key.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923
  1. /*
  2. * Copyright 2002-2005, Instant802 Networks, Inc.
  3. * Copyright 2005-2006, Devicescape Software, Inc.
  4. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  5. * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/if_ether.h>
  12. #include <linux/etherdevice.h>
  13. #include <linux/list.h>
  14. #include <linux/rcupdate.h>
  15. #include <linux/rtnetlink.h>
  16. #include <linux/slab.h>
  17. #include <linux/export.h>
  18. #include <net/mac80211.h>
  19. #include <asm/unaligned.h>
  20. #include "ieee80211_i.h"
  21. #include "driver-ops.h"
  22. #include "debugfs_key.h"
  23. #include "aes_ccm.h"
  24. #include "aes_cmac.h"
  25. /**
  26. * DOC: Key handling basics
  27. *
  28. * Key handling in mac80211 is done based on per-interface (sub_if_data)
  29. * keys and per-station keys. Since each station belongs to an interface,
  30. * each station key also belongs to that interface.
  31. *
  32. * Hardware acceleration is done on a best-effort basis for algorithms
  33. * that are implemented in software, for each key the hardware is asked
  34. * to enable that key for offloading but if it cannot do that the key is
  35. * simply kept for software encryption (unless it is for an algorithm
  36. * that isn't implemented in software).
  37. * There is currently no way of knowing whether a key is handled in SW
  38. * or HW except by looking into debugfs.
  39. *
  40. * All key management is internally protected by a mutex. Within all
  41. * other parts of mac80211, key references are, just as STA structure
  42. * references, protected by RCU. Note, however, that some things are
  43. * unprotected, namely the key->sta dereferences within the hardware
  44. * acceleration functions. This means that sta_info_destroy() must
  45. * remove the key which waits for an RCU grace period.
  46. */
  47. static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
  48. static void assert_key_lock(struct ieee80211_local *local)
  49. {
  50. lockdep_assert_held(&local->key_mtx);
  51. }
  52. static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
  53. {
  54. /*
  55. * When this count is zero, SKB resizing for allocating tailroom
  56. * for IV or MMIC is skipped. But, this check has created two race
  57. * cases in xmit path while transiting from zero count to one:
  58. *
  59. * 1. SKB resize was skipped because no key was added but just before
  60. * the xmit key is added and SW encryption kicks off.
  61. *
  62. * 2. SKB resize was skipped because all the keys were hw planted but
  63. * just before xmit one of the key is deleted and SW encryption kicks
  64. * off.
  65. *
  66. * In both the above case SW encryption will find not enough space for
  67. * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
  68. *
  69. * Solution has been explained at
  70. * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
  71. */
  72. if (!sdata->crypto_tx_tailroom_needed_cnt++) {
  73. /*
  74. * Flush all XMIT packets currently using HW encryption or no
  75. * encryption at all if the count transition is from 0 -> 1.
  76. */
  77. synchronize_net();
  78. }
  79. }
  80. static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
  81. {
  82. struct ieee80211_sub_if_data *sdata;
  83. struct sta_info *sta;
  84. int ret;
  85. might_sleep();
  86. if (key->flags & KEY_FLAG_TAINTED)
  87. return -EINVAL;
  88. if (!key->local->ops->set_key)
  89. goto out_unsupported;
  90. assert_key_lock(key->local);
  91. sta = key->sta;
  92. /*
  93. * If this is a per-STA GTK, check if it
  94. * is supported; if not, return.
  95. */
  96. if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
  97. !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
  98. goto out_unsupported;
  99. if (sta && !sta->uploaded)
  100. goto out_unsupported;
  101. sdata = key->sdata;
  102. if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
  103. /*
  104. * The driver doesn't know anything about VLAN interfaces.
  105. * Hence, don't send GTKs for VLAN interfaces to the driver.
