pte_t pte)
  180. {
  181. return (pte.pte & PTE_PFN_MASK) >> PAGE_SHIFT;
  182. }
  183. static inline pte_t mfn_pte(unsigned long page_nr, pgprot_t pgprot)
  184. {
  185. pte_t pte;
  186. pte.pte = ((phys_addr_t)page_nr << PAGE_SHIFT) |
  187. massage_pgprot(pgprot);
  188. return pte;
  189. }
  190. static inline pteval_t pte_val_ma(pte_t pte)
  191. {
  192. return pte.pte;
  193. }
  194. static inline pte_t __pte_ma(pteval_t x)
  195. {
  196. return (pte_t) { .pte = x };
  197. }
  198. #define pmd_val_ma(v) ((v).pmd)
  199. #ifdef __PAGETABLE_PUD_FOLDED
  200. #define pud_val_ma(v) ((v).pgd.pgd)
  201. #else
  202. #define pud_val_ma(v) ((v).pud)
  203. #endif
  204. #define __pmd_ma(x) ((pmd_t) { (x) } )
  205. #define pgd_val_ma(x) ((x).pgd)
  206. void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid);
  207. xmaddr_t arbitrary_virt_to_machine(void *address);
  208. unsigned long arbitrary_virt_to_mfn(void *vaddr);
  209. void make_lowmem_page_readonly(void *vaddr);
  210. void make_lowmem_page_readwrite(void *vaddr);
  211. #define xen_remap(cookie, size) ioremap((cookie), (size));
  212. #define xen_unmap(cookie) iounmap((cookie))
  213. static inline bool xen_arch_need_swiotlb(struct device *dev,
  214. unsigned long pfn,
  215. unsigned long mfn)
  216. {
  217. return false;
  218. }
  219. #endif /* _ASM_X86_XEN_PAGE_H */