page-writeback.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35. #include <linux/pagevec.h>
  36. #include <linux/timer.h>
  37. #include <linux/sched/rt.h>
  38. #include <linux/mm_inline.h>
  39. #include <trace/events/writeback.h>
  40. #include "internal.h"
  41. /*
  42. * Sleep at most 200ms at a time in balance_dirty_pages().
  43. */
  44. #define MAX_PAUSE max(HZ/5, 1)
  45. /*
  46. * Try to keep balance_dirty_pages() call intervals higher than this many pages
  47. * by raising pause time to max_pause when falls below it.
  48. */
  49. #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
  50. /*
  51. * Estimate write bandwidth at 200ms intervals.
  52. */
  53. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  54. #define RATELIMIT_CALC_SHIFT 10
  55. /*
  56. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  57. * will look to see if it needs to force writeback or throttling.
  58. */
  59. static long ratelimit_pages = 32;
  60. /* The following parameters are exported via /proc/sys/vm */
  61. /*
  62. * Start background writeback (via writeback threads) at this percentage
  63. */
  64. int dirty_background_ratio = 10;
  65. /*
  66. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  67. * dirty_background_ratio * the amount of dirtyable memory
  68. */
  69. unsigned long dirty_background_bytes;
  70. /*
  71. * free highmem will not be subtracted from the total free memory
  72. * for calculating free ratios if vm_highmem_is_dirtyable is true
  73. */
  74. int vm_highmem_is_dirtyable;
  75. /*
  76. * The generator of dirty data starts writeback at this percentage
  77. */
  78. int vm_dirty_ratio = 20;
  79. /*
  80. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  81. * vm_dirty_ratio * the amount of dirtyable memory
  82. */
  83. unsigned long vm_dirty_bytes;
  84. /*
  85. * The interval between `kupdate'-style writebacks
  86. */
  87. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  88. EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  89. /*
  90. * The longest time for which data is allowed to remain dirty
  91. */
  92. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  93. /*
  94. * Flag that makes the machine dump writes/reads and block dirtyings.
  95. */
  96. int block_dump;
  97. /*
  98. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  99. * a full sync is triggered after this time elapses without any disk activity.
  100. */
  101. int laptop_mode;
  102. EXPORT_SYMBOL(laptop_mode);
  103. /* End of sysctl-exported parameters */
  104. unsigned long global_dirty_limit;
  105. /*
  106. * Scale the writeback cache size proportional to the relative writeout speeds.
  107. *
  108. * We do this by keeping a floating proportion between BDIs, based on page
  109. * writeback completions [end_page_writeback()]. Those devices that write out
  110. * pages fastest will get the larger share, while the slower will get a smaller
  111. * share.
  112. *
  113. * We use page writeout completions because we are interested in getting rid of
  114. * dirty pages. Having them written out is the primary goal.
  115. *
  116. * We introduce a concept of time, a period over which we measure these events,
  117. * because demand can/will vary over time. The length of this period itself is
  118. * measured in page writeback completions.
  119. *
  120. */
  121. static struct fprop_global writeout_completions;
  122. static void writeout_period(unsigned long t);
  123. /* Timer for aging of writeout_completions */
  124. static struct timer_list writeout_period_timer =
  125. TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
  126. static unsigned long writeout_period_time = 0;
  127. /*
  128. * Length of period for aging writeout fractions of bdis. This is an
  129. * arbitrarily chosen number. The longer the period, the slower fractions will
  130. * reflect changes in current writeout rate.
  131. */
  132. #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
  133. /*
  134. * Work out the current dirty-memory clamping and background writeout
  135. * thresholds.
  136. *
  137. * The main aim here is to lower them aggressively if there is a lot of mapped
  138. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  139. * pages. It is better to clamp down on writers than to start swapping, and
  140. * performing lots of scanning.
  141. *
  142. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  143. *
  144. * We don't permit the clamping level to fall below 5% - that is getting rather
  145. * excessive.
  146. *
  147. * We make sure that the background writeout level is below the adjusted
  148. * clamping level.
  149. */
  150. /*
  151. * In a memory zone, there is a certain amount of pages we consider
  152. * available for the page cache, which is essentially the number of
  153. * free and reclaimable pages, minus some zone reserves to protect
  154. * lowmem and the ability to uphold the zone's watermarks without
  155. * requiring writeback.
  156. *
  157. * This number of dirtyable pages is the base value of which the
  158. * user-configurable dirty ratio is the effictive number of pages that
  159. * are allowed to be actually dirtied. Per individual zone, or
  160. * globally by using the sum of dirtyable pages over all zones.
  161. *
  162. * Because the user is allowed to specify the dirty limit globally as
  163. * absolute number of bytes, calculating the per-zone dirty limit can
  164. * require translating the configured limit into a percentage of
  165. * global dirtyable memory first.
  166. */
  167. /**
  168. * zone_dirtyable_memory - number of dirtyable pages in a zone
  169. * @zone: the zone
  170. *
  171. * Returns the zone's number of pages potentially available for dirty
  172. * page cache. This is the base value for the per-zone dirty limits.
  173. */
  174. static unsigned long zone_dirtyable_memory(struct zone *zone)
  175. {
  176. unsigned long nr_pages;
  177. nr_pages = zone_page_state(zone, NR_FREE_PAGES);
  178. nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
  179. nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
  180. nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
  181. return nr_pages;
  182. }
  183. static unsigned long highmem_dirtyable_memory(unsigned long total)
  184. {
  185. #ifdef CONFIG_HIGHMEM
  186. int node;
  187. unsigned long x = 0;
  188. for_each_node_state(node, N_HIGH_MEMORY) {
  189. struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  190. x += zone_dirtyable_memory(z);
  191. }
  192. /*
  193. * Unreclaimable memory (kernel memory or anonymous memory
  194. * without swap) can bring down the dirtyable pages below
  195. * the zone's dirty balance reserve and the above calculation
  196. * will underflow. However we still want to add in nodes
  197. * which are below threshold (negative values) to get a more
  198. * accurate calculation but make sure that the total never
  199. * underflows.
