vector.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903
  1. /*
  2. * Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc.
  3. *
  4. * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
  5. * Moved from arch/x86/kernel/apic/io_apic.c.
  6. * Jiang Liu <jiang.liu@linux.intel.com>
  7. * Enable support of hierarchical irqdomains
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/interrupt.h>
  14. #include <linux/init.h>
  15. #include <linux/compiler.h>
  16. #include <linux/slab.h>
  17. #include <asm/irqdomain.h>
  18. #include <asm/hw_irq.h>
  19. #include <asm/apic.h>
  20. #include <asm/i8259.h>
  21. #include <asm/desc.h>
  22. #include <asm/irq_remapping.h>
  23. struct apic_chip_data {
  24. struct irq_cfg cfg;
  25. cpumask_var_t domain;
  26. cpumask_var_t old_domain;
  27. u8 move_in_progress : 1;
  28. };
  29. struct irq_domain *x86_vector_domain;
  30. EXPORT_SYMBOL_GPL(x86_vector_domain);
  31. static DEFINE_RAW_SPINLOCK(vector_lock);
  32. static cpumask_var_t vector_cpumask, vector_searchmask, searched_cpumask;
  33. static struct irq_chip lapic_controller;
  34. #ifdef CONFIG_X86_IO_APIC
  35. static struct apic_chip_data *legacy_irq_data[NR_IRQS_LEGACY];
  36. #endif
  37. void lock_vector_lock(void)
  38. {
  39. /* Used to the online set of cpus does not change
  40. * during assign_irq_vector.
  41. */
  42. raw_spin_lock(&vector_lock);
  43. }
  44. void unlock_vector_lock(void)
  45. {
  46. raw_spin_unlock(&vector_lock);
  47. }
  48. static struct apic_chip_data *apic_chip_data(struct irq_data *irq_data)
  49. {
  50. if (!irq_data)
  51. return NULL;
  52. while (irq_data->parent_data)
  53. irq_data = irq_data->parent_data;
  54. return irq_data->chip_data;
  55. }
  56. struct irq_cfg *irqd_cfg(struct irq_data *irq_data)
  57. {
  58. struct apic_chip_data *data = apic_chip_data(irq_data);
  59. return data ? &data->cfg : NULL;
  60. }
  61. EXPORT_SYMBOL_GPL(irqd_cfg);
  62. struct irq_cfg *irq_cfg(unsigned int irq)
  63. {
  64. return irqd_cfg(irq_get_irq_data(irq));
  65. }
  66. static struct apic_chip_data *alloc_apic_chip_data(int node)
  67. {
  68. struct apic_chip_data *data;
  69. data = kzalloc_node(sizeof(*data), GFP_KERNEL, node);
  70. if (!data)
  71. return NULL;
  72. if (!zalloc_cpumask_var_node(&data->domain, GFP_KERNEL, node))
  73. goto out_data;
  74. if (!zalloc_cpumask_var_node(&data->old_domain, GFP_KERNEL, node))
  75. goto out_domain;
  76. return data;
  77. out_domain:
  78. free_cpumask_var(data->domain);
  79. out_data:
  80. kfree(data);
  81. return NULL;
  82. }
  83. static void free_apic_chip_data(struct apic_chip_data *data)
  84. {
  85. if (data) {
  86. free_cpumask_var(data->domain);
  87. free_cpumask_var(data->old_domain);
  88. kfree(data);
  89. }
  90. }
  91. static int __assign_irq_vector(int irq, struct apic_chip_data *d,
  92. const struct cpumask *mask)
  93. {
  94. /*
  95. * NOTE! The local APIC isn't very good at handling
  96. * multiple interrupts at the same interrupt level.
  97. * As the interrupt level is determined by taking the
  98. * vector number and shifting that right by 4, we
  99. * want to spread these out a bit so that they don't
  100. * all fall in the same interrupt level.