  106. */
  107. if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
  108. goto out_unsupported;
  109. }
  110. ret = drv_set_key(key->local, SET_KEY, sdata,
  111. sta ? &sta->sta : NULL, &key->conf);
  112. if (!ret) {
  113. key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
  114. if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
  115. (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
  116. (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
  117. sdata->crypto_tx_tailroom_needed_cnt--;
  118. WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
  119. (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
  120. return 0;
  121. }
  122. if (ret != -ENOSPC && ret != -EOPNOTSUPP)
  123. sdata_err(sdata,
  124. "failed to set key (%d, %pM) to hardware (%d)\n",
  125. key->conf.keyidx,
  126. sta ? sta->sta.addr : bcast_addr, ret);
  127. out_unsupported:
  128. switch (key->conf.cipher) {
  129. case WLAN_CIPHER_SUITE_WEP40:
  130. case WLAN_CIPHER_SUITE_WEP104:
  131. case WLAN_CIPHER_SUITE_TKIP:
  132. case WLAN_CIPHER_SUITE_CCMP:
  133. case WLAN_CIPHER_SUITE_AES_CMAC:
  134. /* all of these we can do in software */
  135. return 0;
  136. default:
  137. return -EINVAL;
  138. }
  139. }
  140. static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
  141. {
  142. struct ieee80211_sub_if_data *sdata;
  143. struct sta_info *sta;
  144. int ret;
  145. might_sleep();
  146. if (!key || !key->local->ops->set_key)
  147. return;
  148. assert_key_lock(key->local);
  149. if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
  150. return;
  151. sta = key->sta;
  152. sdata = key->sdata;
  153. if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
  154. (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
  155. (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
  156. increment_tailroom_need_count(sdata);
  157. ret = drv_set_key(key->local, DISABLE_KEY, sdata,
  158. sta ? &sta->sta : NULL, &key->conf);
  159. if (ret)
  160. sdata_err(sdata,
  161. "failed to remove key (%d, %pM) from hardware (%d)\n",
  162. key->conf.keyidx,
  163. sta ? sta->sta.addr : bcast_addr, ret);
  164. key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
  165. }
  166. static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
  167. int idx, bool uni, bool multi)
  168. {
  169. struct ieee80211_key *key = NULL;
  170. assert_key_lock(sdata->local);
  171. if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
  172. key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
  173. if (uni) {
  174. rcu_assign_pointer(sdata->default_unicast_key, key);
  175. drv_set_default_unicast_key(sdata->local, sdata, idx);
  176. }
  177. if (multi)
  178. rcu_assign_pointer(sdata->default_multicast_key, key);
  179. ieee80211_debugfs_key_update_default(sdata);
  180. }
  181. void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
  182. bool uni, bool multi)
  183. {
  184. mutex_lock(&sdata->local->key_mtx);
  185. __ieee80211_set_default_key(sdata, idx, uni, multi);
  186. mutex_unlock(&sdata->local->key_mtx);
  187. }
  188. static void
  189. __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
  190. {
  191. struct ieee80211_key *key = NULL;
  192. assert_key_lock(sdata->local);
  193. if (idx >= NUM_DEFAULT_KEYS &&
  194. idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
  195. key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
  196. rcu_assign_pointer(sdata->default_mgmt_key, key);
  197. ieee80211_debugfs_key_update_default(sdata);
  198. }
  199. void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
  200. int idx)
  201. {
  202. mutex_lock(&sdata->local->key_mtx);
  203. __ieee80211_set_default_mgmt_key(sdata, idx);
  204. mutex_unlock(&sdata->local->key_mtx);
  205. }
  206. static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
  207. struct sta_info *sta,
  208. bool pairwise,
  209. struct ieee80211_key *old,
  210. struct ieee80211_key *new)
  211. {
  212. int idx;
  213. bool defunikey, defmultikey, defmgmtkey;
  214. /* caller must provide at least one old/new */
  215. if (WARN_ON(!new && !old))
  216. return;
  217. if (new)
  218. list_add_tail(&new->list, &sdata->key_list);
  219. WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