  200. */
  201. if ((long)x < 0)
  202. x = 0;
  203. /*
  204. * Make sure that the number of highmem pages is never larger
  205. * than the number of the total dirtyable memory. This can only
  206. * occur in very strange VM situations but we want to make sure
  207. * that this does not occur.
  208. */
  209. return min(x, total);
  210. #else
  211. return 0;
  212. #endif
  213. }
  214. /**
  215. * global_dirtyable_memory - number of globally dirtyable pages
  216. *
  217. * Returns the global number of pages potentially available for dirty
  218. * page cache. This is the base value for the global dirty limits.
  219. */
  220. static unsigned long global_dirtyable_memory(void)
  221. {
  222. unsigned long x;
  223. x = global_page_state(NR_FREE_PAGES);
  224. x -= min(x, dirty_balance_reserve);
  225. x += global_page_state(NR_INACTIVE_FILE);
  226. x += global_page_state(NR_ACTIVE_FILE);
  227. if (!vm_highmem_is_dirtyable)
  228. x -= highmem_dirtyable_memory(x);
  229. return x + 1; /* Ensure that we never return 0 */
  230. }
  231. /*
  232. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  233. *
  234. * Calculate the dirty thresholds based on sysctl parameters
  235. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  236. * - vm.dirty_ratio or vm.dirty_bytes
  237. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  238. * real-time tasks.
  239. */
  240. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  241. {
  242. unsigned long background;
  243. unsigned long dirty;
  244. unsigned long uninitialized_var(available_memory);
  245. struct task_struct *tsk;
  246. if (!vm_dirty_bytes || !dirty_background_bytes)
  247. available_memory = global_dirtyable_memory();
  248. if (vm_dirty_bytes)
  249. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  250. else
  251. dirty = (vm_dirty_ratio * available_memory) / 100;
  252. if (dirty_background_bytes)
  253. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  254. else
  255. background = (dirty_background_ratio * available_memory) / 100;
  256. if (background >= dirty)
  257. background = dirty / 2;
  258. tsk = current;
  259. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  260. background += background / 4;
  261. dirty += dirty / 4;
  262. }
  263. *pbackground = background;
  264. *pdirty = dirty;
  265. trace_global_dirty_state(background, dirty);
  266. }
  267. /**
  268. * zone_dirty_limit - maximum number of dirty pages allowed in a zone
  269. * @zone: the zone
  270. *
  271. * Returns the maximum number of dirty pages allowed in a zone, based
  272. * on the zone's dirtyable memory.
  273. */
  274. static unsigned long zone_dirty_limit(struct zone *zone)
  275. {
  276. unsigned long zone_memory = zone_dirtyable_memory(zone);
  277. struct task_struct *tsk = current;
  278. unsigned long dirty;
  279. if (vm_dirty_bytes)
  280. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
  281. zone_memory / global_dirtyable_memory();
  282. else
  283. dirty = vm_dirty_ratio * zone_memory / 100;
  284. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
  285. dirty += dirty / 4;
  286. return dirty;
  287. }
  288. /**
  289. * zone_dirty_ok - tells whether a zone is within its dirty limits
  290. * @zone: the zone to check
  291. *
  292. * Returns %true when the dirty pages in @zone are within the zone's
  293. * dirty limit, %false if the limit is exceeded.
  294. */
  295. bool zone_dirty_ok(struct zone *zone)
  296. {
  297. unsigned long limit = zone_dirty_limit(zone);
  298. return zone_page_state(zone, NR_FILE_DIRTY) +
  299. zone_page_state(zone, NR_UNSTABLE_NFS) +
  300. zone_page_state(zone, NR_WRITEBACK) <= limit;
  301. }
  302. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  303. void __user *buffer, size_t *lenp,
  304. loff_t *ppos)
  305. {
  306. int ret;
  307. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  308. if (ret == 0 && write)
  309. dirty_background_bytes = 0;
  310. return ret;
  311. }
  312. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  313. void __user *buffer, size_t *lenp,
  314. loff_t *ppos)
  315. {
  316. int ret;
  317. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  318. if (ret == 0 && write)
  319. dirty_background_ratio = 0;
  320. return ret;
  321. }
  322. int dirty_ratio_handler(struct ctl_table *table, int write,
  323. void __user *buffer, size_t *lenp,
  324. loff_t *ppos)
  325. {
  326. int old_ratio = vm_dirty_ratio;
  327. int ret;
  328. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  329. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  330. writeback_set_ratelimit();
  331. vm_dirty_bytes = 0;
  332. }
  333. return ret;
  334. }
  335. int dirty_bytes_handler(struct ctl_table *table, int write,
  336. void __user *buffer, size_t *lenp,
  337. loff_t *ppos)
  338. {
  339. unsigned long old_bytes = vm_dirty_bytes;
  340. int ret;
  341. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  342. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  343. writeback_set_ratelimit();
  344. vm_dirty_ratio = 0;
  345. }
  346. return ret;
  347. }
  348. static unsigned long wp_next_time(unsigned long cur_time)
  349. {
  350. cur_time += VM_COMPLETIONS_PERIOD_LEN;
  351. /* 0 has a special meaning... */
  352. if (!cur_time)
  353. return 1;
  354. return cur_time;
  355. }
  356. /*
  357. * Increment the BDI's writeout completion count and the global writeout
  358. * completion count. Called from test_clear_page_writeback().
  359. */
  360. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  361. {
  362. __inc_bdi_stat(bdi, BDI_WRITTEN);
  363. __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
  364. bdi->max_prop_frac);
  365. /* First event after period switching was turned off? */
  366. if (!unlikely(writeout_period_time)) {
  367. /*
  368. * We can race with other __bdi_writeout_inc calls here but
  369. * it does not cause any harm since the resulting time when
  370. * timer will fire and what is in writeout_period_time will be
  371. * roughly the same.