  101. *
  102. * Also, we've got to be careful not to trash gate
  103. * 0x80, because int 0x80 is hm, kind of importantish. ;)
  104. */
  105. static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
  106. static int current_offset = VECTOR_OFFSET_START % 16;
  107. int cpu, vector;
  108. /*
  109. * If there is still a move in progress or the previous move has not
  110. * been cleaned up completely, tell the caller to come back later.
  111. */
  112. if (d->move_in_progress ||
  113. cpumask_intersects(d->old_domain, cpu_online_mask))
  114. return -EBUSY;
  115. /* Only try and allocate irqs on cpus that are present */
  116. cpumask_clear(d->old_domain);
  117. cpumask_clear(searched_cpumask);
  118. cpu = cpumask_first_and(mask, cpu_online_mask);
  119. while (cpu < nr_cpu_ids) {
  120. int new_cpu, offset;
  121. /* Get the possible target cpus for @mask/@cpu from the apic */
  122. apic->vector_allocation_domain(cpu, vector_cpumask, mask);
  123. /*
  124. * Clear the offline cpus from @vector_cpumask for searching
  125. * and verify whether the result overlaps with @mask. If true,
  126. * then the call to apic->cpu_mask_to_apicid_and() will
  127. * succeed as well. If not, no point in trying to find a
  128. * vector in this mask.
  129. */
  130. cpumask_and(vector_searchmask, vector_cpumask, cpu_online_mask);
  131. if (!cpumask_intersects(vector_searchmask, mask))
  132. goto next_cpu;
  133. if (cpumask_subset(vector_cpumask, d->domain)) {
  134. if (cpumask_equal(vector_cpumask, d->domain))
  135. goto success;
  136. /*
  137. * Mark the cpus which are not longer in the mask for
  138. * cleanup.
  139. */
  140. cpumask_andnot(d->old_domain, d->domain, vector_cpumask);
  141. vector = d->cfg.vector;
  142. goto update;
  143. }
  144. vector = current_vector;
  145. offset = current_offset;
  146. next:
  147. vector += 16;
  148. if (vector >= first_system_vector) {
  149. offset = (offset + 1) % 16;
  150. vector = FIRST_EXTERNAL_VECTOR + offset;
  151. }
  152. /* If the search wrapped around, try the next cpu */
  153. if (unlikely(current_vector == vector))
  154. goto next_cpu;
  155. if (test_bit(vector, used_vectors))
  156. goto next;
  157. for_each_cpu(new_cpu, vector_searchmask) {
  158. if (!IS_ERR_OR_NULL(per_cpu(vector_irq, new_cpu)[vector]))
  159. goto next;
  160. }
  161. /* Found one! */
  162. current_vector = vector;
  163. current_offset = offset;
  164. /* Schedule the old vector for cleanup on all cpus */
  165. if (d->cfg.vector)
  166. cpumask_copy(d->old_domain, d->domain);
  167. for_each_cpu(new_cpu, vector_searchmask)
  168. per_cpu(vector_irq, new_cpu)[vector] = irq_to_desc(irq);
  169. goto update;
  170. next_cpu:
  171. /*
  172. * We exclude the current @vector_cpumask from the requested
  173. * @mask and try again with the next online cpu in the
  174. * result. We cannot modify @mask, so we use @vector_cpumask
  175. * as a temporary buffer here as it will be reassigned when
  176. * calling apic->vector_allocation_domain() above.
  177. */
  178. cpumask_or(searched_cpumask, searched_cpumask, vector_cpumask);
  179. cpumask_andnot(vector_cpumask, mask, searched_cpumask);
  180. cpu = cpumask_first_and(vector_cpumask, cpu_online_mask);
  181. continue;
  182. }
  183. return -ENOSPC;
  184. update:
  185. /*
  186. * Exclude offline cpus from the cleanup mask and set the
  187. * move_in_progress flag when the result is not empty.