  220. if (old)
  221. idx = old->conf.keyidx;
  222. else
  223. idx = new->conf.keyidx;
  224. if (sta) {
  225. if (pairwise) {
  226. rcu_assign_pointer(sta->ptk[idx], new);
  227. sta->ptk_idx = idx;
  228. } else {
  229. rcu_assign_pointer(sta->gtk[idx], new);
  230. sta->gtk_idx = idx;
  231. }
  232. } else {
  233. defunikey = old &&
  234. old == key_mtx_dereference(sdata->local,
  235. sdata->default_unicast_key);
  236. defmultikey = old &&
  237. old == key_mtx_dereference(sdata->local,
  238. sdata->default_multicast_key);
  239. defmgmtkey = old &&
  240. old == key_mtx_dereference(sdata->local,
  241. sdata->default_mgmt_key);
  242. if (defunikey && !new)
  243. __ieee80211_set_default_key(sdata, -1, true, false);
  244. if (defmultikey && !new)
  245. __ieee80211_set_default_key(sdata, -1, false, true);
  246. if (defmgmtkey && !new)
  247. __ieee80211_set_default_mgmt_key(sdata, -1);
  248. rcu_assign_pointer(sdata->keys[idx], new);
  249. if (defunikey && new)
  250. __ieee80211_set_default_key(sdata, new->conf.keyidx,
  251. true, false);
  252. if (defmultikey && new)
  253. __ieee80211_set_default_key(sdata, new->conf.keyidx,
  254. false, true);
  255. if (defmgmtkey && new)
  256. __ieee80211_set_default_mgmt_key(sdata,
  257. new->conf.keyidx);
  258. }
  259. if (old)
  260. list_del(&old->list);
  261. }
  262. struct ieee80211_key *
  263. ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
  264. const u8 *key_data,
  265. size_t seq_len, const u8 *seq,
  266. const struct ieee80211_cipher_scheme *cs)
  267. {
  268. struct ieee80211_key *key;
  269. int i, j, err;
  270. BUG_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS);
  271. key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
  272. if (!key)
  273. return ERR_PTR(-ENOMEM);
  274. /*
  275. * Default to software encryption; we'll later upload the
  276. * key to the hardware if possible.
  277. */
  278. key->conf.flags = 0;
  279. key->flags = 0;
  280. key->conf.cipher = cipher;
  281. key->conf.keyidx = idx;
  282. key->conf.keylen = key_len;
  283. switch (cipher) {
  284. case WLAN_CIPHER_SUITE_WEP40:
  285. case WLAN_CIPHER_SUITE_WEP104:
  286. key->conf.iv_len = IEEE80211_WEP_IV_LEN;
  287. key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
  288. break;
  289. case WLAN_CIPHER_SUITE_TKIP:
  290. key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
  291. key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
  292. if (seq) {
  293. for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
  294. key->u.tkip.rx[i].iv32 =
  295. get_unaligned_le32(&seq[2]);
  296. key->u.tkip.rx[i].iv16 =
  297. get_unaligned_le16(seq);
  298. }
  299. }
  300. spin_lock_init(&key->u.tkip.txlock);
  301. break;
  302. case WLAN_CIPHER_SUITE_CCMP:
  303. key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
  304. key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
  305. if (seq) {
  306. for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
  307. for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
  308. key->u.ccmp.rx_pn[i][j] =
  309. seq[IEEE80211_CCMP_PN_LEN - j - 1];
  310. }
  311. /*
  312. * Initialize AES key state here as an optimization so that
  313. * it does not need to be initialized for every packet.
  314. */
  315. key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data);
  316. if (IS_ERR(key->u.ccmp.tfm)) {
  317. err = PTR_ERR(key->u.ccmp.tfm);
  318. kfree(key);
  319. return ERR_PTR(err);
  320. }
  321. break;
  322. case WLAN_CIPHER_SUITE_AES_CMAC:
  323. key->conf.iv_len = 0;
  324. key->conf.icv_len = sizeof(struct ieee80211_mmie);
  325. if (seq)
  326. for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
  327. key->u.aes_cmac.rx_pn[j] =
  328. seq[IEEE80211_CMAC_PN_LEN - j - 1];
  329. /*
  330. * Initialize AES key state here as an optimization so that
  331. * it does not need to be initialized for every packet.
  332. */
  333. key->u.aes_cmac.tfm =
  334. ieee80211_aes_cmac_key_setup(key_data);
  335. if (IS_ERR(key->u.aes_cmac.tfm)) {
  336. err = PTR_ERR(key->u.aes_cmac.tfm);
  337. kfree(key);
  338. return ERR_PTR(err);
  339. }
  340. break;
  341. default:
  342. if (cs) {
  343. size_t len = (seq_len > MAX_PN_LEN) ?