  372. */
  373. writeout_period_time = wp_next_time(jiffies);
  374. mod_timer(&writeout_period_timer, writeout_period_time);
  375. }
  376. }
  377. void bdi_writeout_inc(struct backing_dev_info *bdi)
  378. {
  379. unsigned long flags;
  380. local_irq_save(flags);
  381. __bdi_writeout_inc(bdi);
  382. local_irq_restore(flags);
  383. }
  384. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  385. /*
  386. * Obtain an accurate fraction of the BDI's portion.
  387. */
  388. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  389. long *numerator, long *denominator)
  390. {
  391. fprop_fraction_percpu(&writeout_completions, &bdi->completions,
  392. numerator, denominator);
  393. }
  394. /*
  395. * On idle system, we can be called long after we scheduled because we use
  396. * deferred timers so count with missed periods.
  397. */
  398. static void writeout_period(unsigned long t)
  399. {
  400. int miss_periods = (jiffies - writeout_period_time) /
  401. VM_COMPLETIONS_PERIOD_LEN;
  402. if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
  403. writeout_period_time = wp_next_time(writeout_period_time +
  404. miss_periods * VM_COMPLETIONS_PERIOD_LEN);
  405. mod_timer(&writeout_period_timer, writeout_period_time);
  406. } else {
  407. /*
  408. * Aging has zeroed all fractions. Stop wasting CPU on period
  409. * updates.
  410. */
  411. writeout_period_time = 0;
  412. }
  413. }
  414. /*
  415. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  416. * registered backing devices, which, for obvious reasons, can not
  417. * exceed 100%.
  418. */
  419. static unsigned int bdi_min_ratio;
  420. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  421. {
  422. int ret = 0;
  423. spin_lock_bh(&bdi_lock);
  424. if (min_ratio > bdi->max_ratio) {
  425. ret = -EINVAL;
  426. } else {
  427. min_ratio -= bdi->min_ratio;
  428. if (bdi_min_ratio + min_ratio < 100) {
  429. bdi_min_ratio += min_ratio;
  430. bdi->min_ratio += min_ratio;
  431. } else {
  432. ret = -EINVAL;
  433. }
  434. }
  435. spin_unlock_bh(&bdi_lock);
  436. return ret;
  437. }
  438. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  439. {
  440. int ret = 0;
  441. if (max_ratio > 100)
  442. return -EINVAL;
  443. spin_lock_bh(&bdi_lock);
  444. if (bdi->min_ratio > max_ratio) {
  445. ret = -EINVAL;
  446. } else {
  447. bdi->max_ratio = max_ratio;
  448. bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
  449. }
  450. spin_unlock_bh(&bdi_lock);
  451. return ret;
  452. }
  453. EXPORT_SYMBOL(bdi_set_max_ratio);
  454. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  455. unsigned long bg_thresh)
  456. {
  457. return (thresh + bg_thresh) / 2;
  458. }
  459. static unsigned long hard_dirty_limit(unsigned long thresh)
  460. {
  461. return max(thresh, global_dirty_limit);
  462. }
  463. /**
  464. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  465. * @bdi: the backing_dev_info to query
  466. * @dirty: global dirty limit in pages
  467. *
  468. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  469. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  470. *
  471. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  472. * when sleeping max_pause per page is not enough to keep the dirty pages under
  473. * control. For example, when the device is completely stalled due to some error
  474. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  475. * In the other normal situations, it acts more gently by throttling the tasks
  476. * more (rather than completely block them) when the bdi dirty pages go high.
  477. *
  478. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  479. * - starving fast devices
  480. * - piling up dirty pages (that will take long time to sync) on slow devices
  481. *
  482. * The bdi's share of dirty limit will be adapting to its throughput and
  483. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  484. */
  485. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  486. {
  487. u64 bdi_dirty;
  488. long numerator, denominator;
  489. /*
  490. * Calculate this BDI's share of the dirty ratio.
  491. */
  492. bdi_writeout_fraction(bdi, &numerator, &denominator);
  493. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  494. bdi_dirty *= numerator;
  495. do_div(bdi_dirty, denominator);
  496. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  497. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  498. bdi_dirty = dirty * bdi->max_ratio / 100;
  499. return bdi_dirty;
  500. }
  501. /*
  502. * setpoint - dirty 3
  503. * f(dirty) := 1.0 + (----------------)
  504. * limit - setpoint
  505. *
  506. * it's a 3rd order polynomial that subjects to
  507. *
  508. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  509. * (2) f(setpoint) = 1.0 => the balance point
  510. * (3) f(limit) = 0 => the hard limit
  511. * (4) df/dx <= 0 => negative feedback control
  512. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  513. * => fast response on large errors; small oscillation near setpoint
  514. */
  515. static inline long long pos_ratio_polynom(unsigned long setpoint,
  516. unsigned long dirty,
  517. unsigned long limit)
  518. {
  519. long long pos_ratio;
  520. long x;
  521. x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
  522. limit - setpoint + 1);
  523. pos_ratio = x;
  524. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  525. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  526. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  527. return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
  528. }
  529. /*
  530. * Dirty position control.
  531. *
  532. * (o) global/bdi setpoints
  533. *
  534. * We want the dirty pages be balanced around the global/bdi setpoints.
  535. * When the number of dirty pages is higher/lower than the setpoint, the
  536. * dirty position control ratio (and hence task dirty ratelimit) will be
  537. * decreased/increased to bring the dirty pages back to the setpoint.