  188. */
  189. cpumask_and(d->old_domain, d->old_domain, cpu_online_mask);
  190. d->move_in_progress = !cpumask_empty(d->old_domain);
  191. d->cfg.vector = vector;
  192. cpumask_copy(d->domain, vector_cpumask);
  193. success:
  194. /*
  195. * Cache destination APIC IDs into cfg->dest_apicid. This cannot fail
  196. * as we already established, that mask & d->domain & cpu_online_mask
  197. * is not empty.
  198. */
  199. BUG_ON(apic->cpu_mask_to_apicid_and(mask, d->domain,
  200. &d->cfg.dest_apicid));
  201. return 0;
  202. }
  203. static int assign_irq_vector(int irq, struct apic_chip_data *data,
  204. const struct cpumask *mask)
  205. {
  206. int err;
  207. unsigned long flags;
  208. raw_spin_lock_irqsave(&vector_lock, flags);
  209. err = __assign_irq_vector(irq, data, mask);
  210. raw_spin_unlock_irqrestore(&vector_lock, flags);
  211. return err;
  212. }
  213. static int assign_irq_vector_policy(int irq, int node,
  214. struct apic_chip_data *data,
  215. struct irq_alloc_info *info)
  216. {
  217. if (info && info->mask)
  218. return assign_irq_vector(irq, data, info->mask);
  219. if (node != NUMA_NO_NODE &&
  220. assign_irq_vector(irq, data, cpumask_of_node(node)) == 0)
  221. return 0;
  222. return assign_irq_vector(irq, data, apic->target_cpus());
  223. }
  224. static void clear_irq_vector(int irq, struct apic_chip_data *data)
  225. {
  226. struct irq_desc *desc;
  227. int cpu, vector;
  228. BUG_ON(!data->cfg.vector);
  229. vector = data->cfg.vector;
  230. for_each_cpu_and(cpu, data->domain, cpu_online_mask)
  231. per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
  232. data->cfg.vector = 0;
  233. cpumask_clear(data->domain);
  234. /*
  235. * If move is in progress or the old_domain mask is not empty,
  236. * i.e. the cleanup IPI has not been processed yet, we need to remove
  237. * the old references to desc from all cpus vector tables.
  238. */
  239. if (!data->move_in_progress && cpumask_empty(data->old_domain))
  240. return;
  241. desc = irq_to_desc(irq);
  242. for_each_cpu_and(cpu, data->old_domain, cpu_online_mask) {
  243. for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
  244. vector++) {
  245. if (per_cpu(vector_irq, cpu)[vector] != desc)
  246. continue;
  247. per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
  248. break;
  249. }
  250. }
  251. data->move_in_progress = 0;
  252. }
  253. void init_irq_alloc_info(struct irq_alloc_info *info,
  254. const struct cpumask *mask)
  255. {
  256. memset(info, 0, sizeof(*info));
  257. info->mask = mask;
  258. }
  259. void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
  260. {
  261. if (src)
  262. *dst = *src;
  263. else
  264. memset(dst, 0, sizeof(*dst));
  265. }
  266. static void x86_vector_free_irqs(struct irq_domain *domain,
  267. unsigned int virq, unsigned int nr_irqs)
  268. {
  269. struct apic_chip_data *apic_data;
  270. struct irq_data *irq_data;
  271. unsigned long flags;
  272. int i;
  273. for (i = 0; i < nr_irqs; i++) {
  274. irq_data = irq_domain_get_irq_data(x86_vector_domain, virq + i);
  275. if (irq_data && irq_data->chip_data) {
  276. raw_spin_lock_irqsave(&vector_lock, flags);
  277. clear_irq_vector(virq + i, irq_data->chip_data);
  278. apic_data = irq_data->chip_data;
  279. irq_domain_reset_irq_data(irq_data);
  280. raw_spin_unlock_irqrestore(&vector_lock, flags);
  281. free_apic_chip_data(apic_data);
  282. #ifdef CONFIG_X86_IO_APIC
  283. if (virq + i < nr_legacy_irqs())
  284. legacy_irq_data[virq + i] = NULL;
  285. #endif
  286. }
  287. }
  288. }
  289. static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
  290. unsigned int nr_irqs, void *arg)
  291. {
  292. struct irq_alloc_info *info = arg;
  293. struct apic_chip_data *data;
  294. struct irq_data *irq_data;
  295. int i, err, node;
  296. if (disable_apic)
  297. return -ENXIO;
  298. /* Currently vector allocator can't guarantee contiguous allocations */