  344. MAX_PN_LEN : seq_len;
  345. key->conf.iv_len = cs->hdr_len;
  346. key->conf.icv_len = cs->mic_len;
  347. for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
  348. for (j = 0; j < len; j++)
  349. key->u.gen.rx_pn[i][j] =
  350. seq[len - j - 1];
  351. }
  352. }
  353. memcpy(key->conf.key, key_data, key_len);
  354. INIT_LIST_HEAD(&key->list);
  355. return key;
  356. }
  357. static void ieee80211_key_free_common(struct ieee80211_key *key)
  358. {
  359. if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP)
  360. ieee80211_aes_key_free(key->u.ccmp.tfm);
  361. if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC)
  362. ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
  363. kfree(key);
  364. }
  365. static void __ieee80211_key_destroy(struct ieee80211_key *key,
  366. bool delay_tailroom)
  367. {
  368. if (key->local)
  369. ieee80211_key_disable_hw_accel(key);
  370. if (key->local) {
  371. struct ieee80211_sub_if_data *sdata = key->sdata;
  372. ieee80211_debugfs_key_remove(key);
  373. if (delay_tailroom) {
  374. /* see ieee80211_delayed_tailroom_dec */
  375. sdata->crypto_tx_tailroom_pending_dec++;
  376. schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
  377. HZ/2);
  378. } else {
  379. sdata->crypto_tx_tailroom_needed_cnt--;
  380. }
  381. }
  382. ieee80211_key_free_common(key);
  383. }
  384. static void ieee80211_key_destroy(struct ieee80211_key *key,
  385. bool delay_tailroom)
  386. {
  387. if (!key)
  388. return;
  389. /*
  390. * Synchronize so the TX path can no longer be using
  391. * this key before we free/remove it.
  392. */
  393. synchronize_net();
  394. __ieee80211_key_destroy(key, delay_tailroom);
  395. }
  396. void ieee80211_key_free_unused(struct ieee80211_key *key)
  397. {
  398. WARN_ON(key->sdata || key->local);
  399. ieee80211_key_free_common(key);
  400. }
  401. int ieee80211_key_link(struct ieee80211_key *key,
  402. struct ieee80211_sub_if_data *sdata,
  403. struct sta_info *sta)
  404. {
  405. struct ieee80211_local *local = sdata->local;
  406. struct ieee80211_key *old_key;
  407. int idx, ret;
  408. bool pairwise;
  409. BUG_ON(!sdata);
  410. BUG_ON(!key);
  411. pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
  412. idx = key->conf.keyidx;
  413. key->local = sdata->local;
  414. key->sdata = sdata;
  415. key->sta = sta;
  416. mutex_lock(&sdata->local->key_mtx);
  417. if (sta && pairwise)
  418. old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
  419. else if (sta)
  420. old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
  421. else
  422. old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
  423. increment_tailroom_need_count(sdata);
  424. ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
  425. ieee80211_key_destroy(old_key, true);
  426. ieee80211_debugfs_key_add(key);
  427. if (!local->wowlan) {
  428. ret = ieee80211_key_enable_hw_accel(key);
  429. if (ret)
  430. ieee80211_key_free(key, true);
  431. } else {
  432. ret = 0;
  433. }
  434. mutex_unlock(&sdata->local->key_mtx);
  435. return ret;
  436. }
  437. void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
  438. {
  439. if (!key)
  440. return;
  441. /*
  442. * Replace key with nothingness if it was ever used.
