disk-io.c 126 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  64. int read_only);
  65. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  66. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  67. struct btrfs_root *root);
  68. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  69. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  70. struct extent_io_tree *dirty_pages,
  71. int mark);
  72. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  73. struct extent_io_tree *pinned_extents);
  74. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  75. static void btrfs_error_commit_super(struct btrfs_root *root);
  76. /*
  77. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  78. * is complete. This is used during reads to verify checksums, and it is used
  79. * by writes to insert metadata for new file extents after IO is complete.
  80. */
  81. struct btrfs_end_io_wq {
  82. struct bio *bio;
  83. bio_end_io_t *end_io;
  84. void *private;
  85. struct btrfs_fs_info *info;
  86. int error;
  87. enum btrfs_wq_endio_type metadata;
  88. struct list_head list;
  89. struct btrfs_work work;
  90. };
  91. static struct kmem_cache *btrfs_end_io_wq_cache;
  92. int __init btrfs_end_io_wq_init(void)
  93. {
  94. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  95. sizeof(struct btrfs_end_io_wq),
  96. 0,
  97. SLAB_MEM_SPREAD,
  98. NULL);
  99. if (!btrfs_end_io_wq_cache)
  100. return -ENOMEM;
  101. return 0;
  102. }
  103. void btrfs_end_io_wq_exit(void)
  104. {
  105. kmem_cache_destroy(btrfs_end_io_wq_cache);
  106. }
  107. /*
  108. * async submit bios are used to offload expensive checksumming
  109. * onto the worker threads. They checksum file and metadata bios
  110. * just before they are sent down the IO stack.
  111. */
  112. struct async_submit_bio {
  113. struct inode *inode;
  114. struct bio *bio;
  115. struct list_head list;
  116. extent_submit_bio_hook_t *submit_bio_start;
  117. extent_submit_bio_hook_t *submit_bio_done;
  118. int mirror_num;
  119. unsigned long bio_flags;
  120. /*
  121. * bio_offset is optional, can be used if the pages in the bio
  122. * can't tell us where in the file the bio should go
  123. */
  124. u64 bio_offset;
  125. struct btrfs_work work;
  126. int error;
  127. };
  128. /*
  129. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  130. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  131. * the level the eb occupies in the tree.
  132. *
  133. * Different roots are used for different purposes and may nest inside each
  134. * other and they require separate keysets. As lockdep keys should be
  135. * static, assign keysets according to the purpose of the root as indicated
  136. * by btrfs_root->objectid. This ensures that all special purpose roots
  137. * have separate keysets.
  138. *
  139. * Lock-nesting across peer nodes is always done with the immediate parent
  140. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  141. * subclass to avoid triggering lockdep warning in such cases.
  142. *
  143. * The key is set by the readpage_end_io_hook after the buffer has passed
  144. * csum validation but before the pages are unlocked. It is also set by
  145. * btrfs_init_new_buffer on freshly allocated blocks.
  146. *
  147. * We also add a check to make sure the highest level of the tree is the
  148. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  149. * needs update as well.
  150. */
  151. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  152. # if BTRFS_MAX_LEVEL != 8
  153. # error
  154. # endif
  155. static struct btrfs_lockdep_keyset {
  156. u64 id; /* root objectid */
  157. const char *name_stem; /* lock name stem */
  158. char names[BTRFS_MAX_LEVEL + 1][20];
  159. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  160. } btrfs_lockdep_keysets[] = {
  161. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  162. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  163. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  164. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  165. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  166. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  167. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  168. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  169. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  170. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  171. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  172. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  173. { .id = 0, .name_stem = "tree" },
  174. };
  175. void __init btrfs_init_lockdep(void)
  176. {
  177. int i, j;
  178. /* initialize lockdep class names */
  179. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  180. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  181. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  182. snprintf(ks->names[j], sizeof(ks->names[j]),
  183. "btrfs-%s-%02d", ks->name_stem, j);
  184. }
  185. }
  186. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  187. int level)
  188. {
  189. struct btrfs_lockdep_keyset *ks;
  190. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  191. /* find the matching keyset, id 0 is the default entry */
  192. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  193. if (ks->id == objectid)
  194. break;
  195. lockdep_set_class_and_name(&eb->lock,
  196. &ks->keys[level], ks->names[level]);
  197. }
  198. #endif
  199. /*
  200. * extents on the btree inode are pretty simple, there's one extent
  201. * that covers the entire device
  202. */
  203. static struct extent_map *btree_get_extent(struct inode *inode,
  204. struct page *page, size_t pg_offset, u64 start, u64 len,
  205. int create)
  206. {
  207. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  208. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  209. struct extent_map *em;
  210. int ret;
  211. read_lock(&em_tree->lock);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (em) {
  214. em->bdev = fs_info->fs_devices->latest_bdev;
  215. read_unlock(&em_tree->lock);
  216. goto out;
  217. }
  218. read_unlock(&em_tree->lock);
  219. em = alloc_extent_map();
  220. if (!em) {
  221. em = ERR_PTR(-ENOMEM);
  222. goto out;
  223. }
  224. em->start = 0;
  225. em->len = (u64)-1;
  226. em->block_len = (u64)-1;
  227. em->block_start = 0;
  228. em->bdev = fs_info->fs_devices->latest_bdev;
  229. write_lock(&em_tree->lock);
  230. ret = add_extent_mapping(em_tree, em, 0);
  231. if (ret == -EEXIST) {
  232. free_extent_map(em);
  233. em = lookup_extent_mapping(em_tree, start, len);
  234. if (!em)
  235. em = ERR_PTR(-EIO);
  236. } else if (ret) {
  237. free_extent_map(em);
  238. em = ERR_PTR(ret);
  239. }
  240. write_unlock(&em_tree->lock);
  241. out:
  242. return em;
  243. }
  244. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  245. {
  246. return btrfs_crc32c(seed, data, len);
  247. }
  248. void btrfs_csum_final(u32 crc, u8 *result)
  249. {
  250. put_unaligned_le32(~crc, result);
  251. }
  252. /*
  253. * compute the csum for a btree block, and either verify it or write it
  254. * into the csum field of the block.
  255. */
  256. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  257. struct extent_buffer *buf,
  258. int verify)
  259. {
  260. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  261. char *result = NULL;
  262. unsigned long len;
  263. unsigned long cur_len;
  264. unsigned long offset = BTRFS_CSUM_SIZE;
  265. char *kaddr;
  266. unsigned long map_start;
  267. unsigned long map_len;
  268. int err;
  269. u32 crc = ~(u32)0;
  270. unsigned long inline_result;
  271. len = buf->len - offset;
  272. while (len > 0) {
  273. err = map_private_extent_buffer(buf, offset, 32,
  274. &kaddr, &map_start, &map_len);
  275. if (err)
  276. return err;
  277. cur_len = min(len, map_len - (offset - map_start));
  278. crc = btrfs_csum_data(kaddr + offset - map_start,
  279. crc, cur_len);
  280. len -= cur_len;
  281. offset += cur_len;
  282. }
  283. if (csum_size > sizeof(inline_result)) {
  284. result = kzalloc(csum_size, GFP_NOFS);
  285. if (!result)
  286. return -ENOMEM;
  287. } else {
  288. result = (char *)&inline_result;
  289. }
  290. btrfs_csum_final(crc, result);
  291. if (verify) {
  292. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  293. u32 val;
  294. u32 found = 0;
  295. memcpy(&found, result, csum_size);
  296. read_extent_buffer(buf, &val, 0, csum_size);
  297. btrfs_warn_rl(fs_info,
  298. "%s checksum verify failed on %llu wanted %X found %X level %d",
  299. fs_info->sb->s_id, buf->start,
  300. val, found, btrfs_header_level(buf));
  301. if (result != (char *)&inline_result)
  302. kfree(result);
  303. return -EUCLEAN;
  304. }
  305. } else {
  306. write_extent_buffer(buf, result, 0, csum_size);
  307. }
  308. if (result != (char *)&inline_result)
  309. kfree(result);
  310. return 0;
  311. }
  312. /*
  313. * we can't consider a given block up to date unless the transid of the
  314. * block matches the transid in the parent node's pointer. This is how we
  315. * detect blocks that either didn't get written at all or got written
  316. * in the wrong place.
  317. */
  318. static int verify_parent_transid(struct extent_io_tree *io_tree,
  319. struct extent_buffer *eb, u64 parent_transid,
  320. int atomic)
  321. {
  322. struct extent_state *cached_state = NULL;
  323. int ret;
  324. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  325. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  326. return 0;
  327. if (atomic)
  328. return -EAGAIN;
  329. if (need_lock) {
  330. btrfs_tree_read_lock(eb);
  331. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  332. }
  333. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  334. &cached_state);
  335. if (extent_buffer_uptodate(eb) &&
  336. btrfs_header_generation(eb) == parent_transid) {
  337. ret = 0;
  338. goto out;
  339. }
  340. btrfs_err_rl(eb->fs_info,
  341. "parent transid verify failed on %llu wanted %llu found %llu",
  342. eb->start,
  343. parent_transid, btrfs_header_generation(eb));
  344. ret = 1;
  345. /*
  346. * Things reading via commit roots that don't have normal protection,
  347. * like send, can have a really old block in cache that may point at a
  348. * block that has been freed and re-allocated. So don't clear uptodate
  349. * if we find an eb that is under IO (dirty/writeback) because we could
  350. * end up reading in the stale data and then writing it back out and
  351. * making everybody very sad.
  352. */
  353. if (!extent_buffer_under_io(eb))
  354. clear_extent_buffer_uptodate(eb);
  355. out:
  356. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  357. &cached_state, GFP_NOFS);
  358. if (need_lock)
  359. btrfs_tree_read_unlock_blocking(eb);
  360. return ret;
  361. }
  362. /*
  363. * Return 0 if the superblock checksum type matches the checksum value of that
  364. * algorithm. Pass the raw disk superblock data.
  365. */
  366. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  367. char *raw_disk_sb)
  368. {
  369. struct btrfs_super_block *disk_sb =
  370. (struct btrfs_super_block *)raw_disk_sb;
  371. u16 csum_type = btrfs_super_csum_type(disk_sb);
  372. int ret = 0;
  373. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  374. u32 crc = ~(u32)0;
  375. const int csum_size = sizeof(crc);
  376. char result[csum_size];
  377. /*
  378. * The super_block structure does not span the whole
  379. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  380. * is filled with zeros and is included in the checksum.
  381. */
  382. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  383. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  384. btrfs_csum_final(crc, result);
  385. if (memcmp(raw_disk_sb, result, csum_size))
  386. ret = 1;
  387. }
  388. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  389. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  390. csum_type);
  391. ret = 1;
  392. }
  393. return ret;
  394. }
  395. /*
  396. * helper to read a given tree block, doing retries as required when
  397. * the checksums don't match and we have alternate mirrors to try.
  398. */
  399. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  400. struct extent_buffer *eb,
  401. u64 parent_transid)
  402. {
  403. struct btrfs_fs_info *fs_info = root->fs_info;
  404. struct extent_io_tree *io_tree;
  405. int failed = 0;
  406. int ret;
  407. int num_copies = 0;
  408. int mirror_num = 0;
  409. int failed_mirror = 0;
  410. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  411. io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
  412. while (1) {
  413. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  414. btree_get_extent, mirror_num);
  415. if (!ret) {
  416. if (!verify_parent_transid(io_tree, eb,
  417. parent_transid, 0))
  418. break;
  419. else
  420. ret = -EIO;
  421. }
  422. /*
  423. * This buffer's crc is fine, but its contents are corrupted, so
  424. * there is no reason to read the other copies, they won't be
  425. * any less wrong.
  426. */
  427. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  428. break;
  429. num_copies = btrfs_num_copies(fs_info,
  430. eb->start, eb->len);
  431. if (num_copies == 1)
  432. break;
  433. if (!failed_mirror) {
  434. failed = 1;
  435. failed_mirror = eb->read_mirror;
  436. }
  437. mirror_num++;
  438. if (mirror_num == failed_mirror)
  439. mirror_num++;
  440. if (mirror_num > num_copies)
  441. break;
  442. }
  443. if (failed && !ret && failed_mirror)
  444. repair_eb_io_failure(root, eb, failed_mirror);
  445. return ret;
  446. }
  447. /*
  448. * checksum a dirty tree block before IO. This has extra checks to make sure
  449. * we only fill in the checksum field in the first page of a multi-page block
  450. */
  451. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  452. {
  453. u64 start = page_offset(page);
  454. u64 found_start;
  455. struct extent_buffer *eb;
  456. eb = (struct extent_buffer *)page->private;
  457. if (page != eb->pages[0])
  458. return 0;
  459. found_start = btrfs_header_bytenr(eb);
  460. /*
  461. * Please do not consolidate these warnings into a single if.
  462. * It is useful to know what went wrong.
  463. */
  464. if (WARN_ON(found_start != start))
  465. return -EUCLEAN;
  466. if (WARN_ON(!PageUptodate(page)))
  467. return -EUCLEAN;
  468. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  469. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  470. return csum_tree_block(fs_info, eb, 0);
  471. }
  472. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  473. struct extent_buffer *eb)
  474. {
  475. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  476. u8 fsid[BTRFS_UUID_SIZE];
  477. int ret = 1;
  478. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  479. while (fs_devices) {
  480. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  481. ret = 0;
  482. break;
  483. }
  484. fs_devices = fs_devices->seed;
  485. }
  486. return ret;
  487. }
  488. #define CORRUPT(reason, eb, root, slot) \
  489. btrfs_crit(root->fs_info, \
  490. "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
  491. btrfs_header_level(eb) == 0 ? "leaf" : "node", \
  492. reason, btrfs_header_bytenr(eb), root->objectid, slot)
  493. static noinline int check_leaf(struct btrfs_root *root,
  494. struct extent_buffer *leaf)
  495. {
  496. struct btrfs_fs_info *fs_info = root->fs_info;
  497. struct btrfs_key key;
  498. struct btrfs_key leaf_key;
  499. u32 nritems = btrfs_header_nritems(leaf);
  500. int slot;
  501. if (nritems == 0) {
  502. struct btrfs_root *check_root;
  503. key.objectid = btrfs_header_owner(leaf);
  504. key.type = BTRFS_ROOT_ITEM_KEY;
  505. key.offset = (u64)-1;
  506. check_root = btrfs_get_fs_root(fs_info, &key, false);
  507. /*
  508. * The only reason we also check NULL here is that during
  509. * open_ctree() some roots has not yet been set up.
  510. */
  511. if (!IS_ERR_OR_NULL(check_root)) {
  512. /* if leaf is the root, then it's fine */
  513. if (leaf->start !=
  514. btrfs_root_bytenr(&check_root->root_item)) {
  515. CORRUPT("non-root leaf's nritems is 0",
  516. leaf, root, 0);
  517. return -EIO;
  518. }
  519. }
  520. return 0;
  521. }
  522. /* Check the 0 item */
  523. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  524. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  525. CORRUPT("invalid item offset size pair", leaf, root, 0);
  526. return -EIO;
  527. }
  528. /*
  529. * Check to make sure each items keys are in the correct order and their
  530. * offsets make sense. We only have to loop through nritems-1 because
  531. * we check the current slot against the next slot, which verifies the
  532. * next slot's offset+size makes sense and that the current's slot
  533. * offset is correct.
  534. */
  535. for (slot = 0; slot < nritems - 1; slot++) {
  536. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  537. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  538. /* Make sure the keys are in the right order */
  539. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  540. CORRUPT("bad key order", leaf, root, slot);
  541. return -EIO;
  542. }
  543. /*
  544. * Make sure the offset and ends are right, remember that the
  545. * item data starts at the end of the leaf and grows towards the
  546. * front.
  547. */
  548. if (btrfs_item_offset_nr(leaf, slot) !=
  549. btrfs_item_end_nr(leaf, slot + 1)) {
  550. CORRUPT("slot offset bad", leaf, root, slot);
  551. return -EIO;
  552. }
  553. /*
  554. * Check to make sure that we don't point outside of the leaf,
  555. * just in case all the items are consistent to each other, but
  556. * all point outside of the leaf.