  538. *
  539. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  540. *
  541. * if (dirty < setpoint) scale up pos_ratio
  542. * if (dirty > setpoint) scale down pos_ratio
  543. *
  544. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  545. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  546. *
  547. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  548. *
  549. * (o) global control line
  550. *
  551. * ^ pos_ratio
  552. * |
  553. * | |<===== global dirty control scope ======>|
  554. * 2.0 .............*
  555. * | .*
  556. * | . *
  557. * | . *
  558. * | . *
  559. * | . *
  560. * | . *
  561. * 1.0 ................................*
  562. * | . . *
  563. * | . . *
  564. * | . . *
  565. * | . . *
  566. * | . . *
  567. * 0 +------------.------------------.----------------------*------------->
  568. * freerun^ setpoint^ limit^ dirty pages
  569. *
  570. * (o) bdi control line
  571. *
  572. * ^ pos_ratio
  573. * |
  574. * | *
  575. * | *
  576. * | *
  577. * | *
  578. * | * |<=========== span ============>|
  579. * 1.0 .......................*
  580. * | . *
  581. * | . *
  582. * | . *
  583. * | . *
  584. * | . *
  585. * | . *
  586. * | . *
  587. * | . *
  588. * | . *
  589. * | . *
  590. * | . *
  591. * 1/4 ...............................................* * * * * * * * * * * *
  592. * | . .
  593. * | . .
  594. * | . .
  595. * 0 +----------------------.-------------------------------.------------->
  596. * bdi_setpoint^ x_intercept^
  597. *
  598. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  599. * be smoothly throttled down to normal if it starts high in situations like
  600. * - start writing to a slow SD card and a fast disk at the same time. The SD
  601. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  602. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  603. */
  604. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  605. unsigned long thresh,
  606. unsigned long bg_thresh,
  607. unsigned long dirty,
  608. unsigned long bdi_thresh,
  609. unsigned long bdi_dirty)
  610. {
  611. unsigned long write_bw = bdi->avg_write_bandwidth;
  612. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  613. unsigned long limit = hard_dirty_limit(thresh);
  614. unsigned long x_intercept;
  615. unsigned long setpoint; /* dirty pages' target balance point */
  616. unsigned long bdi_setpoint;
  617. unsigned long span;
  618. long long pos_ratio; /* for scaling up/down the rate limit */
  619. long x;
  620. if (unlikely(dirty >= limit))
  621. return 0;
  622. /*
  623. * global setpoint
  624. *
  625. * See comment for pos_ratio_polynom().
  626. */
  627. setpoint = (freerun + limit) / 2;
  628. pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
  629. /*
  630. * The strictlimit feature is a tool preventing mistrusted filesystems
  631. * from growing a large number of dirty pages before throttling. For
  632. * such filesystems balance_dirty_pages always checks bdi counters
  633. * against bdi limits. Even if global "nr_dirty" is under "freerun".
  634. * This is especially important for fuse which sets bdi->max_ratio to
  635. * 1% by default. Without strictlimit feature, fuse writeback may
  636. * consume arbitrary amount of RAM because it is accounted in
  637. * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
  638. *
  639. * Here, in bdi_position_ratio(), we calculate pos_ratio based on
  640. * two values: bdi_dirty and bdi_thresh. Let's consider an example:
  641. * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
  642. * limits are set by default to 10% and 20% (background and throttle).
  643. * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
  644. * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
  645. * about ~6K pages (as the average of background and throttle bdi
  646. * limits). The 3rd order polynomial will provide positive feedback if
  647. * bdi_dirty is under bdi_setpoint and vice versa.
  648. *
  649. * Note, that we cannot use global counters in these calculations
  650. * because we want to throttle process writing to a strictlimit BDI
  651. * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
  652. * in the example above).
  653. */
  654. if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
  655. long long bdi_pos_ratio;
  656. unsigned long bdi_bg_thresh;
  657. if (bdi_dirty < 8)
  658. return min_t(long long, pos_ratio * 2,
  659. 2 << RATELIMIT_CALC_SHIFT);
  660. if (bdi_dirty >= bdi_thresh)
  661. return 0;
  662. bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
  663. bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
  664. bdi_bg_thresh);
  665. if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
  666. return 0;
  667. bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
  668. bdi_thresh);
  669. /*
  670. * Typically, for strictlimit case, bdi_setpoint << setpoint
  671. * and pos_ratio >> bdi_pos_ratio. In the other words global
  672. * state ("dirty") is not limiting factor and we have to
  673. * make decision based on bdi counters. But there is an
  674. * important case when global pos_ratio should get precedence:
  675. * global limits are exceeded (e.g. due to activities on other
  676. * BDIs) while given strictlimit BDI is below limit.
  677. *
  678. * "pos_ratio * bdi_pos_ratio" would work for the case above,
  679. * but it would look too non-natural for the case of all
  680. * activity in the system coming from a single strictlimit BDI
  681. * with bdi->max_ratio == 100%.
  682. *
  683. * Note that min() below somewhat changes the dynamics of the
  684. * control system. Normally, pos_ratio value can be well over 3
  685. * (when globally we are at freerun and bdi is well below bdi
  686. * setpoint). Now the maximum pos_ratio in the same situation
  687. * is 2. We might want to tweak this if we observe the control
  688. * system is too slow to adapt.
  689. */
  690. return min(pos_ratio, bdi_pos_ratio);
  691. }
  692. /*
  693. * We have computed basic pos_ratio above based on global situation. If
  694. * the bdi is over/under its share of dirty pages, we want to scale
  695. * pos_ratio further down/up. That is done by the following mechanism.
  696. */
  697. /*
  698. * bdi setpoint
  699. *
  700. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  701. *
  702. * x_intercept - bdi_dirty
  703. * := --------------------------
  704. * x_intercept - bdi_setpoint
  705. *
  706. * The main bdi control line is a linear function that subjects to
  707. *
  708. * (1) f(bdi_setpoint) = 1.0
  709. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  710. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  711. *
  712. * For single bdi case, the dirty pages are observed to fluctuate
  713. * regularly within range
  714. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  715. * for various filesystems, where (2) can yield in a reasonable 12.5%
  716. * fluctuation range for pos_ratio.