  443. */
  444. if (key->sdata)
  445. ieee80211_key_replace(key->sdata, key->sta,
  446. key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
  447. key, NULL);
  448. ieee80211_key_destroy(key, delay_tailroom);
  449. }
  450. void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
  451. {
  452. struct ieee80211_key *key;
  453. ASSERT_RTNL();
  454. if (WARN_ON(!ieee80211_sdata_running(sdata)))
  455. return;
  456. mutex_lock(&sdata->local->key_mtx);
  457. sdata->crypto_tx_tailroom_needed_cnt = 0;
  458. list_for_each_entry(key, &sdata->key_list, list) {
  459. increment_tailroom_need_count(sdata);
  460. ieee80211_key_enable_hw_accel(key);
  461. }
  462. mutex_unlock(&sdata->local->key_mtx);
  463. }
  464. void ieee80211_iter_keys(struct ieee80211_hw *hw,
  465. struct ieee80211_vif *vif,
  466. void (*iter)(struct ieee80211_hw *hw,
  467. struct ieee80211_vif *vif,
  468. struct ieee80211_sta *sta,
  469. struct ieee80211_key_conf *key,
  470. void *data),
  471. void *iter_data)
  472. {
  473. struct ieee80211_local *local = hw_to_local(hw);
  474. struct ieee80211_key *key, *tmp;
  475. struct ieee80211_sub_if_data *sdata;
  476. ASSERT_RTNL();
  477. mutex_lock(&local->key_mtx);
  478. if (vif) {
  479. sdata = vif_to_sdata(vif);
  480. list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
  481. iter(hw, &sdata->vif,
  482. key->sta ? &key->sta->sta : NULL,
  483. &key->conf, iter_data);
  484. } else {
  485. list_for_each_entry(sdata, &local->interfaces, list)
  486. list_for_each_entry_safe(key, tmp,
  487. &sdata->key_list, list)
  488. iter(hw, &sdata->vif,
  489. key->sta ? &key->sta->sta : NULL,
  490. &key->conf, iter_data);
  491. }
  492. mutex_unlock(&local->key_mtx);
  493. }
  494. EXPORT_SYMBOL(ieee80211_iter_keys);
  495. static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
  496. struct list_head *keys)
  497. {
  498. struct ieee80211_key *key, *tmp;
  499. sdata->crypto_tx_tailroom_needed_cnt -=
  500. sdata->crypto_tx_tailroom_pending_dec;
  501. sdata->crypto_tx_tailroom_pending_dec = 0;
  502. ieee80211_debugfs_key_remove_mgmt_default(sdata);
  503. list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
  504. ieee80211_key_replace(key->sdata, key->sta,
  505. key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
  506. key, NULL);
  507. list_add_tail(&key->list, keys);
  508. }
  509. ieee80211_debugfs_key_update_default(sdata);
  510. }
  511. void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
  512. bool force_synchronize)
  513. {
  514. struct ieee80211_local *local = sdata->local;
  515. struct ieee80211_sub_if_data *vlan;
  516. struct ieee80211_key *key, *tmp;
  517. LIST_HEAD(keys);
  518. cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
  519. mutex_lock(&local->key_mtx);
  520. ieee80211_free_keys_iface(sdata, &keys);
  521. if (sdata->vif.type == NL80211_IFTYPE_AP) {
  522. list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
  523. ieee80211_free_keys_iface(vlan, &keys);
  524. }
  525. if (!list_empty(&keys) || force_synchronize)
  526. synchronize_net();
  527. list_for_each_entry_safe(key, tmp, &keys, list)
  528. __ieee80211_key_destroy(key, false);
  529. WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
  530. sdata->crypto_tx_tailroom_pending_dec);
  531. if (sdata->vif.type == NL80211_IFTYPE_AP) {
  532. list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
  533. WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
  534. vlan->crypto_tx_tailroom_pending_dec);
  535. }
  536. mutex_unlock(&local->key_mtx);
  537. }
  538. void ieee80211_free_sta_keys(struct ieee80211_local *local,
  539. struct sta_info *sta)
  540. {
  541. struct ieee80211_key *key;
  542. int i;
  543. mutex_lock(&local->key_mtx);
  544. for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
  545. key = key_mtx_dereference(local, sta->gtk[i]);
  546. if (!key)
  547. continue;
  548. ieee80211_key_replace(key->sdata, key->sta,
  549. key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
  550. key, NULL);
  551. __ieee80211_key_destroy(key, true);
  552. }
  553. for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
  554. key = key_mtx_dereference(local, sta->ptk[i]);
  555. if (!key)
  556. continue;
  557. ieee80211_key_replace(key->sdata, key->sta,
  558. key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
  559. key, NULL);
  560. __ieee80211_key_destroy(key, true);
  561. }
  562. mutex_unlock(&local->key_mtx);
  563. }
  564. void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
  565. {
  566. struct ieee80211_sub_if_data *sdata;
  567. sdata = container_of(wk, struct ieee80211_sub_if_data,
  568. dec_tailroom_needed_wk.work);
  569. /*
  570. * The reason for the delayed tailroom needed decrementing is to
  571. * make roaming faster: during roaming, all keys are first deleted
  572. * and then new keys are installed. The first new key causes the
  573. * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
  574. * the cost of synchronize_net() (which can be slow). Avoid this
  575. * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
  576. * key removal for a while, so if we roam the value is larger than
  577. * zero and no 0->1 transition happens.