  557. */
  558. if (btrfs_item_end_nr(leaf, slot) >
  559. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  560. CORRUPT("slot end outside of leaf", leaf, root, slot);
  561. return -EIO;
  562. }
  563. }
  564. return 0;
  565. }
  566. static int check_node(struct btrfs_root *root, struct extent_buffer *node)
  567. {
  568. unsigned long nr = btrfs_header_nritems(node);
  569. struct btrfs_key key, next_key;
  570. int slot;
  571. u64 bytenr;
  572. int ret = 0;
  573. if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
  574. btrfs_crit(root->fs_info,
  575. "corrupt node: block %llu root %llu nritems %lu",
  576. node->start, root->objectid, nr);
  577. return -EIO;
  578. }
  579. for (slot = 0; slot < nr - 1; slot++) {
  580. bytenr = btrfs_node_blockptr(node, slot);
  581. btrfs_node_key_to_cpu(node, &key, slot);
  582. btrfs_node_key_to_cpu(node, &next_key, slot + 1);
  583. if (!bytenr) {
  584. CORRUPT("invalid item slot", node, root, slot);
  585. ret = -EIO;
  586. goto out;
  587. }
  588. if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
  589. CORRUPT("bad key order", node, root, slot);
  590. ret = -EIO;
  591. goto out;
  592. }
  593. }
  594. out:
  595. return ret;
  596. }
  597. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  598. u64 phy_offset, struct page *page,
  599. u64 start, u64 end, int mirror)
  600. {
  601. u64 found_start;
  602. int found_level;
  603. struct extent_buffer *eb;
  604. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  605. struct btrfs_fs_info *fs_info = root->fs_info;
  606. int ret = 0;
  607. int reads_done;
  608. if (!page->private)
  609. goto out;
  610. eb = (struct extent_buffer *)page->private;
  611. /* the pending IO might have been the only thing that kept this buffer
  612. * in memory. Make sure we have a ref for all this other checks
  613. */
  614. extent_buffer_get(eb);
  615. reads_done = atomic_dec_and_test(&eb->io_pages);
  616. if (!reads_done)
  617. goto err;
  618. eb->read_mirror = mirror;
  619. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  620. ret = -EIO;
  621. goto err;
  622. }
  623. found_start = btrfs_header_bytenr(eb);
  624. if (found_start != eb->start) {
  625. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  626. found_start, eb->start);
  627. ret = -EIO;
  628. goto err;
  629. }
  630. if (check_tree_block_fsid(fs_info, eb)) {
  631. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  632. eb->start);
  633. ret = -EIO;
  634. goto err;
  635. }
  636. found_level = btrfs_header_level(eb);
  637. if (found_level >= BTRFS_MAX_LEVEL) {
  638. btrfs_err(fs_info, "bad tree block level %d",
  639. (int)btrfs_header_level(eb));
  640. ret = -EIO;
  641. goto err;
  642. }
  643. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  644. eb, found_level);
  645. ret = csum_tree_block(fs_info, eb, 1);
  646. if (ret)
  647. goto err;
  648. /*
  649. * If this is a leaf block and it is corrupt, set the corrupt bit so
  650. * that we don't try and read the other copies of this block, just
  651. * return -EIO.
  652. */
  653. if (found_level == 0 && check_leaf(root, eb)) {
  654. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  655. ret = -EIO;
  656. }
  657. if (found_level > 0 && check_node(root, eb))
  658. ret = -EIO;
  659. if (!ret)
  660. set_extent_buffer_uptodate(eb);
  661. err:
  662. if (reads_done &&
  663. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  664. btree_readahead_hook(fs_info, eb, ret);
  665. if (ret) {
  666. /*
  667. * our io error hook is going to dec the io pages
  668. * again, we have to make sure it has something
  669. * to decrement
  670. */
  671. atomic_inc(&eb->io_pages);
  672. clear_extent_buffer_uptodate(eb);
  673. }
  674. free_extent_buffer(eb);
  675. out:
  676. return ret;
  677. }
  678. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  679. {
  680. struct extent_buffer *eb;
  681. eb = (struct extent_buffer *)page->private;
  682. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  683. eb->read_mirror = failed_mirror;
  684. atomic_dec(&eb->io_pages);
  685. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  686. btree_readahead_hook(eb->fs_info, eb, -EIO);
  687. return -EIO; /* we fixed nothing */
  688. }
  689. static void end_workqueue_bio(struct bio *bio)
  690. {
  691. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  692. struct btrfs_fs_info *fs_info;
  693. struct btrfs_workqueue *wq;
  694. btrfs_work_func_t func;
  695. fs_info = end_io_wq->info;
  696. end_io_wq->error = bio->bi_error;
  697. if (bio_op(bio) == REQ_OP_WRITE) {
  698. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  699. wq = fs_info->endio_meta_write_workers;
  700. func = btrfs_endio_meta_write_helper;
  701. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  702. wq = fs_info->endio_freespace_worker;
  703. func = btrfs_freespace_write_helper;
  704. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  705. wq = fs_info->endio_raid56_workers;
  706. func = btrfs_endio_raid56_helper;
  707. } else {
  708. wq = fs_info->endio_write_workers;
  709. func = btrfs_endio_write_helper;
  710. }
  711. } else {
  712. if (unlikely(end_io_wq->metadata ==
  713. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  714. wq = fs_info->endio_repair_workers;
  715. func = btrfs_endio_repair_helper;
  716. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  717. wq = fs_info->endio_raid56_workers;
  718. func = btrfs_endio_raid56_helper;
  719. } else if (end_io_wq->metadata) {
  720. wq = fs_info->endio_meta_workers;
  721. func = btrfs_endio_meta_helper;
  722. } else {
  723. wq = fs_info->endio_workers;
  724. func = btrfs_endio_helper;
  725. }
  726. }
  727. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  728. btrfs_queue_work(wq, &end_io_wq->work);
  729. }
  730. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  731. enum btrfs_wq_endio_type metadata)
  732. {
  733. struct btrfs_end_io_wq *end_io_wq;
  734. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  735. if (!end_io_wq)
  736. return -ENOMEM;
  737. end_io_wq->private = bio->bi_private;
  738. end_io_wq->end_io = bio->bi_end_io;
  739. end_io_wq->info = info;
  740. end_io_wq->error = 0;
  741. end_io_wq->bio = bio;
  742. end_io_wq->metadata = metadata;
  743. bio->bi_private = end_io_wq;
  744. bio->bi_end_io = end_workqueue_bio;
  745. return 0;
  746. }
  747. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  748. {
  749. unsigned long limit = min_t(unsigned long,
  750. info->thread_pool_size,
  751. info->fs_devices->open_devices);
  752. return 256 * limit;
  753. }
  754. static void run_one_async_start(struct btrfs_work *work)
  755. {
  756. struct async_submit_bio *async;
  757. int ret;
  758. async = container_of(work, struct async_submit_bio, work);
  759. ret = async->submit_bio_start(async->inode, async->bio,
  760. async->mirror_num, async->bio_flags,
  761. async->bio_offset);
  762. if (ret)
  763. async->error = ret;
  764. }
  765. static void run_one_async_done(struct btrfs_work *work)
  766. {
  767. struct btrfs_fs_info *fs_info;
  768. struct async_submit_bio *async;
  769. int limit;
  770. async = container_of(work, struct async_submit_bio, work);
  771. fs_info = BTRFS_I(async->inode)->root->fs_info;
  772. limit = btrfs_async_submit_limit(fs_info);
  773. limit = limit * 2 / 3;
  774. /*
  775. * atomic_dec_return implies a barrier for waitqueue_active
  776. */
  777. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  778. waitqueue_active(&fs_info->async_submit_wait))
  779. wake_up(&fs_info->async_submit_wait);
  780. /* If an error occurred we just want to clean up the bio and move on */
  781. if (async->error) {
  782. async->bio->bi_error = async->error;
  783. bio_endio(async->bio);
  784. return;
  785. }
  786. async->submit_bio_done(async->inode, async->bio, async->mirror_num,
  787. async->bio_flags, async->bio_offset);
  788. }
  789. static void run_one_async_free(struct btrfs_work *work)
  790. {
  791. struct async_submit_bio *async;
  792. async = container_of(work, struct async_submit_bio, work);
  793. kfree(async);
  794. }
  795. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  796. struct bio *bio, int mirror_num,
  797. unsigned long bio_flags,
  798. u64 bio_offset,
  799. extent_submit_bio_hook_t *submit_bio_start,
  800. extent_submit_bio_hook_t *submit_bio_done)
  801. {
  802. struct async_submit_bio *async;
  803. async = kmalloc(sizeof(*async), GFP_NOFS);
  804. if (!async)
  805. return -ENOMEM;
  806. async->inode = inode;
  807. async->bio = bio;
  808. async->mirror_num = mirror_num;
  809. async->submit_bio_start = submit_bio_start;
  810. async->submit_bio_done = submit_bio_done;
  811. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  812. run_one_async_done, run_one_async_free);
  813. async->bio_flags = bio_flags;
  814. async->bio_offset = bio_offset;
  815. async->error = 0;
  816. atomic_inc(&fs_info->nr_async_submits);
  817. if (bio->bi_opf & REQ_SYNC)
  818. btrfs_set_work_high_priority(&async->work);
  819. btrfs_queue_work(fs_info->workers, &async->work);
  820. while (atomic_read(&fs_info->async_submit_draining) &&
  821. atomic_read(&fs_info->nr_async_submits)) {
  822. wait_event(fs_info->async_submit_wait,
  823. (atomic_read(&fs_info->nr_async_submits) == 0));
  824. }
  825. return 0;
  826. }
  827. static int btree_csum_one_bio(struct bio *bio)
  828. {
  829. struct bio_vec *bvec;
  830. struct btrfs_root *root;
  831. int i, ret = 0;
  832. bio_for_each_segment_all(bvec, bio, i) {
  833. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  834. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  835. if (ret)
  836. break;
  837. }
  838. return ret;
  839. }
  840. static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
  841. int mirror_num, unsigned long bio_flags,
  842. u64 bio_offset)
  843. {
  844. /*
  845. * when we're called for a write, we're already in the async
  846. * submission context. Just jump into btrfs_map_bio
  847. */
  848. return btree_csum_one_bio(bio);
  849. }
  850. static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
  851. int mirror_num, unsigned long bio_flags,
  852. u64 bio_offset)
  853. {
  854. int ret;
  855. /*
  856. * when we're called for a write, we're already in the async
  857. * submission context. Just jump into btrfs_map_bio
  858. */
  859. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
  860. if (ret) {
  861. bio->bi_error = ret;
  862. bio_endio(bio);
  863. }
  864. return ret;
  865. }
  866. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  867. {
  868. if (bio_flags & EXTENT_BIO_TREE_LOG)
  869. return 0;
  870. #ifdef CONFIG_X86
  871. if (static_cpu_has(X86_FEATURE_XMM4_2))
  872. return 0;
  873. #endif
  874. return 1;
  875. }
  876. static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
  877. int mirror_num, unsigned long bio_flags,
  878. u64 bio_offset)
  879. {
  880. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  881. int async = check_async_write(inode, bio_flags);
  882. int ret;
  883. if (bio_op(bio) != REQ_OP_WRITE) {
  884. /*
  885. * called for a read, do the setup so that checksum validation
  886. * can happen in the async kernel threads
  887. */
  888. ret = btrfs_bio_wq_end_io(fs_info, bio,
  889. BTRFS_WQ_ENDIO_METADATA);
  890. if (ret)
  891. goto out_w_error;
  892. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
  893. } else if (!async) {
  894. ret = btree_csum_one_bio(bio);
  895. if (ret)
  896. goto out_w_error;
  897. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
  898. } else {
  899. /*
  900. * kthread helpers are used to submit writes so that
  901. * checksumming can happen in parallel across all CPUs
  902. */
  903. ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
  904. bio_offset,
  905. __btree_submit_bio_start,
  906. __btree_submit_bio_done);
  907. }
  908. if (ret)
  909. goto out_w_error;
  910. return 0;
  911. out_w_error:
  912. bio->bi_error = ret;
  913. bio_endio(bio);
  914. return ret;
  915. }
  916. #ifdef CONFIG_MIGRATION
  917. static int btree_migratepage(struct address_space *mapping,
  918. struct page *newpage, struct page *page,
  919. enum migrate_mode mode)
  920. {
  921. /*
  922. * we can't safely write a btree page from here,
  923. * we haven't done the locking hook
  924. */
  925. if (PageDirty(page))
  926. return -EAGAIN;
  927. /*
  928. * Buffers may be managed in a filesystem specific way.
  929. * We must have no buffers or drop them.
  930. */
  931. if (page_has_private(page) &&
  932. !try_to_release_page(page, GFP_KERNEL))
  933. return -EAGAIN;
  934. return migrate_page(mapping, newpage, page, mode);
  935. }
  936. #endif
  937. static int btree_writepages(struct address_space *mapping,
  938. struct writeback_control *wbc)
  939. {
  940. struct btrfs_fs_info *fs_info;
  941. int ret;
  942. if (wbc->sync_mode == WB_SYNC_NONE) {
  943. if (wbc->for_kupdate)
  944. return 0;
  945. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  946. /* this is a bit racy, but that's ok */
  947. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  948. BTRFS_DIRTY_METADATA_THRESH);
  949. if (ret < 0)
  950. return 0;
  951. }
  952. return btree_write_cache_pages(mapping, wbc);
  953. }
  954. static int btree_readpage(struct file *file, struct page *page)
  955. {
  956. struct extent_io_tree *tree;
  957. tree = &BTRFS_I(page->mapping->host)->io_tree;
  958. return extent_read_full_page(tree, page, btree_get_extent, 0);
  959. }
  960. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  961. {
  962. if (PageWriteback(page) || PageDirty(page))
  963. return 0;
  964. return try_release_extent_buffer(page);
  965. }
  966. static void btree_invalidatepage(struct page *page, unsigned int offset,
  967. unsigned int length)
  968. {
  969. struct extent_io_tree *tree;
  970. tree = &BTRFS_I(page->mapping->host)->io_tree;
  971. extent_invalidatepage(tree, page, offset);
  972. btree_releasepage(page, GFP_NOFS);
  973. if (PagePrivate(page)) {
  974. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  975. "page private not zero on page %llu",
  976. (unsigned long long)page_offset(page));
  977. ClearPagePrivate(page);
  978. set_page_private(page, 0);
  979. put_page(page);
  980. }
  981. }
  982. static int btree_set_page_dirty(struct page *page)
  983. {
  984. #ifdef DEBUG
  985. struct extent_buffer *eb;
  986. BUG_ON(!PagePrivate(page));
  987. eb = (struct extent_buffer *)page->private;
  988. BUG_ON(!eb);
  989. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  990. BUG_ON(!atomic_read(&eb->refs));
  991. btrfs_assert_tree_locked(eb);
  992. #endif
  993. return __set_page_dirty_nobuffers(page);
  994. }
  995. static const struct address_space_operations btree_aops = {
  996. .readpage = btree_readpage,
  997. .writepages = btree_writepages,
  998. .releasepage = btree_releasepage,
  999. .invalidatepage = btree_invalidatepage,
  1000. #ifdef CONFIG_MIGRATION
  1001. .migratepage = btree_migratepage,
  1002. #endif
  1003. .set_page_dirty = btree_set_page_dirty,
  1004. };
  1005. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  1006. {
  1007. struct extent_buffer *buf = NULL;
  1008. struct inode *btree_inode = root->fs_info->btree_inode;
  1009. buf = btrfs_find_create_tree_block(root, bytenr);
  1010. if (IS_ERR(buf))
  1011. return;
  1012. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  1013. buf, WAIT_NONE, btree_get_extent, 0);
  1014. free_extent_buffer(buf);
  1015. }
  1016. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  1017. int mirror_num, struct extent_buffer **eb)
  1018. {
  1019. struct extent_buffer *buf = NULL;
  1020. struct inode *btree_inode = root->fs_info->btree_inode;
  1021. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  1022. int ret;
  1023. buf = btrfs_find_create_tree_block(root, bytenr);
  1024. if (IS_ERR(buf))
  1025. return 0;
  1026. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  1027. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  1028. btree_get_extent, mirror_num);
  1029. if (ret) {
  1030. free_extent_buffer(buf);
  1031. return ret;
  1032. }
  1033. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  1034. free_extent_buffer(buf);
  1035. return -EIO;
  1036. } else if (extent_buffer_uptodate(buf)) {
  1037. *eb = buf;
  1038. } else {
  1039. free_extent_buffer(buf);
  1040. }
  1041. return 0;
  1042. }
  1043. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  1044. u64 bytenr)
  1045. {
  1046. struct btrfs_fs_info *fs_info = root->fs_info;
  1047. if (btrfs_is_testing(fs_info))
  1048. return alloc_test_extent_buffer(fs_info, bytenr);
  1049. return alloc_extent_buffer(fs_info, bytenr);
  1050. }
  1051. int btrfs_write_tree_block(struct extent_buffer *buf)
  1052. {
  1053. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1054. buf->start + buf->len - 1);
  1055. }
  1056. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1057. {
  1058. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1059. buf->start, buf->start + buf->len - 1);
  1060. }
  1061. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1062. u64 parent_transid)
  1063. {
  1064. struct extent_buffer *buf = NULL;
  1065. int ret;
  1066. buf = btrfs_find_create_tree_block(root, bytenr);
  1067. if (IS_ERR(buf))
  1068. return buf;
  1069. ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
  1070. if (ret) {
  1071. free_extent_buffer(buf);
  1072. return ERR_PTR(ret);
  1073. }
  1074. return buf;
  1075. }
  1076. void clean_tree_block(struct btrfs_trans_handle *trans,
  1077. struct btrfs_fs_info *fs_info,
  1078. struct extent_buffer *buf)
  1079. {
  1080. if (btrfs_header_generation(buf) ==
  1081. fs_info->running_transaction->transid) {
  1082. btrfs_assert_tree_locked(buf);
  1083. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1084. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1085. -buf->len,
  1086. fs_info->dirty_metadata_batch);
  1087. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1088. btrfs_set_lock_blocking(buf);
  1089. clear_extent_buffer_dirty(buf);
  1090. }
  1091. }
  1092. }
  1093. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1094. {
  1095. struct btrfs_subvolume_writers *writers;
  1096. int ret;
  1097. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1098. if (!writers)
  1099. return ERR_PTR(-ENOMEM);
  1100. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1101. if (ret < 0) {