  717. *
  718. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  719. * own size, so move the slope over accordingly and choose a slope that
  720. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  721. */
  722. if (unlikely(bdi_thresh > thresh))
  723. bdi_thresh = thresh;
  724. /*
  725. * It's very possible that bdi_thresh is close to 0 not because the
  726. * device is slow, but that it has remained inactive for long time.
  727. * Honour such devices a reasonable good (hopefully IO efficient)
  728. * threshold, so that the occasional writes won't be blocked and active
  729. * writes can rampup the threshold quickly.
  730. */
  731. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  732. /*
  733. * scale global setpoint to bdi's:
  734. * bdi_setpoint = setpoint * bdi_thresh / thresh
  735. */
  736. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  737. bdi_setpoint = setpoint * (u64)x >> 16;
  738. /*
  739. * Use span=(8*write_bw) in single bdi case as indicated by
  740. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  741. *
  742. * bdi_thresh thresh - bdi_thresh
  743. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  744. * thresh thresh
  745. */
  746. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  747. x_intercept = bdi_setpoint + span;
  748. if (bdi_dirty < x_intercept - span / 4) {
  749. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  750. x_intercept - bdi_setpoint + 1);
  751. } else
  752. pos_ratio /= 4;
  753. /*
  754. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  755. * It may push the desired control point of global dirty pages higher
  756. * than setpoint.
  757. */
  758. x_intercept = bdi_thresh / 2;
  759. if (bdi_dirty < x_intercept) {
  760. if (bdi_dirty > x_intercept / 8)
  761. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  762. else
  763. pos_ratio *= 8;
  764. }
  765. return pos_ratio;
  766. }
  767. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  768. unsigned long elapsed,
  769. unsigned long written)
  770. {
  771. const unsigned long period = roundup_pow_of_two(3 * HZ);
  772. unsigned long avg = bdi->avg_write_bandwidth;
  773. unsigned long old = bdi->write_bandwidth;
  774. u64 bw;
  775. /*
  776. * bw = written * HZ / elapsed
  777. *
  778. * bw * elapsed + write_bandwidth * (period - elapsed)
  779. * write_bandwidth = ---------------------------------------------------
  780. * period
  781. */
  782. bw = written - bdi->written_stamp;
  783. bw *= HZ;
  784. if (unlikely(elapsed > period)) {
  785. do_div(bw, elapsed);
  786. avg = bw;
  787. goto out;
  788. }
  789. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  790. bw >>= ilog2(period);
  791. /*
  792. * one more level of smoothing, for filtering out sudden spikes
  793. */
  794. if (avg > old && old >= (unsigned long)bw)
  795. avg -= (avg - old) >> 3;
  796. if (avg < old && old <= (unsigned long)bw)
  797. avg += (old - avg) >> 3;
  798. out:
  799. bdi->write_bandwidth = bw;
  800. bdi->avg_write_bandwidth = avg;
  801. }
  802. /*
  803. * The global dirtyable memory and dirty threshold could be suddenly knocked
  804. * down by a large amount (eg. on the startup of KVM in a swapless system).
  805. * This may throw the system into deep dirty exceeded state and throttle
  806. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  807. * global_dirty_limit for tracking slowly down to the knocked down dirty
  808. * threshold.
  809. */
  810. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  811. {
  812. unsigned long limit = global_dirty_limit;
  813. /*
  814. * Follow up in one step.
  815. */
  816. if (limit < thresh) {
  817. limit = thresh;
  818. goto update;
  819. }
  820. /*
  821. * Follow down slowly. Use the higher one as the target, because thresh
  822. * may drop below dirty. This is exactly the reason to introduce
  823. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  824. */
  825. thresh = max(thresh, dirty);
  826. if (limit > thresh) {
  827. limit -= (limit - thresh) >> 5;
  828. goto update;
  829. }
  830. return;
  831. update:
  832. global_dirty_limit = limit;
  833. }
  834. static void global_update_bandwidth(unsigned long thresh,
  835. unsigned long dirty,
  836. unsigned long now)
  837. {
  838. static DEFINE_SPINLOCK(dirty_lock);
  839. static unsigned long update_time;
  840. /*
  841. * check locklessly first to optimize away locking for the most time
  842. */
  843. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  844. return;
  845. spin_lock(&dirty_lock);
  846. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  847. update_dirty_limit(thresh, dirty);
  848. update_time = now;
  849. }
  850. spin_unlock(&dirty_lock);
  851. }
  852. /*
  853. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  854. *
  855. * Normal bdi tasks will be curbed at or below it in long term.
  856. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  857. */
  858. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  859. unsigned long thresh,
  860. unsigned long bg_thresh,
  861. unsigned long dirty,
  862. unsigned long bdi_thresh,
  863. unsigned long bdi_dirty,
  864. unsigned long dirtied,
  865. unsigned long elapsed)
  866. {
  867. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  868. unsigned long limit = hard_dirty_limit(thresh);
  869. unsigned long setpoint = (freerun + limit) / 2;
  870. unsigned long write_bw = bdi->avg_write_bandwidth;
  871. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  872. unsigned long dirty_rate;
  873. unsigned long task_ratelimit;
  874. unsigned long balanced_dirty_ratelimit;
  875. unsigned long pos_ratio;
  876. unsigned long step;
  877. unsigned long x;
  878. /*
  879. * The dirty rate will match the writeout rate in long term, except
  880. * when dirty pages are truncated by userspace or re-dirtied by FS.
  881. */
  882. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  883. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  884. bdi_thresh, bdi_dirty);
  885. /*
  886. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  887. */
  888. task_ratelimit = (u64)dirty_ratelimit *
  889. pos_ratio >> RATELIMIT_CALC_SHIFT;
  890. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  891. /*
  892. * A linear estimation of the "balanced" throttle rate. The theory is,
  893. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  894. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  895. * formula will yield the balanced rate limit (write_bw / N).