  299. if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
  300. return -ENOSYS;
  301. for (i = 0; i < nr_irqs; i++) {
  302. irq_data = irq_domain_get_irq_data(domain, virq + i);
  303. BUG_ON(!irq_data);
  304. node = irq_data_get_node(irq_data);
  305. #ifdef CONFIG_X86_IO_APIC
  306. if (virq + i < nr_legacy_irqs() && legacy_irq_data[virq + i])
  307. data = legacy_irq_data[virq + i];
  308. else
  309. #endif
  310. data = alloc_apic_chip_data(node);
  311. if (!data) {
  312. err = -ENOMEM;
  313. goto error;
  314. }
  315. irq_data->chip = &lapic_controller;
  316. irq_data->chip_data = data;
  317. irq_data->hwirq = virq + i;
  318. err = assign_irq_vector_policy(virq + i, node, data, info);
  319. if (err)
  320. goto error;
  321. }
  322. return 0;
  323. error:
  324. x86_vector_free_irqs(domain, virq, i + 1);
  325. return err;
  326. }
  327. static const struct irq_domain_ops x86_vector_domain_ops = {
  328. .alloc = x86_vector_alloc_irqs,
  329. .free = x86_vector_free_irqs,
  330. };
  331. int __init arch_probe_nr_irqs(void)
  332. {
  333. int nr;
  334. if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
  335. nr_irqs = NR_VECTORS * nr_cpu_ids;
  336. nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
  337. #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
  338. /*
  339. * for MSI and HT dyn irq
  340. */
  341. if (gsi_top <= NR_IRQS_LEGACY)
  342. nr += 8 * nr_cpu_ids;
  343. else
  344. nr += gsi_top * 16;
  345. #endif
  346. if (nr < nr_irqs)
  347. nr_irqs = nr;
  348. /*
  349. * We don't know if PIC is present at this point so we need to do
  350. * probe() to get the right number of legacy IRQs.
  351. */
  352. return legacy_pic->probe();
  353. }
  354. #ifdef CONFIG_X86_IO_APIC
  355. static void init_legacy_irqs(void)
  356. {
  357. int i, node = cpu_to_node(0);
  358. struct apic_chip_data *data;
  359. /*
  360. * For legacy IRQ's, start with assigning irq0 to irq15 to
  361. * ISA_IRQ_VECTOR(i) for all cpu's.
  362. */
  363. for (i = 0; i < nr_legacy_irqs(); i++) {
  364. data = legacy_irq_data[i] = alloc_apic_chip_data(node);
  365. BUG_ON(!data);
  366. data->cfg.vector = ISA_IRQ_VECTOR(i);
  367. cpumask_setall(data->domain);
  368. irq_set_chip_data(i, data);
  369. }
  370. }
  371. #else
  372. static void init_legacy_irqs(void) { }
  373. #endif
  374. int __init arch_early_irq_init(void)
  375. {
  376. init_legacy_irqs();
  377. x86_vector_domain = irq_domain_add_tree(NULL, &x86_vector_domain_ops,
  378. NULL);
  379. BUG_ON(x86_vector_domain == NULL);
  380. irq_set_default_host(x86_vector_domain);
  381. arch_init_msi_domain(x86_vector_domain);
  382. arch_init_htirq_domain(x86_vector_domain);
  383. BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL));
  384. BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
  385. BUG_ON(!alloc_cpumask_var(&searched_cpumask, GFP_KERNEL));
  386. return arch_early_ioapic_init();
  387. }
  388. /* Initialize vector_irq on a new cpu */
  389. static void __setup_vector_irq(int cpu)
  390. {
  391. struct apic_chip_data *data;
  392. struct irq_desc *desc;
  393. int irq, vector;
  394. /* Mark the inuse vectors */
  395. for_each_irq_desc(irq, desc) {
  396. struct irq_data *idata = irq_desc_get_irq_data(desc);
  397. data = apic_chip_data(idata);
  398. if (!data || !cpumask_test_cpu(cpu, data->domain))
  399. continue;
  400. vector = data->cfg.vector;
  401. per_cpu(vector_irq, cpu)[vector] = desc;
  402. }
  403. /* Mark the free vectors */
  404. for (vector = 0; vector < NR_VECTORS; ++vector) {
  405. desc = per_cpu(vector_irq, cpu)[vector];
  406. if (IS_ERR_OR_NULL(desc))
  407. continue;
  408. data = apic_chip_data(irq_desc_get_irq_data(desc));
  409. if (!cpumask_test_cpu(cpu, data->domain))
  410. per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
  411. }
  412. }
  413. /*
  414. * Setup the vector to irq mappings. Must be called with vector_lock held.