  1102. kfree(writers);
  1103. return ERR_PTR(ret);
  1104. }
  1105. init_waitqueue_head(&writers->wait);
  1106. return writers;
  1107. }
  1108. static void
  1109. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1110. {
  1111. percpu_counter_destroy(&writers->counter);
  1112. kfree(writers);
  1113. }
  1114. static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1115. u64 objectid)
  1116. {
  1117. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1118. root->node = NULL;
  1119. root->commit_root = NULL;
  1120. root->state = 0;
  1121. root->orphan_cleanup_state = 0;
  1122. root->objectid = objectid;
  1123. root->last_trans = 0;
  1124. root->highest_objectid = 0;
  1125. root->nr_delalloc_inodes = 0;
  1126. root->nr_ordered_extents = 0;
  1127. root->name = NULL;
  1128. root->inode_tree = RB_ROOT;
  1129. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1130. root->block_rsv = NULL;
  1131. root->orphan_block_rsv = NULL;
  1132. INIT_LIST_HEAD(&root->dirty_list);
  1133. INIT_LIST_HEAD(&root->root_list);
  1134. INIT_LIST_HEAD(&root->delalloc_inodes);
  1135. INIT_LIST_HEAD(&root->delalloc_root);
  1136. INIT_LIST_HEAD(&root->ordered_extents);
  1137. INIT_LIST_HEAD(&root->ordered_root);
  1138. INIT_LIST_HEAD(&root->logged_list[0]);
  1139. INIT_LIST_HEAD(&root->logged_list[1]);
  1140. spin_lock_init(&root->orphan_lock);
  1141. spin_lock_init(&root->inode_lock);
  1142. spin_lock_init(&root->delalloc_lock);
  1143. spin_lock_init(&root->ordered_extent_lock);
  1144. spin_lock_init(&root->accounting_lock);
  1145. spin_lock_init(&root->log_extents_lock[0]);
  1146. spin_lock_init(&root->log_extents_lock[1]);
  1147. mutex_init(&root->objectid_mutex);
  1148. mutex_init(&root->log_mutex);
  1149. mutex_init(&root->ordered_extent_mutex);
  1150. mutex_init(&root->delalloc_mutex);
  1151. init_waitqueue_head(&root->log_writer_wait);
  1152. init_waitqueue_head(&root->log_commit_wait[0]);
  1153. init_waitqueue_head(&root->log_commit_wait[1]);
  1154. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1155. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1156. atomic_set(&root->log_commit[0], 0);
  1157. atomic_set(&root->log_commit[1], 0);
  1158. atomic_set(&root->log_writers, 0);
  1159. atomic_set(&root->log_batch, 0);
  1160. atomic_set(&root->orphan_inodes, 0);
  1161. atomic_set(&root->refs, 1);
  1162. atomic_set(&root->will_be_snapshoted, 0);
  1163. atomic_set(&root->qgroup_meta_rsv, 0);
  1164. root->log_transid = 0;
  1165. root->log_transid_committed = -1;
  1166. root->last_log_commit = 0;
  1167. if (!dummy)
  1168. extent_io_tree_init(&root->dirty_log_pages,
  1169. fs_info->btree_inode->i_mapping);
  1170. memset(&root->root_key, 0, sizeof(root->root_key));
  1171. memset(&root->root_item, 0, sizeof(root->root_item));
  1172. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1173. if (!dummy)
  1174. root->defrag_trans_start = fs_info->generation;
  1175. else
  1176. root->defrag_trans_start = 0;
  1177. root->root_key.objectid = objectid;
  1178. root->anon_dev = 0;
  1179. spin_lock_init(&root->root_item_lock);
  1180. }
  1181. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1182. gfp_t flags)
  1183. {
  1184. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1185. if (root)
  1186. root->fs_info = fs_info;
  1187. return root;
  1188. }
  1189. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1190. /* Should only be used by the testing infrastructure */
  1191. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
  1192. {
  1193. struct btrfs_root *root;
  1194. if (!fs_info)
  1195. return ERR_PTR(-EINVAL);
  1196. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1197. if (!root)
  1198. return ERR_PTR(-ENOMEM);
  1199. /* We don't use the stripesize in selftest, set it as sectorsize */
  1200. __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1201. root->alloc_bytenr = 0;
  1202. return root;
  1203. }
  1204. #endif
  1205. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1206. struct btrfs_fs_info *fs_info,
  1207. u64 objectid)
  1208. {
  1209. struct extent_buffer *leaf;
  1210. struct btrfs_root *tree_root = fs_info->tree_root;
  1211. struct btrfs_root *root;
  1212. struct btrfs_key key;
  1213. int ret = 0;
  1214. uuid_le uuid;
  1215. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1216. if (!root)
  1217. return ERR_PTR(-ENOMEM);
  1218. __setup_root(root, fs_info, objectid);
  1219. root->root_key.objectid = objectid;
  1220. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1221. root->root_key.offset = 0;
  1222. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1223. if (IS_ERR(leaf)) {
  1224. ret = PTR_ERR(leaf);
  1225. leaf = NULL;
  1226. goto fail;
  1227. }
  1228. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1229. btrfs_set_header_bytenr(leaf, leaf->start);
  1230. btrfs_set_header_generation(leaf, trans->transid);
  1231. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1232. btrfs_set_header_owner(leaf, objectid);
  1233. root->node = leaf;
  1234. write_extent_buffer_fsid(leaf, fs_info->fsid);
  1235. write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
  1236. btrfs_mark_buffer_dirty(leaf);
  1237. root->commit_root = btrfs_root_node(root);
  1238. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1239. root->root_item.flags = 0;
  1240. root->root_item.byte_limit = 0;
  1241. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1242. btrfs_set_root_generation(&root->root_item, trans->transid);
  1243. btrfs_set_root_level(&root->root_item, 0);
  1244. btrfs_set_root_refs(&root->root_item, 1);
  1245. btrfs_set_root_used(&root->root_item, leaf->len);
  1246. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1247. btrfs_set_root_dirid(&root->root_item, 0);
  1248. uuid_le_gen(&uuid);
  1249. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1250. root->root_item.drop_level = 0;
  1251. key.objectid = objectid;
  1252. key.type = BTRFS_ROOT_ITEM_KEY;
  1253. key.offset = 0;
  1254. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1255. if (ret)
  1256. goto fail;
  1257. btrfs_tree_unlock(leaf);
  1258. return root;
  1259. fail:
  1260. if (leaf) {
  1261. btrfs_tree_unlock(leaf);
  1262. free_extent_buffer(root->commit_root);
  1263. free_extent_buffer(leaf);
  1264. }
  1265. kfree(root);
  1266. return ERR_PTR(ret);
  1267. }
  1268. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1269. struct btrfs_fs_info *fs_info)
  1270. {
  1271. struct btrfs_root *root;
  1272. struct extent_buffer *leaf;
  1273. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1274. if (!root)
  1275. return ERR_PTR(-ENOMEM);
  1276. __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1277. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1278. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1279. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1280. /*
  1281. * DON'T set REF_COWS for log trees
  1282. *
  1283. * log trees do not get reference counted because they go away
  1284. * before a real commit is actually done. They do store pointers
  1285. * to file data extents, and those reference counts still get
  1286. * updated (along with back refs to the log tree).
  1287. */
  1288. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1289. NULL, 0, 0, 0);
  1290. if (IS_ERR(leaf)) {
  1291. kfree(root);
  1292. return ERR_CAST(leaf);
  1293. }
  1294. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1295. btrfs_set_header_bytenr(leaf, leaf->start);
  1296. btrfs_set_header_generation(leaf, trans->transid);
  1297. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1298. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1299. root->node = leaf;
  1300. write_extent_buffer_fsid(root->node, fs_info->fsid);
  1301. btrfs_mark_buffer_dirty(root->node);
  1302. btrfs_tree_unlock(root->node);
  1303. return root;
  1304. }
  1305. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1306. struct btrfs_fs_info *fs_info)
  1307. {
  1308. struct btrfs_root *log_root;
  1309. log_root = alloc_log_tree(trans, fs_info);
  1310. if (IS_ERR(log_root))
  1311. return PTR_ERR(log_root);
  1312. WARN_ON(fs_info->log_root_tree);
  1313. fs_info->log_root_tree = log_root;
  1314. return 0;
  1315. }
  1316. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1317. struct btrfs_root *root)
  1318. {
  1319. struct btrfs_fs_info *fs_info = root->fs_info;
  1320. struct btrfs_root *log_root;
  1321. struct btrfs_inode_item *inode_item;
  1322. log_root = alloc_log_tree(trans, fs_info);
  1323. if (IS_ERR(log_root))
  1324. return PTR_ERR(log_root);
  1325. log_root->last_trans = trans->transid;
  1326. log_root->root_key.offset = root->root_key.objectid;
  1327. inode_item = &log_root->root_item.inode;
  1328. btrfs_set_stack_inode_generation(inode_item, 1);
  1329. btrfs_set_stack_inode_size(inode_item, 3);
  1330. btrfs_set_stack_inode_nlink(inode_item, 1);
  1331. btrfs_set_stack_inode_nbytes(inode_item,
  1332. fs_info->nodesize);
  1333. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1334. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1335. WARN_ON(root->log_root);
  1336. root->log_root = log_root;
  1337. root->log_transid = 0;
  1338. root->log_transid_committed = -1;
  1339. root->last_log_commit = 0;
  1340. return 0;
  1341. }
  1342. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1343. struct btrfs_key *key)
  1344. {
  1345. struct btrfs_root *root;
  1346. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1347. struct btrfs_path *path;
  1348. u64 generation;
  1349. int ret;
  1350. path = btrfs_alloc_path();
  1351. if (!path)
  1352. return ERR_PTR(-ENOMEM);
  1353. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1354. if (!root) {
  1355. ret = -ENOMEM;
  1356. goto alloc_fail;
  1357. }
  1358. __setup_root(root, fs_info, key->objectid);
  1359. ret = btrfs_find_root(tree_root, key, path,
  1360. &root->root_item, &root->root_key);
  1361. if (ret) {
  1362. if (ret > 0)
  1363. ret = -ENOENT;
  1364. goto find_fail;
  1365. }
  1366. generation = btrfs_root_generation(&root->root_item);
  1367. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1368. generation);
  1369. if (IS_ERR(root->node)) {
  1370. ret = PTR_ERR(root->node);
  1371. goto find_fail;
  1372. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1373. ret = -EIO;
  1374. free_extent_buffer(root->node);
  1375. goto find_fail;
  1376. }
  1377. root->commit_root = btrfs_root_node(root);
  1378. out:
  1379. btrfs_free_path(path);
  1380. return root;
  1381. find_fail:
  1382. kfree(root);
  1383. alloc_fail:
  1384. root = ERR_PTR(ret);
  1385. goto out;
  1386. }
  1387. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1388. struct btrfs_key *location)
  1389. {
  1390. struct btrfs_root *root;
  1391. root = btrfs_read_tree_root(tree_root, location);
  1392. if (IS_ERR(root))
  1393. return root;
  1394. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1395. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1396. btrfs_check_and_init_root_item(&root->root_item);
  1397. }
  1398. return root;
  1399. }
  1400. int btrfs_init_fs_root(struct btrfs_root *root)
  1401. {
  1402. int ret;
  1403. struct btrfs_subvolume_writers *writers;
  1404. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1405. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1406. GFP_NOFS);
  1407. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1408. ret = -ENOMEM;
  1409. goto fail;
  1410. }
  1411. writers = btrfs_alloc_subvolume_writers();
  1412. if (IS_ERR(writers)) {
  1413. ret = PTR_ERR(writers);
  1414. goto fail;
  1415. }
  1416. root->subv_writers = writers;
  1417. btrfs_init_free_ino_ctl(root);
  1418. spin_lock_init(&root->ino_cache_lock);
  1419. init_waitqueue_head(&root->ino_cache_wait);
  1420. ret = get_anon_bdev(&root->anon_dev);
  1421. if (ret)
  1422. goto fail;
  1423. mutex_lock(&root->objectid_mutex);
  1424. ret = btrfs_find_highest_objectid(root,
  1425. &root->highest_objectid);
  1426. if (ret) {
  1427. mutex_unlock(&root->objectid_mutex);
  1428. goto fail;
  1429. }
  1430. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1431. mutex_unlock(&root->objectid_mutex);
  1432. return 0;
  1433. fail:
  1434. /* the caller is responsible to call free_fs_root */
  1435. return ret;
  1436. }
  1437. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1438. u64 root_id)
  1439. {
  1440. struct btrfs_root *root;
  1441. spin_lock(&fs_info->fs_roots_radix_lock);
  1442. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1443. (unsigned long)root_id);
  1444. spin_unlock(&fs_info->fs_roots_radix_lock);
  1445. return root;
  1446. }
  1447. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1448. struct btrfs_root *root)
  1449. {
  1450. int ret;
  1451. ret = radix_tree_preload(GFP_NOFS);
  1452. if (ret)
  1453. return ret;
  1454. spin_lock(&fs_info->fs_roots_radix_lock);
  1455. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1456. (unsigned long)root->root_key.objectid,
  1457. root);
  1458. if (ret == 0)
  1459. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1460. spin_unlock(&fs_info->fs_roots_radix_lock);
  1461. radix_tree_preload_end();
  1462. return ret;
  1463. }
  1464. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1465. struct btrfs_key *location,
  1466. bool check_ref)
  1467. {
  1468. struct btrfs_root *root;
  1469. struct btrfs_path *path;
  1470. struct btrfs_key key;
  1471. int ret;
  1472. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1473. return fs_info->tree_root;
  1474. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1475. return fs_info->extent_root;
  1476. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1477. return fs_info->chunk_root;
  1478. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1479. return fs_info->dev_root;
  1480. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1481. return fs_info->csum_root;
  1482. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1483. return fs_info->quota_root ? fs_info->quota_root :
  1484. ERR_PTR(-ENOENT);
  1485. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1486. return fs_info->uuid_root ? fs_info->uuid_root :
  1487. ERR_PTR(-ENOENT);
  1488. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1489. return fs_info->free_space_root ? fs_info->free_space_root :
  1490. ERR_PTR(-ENOENT);
  1491. again:
  1492. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1493. if (root) {
  1494. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1495. return ERR_PTR(-ENOENT);
  1496. return root;
  1497. }
  1498. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1499. if (IS_ERR(root))
  1500. return root;
  1501. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1502. ret = -ENOENT;
  1503. goto fail;
  1504. }
  1505. ret = btrfs_init_fs_root(root);
  1506. if (ret)
  1507. goto fail;
  1508. path = btrfs_alloc_path();
  1509. if (!path) {
  1510. ret = -ENOMEM;
  1511. goto fail;
  1512. }
  1513. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1514. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1515. key.offset = location->objectid;
  1516. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1517. btrfs_free_path(path);
  1518. if (ret < 0)
  1519. goto fail;
  1520. if (ret == 0)
  1521. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1522. ret = btrfs_insert_fs_root(fs_info, root);
  1523. if (ret) {
  1524. if (ret == -EEXIST) {
  1525. free_fs_root(root);
  1526. goto again;
  1527. }
  1528. goto fail;
  1529. }
  1530. return root;
  1531. fail:
  1532. free_fs_root(root);
  1533. return ERR_PTR(ret);
  1534. }
  1535. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1536. {
  1537. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1538. int ret = 0;
  1539. struct btrfs_device *device;
  1540. struct backing_dev_info *bdi;
  1541. rcu_read_lock();
  1542. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1543. if (!device->bdev)
  1544. continue;
  1545. bdi = blk_get_backing_dev_info(device->bdev);
  1546. if (bdi_congested(bdi, bdi_bits)) {
  1547. ret = 1;
  1548. break;
  1549. }
  1550. }
  1551. rcu_read_unlock();
  1552. return ret;
  1553. }
  1554. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1555. {
  1556. int err;
  1557. err = bdi_setup_and_register(bdi, "btrfs");
  1558. if (err)
  1559. return err;
  1560. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  1561. bdi->congested_fn = btrfs_congested_fn;
  1562. bdi->congested_data = info;
  1563. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1564. return 0;
  1565. }
  1566. /*
  1567. * called by the kthread helper functions to finally call the bio end_io
  1568. * functions. This is where read checksum verification actually happens
  1569. */
  1570. static void end_workqueue_fn(struct btrfs_work *work)
  1571. {
  1572. struct bio *bio;
  1573. struct btrfs_end_io_wq *end_io_wq;
  1574. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1575. bio = end_io_wq->bio;
  1576. bio->bi_error = end_io_wq->error;
  1577. bio->bi_private = end_io_wq->private;
  1578. bio->bi_end_io = end_io_wq->end_io;
  1579. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1580. bio_endio(bio);
  1581. }
  1582. static int cleaner_kthread(void *arg)
  1583. {
  1584. struct btrfs_root *root = arg;
  1585. struct btrfs_fs_info *fs_info = root->fs_info;
  1586. int again;
  1587. struct btrfs_trans_handle *trans;
  1588. do {
  1589. again = 0;
  1590. /* Make the cleaner go to sleep early. */
  1591. if (btrfs_need_cleaner_sleep(root))
  1592. goto sleep;
  1593. /*
  1594. * Do not do anything if we might cause open_ctree() to block
  1595. * before we have finished mounting the filesystem.
  1596. */
  1597. if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
  1598. goto sleep;
  1599. if (!mutex_trylock(&fs_info->cleaner_mutex))
  1600. goto sleep;
  1601. /*
  1602. * Avoid the problem that we change the status of the fs
  1603. * during the above check and trylock.
  1604. */
  1605. if (btrfs_need_cleaner_sleep(root)) {
  1606. mutex_unlock(&fs_info->cleaner_mutex);
  1607. goto sleep;
  1608. }
  1609. mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
  1610. btrfs_run_delayed_iputs(root);
  1611. mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
  1612. again = btrfs_clean_one_deleted_snapshot(root);
  1613. mutex_unlock(&fs_info->cleaner_mutex);
  1614. /*
  1615. * The defragger has dealt with the R/O remount and umount,
  1616. * needn't do anything special here.