  896. *
  897. * Note that the expanded form is not a pure rate feedback:
  898. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  899. * but also takes pos_ratio into account:
  900. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  901. *
  902. * (1) is not realistic because pos_ratio also takes part in balancing
  903. * the dirty rate. Consider the state
  904. * pos_ratio = 0.5 (3)
  905. * rate = 2 * (write_bw / N) (4)
  906. * If (1) is used, it will stuck in that state! Because each dd will
  907. * be throttled at
  908. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  909. * yielding
  910. * dirty_rate = N * task_ratelimit = write_bw (6)
  911. * put (6) into (1) we get
  912. * rate_(i+1) = rate_(i) (7)
  913. *
  914. * So we end up using (2) to always keep
  915. * rate_(i+1) ~= (write_bw / N) (8)
  916. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  917. * pos_ratio is able to drive itself to 1.0, which is not only where
  918. * the dirty count meet the setpoint, but also where the slope of
  919. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  920. */
  921. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  922. dirty_rate | 1);
  923. /*
  924. * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
  925. */
  926. if (unlikely(balanced_dirty_ratelimit > write_bw))
  927. balanced_dirty_ratelimit = write_bw;
  928. /*
  929. * We could safely do this and return immediately:
  930. *
  931. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  932. *
  933. * However to get a more stable dirty_ratelimit, the below elaborated
  934. * code makes use of task_ratelimit to filter out singular points and
  935. * limit the step size.
  936. *
  937. * The below code essentially only uses the relative value of
  938. *
  939. * task_ratelimit - dirty_ratelimit
  940. * = (pos_ratio - 1) * dirty_ratelimit
  941. *
  942. * which reflects the direction and size of dirty position error.
  943. */
  944. /*
  945. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  946. * task_ratelimit is on the same side of dirty_ratelimit, too.
  947. * For example, when
  948. * - dirty_ratelimit > balanced_dirty_ratelimit
  949. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  950. * lowering dirty_ratelimit will help meet both the position and rate
  951. * control targets. Otherwise, don't update dirty_ratelimit if it will
  952. * only help meet the rate target. After all, what the users ultimately
  953. * feel and care are stable dirty rate and small position error.
  954. *
  955. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  956. * and filter out the singular points of balanced_dirty_ratelimit. Which
  957. * keeps jumping around randomly and can even leap far away at times
  958. * due to the small 200ms estimation period of dirty_rate (we want to
  959. * keep that period small to reduce time lags).
  960. */
  961. step = 0;
  962. /*
  963. * For strictlimit case, calculations above were based on bdi counters
  964. * and limits (starting from pos_ratio = bdi_position_ratio() and up to
  965. * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
  966. * Hence, to calculate "step" properly, we have to use bdi_dirty as
  967. * "dirty" and bdi_setpoint as "setpoint".
  968. *
  969. * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
  970. * it's possible that bdi_thresh is close to zero due to inactivity
  971. * of backing device (see the implementation of bdi_dirty_limit()).
  972. */
  973. if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
  974. dirty = bdi_dirty;
  975. if (bdi_dirty < 8)
  976. setpoint = bdi_dirty + 1;
  977. else
  978. setpoint = (bdi_thresh +
  979. bdi_dirty_limit(bdi, bg_thresh)) / 2;
  980. }
  981. if (dirty < setpoint) {
  982. x = min(bdi->balanced_dirty_ratelimit,
  983. min(balanced_dirty_ratelimit, task_ratelimit));
  984. if (dirty_ratelimit < x)
  985. step = x - dirty_ratelimit;
  986. } else {
  987. x = max(bdi->balanced_dirty_ratelimit,
  988. max(balanced_dirty_ratelimit, task_ratelimit));
  989. if (dirty_ratelimit > x)
  990. step = dirty_ratelimit - x;
  991. }
  992. /*
  993. * Don't pursue 100% rate matching. It's impossible since the balanced
  994. * rate itself is constantly fluctuating. So decrease the track speed
  995. * when it gets close to the target. Helps eliminate pointless tremors.
  996. */
  997. step >>= dirty_ratelimit / (2 * step + 1);
  998. /*
  999. * Limit the tracking speed to avoid overshooting.
  1000. */
  1001. step = (step + 7) / 8;
  1002. if (dirty_ratelimit < balanced_dirty_ratelimit)
  1003. dirty_ratelimit += step;
  1004. else
  1005. dirty_ratelimit -= step;
  1006. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  1007. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  1008. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  1009. }
  1010. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  1011. unsigned long thresh,
  1012. unsigned long bg_thresh,
  1013. unsigned long dirty,
  1014. unsigned long bdi_thresh,
  1015. unsigned long bdi_dirty,
  1016. unsigned long start_time)
  1017. {
  1018. unsigned long now = jiffies;
  1019. unsigned long elapsed = now - bdi->bw_time_stamp;
  1020. unsigned long dirtied;
  1021. unsigned long written;
  1022. /*
  1023. * rate-limit, only update once every 200ms.
  1024. */
  1025. if (elapsed < BANDWIDTH_INTERVAL)
  1026. return;
  1027. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  1028. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  1029. /*
  1030. * Skip quiet periods when disk bandwidth is under-utilized.