  415. */
  416. void setup_vector_irq(int cpu)
  417. {
  418. int irq;
  419. lockdep_assert_held(&vector_lock);
  420. /*
  421. * On most of the platforms, legacy PIC delivers the interrupts on the
  422. * boot cpu. But there are certain platforms where PIC interrupts are
  423. * delivered to multiple cpu's. If the legacy IRQ is handled by the
  424. * legacy PIC, for the new cpu that is coming online, setup the static
  425. * legacy vector to irq mapping:
  426. */
  427. for (irq = 0; irq < nr_legacy_irqs(); irq++)
  428. per_cpu(vector_irq, cpu)[ISA_IRQ_VECTOR(irq)] = irq_to_desc(irq);
  429. __setup_vector_irq(cpu);
  430. }
  431. static int apic_retrigger_irq(struct irq_data *irq_data)
  432. {
  433. struct apic_chip_data *data = apic_chip_data(irq_data);
  434. unsigned long flags;
  435. int cpu;
  436. raw_spin_lock_irqsave(&vector_lock, flags);
  437. cpu = cpumask_first_and(data->domain, cpu_online_mask);
  438. apic->send_IPI_mask(cpumask_of(cpu), data->cfg.vector);
  439. raw_spin_unlock_irqrestore(&vector_lock, flags);
  440. return 1;
  441. }
  442. void apic_ack_edge(struct irq_data *data)
  443. {
  444. irq_complete_move(irqd_cfg(data));
  445. irq_move_irq(data);
  446. ack_APIC_irq();
  447. }
  448. static int apic_set_affinity(struct irq_data *irq_data,
  449. const struct cpumask *dest, bool force)
  450. {
  451. struct apic_chip_data *data = irq_data->chip_data;
  452. int err, irq = irq_data->irq;
  453. if (!config_enabled(CONFIG_SMP))
  454. return -EPERM;
  455. if (!cpumask_intersects(dest, cpu_online_mask))
  456. return -EINVAL;
  457. err = assign_irq_vector(irq, data, dest);
  458. return err ? err : IRQ_SET_MASK_OK;
  459. }
  460. static struct irq_chip lapic_controller = {
  461. .irq_ack = apic_ack_edge,
  462. .irq_set_affinity = apic_set_affinity,
  463. .irq_retrigger = apic_retrigger_irq,
  464. };
  465. #ifdef CONFIG_SMP
  466. static void __send_cleanup_vector(struct apic_chip_data *data)
  467. {
  468. raw_spin_lock(&vector_lock);
  469. cpumask_and(data->old_domain, data->old_domain, cpu_online_mask);
  470. data->move_in_progress = 0;
  471. if (!cpumask_empty(data->old_domain))
  472. apic->send_IPI_mask(data->old_domain, IRQ_MOVE_CLEANUP_VECTOR);
  473. raw_spin_unlock(&vector_lock);
  474. }
  475. void send_cleanup_vector(struct irq_cfg *cfg)
  476. {
  477. struct apic_chip_data *data;
  478. data = container_of(cfg, struct apic_chip_data, cfg);
  479. if (data->move_in_progress)
  480. __send_cleanup_vector(data);
  481. }
  482. asmlinkage __visible void smp_irq_move_cleanup_interrupt(void)
  483. {
  484. unsigned vector, me;
  485. entering_ack_irq();
  486. /* Prevent vectors vanishing under us */
  487. raw_spin_lock(&vector_lock);
  488. me = smp_processor_id();
  489. for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
  490. struct apic_chip_data *data;
  491. struct irq_desc *desc;
  492. unsigned int irr;
  493. retry:
  494. desc = __this_cpu_read(vector_irq[vector]);
  495. if (IS_ERR_OR_NULL(desc))
  496. continue;
  497. if (!raw_spin_trylock(&desc->lock)) {
  498. raw_spin_unlock(&vector_lock);
  499. cpu_relax();
  500. raw_spin_lock(&vector_lock);