  578. *
  579. * The cost is that if the AP switching was from an AP with keys
  580. * to one without, we still allocate tailroom while it would no
  581. * longer be needed. However, in the typical (fast) roaming case
  582. * within an ESS this usually won't happen.
  583. */
  584. mutex_lock(&sdata->local->key_mtx);
  585. sdata->crypto_tx_tailroom_needed_cnt -=
  586. sdata->crypto_tx_tailroom_pending_dec;
  587. sdata->crypto_tx_tailroom_pending_dec = 0;
  588. mutex_unlock(&sdata->local->key_mtx);
  589. }
  590. void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
  591. const u8 *replay_ctr, gfp_t gfp)
  592. {
  593. struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
  594. trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
  595. cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
  596. }
  597. EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
  598. void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
  599. struct ieee80211_key_seq *seq)
  600. {
  601. struct ieee80211_key *key;
  602. u64 pn64;
  603. if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
  604. return;
  605. key = container_of(keyconf, struct ieee80211_key, conf);
  606. switch (key->conf.cipher) {
  607. case WLAN_CIPHER_SUITE_TKIP:
  608. seq->tkip.iv32 = key->u.tkip.tx.iv32;
  609. seq->tkip.iv16 = key->u.tkip.tx.iv16;
  610. break;
  611. case WLAN_CIPHER_SUITE_CCMP:
  612. pn64 = atomic64_read(&key->u.ccmp.tx_pn);
  613. seq->ccmp.pn[5] = pn64;
  614. seq->ccmp.pn[4] = pn64 >> 8;
  615. seq->ccmp.pn[3] = pn64 >> 16;
  616. seq->ccmp.pn[2] = pn64 >> 24;
  617. seq->ccmp.pn[1] = pn64 >> 32;
  618. seq->ccmp.pn[0] = pn64 >> 40;
  619. break;
  620. case WLAN_CIPHER_SUITE_AES_CMAC:
  621. pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
  622. seq->ccmp.pn[5] = pn64;
  623. seq->ccmp.pn[4] = pn64 >> 8;
  624. seq->ccmp.pn[3] = pn64 >> 16;
  625. seq->ccmp.pn[2] = pn64 >> 24;
  626. seq->ccmp.pn[1] = pn64 >> 32;
  627. seq->ccmp.pn[0] = pn64 >> 40;
  628. break;
  629. default:
  630. WARN_ON(1);
  631. }
  632. }
  633. EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
  634. void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
  635. int tid, struct ieee80211_key_seq *seq)
  636. {
  637. struct ieee80211_key *key;
  638. const u8 *pn;
  639. key = container_of(keyconf, struct ieee80211_key, conf);
  640. switch (key->conf.cipher) {
  641. case WLAN_CIPHER_SUITE_TKIP:
  642. if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
  643. return;
  644. seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
  645. seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
  646. break;
  647. case WLAN_CIPHER_SUITE_CCMP:
  648. if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
  649. return;
  650. if (tid < 0)
  651. pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
  652. else
  653. pn = key->u.ccmp.rx_pn[tid];
  654. memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
  655. break;
  656. case WLAN_CIPHER_SUITE_AES_CMAC:
  657. if (WARN_ON(tid != 0))
  658. return;
  659. pn = key->u.aes_cmac.rx_pn;
  660. memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
  661. break;
  662. }
  663. }
  664. EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
  665. void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
  666. struct ieee80211_key_seq *seq)
  667. {
  668. struct ieee80211_key *key;
  669. u64 pn64;
  670. key = container_of(keyconf, struct ieee80211_key, conf);
  671. switch (key->conf.cipher) {
  672. case WLAN_CIPHER_SUITE_TKIP:
  673. key->u.tkip.tx.iv32 = seq->tkip.iv32;
  674. key->u.tkip.tx.iv16 = seq->tkip.iv16;
  675. break;
  676. case WLAN_CIPHER_SUITE_CCMP:
  677. pn64 = (u64)seq->ccmp.pn[5] |