  1617. */
  1618. btrfs_run_defrag_inodes(fs_info);
  1619. /*
  1620. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1621. * with relocation (btrfs_relocate_chunk) and relocation
  1622. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1623. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1624. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1625. * unused block groups.
  1626. */
  1627. btrfs_delete_unused_bgs(fs_info);
  1628. sleep:
  1629. if (!again) {
  1630. set_current_state(TASK_INTERRUPTIBLE);
  1631. if (!kthread_should_stop())
  1632. schedule();
  1633. __set_current_state(TASK_RUNNING);
  1634. }
  1635. } while (!kthread_should_stop());
  1636. /*
  1637. * Transaction kthread is stopped before us and wakes us up.
  1638. * However we might have started a new transaction and COWed some
  1639. * tree blocks when deleting unused block groups for example. So
  1640. * make sure we commit the transaction we started to have a clean
  1641. * shutdown when evicting the btree inode - if it has dirty pages
  1642. * when we do the final iput() on it, eviction will trigger a
  1643. * writeback for it which will fail with null pointer dereferences
  1644. * since work queues and other resources were already released and
  1645. * destroyed by the time the iput/eviction/writeback is made.
  1646. */
  1647. trans = btrfs_attach_transaction(root);
  1648. if (IS_ERR(trans)) {
  1649. if (PTR_ERR(trans) != -ENOENT)
  1650. btrfs_err(fs_info,
  1651. "cleaner transaction attach returned %ld",
  1652. PTR_ERR(trans));
  1653. } else {
  1654. int ret;
  1655. ret = btrfs_commit_transaction(trans, root);
  1656. if (ret)
  1657. btrfs_err(fs_info,
  1658. "cleaner open transaction commit returned %d",
  1659. ret);
  1660. }
  1661. return 0;
  1662. }
  1663. static int transaction_kthread(void *arg)
  1664. {
  1665. struct btrfs_root *root = arg;
  1666. struct btrfs_fs_info *fs_info = root->fs_info;
  1667. struct btrfs_trans_handle *trans;
  1668. struct btrfs_transaction *cur;
  1669. u64 transid;
  1670. unsigned long now;
  1671. unsigned long delay;
  1672. bool cannot_commit;
  1673. do {
  1674. cannot_commit = false;
  1675. delay = HZ * fs_info->commit_interval;
  1676. mutex_lock(&fs_info->transaction_kthread_mutex);
  1677. spin_lock(&fs_info->trans_lock);
  1678. cur = fs_info->running_transaction;
  1679. if (!cur) {
  1680. spin_unlock(&fs_info->trans_lock);
  1681. goto sleep;
  1682. }
  1683. now = get_seconds();
  1684. if (cur->state < TRANS_STATE_BLOCKED &&
  1685. (now < cur->start_time ||
  1686. now - cur->start_time < fs_info->commit_interval)) {
  1687. spin_unlock(&fs_info->trans_lock);
  1688. delay = HZ * 5;
  1689. goto sleep;
  1690. }
  1691. transid = cur->transid;
  1692. spin_unlock(&fs_info->trans_lock);
  1693. /* If the file system is aborted, this will always fail. */
  1694. trans = btrfs_attach_transaction(root);
  1695. if (IS_ERR(trans)) {
  1696. if (PTR_ERR(trans) != -ENOENT)
  1697. cannot_commit = true;
  1698. goto sleep;
  1699. }
  1700. if (transid == trans->transid) {
  1701. btrfs_commit_transaction(trans, root);
  1702. } else {
  1703. btrfs_end_transaction(trans, root);
  1704. }
  1705. sleep:
  1706. wake_up_process(fs_info->cleaner_kthread);
  1707. mutex_unlock(&fs_info->transaction_kthread_mutex);
  1708. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1709. &fs_info->fs_state)))
  1710. btrfs_cleanup_transaction(root);
  1711. set_current_state(TASK_INTERRUPTIBLE);
  1712. if (!kthread_should_stop() &&
  1713. (!btrfs_transaction_blocked(fs_info) ||
  1714. cannot_commit))
  1715. schedule_timeout(delay);
  1716. __set_current_state(TASK_RUNNING);
  1717. } while (!kthread_should_stop());
  1718. return 0;
  1719. }
  1720. /*
  1721. * this will find the highest generation in the array of
  1722. * root backups. The index of the highest array is returned,
  1723. * or -1 if we can't find anything.
  1724. *
  1725. * We check to make sure the array is valid by comparing the
  1726. * generation of the latest root in the array with the generation
  1727. * in the super block. If they don't match we pitch it.
  1728. */
  1729. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1730. {
  1731. u64 cur;
  1732. int newest_index = -1;
  1733. struct btrfs_root_backup *root_backup;
  1734. int i;
  1735. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1736. root_backup = info->super_copy->super_roots + i;
  1737. cur = btrfs_backup_tree_root_gen(root_backup);
  1738. if (cur == newest_gen)
  1739. newest_index = i;
  1740. }
  1741. /* check to see if we actually wrapped around */
  1742. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1743. root_backup = info->super_copy->super_roots;
  1744. cur = btrfs_backup_tree_root_gen(root_backup);
  1745. if (cur == newest_gen)
  1746. newest_index = 0;
  1747. }
  1748. return newest_index;
  1749. }
  1750. /*
  1751. * find the oldest backup so we know where to store new entries
  1752. * in the backup array. This will set the backup_root_index
  1753. * field in the fs_info struct
  1754. */
  1755. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1756. u64 newest_gen)
  1757. {
  1758. int newest_index = -1;
  1759. newest_index = find_newest_super_backup(info, newest_gen);
  1760. /* if there was garbage in there, just move along */
  1761. if (newest_index == -1) {
  1762. info->backup_root_index = 0;
  1763. } else {
  1764. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1765. }
  1766. }
  1767. /*
  1768. * copy all the root pointers into the super backup array.
  1769. * this will bump the backup pointer by one when it is
  1770. * done
  1771. */
  1772. static void backup_super_roots(struct btrfs_fs_info *info)
  1773. {
  1774. int next_backup;
  1775. struct btrfs_root_backup *root_backup;
  1776. int last_backup;
  1777. next_backup = info->backup_root_index;
  1778. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1779. BTRFS_NUM_BACKUP_ROOTS;
  1780. /*
  1781. * just overwrite the last backup if we're at the same generation
  1782. * this happens only at umount
  1783. */
  1784. root_backup = info->super_for_commit->super_roots + last_backup;
  1785. if (btrfs_backup_tree_root_gen(root_backup) ==
  1786. btrfs_header_generation(info->tree_root->node))
  1787. next_backup = last_backup;
  1788. root_backup = info->super_for_commit->super_roots + next_backup;
  1789. /*
  1790. * make sure all of our padding and empty slots get zero filled
  1791. * regardless of which ones we use today
  1792. */
  1793. memset(root_backup, 0, sizeof(*root_backup));
  1794. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1795. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1796. btrfs_set_backup_tree_root_gen(root_backup,
  1797. btrfs_header_generation(info->tree_root->node));
  1798. btrfs_set_backup_tree_root_level(root_backup,
  1799. btrfs_header_level(info->tree_root->node));
  1800. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1801. btrfs_set_backup_chunk_root_gen(root_backup,
  1802. btrfs_header_generation(info->chunk_root->node));
  1803. btrfs_set_backup_chunk_root_level(root_backup,
  1804. btrfs_header_level(info->chunk_root->node));
  1805. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1806. btrfs_set_backup_extent_root_gen(root_backup,
  1807. btrfs_header_generation(info->extent_root->node));
  1808. btrfs_set_backup_extent_root_level(root_backup,
  1809. btrfs_header_level(info->extent_root->node));
  1810. /*
  1811. * we might commit during log recovery, which happens before we set
  1812. * the fs_root. Make sure it is valid before we fill it in.
  1813. */
  1814. if (info->fs_root && info->fs_root->node) {
  1815. btrfs_set_backup_fs_root(root_backup,
  1816. info->fs_root->node->start);
  1817. btrfs_set_backup_fs_root_gen(root_backup,
  1818. btrfs_header_generation(info->fs_root->node));
  1819. btrfs_set_backup_fs_root_level(root_backup,
  1820. btrfs_header_level(info->fs_root->node));
  1821. }
  1822. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1823. btrfs_set_backup_dev_root_gen(root_backup,
  1824. btrfs_header_generation(info->dev_root->node));
  1825. btrfs_set_backup_dev_root_level(root_backup,
  1826. btrfs_header_level(info->dev_root->node));
  1827. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1828. btrfs_set_backup_csum_root_gen(root_backup,
  1829. btrfs_header_generation(info->csum_root->node));
  1830. btrfs_set_backup_csum_root_level(root_backup,
  1831. btrfs_header_level(info->csum_root->node));
  1832. btrfs_set_backup_total_bytes(root_backup,
  1833. btrfs_super_total_bytes(info->super_copy));
  1834. btrfs_set_backup_bytes_used(root_backup,
  1835. btrfs_super_bytes_used(info->super_copy));
  1836. btrfs_set_backup_num_devices(root_backup,
  1837. btrfs_super_num_devices(info->super_copy));
  1838. /*
  1839. * if we don't copy this out to the super_copy, it won't get remembered
  1840. * for the next commit
  1841. */
  1842. memcpy(&info->super_copy->super_roots,
  1843. &info->super_for_commit->super_roots,
  1844. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1845. }
  1846. /*
  1847. * this copies info out of the root backup array and back into
  1848. * the in-memory super block. It is meant to help iterate through
  1849. * the array, so you send it the number of backups you've already
  1850. * tried and the last backup index you used.
  1851. *
  1852. * this returns -1 when it has tried all the backups
  1853. */
  1854. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1855. struct btrfs_super_block *super,
  1856. int *num_backups_tried, int *backup_index)
  1857. {
  1858. struct btrfs_root_backup *root_backup;
  1859. int newest = *backup_index;
  1860. if (*num_backups_tried == 0) {
  1861. u64 gen = btrfs_super_generation(super);
  1862. newest = find_newest_super_backup(info, gen);
  1863. if (newest == -1)
  1864. return -1;
  1865. *backup_index = newest;
  1866. *num_backups_tried = 1;
  1867. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1868. /* we've tried all the backups, all done */
  1869. return -1;
  1870. } else {
  1871. /* jump to the next oldest backup */
  1872. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1873. BTRFS_NUM_BACKUP_ROOTS;
  1874. *backup_index = newest;
  1875. *num_backups_tried += 1;
  1876. }
  1877. root_backup = super->super_roots + newest;
  1878. btrfs_set_super_generation(super,
  1879. btrfs_backup_tree_root_gen(root_backup));
  1880. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1881. btrfs_set_super_root_level(super,
  1882. btrfs_backup_tree_root_level(root_backup));
  1883. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1884. /*
  1885. * fixme: the total bytes and num_devices need to match or we should
  1886. * need a fsck
  1887. */
  1888. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1889. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1890. return 0;
  1891. }
  1892. /* helper to cleanup workers */
  1893. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1894. {
  1895. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1896. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1897. btrfs_destroy_workqueue(fs_info->workers);
  1898. btrfs_destroy_workqueue(fs_info->endio_workers);
  1899. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1900. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1901. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1902. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1903. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1904. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1905. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1906. btrfs_destroy_workqueue(fs_info->submit_workers);
  1907. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1908. btrfs_destroy_workqueue(fs_info->caching_workers);
  1909. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1910. btrfs_destroy_workqueue(fs_info->flush_workers);
  1911. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1912. btrfs_destroy_workqueue(fs_info->extent_workers);
  1913. }
  1914. static void free_root_extent_buffers(struct btrfs_root *root)
  1915. {
  1916. if (root) {
  1917. free_extent_buffer(root->node);
  1918. free_extent_buffer(root->commit_root);
  1919. root->node = NULL;
  1920. root->commit_root = NULL;
  1921. }
  1922. }
  1923. /* helper to cleanup tree roots */
  1924. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1925. {
  1926. free_root_extent_buffers(info->tree_root);
  1927. free_root_extent_buffers(info->dev_root);
  1928. free_root_extent_buffers(info->extent_root);
  1929. free_root_extent_buffers(info->csum_root);
  1930. free_root_extent_buffers(info->quota_root);
  1931. free_root_extent_buffers(info->uuid_root);
  1932. if (chunk_root)
  1933. free_root_extent_buffers(info->chunk_root);
  1934. free_root_extent_buffers(info->free_space_root);
  1935. }
  1936. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1937. {
  1938. int ret;
  1939. struct btrfs_root *gang[8];
  1940. int i;
  1941. while (!list_empty(&fs_info->dead_roots)) {
  1942. gang[0] = list_entry(fs_info->dead_roots.next,
  1943. struct btrfs_root, root_list);
  1944. list_del(&gang[0]->root_list);
  1945. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1946. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1947. } else {
  1948. free_extent_buffer(gang[0]->node);
  1949. free_extent_buffer(gang[0]->commit_root);
  1950. btrfs_put_fs_root(gang[0]);
  1951. }
  1952. }
  1953. while (1) {
  1954. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1955. (void **)gang, 0,
  1956. ARRAY_SIZE(gang));
  1957. if (!ret)
  1958. break;
  1959. for (i = 0; i < ret; i++)
  1960. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1961. }
  1962. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1963. btrfs_free_log_root_tree(NULL, fs_info);
  1964. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1965. fs_info->pinned_extents);
  1966. }
  1967. }
  1968. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1969. {
  1970. mutex_init(&fs_info->scrub_lock);
  1971. atomic_set(&fs_info->scrubs_running, 0);
  1972. atomic_set(&fs_info->scrub_pause_req, 0);
  1973. atomic_set(&fs_info->scrubs_paused, 0);
  1974. atomic_set(&fs_info->scrub_cancel_req, 0);
  1975. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1976. fs_info->scrub_workers_refcnt = 0;
  1977. }
  1978. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1979. {
  1980. spin_lock_init(&fs_info->balance_lock);
  1981. mutex_init(&fs_info->balance_mutex);
  1982. atomic_set(&fs_info->balance_running, 0);
  1983. atomic_set(&fs_info->balance_pause_req, 0);
  1984. atomic_set(&fs_info->balance_cancel_req, 0);
  1985. fs_info->balance_ctl = NULL;
  1986. init_waitqueue_head(&fs_info->balance_wait_q);
  1987. }
  1988. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
  1989. {
  1990. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1991. set_nlink(fs_info->btree_inode, 1);
  1992. /*
  1993. * we set the i_size on the btree inode to the max possible int.