  501. goto retry;
  502. }
  503. data = apic_chip_data(irq_desc_get_irq_data(desc));
  504. if (!data)
  505. goto unlock;
  506. /*
  507. * Nothing to cleanup if irq migration is in progress
  508. * or this cpu is not set in the cleanup mask.
  509. */
  510. if (data->move_in_progress ||
  511. !cpumask_test_cpu(me, data->old_domain))
  512. goto unlock;
  513. /*
  514. * We have two cases to handle here:
  515. * 1) vector is unchanged but the target mask got reduced
  516. * 2) vector and the target mask has changed
  517. *
  518. * #1 is obvious, but in #2 we have two vectors with the same
  519. * irq descriptor: the old and the new vector. So we need to
  520. * make sure that we only cleanup the old vector. The new
  521. * vector has the current @vector number in the config and
  522. * this cpu is part of the target mask. We better leave that
  523. * one alone.
  524. */
  525. if (vector == data->cfg.vector &&
  526. cpumask_test_cpu(me, data->domain))
  527. goto unlock;
  528. irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
  529. /*
  530. * Check if the vector that needs to be cleanedup is
  531. * registered at the cpu's IRR. If so, then this is not
  532. * the best time to clean it up. Lets clean it up in the
  533. * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
  534. * to myself.
  535. */
  536. if (irr & (1 << (vector % 32))) {
  537. apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
  538. goto unlock;
  539. }
  540. __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
  541. cpumask_clear_cpu(me, data->old_domain);
  542. unlock:
  543. raw_spin_unlock(&desc->lock);
  544. }
  545. raw_spin_unlock(&vector_lock);
  546. exiting_irq();
  547. }
  548. static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
  549. {
  550. unsigned me;
  551. struct apic_chip_data *data;
  552. data = container_of(cfg, struct apic_chip_data, cfg);
  553. if (likely(!data->move_in_progress))
  554. return;
  555. me = smp_processor_id();
  556. if (vector == data->cfg.vector && cpumask_test_cpu(me, data->domain))
  557. __send_cleanup_vector(data);
  558. }
  559. void irq_complete_move(struct irq_cfg *cfg)
  560. {
  561. __irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
  562. }
  563. /*
  564. * Called with @desc->lock held and interrupts disabled.
  565. */
  566. void irq_force_complete_move(struct irq_desc *desc)
  567. {
  568. struct irq_data *irqdata = irq_desc_get_irq_data(desc);
  569. struct apic_chip_data *data = apic_chip_data(irqdata);
  570. struct irq_cfg *cfg = data ? &data->cfg : NULL;
  571. if (!cfg)
  572. return;
  573. __irq_complete_move(cfg, cfg->vector);
  574. /*
  575. * This is tricky. If the cleanup of @data->old_domain has not been
  576. * done yet, then the following setaffinity call will fail with
  577. * -EBUSY. This can leave the interrupt in a stale state.
  578. *
  579. * The cleanup cannot make progress because we hold @desc->lock. So in
  580. * case @data->old_domain is not yet cleaned up, we need to drop the
  581. * lock and acquire it again. @desc cannot go away, because the
  582. * hotplug code holds the sparse irq lock.