  1031. * (at least 1s idle time between two flusher runs)
  1032. */
  1033. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  1034. goto snapshot;
  1035. if (thresh) {
  1036. global_update_bandwidth(thresh, dirty, now);
  1037. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  1038. bdi_thresh, bdi_dirty,
  1039. dirtied, elapsed);
  1040. }
  1041. bdi_update_write_bandwidth(bdi, elapsed, written);
  1042. snapshot:
  1043. bdi->dirtied_stamp = dirtied;
  1044. bdi->written_stamp = written;
  1045. bdi->bw_time_stamp = now;
  1046. }
  1047. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  1048. unsigned long thresh,
  1049. unsigned long bg_thresh,
  1050. unsigned long dirty,
  1051. unsigned long bdi_thresh,
  1052. unsigned long bdi_dirty,
  1053. unsigned long start_time)
  1054. {
  1055. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  1056. return;
  1057. spin_lock(&bdi->wb.list_lock);
  1058. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  1059. bdi_thresh, bdi_dirty, start_time);
  1060. spin_unlock(&bdi->wb.list_lock);
  1061. }
  1062. /*
  1063. * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
  1064. * will look to see if it needs to start dirty throttling.
  1065. *
  1066. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  1067. * global_page_state() too often. So scale it near-sqrt to the safety margin
  1068. * (the number of pages we may dirty without exceeding the dirty limits).
  1069. */
  1070. static unsigned long dirty_poll_interval(unsigned long dirty,
  1071. unsigned long thresh)
  1072. {
  1073. if (thresh > dirty)
  1074. return 1UL << (ilog2(thresh - dirty) >> 1);
  1075. return 1;
  1076. }
  1077. static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
  1078. unsigned long bdi_dirty)
  1079. {
  1080. unsigned long bw = bdi->avg_write_bandwidth;
  1081. unsigned long t;
  1082. /*
  1083. * Limit pause time for small memory systems. If sleeping for too long
  1084. * time, a small pool of dirty/writeback pages may go empty and disk go
  1085. * idle.
  1086. *
  1087. * 8 serves as the safety ratio.
  1088. */
  1089. t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
  1090. t++;
  1091. return min_t(unsigned long, t, MAX_PAUSE);
  1092. }
  1093. static long bdi_min_pause(struct backing_dev_info *bdi,
  1094. long max_pause,
  1095. unsigned long task_ratelimit,
  1096. unsigned long dirty_ratelimit,
  1097. int *nr_dirtied_pause)
  1098. {
  1099. long hi = ilog2(bdi->avg_write_bandwidth);
  1100. long lo = ilog2(bdi->dirty_ratelimit);
  1101. long t; /* target pause */
  1102. long pause; /* estimated next pause */
  1103. int pages; /* target nr_dirtied_pause */
  1104. /* target for 10ms pause on 1-dd case */
  1105. t = max(1, HZ / 100);
  1106. /*
  1107. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  1108. * overheads.
  1109. *
  1110. * (N * 10ms) on 2^N concurrent tasks.
  1111. */
  1112. if (hi > lo)
  1113. t += (hi - lo) * (10 * HZ) / 1024;
  1114. /*
  1115. * This is a bit convoluted. We try to base the next nr_dirtied_pause
  1116. * on the much more stable dirty_ratelimit. However the next pause time
  1117. * will be computed based on task_ratelimit and the two rate limits may
  1118. * depart considerably at some time. Especially if task_ratelimit goes
  1119. * below dirty_ratelimit/2 and the target pause is max_pause, the next
  1120. * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
  1121. * result task_ratelimit won't be executed faithfully, which could
  1122. * eventually bring down dirty_ratelimit.
  1123. *
  1124. * We apply two rules to fix it up:
  1125. * 1) try to estimate the next pause time and if necessary, use a lower
  1126. * nr_dirtied_pause so as not to exceed max_pause. When this happens,
  1127. * nr_dirtied_pause will be "dancing" with task_ratelimit.
  1128. * 2) limit the target pause time to max_pause/2, so that the normal
  1129. * small fluctuations of task_ratelimit won't trigger rule (1) and
  1130. * nr_dirtied_pause will remain as stable as dirty_ratelimit.
  1131. */
  1132. t = min(t, 1 + max_pause / 2);
  1133. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1134. /*
  1135. * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
  1136. * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
  1137. * When the 16 consecutive reads are often interrupted by some dirty
  1138. * throttling pause during the async writes, cfq will go into idles
  1139. * (deadline is fine). So push nr_dirtied_pause as high as possible
  1140. * until reaches DIRTY_POLL_THRESH=32 pages.
  1141. */
  1142. if (pages < DIRTY_POLL_THRESH) {
  1143. t = max_pause;
  1144. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1145. if (pages > DIRTY_POLL_THRESH) {
  1146. pages = DIRTY_POLL_THRESH;
  1147. t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
  1148. }
  1149. }
  1150. pause = HZ * pages / (task_ratelimit + 1);
  1151. if (pause > max_pause) {
  1152. t = max_pause;
  1153. pages = task_ratelimit * t / roundup_pow_of_two(HZ);
  1154. }
  1155. *nr_dirtied_pause = pages;
  1156. /*
  1157. * The minimal pause time will normally be half the target pause time.
  1158. */
  1159. return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
  1160. }
  1161. static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
  1162. unsigned long dirty_thresh,
  1163. unsigned long background_thresh,
  1164. unsigned long *bdi_dirty,
  1165. unsigned long *bdi_thresh,
  1166. unsigned long *bdi_bg_thresh)
  1167. {
  1168. unsigned long bdi_reclaimable;
  1169. /*
  1170. * bdi_thresh is not treated as some limiting factor as
  1171. * dirty_thresh, due to reasons
  1172. * - in JBOD setup, bdi_thresh can fluctuate a lot
  1173. * - in a system with HDD and USB key, the USB key may somehow
  1174. * go into state (bdi_dirty >> bdi_thresh) either because
  1175. * bdi_dirty starts high, or because bdi_thresh drops low.