  1994. * the real end of the address space is determined by all of
  1995. * the devices in the system
  1996. */
  1997. fs_info->btree_inode->i_size = OFFSET_MAX;
  1998. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1999. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  2000. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  2001. fs_info->btree_inode->i_mapping);
  2002. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  2003. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  2004. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  2005. BTRFS_I(fs_info->btree_inode)->root = fs_info->tree_root;
  2006. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  2007. sizeof(struct btrfs_key));
  2008. set_bit(BTRFS_INODE_DUMMY,
  2009. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  2010. btrfs_insert_inode_hash(fs_info->btree_inode);
  2011. }
  2012. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  2013. {
  2014. fs_info->dev_replace.lock_owner = 0;
  2015. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2016. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2017. rwlock_init(&fs_info->dev_replace.lock);
  2018. atomic_set(&fs_info->dev_replace.read_locks, 0);
  2019. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  2020. init_waitqueue_head(&fs_info->replace_wait);
  2021. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  2022. }
  2023. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  2024. {
  2025. spin_lock_init(&fs_info->qgroup_lock);
  2026. mutex_init(&fs_info->qgroup_ioctl_lock);
  2027. fs_info->qgroup_tree = RB_ROOT;
  2028. fs_info->qgroup_op_tree = RB_ROOT;
  2029. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2030. fs_info->qgroup_seq = 1;
  2031. fs_info->qgroup_ulist = NULL;
  2032. fs_info->qgroup_rescan_running = false;
  2033. mutex_init(&fs_info->qgroup_rescan_lock);
  2034. }
  2035. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  2036. struct btrfs_fs_devices *fs_devices)
  2037. {
  2038. int max_active = fs_info->thread_pool_size;
  2039. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2040. fs_info->workers =
  2041. btrfs_alloc_workqueue(fs_info, "worker",
  2042. flags | WQ_HIGHPRI, max_active, 16);
  2043. fs_info->delalloc_workers =
  2044. btrfs_alloc_workqueue(fs_info, "delalloc",
  2045. flags, max_active, 2);
  2046. fs_info->flush_workers =
  2047. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  2048. flags, max_active, 0);
  2049. fs_info->caching_workers =
  2050. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  2051. /*
  2052. * a higher idle thresh on the submit workers makes it much more
  2053. * likely that bios will be send down in a sane order to the
  2054. * devices
  2055. */
  2056. fs_info->submit_workers =
  2057. btrfs_alloc_workqueue(fs_info, "submit", flags,
  2058. min_t(u64, fs_devices->num_devices,
  2059. max_active), 64);
  2060. fs_info->fixup_workers =
  2061. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  2062. /*
  2063. * endios are largely parallel and should have a very
  2064. * low idle thresh
  2065. */
  2066. fs_info->endio_workers =
  2067. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  2068. fs_info->endio_meta_workers =
  2069. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  2070. max_active, 4);
  2071. fs_info->endio_meta_write_workers =
  2072. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  2073. max_active, 2);
  2074. fs_info->endio_raid56_workers =
  2075. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  2076. max_active, 4);
  2077. fs_info->endio_repair_workers =
  2078. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  2079. fs_info->rmw_workers =
  2080. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  2081. fs_info->endio_write_workers =
  2082. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  2083. max_active, 2);
  2084. fs_info->endio_freespace_worker =
  2085. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  2086. max_active, 0);
  2087. fs_info->delayed_workers =
  2088. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  2089. max_active, 0);
  2090. fs_info->readahead_workers =
  2091. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  2092. max_active, 2);
  2093. fs_info->qgroup_rescan_workers =
  2094. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  2095. fs_info->extent_workers =
  2096. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  2097. min_t(u64, fs_devices->num_devices,
  2098. max_active), 8);
  2099. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2100. fs_info->submit_workers && fs_info->flush_workers &&
  2101. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2102. fs_info->endio_meta_write_workers &&
  2103. fs_info->endio_repair_workers &&
  2104. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2105. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2106. fs_info->caching_workers && fs_info->readahead_workers &&
  2107. fs_info->fixup_workers && fs_info->delayed_workers &&
  2108. fs_info->extent_workers &&
  2109. fs_info->qgroup_rescan_workers)) {
  2110. return -ENOMEM;
  2111. }
  2112. return 0;
  2113. }
  2114. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2115. struct btrfs_fs_devices *fs_devices)
  2116. {
  2117. int ret;
  2118. struct btrfs_root *tree_root = fs_info->tree_root;
  2119. struct btrfs_root *log_tree_root;
  2120. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2121. u64 bytenr = btrfs_super_log_root(disk_super);
  2122. if (fs_devices->rw_devices == 0) {
  2123. btrfs_warn(fs_info, "log replay required on RO media");
  2124. return -EIO;
  2125. }
  2126. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2127. if (!log_tree_root)
  2128. return -ENOMEM;
  2129. __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2130. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2131. fs_info->generation + 1);
  2132. if (IS_ERR(log_tree_root->node)) {
  2133. btrfs_warn(fs_info, "failed to read log tree");
  2134. ret = PTR_ERR(log_tree_root->node);
  2135. kfree(log_tree_root);
  2136. return ret;
  2137. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2138. btrfs_err(fs_info, "failed to read log tree");
  2139. free_extent_buffer(log_tree_root->node);
  2140. kfree(log_tree_root);
  2141. return -EIO;
  2142. }
  2143. /* returns with log_tree_root freed on success */
  2144. ret = btrfs_recover_log_trees(log_tree_root);
  2145. if (ret) {
  2146. btrfs_handle_fs_error(fs_info, ret,
  2147. "Failed to recover log tree");
  2148. free_extent_buffer(log_tree_root->node);
  2149. kfree(log_tree_root);
  2150. return ret;
  2151. }
  2152. if (fs_info->sb->s_flags & MS_RDONLY) {
  2153. ret = btrfs_commit_super(fs_info);
  2154. if (ret)
  2155. return ret;
  2156. }
  2157. return 0;
  2158. }
  2159. static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
  2160. {
  2161. struct btrfs_root *tree_root = fs_info->tree_root;
  2162. struct btrfs_root *root;
  2163. struct btrfs_key location;
  2164. int ret;
  2165. BUG_ON(!fs_info->tree_root);
  2166. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2167. location.type = BTRFS_ROOT_ITEM_KEY;
  2168. location.offset = 0;
  2169. root = btrfs_read_tree_root(tree_root, &location);
  2170. if (IS_ERR(root))
  2171. return PTR_ERR(root);
  2172. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2173. fs_info->extent_root = root;
  2174. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2175. root = btrfs_read_tree_root(tree_root, &location);
  2176. if (IS_ERR(root))
  2177. return PTR_ERR(root);
  2178. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2179. fs_info->dev_root = root;
  2180. btrfs_init_devices_late(fs_info);
  2181. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2182. root = btrfs_read_tree_root(tree_root, &location);
  2183. if (IS_ERR(root))
  2184. return PTR_ERR(root);
  2185. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2186. fs_info->csum_root = root;
  2187. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2188. root = btrfs_read_tree_root(tree_root, &location);
  2189. if (!IS_ERR(root)) {
  2190. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2191. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2192. fs_info->quota_root = root;
  2193. }
  2194. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2195. root = btrfs_read_tree_root(tree_root, &location);
  2196. if (IS_ERR(root)) {
  2197. ret = PTR_ERR(root);
  2198. if (ret != -ENOENT)
  2199. return ret;
  2200. } else {
  2201. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2202. fs_info->uuid_root = root;
  2203. }
  2204. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2205. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2206. root = btrfs_read_tree_root(tree_root, &location);
  2207. if (IS_ERR(root))
  2208. return PTR_ERR(root);
  2209. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2210. fs_info->free_space_root = root;
  2211. }
  2212. return 0;
  2213. }
  2214. int open_ctree(struct super_block *sb,
  2215. struct btrfs_fs_devices *fs_devices,
  2216. char *options)
  2217. {
  2218. u32 sectorsize;
  2219. u32 nodesize;
  2220. u32 stripesize;
  2221. u64 generation;
  2222. u64 features;
  2223. struct btrfs_key location;
  2224. struct buffer_head *bh;
  2225. struct btrfs_super_block *disk_super;
  2226. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2227. struct btrfs_root *tree_root;
  2228. struct btrfs_root *chunk_root;
  2229. int ret;
  2230. int err = -EINVAL;
  2231. int num_backups_tried = 0;
  2232. int backup_index = 0;
  2233. int max_active;
  2234. int clear_free_space_tree = 0;
  2235. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2236. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2237. if (!tree_root || !chunk_root) {
  2238. err = -ENOMEM;
  2239. goto fail;
  2240. }
  2241. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2242. if (ret) {
  2243. err = ret;
  2244. goto fail;
  2245. }
  2246. ret = setup_bdi(fs_info, &fs_info->bdi);
  2247. if (ret) {
  2248. err = ret;
  2249. goto fail_srcu;
  2250. }
  2251. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2252. if (ret) {
  2253. err = ret;
  2254. goto fail_bdi;
  2255. }
  2256. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2257. (1 + ilog2(nr_cpu_ids));
  2258. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2259. if (ret) {
  2260. err = ret;
  2261. goto fail_dirty_metadata_bytes;
  2262. }
  2263. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2264. if (ret) {
  2265. err = ret;
  2266. goto fail_delalloc_bytes;
  2267. }
  2268. fs_info->btree_inode = new_inode(sb);
  2269. if (!fs_info->btree_inode) {
  2270. err = -ENOMEM;
  2271. goto fail_bio_counter;
  2272. }
  2273. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2274. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2275. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2276. INIT_LIST_HEAD(&fs_info->trans_list);
  2277. INIT_LIST_HEAD(&fs_info->dead_roots);
  2278. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2279. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2280. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2281. spin_lock_init(&fs_info->delalloc_root_lock);
  2282. spin_lock_init(&fs_info->trans_lock);
  2283. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2284. spin_lock_init(&fs_info->delayed_iput_lock);
  2285. spin_lock_init(&fs_info->defrag_inodes_lock);
  2286. spin_lock_init(&fs_info->free_chunk_lock);
  2287. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2288. spin_lock_init(&fs_info->super_lock);
  2289. spin_lock_init(&fs_info->qgroup_op_lock);
  2290. spin_lock_init(&fs_info->buffer_lock);
  2291. spin_lock_init(&fs_info->unused_bgs_lock);
  2292. rwlock_init(&fs_info->tree_mod_log_lock);
  2293. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2294. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2295. mutex_init(&fs_info->reloc_mutex);
  2296. mutex_init(&fs_info->delalloc_root_mutex);
  2297. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2298. seqlock_init(&fs_info->profiles_lock);
  2299. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2300. INIT_LIST_HEAD(&fs_info->space_info);
  2301. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2302. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2303. btrfs_mapping_init(&fs_info->mapping_tree);
  2304. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2305. BTRFS_BLOCK_RSV_GLOBAL);
  2306. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2307. BTRFS_BLOCK_RSV_DELALLOC);
  2308. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2309. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2310. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2311. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2312. BTRFS_BLOCK_RSV_DELOPS);
  2313. atomic_set(&fs_info->nr_async_submits, 0);
  2314. atomic_set(&fs_info->async_delalloc_pages, 0);
  2315. atomic_set(&fs_info->async_submit_draining, 0);
  2316. atomic_set(&fs_info->nr_async_bios, 0);
  2317. atomic_set(&fs_info->defrag_running, 0);
  2318. atomic_set(&fs_info->qgroup_op_seq, 0);
  2319. atomic_set(&fs_info->reada_works_cnt, 0);
  2320. atomic64_set(&fs_info->tree_mod_seq, 0);
  2321. fs_info->fs_frozen = 0;
  2322. fs_info->sb = sb;
  2323. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2324. fs_info->metadata_ratio = 0;
  2325. fs_info->defrag_inodes = RB_ROOT;
  2326. fs_info->free_chunk_space = 0;
  2327. fs_info->tree_mod_log = RB_ROOT;
  2328. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2329. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2330. /* readahead state */
  2331. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2332. spin_lock_init(&fs_info->reada_lock);
  2333. fs_info->thread_pool_size = min_t(unsigned long,
  2334. num_online_cpus() + 2, 8);
  2335. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2336. spin_lock_init(&fs_info->ordered_root_lock);
  2337. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2338. GFP_KERNEL);
  2339. if (!fs_info->delayed_root) {
  2340. err = -ENOMEM;
  2341. goto fail_iput;
  2342. }
  2343. btrfs_init_delayed_root(fs_info->delayed_root);
  2344. btrfs_init_scrub(fs_info);
  2345. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2346. fs_info->check_integrity_print_mask = 0;
  2347. #endif
  2348. btrfs_init_balance(fs_info);
  2349. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2350. sb->s_blocksize = 4096;
  2351. sb->s_blocksize_bits = blksize_bits(4096);
  2352. sb->s_bdi = &fs_info->bdi;
  2353. btrfs_init_btree_inode(fs_info);
  2354. spin_lock_init(&fs_info->block_group_cache_lock);
  2355. fs_info->block_group_cache_tree = RB_ROOT;
  2356. fs_info->first_logical_byte = (u64)-1;
  2357. extent_io_tree_init(&fs_info->freed_extents[0],
  2358. fs_info->btree_inode->i_mapping);
  2359. extent_io_tree_init(&fs_info->freed_extents[1],
  2360. fs_info->btree_inode->i_mapping);
  2361. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2362. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2363. mutex_init(&fs_info->ordered_operations_mutex);
  2364. mutex_init(&fs_info->tree_log_mutex);
  2365. mutex_init(&fs_info->chunk_mutex);
  2366. mutex_init(&fs_info->transaction_kthread_mutex);
  2367. mutex_init(&fs_info->cleaner_mutex);
  2368. mutex_init(&fs_info->volume_mutex);
  2369. mutex_init(&fs_info->ro_block_group_mutex);
  2370. init_rwsem(&fs_info->commit_root_sem);
  2371. init_rwsem(&fs_info->cleanup_work_sem);
  2372. init_rwsem(&fs_info->subvol_sem);
  2373. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2374. btrfs_init_dev_replace_locks(fs_info);
  2375. btrfs_init_qgroup(fs_info);
  2376. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2377. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2378. init_waitqueue_head(&fs_info->transaction_throttle);
  2379. init_waitqueue_head(&fs_info->transaction_wait);
  2380. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2381. init_waitqueue_head(&fs_info->async_submit_wait);
  2382. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2383. /* Usable values until the real ones are cached from the superblock */
  2384. fs_info->nodesize = 4096;
  2385. fs_info->sectorsize = 4096;
  2386. fs_info->stripesize = 4096;
  2387. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2388. if (ret) {
  2389. err = ret;
  2390. goto fail_alloc;
  2391. }
  2392. __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2393. invalidate_bdev(fs_devices->latest_bdev);
  2394. /*
  2395. * Read super block and check the signature bytes only
  2396. */
  2397. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2398. if (IS_ERR(bh)) {
  2399. err = PTR_ERR(bh);
  2400. goto fail_alloc;
  2401. }
  2402. /*
  2403. * We want to check superblock checksum, the type is stored inside.
  2404. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2405. */
  2406. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2407. btrfs_err(fs_info, "superblock checksum mismatch");
  2408. err = -EINVAL;
  2409. brelse(bh);
  2410. goto fail_alloc;
  2411. }
  2412. /*
  2413. * super_copy is zeroed at allocation time and we never touch the
  2414. * following bytes up to INFO_SIZE, the checksum is calculated from
  2415. * the whole block of INFO_SIZE
  2416. */
  2417. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2418. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2419. sizeof(*fs_info->super_for_commit));
  2420. brelse(bh);
  2421. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2422. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2423. if (ret) {
  2424. btrfs_err(fs_info, "superblock contains fatal errors");
  2425. err = -EINVAL;
  2426. goto fail_alloc;
  2427. }
  2428. disk_super = fs_info->super_copy;
  2429. if (!btrfs_super_root(disk_super))
  2430. goto fail_alloc;
  2431. /* check FS state, whether FS is broken. */
  2432. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2433. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2434. /*
  2435. * run through our array of backup supers and setup
  2436. * our ring pointer to the oldest one
  2437. */
  2438. generation = btrfs_super_generation(disk_super);
  2439. find_oldest_super_backup(fs_info, generation);
  2440. /*
  2441. * In the long term, we'll store the compression type in the super
  2442. * block, and it'll be used for per file compression control.
  2443. */
  2444. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2445. ret = btrfs_parse_options(tree_root, options, sb->s_flags);
  2446. if (ret) {
  2447. err = ret;
  2448. goto fail_alloc;
  2449. }
  2450. features = btrfs_super_incompat_flags(disk_super) &
  2451. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2452. if (features) {
  2453. btrfs_err(fs_info,
  2454. "cannot mount because of unsupported optional features (%llx)",
  2455. features);
  2456. err = -EINVAL;
  2457. goto fail_alloc;
  2458. }
  2459. features = btrfs_super_incompat_flags(disk_super);
  2460. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2461. if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2462. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2463. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2464. btrfs_info(fs_info, "has skinny extents");
  2465. /*
  2466. * flag our filesystem as having big metadata blocks if
  2467. * they are bigger than the page size
  2468. */
  2469. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2470. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2471. btrfs_info(fs_info,
  2472. "flagging fs with big metadata feature");
  2473. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2474. }
  2475. nodesize = btrfs_super_nodesize(disk_super);
  2476. sectorsize = btrfs_super_sectorsize(disk_super);
  2477. stripesize = sectorsize;
  2478. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2479. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2480. /* Cache block sizes */
  2481. fs_info->nodesize = nodesize;
  2482. fs_info->sectorsize = sectorsize;
  2483. fs_info->stripesize = stripesize;
  2484. /*
  2485. * mixed block groups end up with duplicate but slightly offset
  2486. * extent buffers for the same range. It leads to corruptions
  2487. */
  2488. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2489. (sectorsize != nodesize)) {
  2490. btrfs_err(fs_info,
  2491. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2492. nodesize, sectorsize);
  2493. goto fail_alloc;
  2494. }
  2495. /*
  2496. * Needn't use the lock because there is no other task which will
  2497. * update the flag.