  583. */
  584. raw_spin_lock(&vector_lock);
  585. /* Clean out all offline cpus (including ourself) first. */
  586. cpumask_and(data->old_domain, data->old_domain, cpu_online_mask);
  587. while (!cpumask_empty(data->old_domain)) {
  588. raw_spin_unlock(&vector_lock);
  589. raw_spin_unlock(&desc->lock);
  590. cpu_relax();
  591. raw_spin_lock(&desc->lock);
  592. /*
  593. * Reevaluate apic_chip_data. It might have been cleared after
  594. * we dropped @desc->lock.
  595. */
  596. data = apic_chip_data(irqdata);
  597. if (!data)
  598. return;
  599. raw_spin_lock(&vector_lock);
  600. }
  601. raw_spin_unlock(&vector_lock);
  602. }
  603. #endif
  604. static void __init print_APIC_field(int base)
  605. {
  606. int i;
  607. printk(KERN_DEBUG);
  608. for (i = 0; i < 8; i++)
  609. pr_cont("%08x", apic_read(base + i*0x10));
  610. pr_cont("\n");
  611. }
  612. static void __init print_local_APIC(void *dummy)
  613. {
  614. unsigned int i, v, ver, maxlvt;
  615. u64 icr;
  616. pr_debug("printing local APIC contents on CPU#%d/%d:\n",
  617. smp_processor_id(), hard_smp_processor_id());
  618. v = apic_read(APIC_ID);
  619. pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id());
  620. v = apic_read(APIC_LVR);
  621. pr_info("... APIC VERSION: %08x\n", v);
  622. ver = GET_APIC_VERSION(v);
  623. maxlvt = lapic_get_maxlvt();
  624. v = apic_read(APIC_TASKPRI);
  625. pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
  626. /* !82489DX */
  627. if (APIC_INTEGRATED(ver)) {
  628. if (!APIC_XAPIC(ver)) {
  629. v = apic_read(APIC_ARBPRI);
  630. pr_debug("... APIC ARBPRI: %08x (%02x)\n",
  631. v, v & APIC_ARBPRI_MASK);
  632. }
  633. v = apic_read(APIC_PROCPRI);
  634. pr_debug("... APIC PROCPRI: %08x\n", v);
  635. }
  636. /*
  637. * Remote read supported only in the 82489DX and local APIC for
  638. * Pentium processors.
  639. */
  640. if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
  641. v = apic_read(APIC_RRR);
  642. pr_debug("... APIC RRR: %08x\n", v);
  643. }
  644. v = apic_read(APIC_LDR);
  645. pr_debug("... APIC LDR: %08x\n", v);
  646. if (!x2apic_enabled()) {
  647. v = apic_read(APIC_DFR);
  648. pr_debug("... APIC DFR: %08x\n", v);
  649. }
  650. v = apic_read(APIC_SPIV);
  651. pr_debug("... APIC SPIV: %08x\n", v);
  652. pr_debug("... APIC ISR field:\n");
  653. print_APIC_field(APIC_ISR);
  654. pr_debug("... APIC TMR field:\n");
  655. print_APIC_field(APIC_TMR);
  656. pr_debug("... APIC IRR field:\n");
  657. print_APIC_field(APIC_IRR);
  658. /* !82489DX */
  659. if (APIC_INTEGRATED(ver)) {
  660. /* Due to the Pentium erratum 3AP. */
  661. if (maxlvt > 3)
  662. apic_write(APIC_ESR, 0);
  663. v = apic_read(APIC_ESR);
  664. pr_debug("... APIC ESR: %08x\n", v);
  665. }
  666. icr = apic_icr_read();
  667. pr_debug("... APIC ICR: %08x\n", (u32)icr);
  668. pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
  669. v = apic_read(APIC_LVTT);