  678. ((u64)seq->ccmp.pn[4] << 8) |
  679. ((u64)seq->ccmp.pn[3] << 16) |
  680. ((u64)seq->ccmp.pn[2] << 24) |
  681. ((u64)seq->ccmp.pn[1] << 32) |
  682. ((u64)seq->ccmp.pn[0] << 40);
  683. atomic64_set(&key->u.ccmp.tx_pn, pn64);
  684. break;
  685. case WLAN_CIPHER_SUITE_AES_CMAC:
  686. pn64 = (u64)seq->aes_cmac.pn[5] |
  687. ((u64)seq->aes_cmac.pn[4] << 8) |
  688. ((u64)seq->aes_cmac.pn[3] << 16) |
  689. ((u64)seq->aes_cmac.pn[2] << 24) |
  690. ((u64)seq->aes_cmac.pn[1] << 32) |
  691. ((u64)seq->aes_cmac.pn[0] << 40);
  692. atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
  693. break;
  694. default:
  695. WARN_ON(1);
  696. break;
  697. }
  698. }
  699. EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
  700. void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
  701. int tid, struct ieee80211_key_seq *seq)
  702. {
  703. struct ieee80211_key *key;
  704. u8 *pn;
  705. key = container_of(keyconf, struct ieee80211_key, conf);
  706. switch (key->conf.cipher) {
  707. case WLAN_CIPHER_SUITE_TKIP:
  708. if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
  709. return;
  710. key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
  711. key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
  712. break;
  713. case WLAN_CIPHER_SUITE_CCMP:
  714. if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
  715. return;
  716. if (tid < 0)
  717. pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
  718. else
  719. pn = key->u.ccmp.rx_pn[tid];
  720. memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
  721. break;
  722. case WLAN_CIPHER_SUITE_AES_CMAC:
  723. if (WARN_ON(tid != 0))
  724. return;
  725. pn = key->u.aes_cmac.rx_pn;
  726. memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
  727. break;
  728. default:
  729. WARN_ON(1);
  730. break;
  731. }
  732. }
  733. EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
  734. void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
  735. {
  736. struct ieee80211_key *key;
  737. key = container_of(keyconf, struct ieee80211_key, conf);
  738. assert_key_lock(key->local);
  739. /*
  740. * if key was uploaded, we assume the driver will/has remove(d)
  741. * it, so adjust bookkeeping accordingly
  742. */
  743. if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
  744. key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
  745. if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
  746. (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
  747. (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
  748. increment_tailroom_need_count(key->sdata);
  749. }
  750. ieee80211_key_free(key, false);
  751. }
  752. EXPORT_SYMBOL_GPL(ieee80211_remove_key);
  753. struct ieee80211_key_conf *
  754. ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
  755. struct ieee80211_key_conf *keyconf)
  756. {
  757. struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
  758. struct ieee80211_local *local = sdata->local;
  759. struct ieee80211_key *key;
  760. int err;
  761. if (WARN_ON(!local->wowlan))
  762. return ERR_PTR(-EINVAL);
  763. if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
  764. return ERR_PTR(-EINVAL);
  765. key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
  766. keyconf->keylen, keyconf->key,
  767. 0, NULL, NULL);
  768. if (IS_ERR(key))
  769. return ERR_CAST(key);
  770. if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
  771. key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
  772. err = ieee80211_key_link(key, sdata, NULL);
  773. if (err)
  774. return ERR_PTR(err);
  775. return &key->conf;
  776. }
  777. EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);