  2498. */
  2499. btrfs_set_super_incompat_flags(disk_super, features);
  2500. features = btrfs_super_compat_ro_flags(disk_super) &
  2501. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2502. if (!(sb->s_flags & MS_RDONLY) && features) {
  2503. btrfs_err(fs_info,
  2504. "cannot mount read-write because of unsupported optional features (%llx)",
  2505. features);
  2506. err = -EINVAL;
  2507. goto fail_alloc;
  2508. }
  2509. max_active = fs_info->thread_pool_size;
  2510. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2511. if (ret) {
  2512. err = ret;
  2513. goto fail_sb_buffer;
  2514. }
  2515. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2516. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2517. SZ_4M / PAGE_SIZE);
  2518. sb->s_blocksize = sectorsize;
  2519. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2520. mutex_lock(&fs_info->chunk_mutex);
  2521. ret = btrfs_read_sys_array(fs_info);
  2522. mutex_unlock(&fs_info->chunk_mutex);
  2523. if (ret) {
  2524. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2525. goto fail_sb_buffer;
  2526. }
  2527. generation = btrfs_super_chunk_root_generation(disk_super);
  2528. __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2529. chunk_root->node = read_tree_block(chunk_root,
  2530. btrfs_super_chunk_root(disk_super),
  2531. generation);
  2532. if (IS_ERR(chunk_root->node) ||
  2533. !extent_buffer_uptodate(chunk_root->node)) {
  2534. btrfs_err(fs_info, "failed to read chunk root");
  2535. if (!IS_ERR(chunk_root->node))
  2536. free_extent_buffer(chunk_root->node);
  2537. chunk_root->node = NULL;
  2538. goto fail_tree_roots;
  2539. }
  2540. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2541. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2542. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2543. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2544. ret = btrfs_read_chunk_tree(fs_info);
  2545. if (ret) {
  2546. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2547. goto fail_tree_roots;
  2548. }
  2549. /*
  2550. * keep the device that is marked to be the target device for the
  2551. * dev_replace procedure
  2552. */
  2553. btrfs_close_extra_devices(fs_devices, 0);
  2554. if (!fs_devices->latest_bdev) {
  2555. btrfs_err(fs_info, "failed to read devices");
  2556. goto fail_tree_roots;
  2557. }
  2558. retry_root_backup:
  2559. generation = btrfs_super_generation(disk_super);
  2560. tree_root->node = read_tree_block(tree_root,
  2561. btrfs_super_root(disk_super),
  2562. generation);
  2563. if (IS_ERR(tree_root->node) ||
  2564. !extent_buffer_uptodate(tree_root->node)) {
  2565. btrfs_warn(fs_info, "failed to read tree root");
  2566. if (!IS_ERR(tree_root->node))
  2567. free_extent_buffer(tree_root->node);
  2568. tree_root->node = NULL;
  2569. goto recovery_tree_root;
  2570. }
  2571. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2572. tree_root->commit_root = btrfs_root_node(tree_root);
  2573. btrfs_set_root_refs(&tree_root->root_item, 1);
  2574. mutex_lock(&tree_root->objectid_mutex);
  2575. ret = btrfs_find_highest_objectid(tree_root,
  2576. &tree_root->highest_objectid);
  2577. if (ret) {
  2578. mutex_unlock(&tree_root->objectid_mutex);
  2579. goto recovery_tree_root;
  2580. }
  2581. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2582. mutex_unlock(&tree_root->objectid_mutex);
  2583. ret = btrfs_read_roots(fs_info);
  2584. if (ret)
  2585. goto recovery_tree_root;
  2586. fs_info->generation = generation;
  2587. fs_info->last_trans_committed = generation;
  2588. ret = btrfs_recover_balance(fs_info);
  2589. if (ret) {
  2590. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2591. goto fail_block_groups;
  2592. }
  2593. ret = btrfs_init_dev_stats(fs_info);
  2594. if (ret) {
  2595. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2596. goto fail_block_groups;
  2597. }
  2598. ret = btrfs_init_dev_replace(fs_info);
  2599. if (ret) {
  2600. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2601. goto fail_block_groups;
  2602. }
  2603. btrfs_close_extra_devices(fs_devices, 1);
  2604. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2605. if (ret) {
  2606. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2607. ret);
  2608. goto fail_block_groups;
  2609. }
  2610. ret = btrfs_sysfs_add_device(fs_devices);
  2611. if (ret) {
  2612. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2613. ret);
  2614. goto fail_fsdev_sysfs;
  2615. }
  2616. ret = btrfs_sysfs_add_mounted(fs_info);
  2617. if (ret) {
  2618. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2619. goto fail_fsdev_sysfs;
  2620. }
  2621. ret = btrfs_init_space_info(fs_info);
  2622. if (ret) {
  2623. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2624. goto fail_sysfs;
  2625. }
  2626. ret = btrfs_read_block_groups(fs_info);
  2627. if (ret) {
  2628. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2629. goto fail_sysfs;
  2630. }
  2631. fs_info->num_tolerated_disk_barrier_failures =
  2632. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2633. if (fs_info->fs_devices->missing_devices >
  2634. fs_info->num_tolerated_disk_barrier_failures &&
  2635. !(sb->s_flags & MS_RDONLY)) {
  2636. btrfs_warn(fs_info,
  2637. "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
  2638. fs_info->fs_devices->missing_devices,
  2639. fs_info->num_tolerated_disk_barrier_failures);
  2640. goto fail_sysfs;
  2641. }
  2642. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2643. "btrfs-cleaner");
  2644. if (IS_ERR(fs_info->cleaner_kthread))
  2645. goto fail_sysfs;
  2646. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2647. tree_root,
  2648. "btrfs-transaction");
  2649. if (IS_ERR(fs_info->transaction_kthread))
  2650. goto fail_cleaner;
  2651. if (!btrfs_test_opt(fs_info, SSD) &&
  2652. !btrfs_test_opt(fs_info, NOSSD) &&
  2653. !fs_info->fs_devices->rotating) {
  2654. btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
  2655. btrfs_set_opt(fs_info->mount_opt, SSD);
  2656. }
  2657. /*
  2658. * Mount does not set all options immediately, we can do it now and do
  2659. * not have to wait for transaction commit
  2660. */
  2661. btrfs_apply_pending_changes(fs_info);
  2662. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2663. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
  2664. ret = btrfsic_mount(tree_root, fs_devices,
  2665. btrfs_test_opt(fs_info,
  2666. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2667. 1 : 0,
  2668. fs_info->check_integrity_print_mask);
  2669. if (ret)
  2670. btrfs_warn(fs_info,
  2671. "failed to initialize integrity check module: %d",
  2672. ret);
  2673. }
  2674. #endif
  2675. ret = btrfs_read_qgroup_config(fs_info);
  2676. if (ret)
  2677. goto fail_trans_kthread;
  2678. /* do not make disk changes in broken FS or nologreplay is given */
  2679. if (btrfs_super_log_root(disk_super) != 0 &&
  2680. !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
  2681. ret = btrfs_replay_log(fs_info, fs_devices);
  2682. if (ret) {
  2683. err = ret;
  2684. goto fail_qgroup;
  2685. }
  2686. }
  2687. ret = btrfs_find_orphan_roots(fs_info);
  2688. if (ret)
  2689. goto fail_qgroup;
  2690. if (!(sb->s_flags & MS_RDONLY)) {
  2691. ret = btrfs_cleanup_fs_roots(fs_info);
  2692. if (ret)
  2693. goto fail_qgroup;
  2694. mutex_lock(&fs_info->cleaner_mutex);
  2695. ret = btrfs_recover_relocation(tree_root);
  2696. mutex_unlock(&fs_info->cleaner_mutex);
  2697. if (ret < 0) {
  2698. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2699. ret);
  2700. err = -EINVAL;
  2701. goto fail_qgroup;
  2702. }
  2703. }
  2704. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2705. location.type = BTRFS_ROOT_ITEM_KEY;
  2706. location.offset = 0;
  2707. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2708. if (IS_ERR(fs_info->fs_root)) {
  2709. err = PTR_ERR(fs_info->fs_root);
  2710. goto fail_qgroup;
  2711. }
  2712. if (sb->s_flags & MS_RDONLY)
  2713. return 0;
  2714. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2715. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2716. clear_free_space_tree = 1;
  2717. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2718. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2719. btrfs_warn(fs_info, "free space tree is invalid");
  2720. clear_free_space_tree = 1;
  2721. }
  2722. if (clear_free_space_tree) {
  2723. btrfs_info(fs_info, "clearing free space tree");
  2724. ret = btrfs_clear_free_space_tree(fs_info);
  2725. if (ret) {
  2726. btrfs_warn(fs_info,
  2727. "failed to clear free space tree: %d", ret);
  2728. close_ctree(fs_info);
  2729. return ret;
  2730. }
  2731. }
  2732. if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
  2733. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2734. btrfs_info(fs_info, "creating free space tree");
  2735. ret = btrfs_create_free_space_tree(fs_info);
  2736. if (ret) {
  2737. btrfs_warn(fs_info,
  2738. "failed to create free space tree: %d", ret);
  2739. close_ctree(fs_info);
  2740. return ret;
  2741. }
  2742. }
  2743. down_read(&fs_info->cleanup_work_sem);
  2744. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2745. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2746. up_read(&fs_info->cleanup_work_sem);
  2747. close_ctree(fs_info);
  2748. return ret;
  2749. }
  2750. up_read(&fs_info->cleanup_work_sem);
  2751. ret = btrfs_resume_balance_async(fs_info);
  2752. if (ret) {
  2753. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2754. close_ctree(fs_info);
  2755. return ret;
  2756. }
  2757. ret = btrfs_resume_dev_replace_async(fs_info);
  2758. if (ret) {
  2759. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2760. close_ctree(fs_info);
  2761. return ret;
  2762. }
  2763. btrfs_qgroup_rescan_resume(fs_info);
  2764. if (!fs_info->uuid_root) {
  2765. btrfs_info(fs_info, "creating UUID tree");
  2766. ret = btrfs_create_uuid_tree(fs_info);
  2767. if (ret) {
  2768. btrfs_warn(fs_info,
  2769. "failed to create the UUID tree: %d", ret);
  2770. close_ctree(fs_info);
  2771. return ret;
  2772. }
  2773. } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
  2774. fs_info->generation !=
  2775. btrfs_super_uuid_tree_generation(disk_super)) {
  2776. btrfs_info(fs_info, "checking UUID tree");
  2777. ret = btrfs_check_uuid_tree(fs_info);
  2778. if (ret) {
  2779. btrfs_warn(fs_info,
  2780. "failed to check the UUID tree: %d", ret);
  2781. close_ctree(fs_info);
  2782. return ret;
  2783. }
  2784. } else {
  2785. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2786. }
  2787. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2788. /*
  2789. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2790. * no need to keep the flag
  2791. */
  2792. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2793. return 0;
  2794. fail_qgroup:
  2795. btrfs_free_qgroup_config(fs_info);
  2796. fail_trans_kthread:
  2797. kthread_stop(fs_info->transaction_kthread);
  2798. btrfs_cleanup_transaction(fs_info->tree_root);
  2799. btrfs_free_fs_roots(fs_info);
  2800. fail_cleaner:
  2801. kthread_stop(fs_info->cleaner_kthread);
  2802. /*
  2803. * make sure we're done with the btree inode before we stop our
  2804. * kthreads
  2805. */
  2806. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2807. fail_sysfs:
  2808. btrfs_sysfs_remove_mounted(fs_info);
  2809. fail_fsdev_sysfs:
  2810. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2811. fail_block_groups:
  2812. btrfs_put_block_group_cache(fs_info);
  2813. btrfs_free_block_groups(fs_info);
  2814. fail_tree_roots:
  2815. free_root_pointers(fs_info, 1);
  2816. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2817. fail_sb_buffer:
  2818. btrfs_stop_all_workers(fs_info);
  2819. fail_alloc:
  2820. fail_iput:
  2821. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2822. iput(fs_info->btree_inode);
  2823. fail_bio_counter:
  2824. percpu_counter_destroy(&fs_info->bio_counter);
  2825. fail_delalloc_bytes:
  2826. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2827. fail_dirty_metadata_bytes:
  2828. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2829. fail_bdi:
  2830. bdi_destroy(&fs_info->bdi);
  2831. fail_srcu:
  2832. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2833. fail:
  2834. btrfs_free_stripe_hash_table(fs_info);
  2835. btrfs_close_devices(fs_info->fs_devices);
  2836. return err;
  2837. recovery_tree_root:
  2838. if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
  2839. goto fail_tree_roots;
  2840. free_root_pointers(fs_info, 0);
  2841. /* don't use the log in recovery mode, it won't be valid */
  2842. btrfs_set_super_log_root(disk_super, 0);
  2843. /* we can't trust the free space cache either */
  2844. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2845. ret = next_root_backup(fs_info, fs_info->super_copy,
  2846. &num_backups_tried, &backup_index);
  2847. if (ret == -1)
  2848. goto fail_block_groups;
  2849. goto retry_root_backup;
  2850. }
  2851. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2852. {
  2853. if (uptodate) {
  2854. set_buffer_uptodate(bh);
  2855. } else {
  2856. struct btrfs_device *device = (struct btrfs_device *)
  2857. bh->b_private;
  2858. btrfs_warn_rl_in_rcu(device->fs_info,
  2859. "lost page write due to IO error on %s",
  2860. rcu_str_deref(device->name));
  2861. /* note, we don't set_buffer_write_io_error because we have
  2862. * our own ways of dealing with the IO errors
  2863. */
  2864. clear_buffer_uptodate(bh);
  2865. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2866. }
  2867. unlock_buffer(bh);
  2868. put_bh(bh);
  2869. }
  2870. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2871. struct buffer_head **bh_ret)
  2872. {
  2873. struct buffer_head *bh;
  2874. struct btrfs_super_block *super;
  2875. u64 bytenr;
  2876. bytenr = btrfs_sb_offset(copy_num);
  2877. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2878. return -EINVAL;
  2879. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2880. /*
  2881. * If we fail to read from the underlying devices, as of now
  2882. * the best option we have is to mark it EIO.
  2883. */
  2884. if (!bh)
  2885. return -EIO;
  2886. super = (struct btrfs_super_block *)bh->b_data;
  2887. if (btrfs_super_bytenr(super) != bytenr ||
  2888. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2889. brelse(bh);
  2890. return -EINVAL;
  2891. }
  2892. *bh_ret = bh;
  2893. return 0;
  2894. }
  2895. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2896. {
  2897. struct buffer_head *bh;
  2898. struct buffer_head *latest = NULL;
  2899. struct btrfs_super_block *super;
  2900. int i;
  2901. u64 transid = 0;
  2902. int ret = -EINVAL;
  2903. /* we would like to check all the supers, but that would make
  2904. * a btrfs mount succeed after a mkfs from a different FS.
  2905. * So, we need to add a special mount option to scan for
  2906. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2907. */
  2908. for (i = 0; i < 1; i++) {
  2909. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2910. if (ret)
  2911. continue;
  2912. super = (struct btrfs_super_block *)bh->b_data;
  2913. if (!latest || btrfs_super_generation(super) > transid) {
  2914. brelse(latest);
  2915. latest = bh;
  2916. transid = btrfs_super_generation(super);
  2917. } else {
  2918. brelse(bh);
  2919. }
  2920. }
  2921. if (!latest)
  2922. return ERR_PTR(ret);
  2923. return latest;
  2924. }
  2925. /*
  2926. * this should be called twice, once with wait == 0 and
  2927. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2928. * we write are pinned.
  2929. *
  2930. * They are released when wait == 1 is done.
  2931. * max_mirrors must be the same for both runs, and it indicates how
  2932. * many supers on this one device should be written.
  2933. *
  2934. * max_mirrors == 0 means to write them all.
  2935. */
  2936. static int write_dev_supers(struct btrfs_device *device,
  2937. struct btrfs_super_block *sb,
  2938. int do_barriers, int wait, int max_mirrors)
  2939. {
  2940. struct buffer_head *bh;
  2941. int i;
  2942. int ret;
  2943. int errors = 0;
  2944. u32 crc;
  2945. u64 bytenr;
  2946. if (max_mirrors == 0)
  2947. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2948. for (i = 0; i < max_mirrors; i++) {
  2949. bytenr = btrfs_sb_offset(i);
  2950. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2951. device->commit_total_bytes)
  2952. break;
  2953. if (wait) {
  2954. bh = __find_get_block(device->bdev, bytenr / 4096,
  2955. BTRFS_SUPER_INFO_SIZE);
  2956. if (!bh) {
  2957. errors++;
  2958. continue;
  2959. }
  2960. wait_on_buffer(bh);
  2961. if (!buffer_uptodate(bh))
  2962. errors++;
  2963. /* drop our reference */
  2964. brelse(bh);
  2965. /* drop the reference from the wait == 0 run */
  2966. brelse(bh);
  2967. continue;
  2968. } else {
  2969. btrfs_set_super_bytenr(sb, bytenr);
  2970. crc = ~(u32)0;
  2971. crc = btrfs_csum_data((char *)sb +
  2972. BTRFS_CSUM_SIZE, crc,
  2973. BTRFS_SUPER_INFO_SIZE -
  2974. BTRFS_CSUM_SIZE);
  2975. btrfs_csum_final(crc, sb->csum);
  2976. /*
  2977. * one reference for us, and we leave it for the
  2978. * caller
  2979. */
  2980. bh = __getblk(device->bdev, bytenr / 4096,
  2981. BTRFS_SUPER_INFO_SIZE);
  2982. if (!bh) {
  2983. btrfs_err(device->fs_info,
  2984. "couldn't get super buffer head for bytenr %llu",
  2985. bytenr);
  2986. errors++;
  2987. continue;
  2988. }
  2989. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2990. /* one reference for submit_bh */
  2991. get_bh(bh);
  2992. set_buffer_uptodate(bh);
  2993. lock_buffer(bh);
  2994. bh->b_end_io = btrfs_end_buffer_write_sync;
  2995. bh->b_private = device;
  2996. }
  2997. /*
  2998. * we fua the first super. The others we allow
  2999. * to go down lazy.
  3000. */
  3001. if (i == 0)
  3002. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
  3003. else
  3004. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
  3005. if (ret)
  3006. errors++;
  3007. }
  3008. return errors < i ? 0 : -1;
  3009. }
  3010. /*
  3011. * endio for the write_dev_flush, this will wake anyone waiting
  3012. * for the barrier when it is done
  3013. */
  3014. static void btrfs_end_empty_barrier(struct bio *bio)
  3015. {
  3016. if (bio->bi_private)
  3017. complete(bio->bi_private);
  3018. bio_put(bio);
  3019. }
  3020. /*
  3021. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  3022. * sent down. With wait == 1, it waits for the previous flush.