  670. pr_debug("... APIC LVTT: %08x\n", v);
  671. if (maxlvt > 3) {
  672. /* PC is LVT#4. */
  673. v = apic_read(APIC_LVTPC);
  674. pr_debug("... APIC LVTPC: %08x\n", v);
  675. }
  676. v = apic_read(APIC_LVT0);
  677. pr_debug("... APIC LVT0: %08x\n", v);
  678. v = apic_read(APIC_LVT1);
  679. pr_debug("... APIC LVT1: %08x\n", v);
  680. if (maxlvt > 2) {
  681. /* ERR is LVT#3. */
  682. v = apic_read(APIC_LVTERR);
  683. pr_debug("... APIC LVTERR: %08x\n", v);
  684. }
  685. v = apic_read(APIC_TMICT);
  686. pr_debug("... APIC TMICT: %08x\n", v);
  687. v = apic_read(APIC_TMCCT);
  688. pr_debug("... APIC TMCCT: %08x\n", v);
  689. v = apic_read(APIC_TDCR);
  690. pr_debug("... APIC TDCR: %08x\n", v);
  691. if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
  692. v = apic_read(APIC_EFEAT);
  693. maxlvt = (v >> 16) & 0xff;
  694. pr_debug("... APIC EFEAT: %08x\n", v);
  695. v = apic_read(APIC_ECTRL);
  696. pr_debug("... APIC ECTRL: %08x\n", v);
  697. for (i = 0; i < maxlvt; i++) {
  698. v = apic_read(APIC_EILVTn(i));
  699. pr_debug("... APIC EILVT%d: %08x\n", i, v);
  700. }
  701. }
  702. pr_cont("\n");
  703. }
  704. static void __init print_local_APICs(int maxcpu)
  705. {
  706. int cpu;
  707. if (!maxcpu)
  708. return;
  709. preempt_disable();
  710. for_each_online_cpu(cpu) {
  711. if (cpu >= maxcpu)
  712. break;
  713. smp_call_function_single(cpu, print_local_APIC, NULL, 1);
  714. }
  715. preempt_enable();
  716. }
  717. static void __init print_PIC(void)
  718. {
  719. unsigned int v;
  720. unsigned long flags;
  721. if (!nr_legacy_irqs())
  722. return;
  723. pr_debug("\nprinting PIC contents\n");
  724. raw_spin_lock_irqsave(&i8259A_lock, flags);
  725. v = inb(0xa1) << 8 | inb(0x21);
  726. pr_debug("... PIC IMR: %04x\n", v);
  727. v = inb(0xa0) << 8 | inb(0x20);
  728. pr_debug("... PIC IRR: %04x\n", v);
  729. outb(0x0b, 0xa0);
  730. outb(0x0b, 0x20);
  731. v = inb(0xa0) << 8 | inb(0x20);
  732. outb(0x0a, 0xa0);
  733. outb(0x0a, 0x20);
  734. raw_spin_unlock_irqrestore(&i8259A_lock, flags);
  735. pr_debug("... PIC ISR: %04x\n", v);
  736. v = inb(0x4d1) << 8 | inb(0x4d0);
  737. pr_debug("... PIC ELCR: %04x\n", v);
  738. }
  739. static int show_lapic __initdata = 1;
  740. static __init int setup_show_lapic(char *arg)
  741. {
  742. int num = -1;
  743. if (strcmp(arg, "all") == 0) {
  744. show_lapic = CONFIG_NR_CPUS;
  745. } else {
  746. get_option(&arg, &num);
  747. if (num >= 0)
  748. show_lapic = num;
  749. }
  750. return 1;
  751. }
  752. __setup("show_lapic=", setup_show_lapic);
  753. static int __init print_ICs(void)
  754. {
  755. if (apic_verbosity == APIC_QUIET)
  756. return 0;
  757. print_PIC();
  758. /* don't print out if apic is not there */
  759. if (!cpu_has_apic && !apic_from_smp_config())
  760. return 0;
  761. print_local_APICs(show_lapic);
  762. print_IO_APICs();
  763. return 0;
  764. }
  765. late_initcall(print_ICs);