  3023. *
  3024. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  3025. * capable
  3026. */
  3027. static int write_dev_flush(struct btrfs_device *device, int wait)
  3028. {
  3029. struct bio *bio;
  3030. int ret = 0;
  3031. if (device->nobarriers)
  3032. return 0;
  3033. if (wait) {
  3034. bio = device->flush_bio;
  3035. if (!bio)
  3036. return 0;
  3037. wait_for_completion(&device->flush_wait);
  3038. if (bio->bi_error) {
  3039. ret = bio->bi_error;
  3040. btrfs_dev_stat_inc_and_print(device,
  3041. BTRFS_DEV_STAT_FLUSH_ERRS);
  3042. }
  3043. /* drop the reference from the wait == 0 run */
  3044. bio_put(bio);
  3045. device->flush_bio = NULL;
  3046. return ret;
  3047. }
  3048. /*
  3049. * one reference for us, and we leave it for the
  3050. * caller
  3051. */
  3052. device->flush_bio = NULL;
  3053. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  3054. if (!bio)
  3055. return -ENOMEM;
  3056. bio->bi_end_io = btrfs_end_empty_barrier;
  3057. bio->bi_bdev = device->bdev;
  3058. bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
  3059. init_completion(&device->flush_wait);
  3060. bio->bi_private = &device->flush_wait;
  3061. device->flush_bio = bio;
  3062. bio_get(bio);
  3063. btrfsic_submit_bio(bio);
  3064. return 0;
  3065. }
  3066. /*
  3067. * send an empty flush down to each device in parallel,
  3068. * then wait for them
  3069. */
  3070. static int barrier_all_devices(struct btrfs_fs_info *info)
  3071. {
  3072. struct list_head *head;
  3073. struct btrfs_device *dev;
  3074. int errors_send = 0;
  3075. int errors_wait = 0;
  3076. int ret;
  3077. /* send down all the barriers */
  3078. head = &info->fs_devices->devices;
  3079. list_for_each_entry_rcu(dev, head, dev_list) {
  3080. if (dev->missing)
  3081. continue;
  3082. if (!dev->bdev) {
  3083. errors_send++;
  3084. continue;
  3085. }
  3086. if (!dev->in_fs_metadata || !dev->writeable)
  3087. continue;
  3088. ret = write_dev_flush(dev, 0);
  3089. if (ret)
  3090. errors_send++;
  3091. }
  3092. /* wait for all the barriers */
  3093. list_for_each_entry_rcu(dev, head, dev_list) {
  3094. if (dev->missing)
  3095. continue;
  3096. if (!dev->bdev) {
  3097. errors_wait++;
  3098. continue;
  3099. }
  3100. if (!dev->in_fs_metadata || !dev->writeable)
  3101. continue;
  3102. ret = write_dev_flush(dev, 1);
  3103. if (ret)
  3104. errors_wait++;
  3105. }
  3106. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3107. errors_wait > info->num_tolerated_disk_barrier_failures)
  3108. return -EIO;
  3109. return 0;
  3110. }
  3111. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3112. {
  3113. int raid_type;
  3114. int min_tolerated = INT_MAX;
  3115. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3116. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3117. min_tolerated = min(min_tolerated,
  3118. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3119. tolerated_failures);
  3120. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3121. if (raid_type == BTRFS_RAID_SINGLE)
  3122. continue;
  3123. if (!(flags & btrfs_raid_group[raid_type]))
  3124. continue;
  3125. min_tolerated = min(min_tolerated,
  3126. btrfs_raid_array[raid_type].
  3127. tolerated_failures);
  3128. }
  3129. if (min_tolerated == INT_MAX) {
  3130. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  3131. min_tolerated = 0;
  3132. }
  3133. return min_tolerated;
  3134. }
  3135. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3136. struct btrfs_fs_info *fs_info)
  3137. {
  3138. struct btrfs_ioctl_space_info space;
  3139. struct btrfs_space_info *sinfo;
  3140. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3141. BTRFS_BLOCK_GROUP_SYSTEM,
  3142. BTRFS_BLOCK_GROUP_METADATA,
  3143. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3144. int i;
  3145. int c;
  3146. int num_tolerated_disk_barrier_failures =
  3147. (int)fs_info->fs_devices->num_devices;
  3148. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3149. struct btrfs_space_info *tmp;
  3150. sinfo = NULL;
  3151. rcu_read_lock();
  3152. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3153. if (tmp->flags == types[i]) {
  3154. sinfo = tmp;
  3155. break;
  3156. }
  3157. }
  3158. rcu_read_unlock();
  3159. if (!sinfo)
  3160. continue;
  3161. down_read(&sinfo->groups_sem);
  3162. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3163. u64 flags;
  3164. if (list_empty(&sinfo->block_groups[c]))
  3165. continue;
  3166. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3167. &space);
  3168. if (space.total_bytes == 0 || space.used_bytes == 0)
  3169. continue;
  3170. flags = space.flags;
  3171. num_tolerated_disk_barrier_failures = min(
  3172. num_tolerated_disk_barrier_failures,
  3173. btrfs_get_num_tolerated_disk_barrier_failures(
  3174. flags));
  3175. }
  3176. up_read(&sinfo->groups_sem);
  3177. }
  3178. return num_tolerated_disk_barrier_failures;
  3179. }
  3180. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3181. {
  3182. struct btrfs_fs_info *fs_info = root->fs_info;
  3183. struct list_head *head;
  3184. struct btrfs_device *dev;
  3185. struct btrfs_super_block *sb;
  3186. struct btrfs_dev_item *dev_item;
  3187. int ret;
  3188. int do_barriers;
  3189. int max_errors;
  3190. int total_errors = 0;
  3191. u64 flags;
  3192. do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
  3193. backup_super_roots(fs_info);
  3194. sb = fs_info->super_for_commit;
  3195. dev_item = &sb->dev_item;
  3196. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3197. head = &fs_info->fs_devices->devices;
  3198. max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
  3199. if (do_barriers) {
  3200. ret = barrier_all_devices(fs_info);
  3201. if (ret) {
  3202. mutex_unlock(
  3203. &fs_info->fs_devices->device_list_mutex);
  3204. btrfs_handle_fs_error(fs_info, ret,
  3205. "errors while submitting device barriers.");
  3206. return ret;
  3207. }
  3208. }
  3209. list_for_each_entry_rcu(dev, head, dev_list) {
  3210. if (!dev->bdev) {
  3211. total_errors++;
  3212. continue;
  3213. }
  3214. if (!dev->in_fs_metadata || !dev->writeable)
  3215. continue;
  3216. btrfs_set_stack_device_generation(dev_item, 0);
  3217. btrfs_set_stack_device_type(dev_item, dev->type);
  3218. btrfs_set_stack_device_id(dev_item, dev->devid);
  3219. btrfs_set_stack_device_total_bytes(dev_item,
  3220. dev->commit_total_bytes);
  3221. btrfs_set_stack_device_bytes_used(dev_item,
  3222. dev->commit_bytes_used);
  3223. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3224. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3225. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3226. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3227. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3228. flags = btrfs_super_flags(sb);
  3229. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3230. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3231. if (ret)
  3232. total_errors++;
  3233. }
  3234. if (total_errors > max_errors) {
  3235. btrfs_err(fs_info, "%d errors while writing supers",
  3236. total_errors);
  3237. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3238. /* FUA is masked off if unsupported and can't be the reason */
  3239. btrfs_handle_fs_error(fs_info, -EIO,
  3240. "%d errors while writing supers",
  3241. total_errors);
  3242. return -EIO;
  3243. }
  3244. total_errors = 0;
  3245. list_for_each_entry_rcu(dev, head, dev_list) {
  3246. if (!dev->bdev)
  3247. continue;
  3248. if (!dev->in_fs_metadata || !dev->writeable)
  3249. continue;
  3250. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3251. if (ret)
  3252. total_errors++;
  3253. }
  3254. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3255. if (total_errors > max_errors) {
  3256. btrfs_handle_fs_error(fs_info, -EIO,
  3257. "%d errors while writing supers",
  3258. total_errors);
  3259. return -EIO;
  3260. }
  3261. return 0;
  3262. }
  3263. int write_ctree_super(struct btrfs_trans_handle *trans,
  3264. struct btrfs_root *root, int max_mirrors)
  3265. {
  3266. return write_all_supers(root, max_mirrors);
  3267. }
  3268. /* Drop a fs root from the radix tree and free it. */
  3269. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3270. struct btrfs_root *root)
  3271. {
  3272. spin_lock(&fs_info->fs_roots_radix_lock);
  3273. radix_tree_delete(&fs_info->fs_roots_radix,
  3274. (unsigned long)root->root_key.objectid);
  3275. spin_unlock(&fs_info->fs_roots_radix_lock);
  3276. if (btrfs_root_refs(&root->root_item) == 0)
  3277. synchronize_srcu(&fs_info->subvol_srcu);
  3278. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3279. btrfs_free_log(NULL, root);
  3280. if (root->reloc_root) {
  3281. free_extent_buffer(root->reloc_root->node);
  3282. free_extent_buffer(root->reloc_root->commit_root);
  3283. btrfs_put_fs_root(root->reloc_root);
  3284. root->reloc_root = NULL;
  3285. }
  3286. }
  3287. if (root->free_ino_pinned)
  3288. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3289. if (root->free_ino_ctl)
  3290. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3291. free_fs_root(root);
  3292. }
  3293. static void free_fs_root(struct btrfs_root *root)
  3294. {
  3295. iput(root->ino_cache_inode);
  3296. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3297. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3298. root->orphan_block_rsv = NULL;
  3299. if (root->anon_dev)
  3300. free_anon_bdev(root->anon_dev);
  3301. if (root->subv_writers)
  3302. btrfs_free_subvolume_writers(root->subv_writers);
  3303. free_extent_buffer(root->node);
  3304. free_extent_buffer(root->commit_root);
  3305. kfree(root->free_ino_ctl);
  3306. kfree(root->free_ino_pinned);
  3307. kfree(root->name);
  3308. btrfs_put_fs_root(root);
  3309. }
  3310. void btrfs_free_fs_root(struct btrfs_root *root)
  3311. {
  3312. free_fs_root(root);
  3313. }
  3314. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3315. {
  3316. u64 root_objectid = 0;
  3317. struct btrfs_root *gang[8];
  3318. int i = 0;
  3319. int err = 0;
  3320. unsigned int ret = 0;
  3321. int index;
  3322. while (1) {
  3323. index = srcu_read_lock(&fs_info->subvol_srcu);
  3324. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3325. (void **)gang, root_objectid,
  3326. ARRAY_SIZE(gang));
  3327. if (!ret) {
  3328. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3329. break;
  3330. }
  3331. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3332. for (i = 0; i < ret; i++) {
  3333. /* Avoid to grab roots in dead_roots */
  3334. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3335. gang[i] = NULL;
  3336. continue;
  3337. }
  3338. /* grab all the search result for later use */
  3339. gang[i] = btrfs_grab_fs_root(gang[i]);
  3340. }
  3341. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3342. for (i = 0; i < ret; i++) {
  3343. if (!gang[i])
  3344. continue;
  3345. root_objectid = gang[i]->root_key.objectid;
  3346. err = btrfs_orphan_cleanup(gang[i]);
  3347. if (err)
  3348. break;
  3349. btrfs_put_fs_root(gang[i]);
  3350. }
  3351. root_objectid++;
  3352. }
  3353. /* release the uncleaned roots due to error */
  3354. for (; i < ret; i++) {
  3355. if (gang[i])
  3356. btrfs_put_fs_root(gang[i]);
  3357. }
  3358. return err;
  3359. }
  3360. int btrfs_commit_super(struct btrfs_fs_info *fs_info)
  3361. {
  3362. struct btrfs_root *root = fs_info->tree_root;
  3363. struct btrfs_trans_handle *trans;
  3364. mutex_lock(&fs_info->cleaner_mutex);
  3365. btrfs_run_delayed_iputs(root);
  3366. mutex_unlock(&fs_info->cleaner_mutex);
  3367. wake_up_process(fs_info->cleaner_kthread);
  3368. /* wait until ongoing cleanup work done */
  3369. down_write(&fs_info->cleanup_work_sem);
  3370. up_write(&fs_info->cleanup_work_sem);
  3371. trans = btrfs_join_transaction(root);
  3372. if (IS_ERR(trans))
  3373. return PTR_ERR(trans);
  3374. return btrfs_commit_transaction(trans, root);
  3375. }
  3376. void close_ctree(struct btrfs_fs_info *fs_info)
  3377. {
  3378. struct btrfs_root *root = fs_info->tree_root;
  3379. int ret;
  3380. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3381. /* wait for the qgroup rescan worker to stop */
  3382. btrfs_qgroup_wait_for_completion(fs_info, false);
  3383. /* wait for the uuid_scan task to finish */
  3384. down(&fs_info->uuid_tree_rescan_sem);
  3385. /* avoid complains from lockdep et al., set sem back to initial state */
  3386. up(&fs_info->uuid_tree_rescan_sem);
  3387. /* pause restriper - we want to resume on mount */
  3388. btrfs_pause_balance(fs_info);
  3389. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3390. btrfs_scrub_cancel(fs_info);
  3391. /* wait for any defraggers to finish */
  3392. wait_event(fs_info->transaction_wait,
  3393. (atomic_read(&fs_info->defrag_running) == 0));
  3394. /* clear out the rbtree of defraggable inodes */
  3395. btrfs_cleanup_defrag_inodes(fs_info);
  3396. cancel_work_sync(&fs_info->async_reclaim_work);
  3397. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3398. /*
  3399. * If the cleaner thread is stopped and there are
  3400. * block groups queued for removal, the deletion will be
  3401. * skipped when we quit the cleaner thread.
  3402. */
  3403. btrfs_delete_unused_bgs(fs_info);
  3404. ret = btrfs_commit_super(fs_info);
  3405. if (ret)
  3406. btrfs_err(fs_info, "commit super ret %d", ret);
  3407. }
  3408. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3409. btrfs_error_commit_super(root);
  3410. kthread_stop(fs_info->transaction_kthread);
  3411. kthread_stop(fs_info->cleaner_kthread);
  3412. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3413. btrfs_free_qgroup_config(fs_info);
  3414. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3415. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3416. percpu_counter_sum(&fs_info->delalloc_bytes));
  3417. }
  3418. btrfs_sysfs_remove_mounted(fs_info);
  3419. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3420. btrfs_free_fs_roots(fs_info);
  3421. btrfs_put_block_group_cache(fs_info);
  3422. btrfs_free_block_groups(fs_info);
  3423. /*
  3424. * we must make sure there is not any read request to
  3425. * submit after we stopping all workers.
  3426. */
  3427. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3428. btrfs_stop_all_workers(fs_info);
  3429. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3430. free_root_pointers(fs_info, 1);
  3431. iput(fs_info->btree_inode);
  3432. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3433. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
  3434. btrfsic_unmount(root, fs_info->fs_devices);
  3435. #endif
  3436. btrfs_close_devices(fs_info->fs_devices);
  3437. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3438. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3439. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3440. percpu_counter_destroy(&fs_info->bio_counter);
  3441. bdi_destroy(&fs_info->bdi);
  3442. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3443. btrfs_free_stripe_hash_table(fs_info);
  3444. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3445. root->orphan_block_rsv = NULL;
  3446. lock_chunks(fs_info);
  3447. while (!list_empty(&fs_info->pinned_chunks)) {
  3448. struct extent_map *em;
  3449. em = list_first_entry(&fs_info->pinned_chunks,
  3450. struct extent_map, list);
  3451. list_del_init(&em->list);
  3452. free_extent_map(em);
  3453. }
  3454. unlock_chunks(fs_info);
  3455. }
  3456. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3457. int atomic)
  3458. {
  3459. int ret;
  3460. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3461. ret = extent_buffer_uptodate(buf);
  3462. if (!ret)
  3463. return ret;
  3464. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3465. parent_transid, atomic);
  3466. if (ret == -EAGAIN)
  3467. return ret;
  3468. return !ret;
  3469. }
  3470. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3471. {
  3472. struct btrfs_fs_info *fs_info;
  3473. struct btrfs_root *root;
  3474. u64 transid = btrfs_header_generation(buf);
  3475. int was_dirty;
  3476. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3477. /*
  3478. * This is a fast path so only do this check if we have sanity tests
  3479. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3480. * outside of the sanity tests.
  3481. */
  3482. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3483. return;
  3484. #endif
  3485. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3486. fs_info = root->fs_info;
  3487. btrfs_assert_tree_locked(buf);
  3488. if (transid != fs_info->generation)
  3489. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3490. buf->start, transid, fs_info->generation);
  3491. was_dirty = set_extent_buffer_dirty(buf);
  3492. if (!was_dirty)
  3493. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  3494. buf->len,
  3495. fs_info->dirty_metadata_batch);
  3496. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3497. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3498. btrfs_print_leaf(root, buf);
  3499. ASSERT(0);
  3500. }
  3501. #endif
  3502. }
  3503. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3504. int flush_delayed)
  3505. {
  3506. struct btrfs_fs_info *fs_info = root->fs_info;
  3507. /*
  3508. * looks as though older kernels can get into trouble with
  3509. * this code, they end up stuck in balance_dirty_pages forever
  3510. */
  3511. int ret;
  3512. if (current->flags & PF_MEMALLOC)
  3513. return;
  3514. if (flush_delayed)
  3515. btrfs_balance_delayed_items(root);
  3516. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  3517. BTRFS_DIRTY_METADATA_THRESH);
  3518. if (ret > 0) {
  3519. balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
  3520. }
  3521. }
  3522. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3523. {
  3524. __btrfs_btree_balance_dirty(root, 1);
  3525. }
  3526. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3527. {
  3528. __btrfs_btree_balance_dirty(root, 0);
  3529. }
  3530. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3531. {
  3532. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3533. return btree_read_extent_buffer_pages(root, buf, parent_transid);
  3534. }
  3535. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3536. int read_only)
  3537. {
  3538. struct btrfs_super_block *sb = fs_info->super_copy;
  3539. u64 nodesize = btrfs_super_nodesize(sb);
  3540. u64 sectorsize = btrfs_super_sectorsize(sb);
  3541. int ret = 0;
  3542. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3543. btrfs_err(fs_info, "no valid FS found");
  3544. ret = -EINVAL;
  3545. }
  3546. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3547. btrfs_warn(fs_info, "unrecognized super flag: %llu",
  3548. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3549. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3550. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3551. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3552. ret = -EINVAL;
  3553. }
  3554. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3555. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3556. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3557. ret = -EINVAL;
  3558. }
  3559. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3560. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3561. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3562. ret = -EINVAL;
  3563. }
  3564. /*
  3565. * Check sectorsize and nodesize first, other check will need it.
  3566. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3567. */
  3568. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3569. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3570. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3571. ret = -EINVAL;
  3572. }
  3573. /* Only PAGE SIZE is supported yet */
  3574. if (sectorsize != PAGE_SIZE) {
  3575. btrfs_err(fs_info,
  3576. "sectorsize %llu not supported yet, only support %lu",
  3577. sectorsize, PAGE_SIZE);
  3578. ret = -EINVAL;
  3579. }
  3580. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3581. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3582. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3583. ret = -EINVAL;
  3584. }
  3585. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3586. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3587. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3588. ret = -EINVAL;
  3589. }
  3590. /* Root alignment check */
  3591. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3592. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3593. btrfs_super_root(sb));
  3594. ret = -EINVAL;
  3595. }
  3596. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3597. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3598. btrfs_super_chunk_root(sb));
  3599. ret = -EINVAL;
  3600. }
  3601. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3602. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3603. btrfs_super_log_root(sb));
  3604. ret = -EINVAL;
  3605. }
  3606. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3607. btrfs_err(fs_info,
  3608. "dev_item UUID does not match fsid: %pU != %pU",
  3609. fs_info->fsid, sb->dev_item.fsid);
  3610. ret = -EINVAL;
  3611. }
  3612. /*
  3613. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3614. * done later
  3615. */
  3616. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3617. btrfs_err(fs_info, "bytes_used is too small %llu",
  3618. btrfs_super_bytes_used(sb));
  3619. ret = -EINVAL;
  3620. }
  3621. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3622. btrfs_err(fs_info, "invalid stripesize %u",
  3623. btrfs_super_stripesize(sb));
  3624. ret = -EINVAL;
  3625. }
  3626. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3627. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3628. btrfs_super_num_devices(sb));
  3629. if (btrfs_super_num_devices(sb) == 0) {
  3630. btrfs_err(fs_info, "number of devices is 0");
  3631. ret = -EINVAL;
  3632. }
  3633. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3634. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3635. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3636. ret = -EINVAL;
  3637. }
  3638. /*
  3639. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3640. * and one chunk
  3641. */
  3642. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3643. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3644. btrfs_super_sys_array_size(sb),
  3645. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3646. ret = -EINVAL;
  3647. }
  3648. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3649. + sizeof(struct btrfs_chunk)) {
  3650. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3651. btrfs_super_sys_array_size(sb),
  3652. sizeof(struct btrfs_disk_key)
  3653. + sizeof(struct btrfs_chunk));
  3654. ret = -EINVAL;
  3655. }
  3656. /*
  3657. * The generation is a global counter, we'll trust it more than the others
  3658. * but it's still possible that it's the one that's wrong.
  3659. */
  3660. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3661. btrfs_warn(fs_info,
  3662. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3663. btrfs_super_generation(sb),
  3664. btrfs_super_chunk_root_generation(sb));
  3665. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3666. && btrfs_super_cache_generation(sb) != (u64)-1)
  3667. btrfs_warn(fs_info,
  3668. "suspicious: generation < cache_generation: %llu < %llu",
  3669. btrfs_super_generation(sb),
  3670. btrfs_super_cache_generation(sb));
  3671. return ret;
  3672. }
  3673. static void btrfs_error_commit_super(struct btrfs_root *root)
  3674. {
  3675. struct btrfs_fs_info *fs_info = root->fs_info;
  3676. mutex_lock(&fs_info->cleaner_mutex);
  3677. btrfs_run_delayed_iputs(root);
  3678. mutex_unlock(&fs_info->cleaner_mutex);
  3679. down_write(&fs_info->cleanup_work_sem);
  3680. up_write(&fs_info->cleanup_work_sem);
  3681. /* cleanup FS via transaction */
  3682. btrfs_cleanup_transaction(root);
  3683. }
  3684. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3685. {
  3686. struct btrfs_ordered_extent *ordered;
  3687. spin_lock(&root->ordered_extent_lock);
  3688. /*
  3689. * This will just short circuit the ordered completion stuff which will
  3690. * make sure the ordered extent gets properly cleaned up.
  3691. */
  3692. list_for_each_entry(ordered, &root->ordered_extents,
  3693. root_extent_list)
  3694. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3695. spin_unlock(&root->ordered_extent_lock);
  3696. }
  3697. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3698. {
  3699. struct btrfs_root *root;
  3700. struct list_head splice;
  3701. INIT_LIST_HEAD(&splice);
  3702. spin_lock(&fs_info->ordered_root_lock);
  3703. list_splice_init(&fs_info->ordered_roots, &splice);
  3704. while (!list_empty(&splice)) {
  3705. root = list_first_entry(&splice, struct btrfs_root,
  3706. ordered_root);
  3707. list_move_tail(&root->ordered_root,
  3708. &fs_info->ordered_roots);
  3709. spin_unlock(&fs_info->ordered_root_lock);
  3710. btrfs_destroy_ordered_extents(root);
  3711. cond_resched();
  3712. spin_lock(&fs_info->ordered_root_lock);
  3713. }
  3714. spin_unlock(&fs_info->ordered_root_lock);
  3715. }
  3716. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3717. struct btrfs_root *root)
  3718. {
  3719. struct btrfs_fs_info *fs_info = root->fs_info;
  3720. struct rb_node *node;
  3721. struct btrfs_delayed_ref_root *delayed_refs;
  3722. struct btrfs_delayed_ref_node *ref;
  3723. int ret = 0;
  3724. delayed_refs = &trans->delayed_refs;
  3725. spin_lock(&delayed_refs->lock);
  3726. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3727. spin_unlock(&delayed_refs->lock);
  3728. btrfs_info(fs_info, "delayed_refs has NO entry");
  3729. return ret;
  3730. }
  3731. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3732. struct btrfs_delayed_ref_head *head;
  3733. struct btrfs_delayed_ref_node *tmp;
  3734. bool pin_bytes = false;
  3735. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3736. href_node);
  3737. if (!mutex_trylock(&head->mutex)) {
  3738. atomic_inc(&head->node.refs);
  3739. spin_unlock(&delayed_refs->lock);
  3740. mutex_lock(&head->mutex);
  3741. mutex_unlock(&head->mutex);
  3742. btrfs_put_delayed_ref(&head->node);
  3743. spin_lock(&delayed_refs->lock);
  3744. continue;
  3745. }
  3746. spin_lock(&head->lock);
  3747. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3748. list) {
  3749. ref->in_tree = 0;
  3750. list_del(&ref->list);
  3751. if (!list_empty(&ref->add_list))
  3752. list_del(&ref->add_list);
  3753. atomic_dec(&delayed_refs->num_entries);
  3754. btrfs_put_delayed_ref(ref);
  3755. }
  3756. if (head->must_insert_reserved)
  3757. pin_bytes = true;
  3758. btrfs_free_delayed_extent_op(head->extent_op);
  3759. delayed_refs->num_heads--;
  3760. if (head->processing == 0)
  3761. delayed_refs->num_heads_ready--;
  3762. atomic_dec(&delayed_refs->num_entries);
  3763. head->node.in_tree = 0;
  3764. rb_erase(&head->href_node, &delayed_refs->href_root);
  3765. spin_unlock(&head->lock);
  3766. spin_unlock(&delayed_refs->lock);
  3767. mutex_unlock(&head->mutex);
  3768. if (pin_bytes)
  3769. btrfs_pin_extent(root, head->node.bytenr,
  3770. head->node.num_bytes, 1);
  3771. btrfs_put_delayed_ref(&head->node);
  3772. cond_resched();
  3773. spin_lock(&delayed_refs->lock);
  3774. }
  3775. spin_unlock(&delayed_refs->lock);
  3776. return ret;
  3777. }
  3778. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3779. {
  3780. struct btrfs_inode *btrfs_inode;
  3781. struct list_head splice;
  3782. INIT_LIST_HEAD(&splice);
  3783. spin_lock(&root->delalloc_lock);
  3784. list_splice_init(&root->delalloc_inodes, &splice);
  3785. while (!list_empty(&splice)) {
  3786. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3787. delalloc_inodes);
  3788. list_del_init(&btrfs_inode->delalloc_inodes);
  3789. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3790. &btrfs_inode->runtime_flags);
  3791. spin_unlock(&root->delalloc_lock);
  3792. btrfs_invalidate_inodes(btrfs_inode->root);
  3793. spin_lock(&root->delalloc_lock);
  3794. }
  3795. spin_unlock(&root->delalloc_lock);
  3796. }
  3797. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3798. {
  3799. struct btrfs_root *root;
  3800. struct list_head splice;
  3801. INIT_LIST_HEAD(&splice);
  3802. spin_lock(&fs_info->delalloc_root_lock);
  3803. list_splice_init(&fs_info->delalloc_roots, &splice);
  3804. while (!list_empty(&splice)) {
  3805. root = list_first_entry(&splice, struct btrfs_root,
  3806. delalloc_root);
  3807. list_del_init(&root->delalloc_root);
  3808. root = btrfs_grab_fs_root(root);
  3809. BUG_ON(!root);
  3810. spin_unlock(&fs_info->delalloc_root_lock);
  3811. btrfs_destroy_delalloc_inodes(root);
  3812. btrfs_put_fs_root(root);
  3813. spin_lock(&fs_info->delalloc_root_lock);
  3814. }
  3815. spin_unlock(&fs_info->delalloc_root_lock);
  3816. }
  3817. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3818. struct extent_io_tree *dirty_pages,
  3819. int mark)
  3820. {
  3821. struct btrfs_fs_info *fs_info = root->fs_info;
  3822. int ret;
  3823. struct extent_buffer *eb;
  3824. u64 start = 0;
  3825. u64 end;
  3826. while (1) {
  3827. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3828. mark, NULL);
  3829. if (ret)
  3830. break;
  3831. clear_extent_bits(dirty_pages, start, end, mark);
  3832. while (start <= end) {
  3833. eb = find_extent_buffer(fs_info, start);
  3834. start += fs_info->nodesize;
  3835. if (!eb)
  3836. continue;
  3837. wait_on_extent_buffer_writeback(eb);
  3838. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3839. &eb->bflags))
  3840. clear_extent_buffer_dirty(eb);
  3841. free_extent_buffer_stale(eb);
  3842. }
  3843. }
  3844. return ret;
  3845. }
  3846. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3847. struct extent_io_tree *pinned_extents)
  3848. {
  3849. struct btrfs_fs_info *fs_info = root->fs_info;
  3850. struct extent_io_tree *unpin;
  3851. u64 start;
  3852. u64 end;
  3853. int ret;
  3854. bool loop = true;
  3855. unpin = pinned_extents;
  3856. again:
  3857. while (1) {
  3858. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3859. EXTENT_DIRTY, NULL);
  3860. if (ret)
  3861. break;
  3862. clear_extent_dirty(unpin, start, end);
  3863. btrfs_error_unpin_extent_range(root, start, end);
  3864. cond_resched();
  3865. }
  3866. if (loop) {
  3867. if (unpin == &fs_info->freed_extents[0])
  3868. unpin = &fs_info->freed_extents[1];
  3869. else
  3870. unpin = &fs_info->freed_extents[0];
  3871. loop = false;
  3872. goto again;
  3873. }
  3874. return 0;
  3875. }
  3876. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3877. {
  3878. struct inode *inode;
  3879. inode = cache->io_ctl.inode;
  3880. if (inode) {
  3881. invalidate_inode_pages2(inode->i_mapping);
  3882. BTRFS_I(inode)->generation = 0;
  3883. cache->io_ctl.inode = NULL;
  3884. iput(inode);
  3885. }
  3886. btrfs_put_block_group(cache);
  3887. }
  3888. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3889. struct btrfs_root *root)
  3890. {
  3891. struct btrfs_fs_info *fs_info = root->fs_info;
  3892. struct btrfs_block_group_cache *cache;
  3893. spin_lock(&cur_trans->dirty_bgs_lock);
  3894. while (!list_empty(&cur_trans->dirty_bgs)) {
  3895. cache = list_first_entry(&cur_trans->dirty_bgs,
  3896. struct btrfs_block_group_cache,
  3897. dirty_list);
  3898. if (!cache) {
  3899. btrfs_err(fs_info, "orphan block group dirty_bgs list");
  3900. spin_unlock(&cur_trans->dirty_bgs_lock);
  3901. return;
  3902. }
  3903. if (!list_empty(&cache->io_list)) {
  3904. spin_unlock(&cur_trans->dirty_bgs_lock);
  3905. list_del_init(&cache->io_list);
  3906. btrfs_cleanup_bg_io(cache);
  3907. spin_lock(&cur_trans->dirty_bgs_lock);
  3908. }
  3909. list_del_init(&cache->dirty_list);
  3910. spin_lock(&cache->lock);
  3911. cache->disk_cache_state = BTRFS_DC_ERROR;
  3912. spin_unlock(&cache->lock);
  3913. spin_unlock(&cur_trans->dirty_bgs_lock);
  3914. btrfs_put_block_group(cache);
  3915. spin_lock(&cur_trans->dirty_bgs_lock);
  3916. }
  3917. spin_unlock(&cur_trans->dirty_bgs_lock);
  3918. while (!list_empty(&cur_trans->io_bgs)) {
  3919. cache = list_first_entry(&cur_trans->io_bgs,
  3920. struct btrfs_block_group_cache,
  3921. io_list);
  3922. if (!cache) {
  3923. btrfs_err(fs_info, "orphan block group on io_bgs list");
  3924. return;
  3925. }
  3926. list_del_init(&cache->io_list);
  3927. spin_lock(&cache->lock);
  3928. cache->disk_cache_state = BTRFS_DC_ERROR;
  3929. spin_unlock(&cache->lock);
  3930. btrfs_cleanup_bg_io(cache);
  3931. }
  3932. }
  3933. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3934. struct btrfs_root *root)
  3935. {
  3936. struct btrfs_fs_info *fs_info = root->fs_info;
  3937. btrfs_cleanup_dirty_bgs(cur_trans, root);
  3938. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3939. ASSERT(list_empty(&cur_trans->io_bgs));
  3940. btrfs_destroy_delayed_refs(cur_trans, root);
  3941. cur_trans->state = TRANS_STATE_COMMIT_START;
  3942. wake_up(&fs_info->transaction_blocked_wait);
  3943. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3944. wake_up(&fs_info->transaction_wait);
  3945. btrfs_destroy_delayed_inodes(root);
  3946. btrfs_assert_delayed_root_empty(root);
  3947. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3948. EXTENT_DIRTY);
  3949. btrfs_destroy_pinned_extent(root,
  3950. fs_info->pinned_extents);
  3951. cur_trans->state =TRANS_STATE_COMPLETED;
  3952. wake_up(&cur_trans->commit_wait);
  3953. /*
  3954. memset(cur_trans, 0, sizeof(*cur_trans));
  3955. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3956. */
  3957. }
  3958. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3959. {
  3960. struct btrfs_fs_info *fs_info = root->fs_info;
  3961. struct btrfs_transaction *t;
  3962. mutex_lock(&fs_info->transaction_kthread_mutex);
  3963. spin_lock(&fs_info->trans_lock);
  3964. while (!list_empty(&fs_info->trans_list)) {
  3965. t = list_first_entry(&fs_info->trans_list,
  3966. struct btrfs_transaction, list);
  3967. if (t->state >= TRANS_STATE_COMMIT_START) {
  3968. atomic_inc(&t->use_count);
  3969. spin_unlock(&fs_info->trans_lock);
  3970. btrfs_wait_for_commit(root, t->transid);
  3971. btrfs_put_transaction(t);
  3972. spin_lock(&fs_info->trans_lock);
  3973. continue;
  3974. }
  3975. if (t == fs_info->running_transaction) {
  3976. t->state = TRANS_STATE_COMMIT_DOING;
  3977. spin_unlock(&fs_info->trans_lock);
  3978. /*
  3979. * We wait for 0 num_writers since we don't hold a trans
  3980. * handle open currently for this transaction.
  3981. */
  3982. wait_event(t->writer_wait,
  3983. atomic_read(&t->num_writers) == 0);
  3984. } else {
  3985. spin_unlock(&fs_info->trans_lock);
  3986. }
  3987. btrfs_cleanup_one_transaction(t, root);
  3988. spin_lock(&fs_info->trans_lock);
  3989. if (t == fs_info->running_transaction)
  3990. fs_info->running_transaction = NULL;
  3991. list_del_init(&t->list);
  3992. spin_unlock(&fs_info->trans_lock);
  3993. btrfs_put_transaction(t);
  3994. trace_btrfs_transaction_commit(root);
  3995. spin_lock(&fs_info->trans_lock);
  3996. }
  3997. spin_unlock(&fs_info->trans_lock);
  3998. btrfs_destroy_all_ordered_extents(fs_info);
  3999. btrfs_destroy_delayed_inodes(root);
  4000. btrfs_assert_delayed_root_empty(root);
  4001. btrfs_destroy_pinned_extent(root, fs_info->pinned_extents);
  4002. btrfs_destroy_all_delalloc_inodes(fs_info);
  4003. mutex_unlock(&fs_info->transaction_kthread_mutex);
  4004. return 0;
  4005. }
  4006. static const struct extent_io_ops btree_extent_io_ops = {
  4007. .readpage_end_io_hook = btree_readpage_end_io_hook,
  4008. .readpage_io_failed_hook = btree_io_failed_hook,
  4009. .submit_bio_hook = btree_submit_bio_hook,
  4010. /* note we're sharing with inode.c for the merge bio hook */
  4011. .merge_bio_hook = btrfs_merge_bio_hook,
  4012. };