  1176. * In this case we don't want to hard throttle the USB key
  1177. * dirtiers for 100 seconds until bdi_dirty drops under
  1178. * bdi_thresh. Instead the auxiliary bdi control line in
  1179. * bdi_position_ratio() will let the dirtier task progress
  1180. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  1181. */
  1182. *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  1183. if (bdi_bg_thresh)
  1184. *bdi_bg_thresh = div_u64((u64)*bdi_thresh *
  1185. background_thresh,
  1186. dirty_thresh);
  1187. /*
  1188. * In order to avoid the stacked BDI deadlock we need
  1189. * to ensure we accurately count the 'dirty' pages when
  1190. * the threshold is low.
  1191. *
  1192. * Otherwise it would be possible to get thresh+n pages
  1193. * reported dirty, even though there are thresh-m pages
  1194. * actually dirty; with m+n sitting in the percpu
  1195. * deltas.
  1196. */
  1197. if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
  1198. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  1199. *bdi_dirty = bdi_reclaimable +
  1200. bdi_stat_sum(bdi, BDI_WRITEBACK);
  1201. } else {
  1202. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  1203. *bdi_dirty = bdi_reclaimable +
  1204. bdi_stat(bdi, BDI_WRITEBACK);
  1205. }
  1206. }
  1207. /*
  1208. * balance_dirty_pages() must be called by processes which are generating dirty
  1209. * data. It looks at the number of dirty pages in the machine and will force
  1210. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  1211. * If we're over `background_thresh' then the writeback threads are woken to
  1212. * perform some writeout.
  1213. */
  1214. static void balance_dirty_pages(struct address_space *mapping,
  1215. unsigned long pages_dirtied)
  1216. {
  1217. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  1218. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  1219. unsigned long background_thresh;
  1220. unsigned long dirty_thresh;
  1221. long period;
  1222. long pause;
  1223. long max_pause;
  1224. long min_pause;
  1225. int nr_dirtied_pause;
  1226. bool dirty_exceeded = false;
  1227. unsigned long task_ratelimit;
  1228. unsigned long dirty_ratelimit;
  1229. unsigned long pos_ratio;
  1230. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1231. bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
  1232. unsigned long start_time = jiffies;
  1233. for (;;) {
  1234. unsigned long now = jiffies;
  1235. unsigned long uninitialized_var(bdi_thresh);
  1236. unsigned long thresh;
  1237. unsigned long uninitialized_var(bdi_dirty);
  1238. unsigned long dirty;
  1239. unsigned long bg_thresh;
  1240. /*
  1241. * Unstable writes are a feature of certain networked
  1242. * filesystems (i.e. NFS) in which data may have been
  1243. * written to the server's write cache, but has not yet
  1244. * been flushed to permanent storage.
  1245. */
  1246. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  1247. global_page_state(NR_UNSTABLE_NFS);
  1248. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  1249. global_dirty_limits(&background_thresh, &dirty_thresh);
  1250. if (unlikely(strictlimit)) {
  1251. bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
  1252. &bdi_dirty, &bdi_thresh, &bg_thresh);
  1253. dirty = bdi_dirty;
  1254. thresh = bdi_thresh;
  1255. } else {
  1256. dirty = nr_dirty;
  1257. thresh = dirty_thresh;
  1258. bg_thresh = background_thresh;
  1259. }
  1260. /*
  1261. * Throttle it only when the background writeback cannot
  1262. * catch-up. This avoids (excessively) small writeouts
  1263. * when the bdi limits are ramping up in case of !strictlimit.
  1264. *
  1265. * In strictlimit case make decision based on the bdi counters
  1266. * and limits. Small writeouts when the bdi limits are ramping
  1267. * up are the price we consciously pay for strictlimit-ing.
  1268. */
  1269. if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
  1270. current->dirty_paused_when = now;
  1271. current->nr_dirtied = 0;
  1272. current->nr_dirtied_pause =
  1273. dirty_poll_interval(dirty, thresh);
  1274. break;
  1275. }
  1276. if (unlikely(!writeback_in_progress(bdi)))
  1277. bdi_start_background_writeback(bdi);
  1278. if (!strictlimit)
  1279. bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
  1280. &bdi_dirty, &bdi_thresh, NULL);
  1281. dirty_exceeded = (bdi_dirty > bdi_thresh) &&
  1282. ((nr_dirty > dirty_thresh) || strictlimit);
  1283. if (dirty_exceeded && !bdi->dirty_exceeded)
  1284. bdi->dirty_exceeded = 1;
  1285. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  1286. nr_dirty, bdi_thresh, bdi_dirty,
  1287. start_time);
  1288. dirty_ratelimit = bdi->dirty_ratelimit;
  1289. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  1290. background_thresh, nr_dirty,
  1291. bdi_thresh, bdi_dirty);
  1292. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  1293. RATELIMIT_CALC_SHIFT;
  1294. max_pause = bdi_max_pause(bdi, bdi_dirty);
  1295. min_pause = bdi_min_pause(bdi, max_pause,
  1296. task_ratelimit, dirty_ratelimit,
  1297. &nr_dirtied_pause);
  1298. if (unlikely(task_ratelimit == 0)) {
  1299. period = max_pause;
  1300. pause = max_pause;
  1301. goto pause;
  1302. }
  1303. period = HZ * pages_dirtied / task_ratelimit;
  1304. pause = period;
  1305. if (current->dirty_paused_when)
  1306. pause -= now - current->dirty_paused_when;
  1307. /*
  1308. * For less than 1s think time (ext3/4 may block the dirtier
  1309. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1310. * however at much less frequency), try to compensate it in
  1311. * future periods by updating the virtual time; otherwise just
  1312. * do a reset, as it may be a light dirtier.
  1313. */
  1314. if (pause < min_pause) {
  1315. trace_balance_dirty_pages(bdi,
  1316. dirty_thresh,
  1317. background_thresh,
  1318. nr_dirty,
  1319. bdi_thresh,
  1320. bdi_dirty,
  1321. dirty_ratelimit,
  1322. task_ratelimit,
  1323. pages_dirtied,
  1324. period,
  1325. min(pause, 0L),
  1326. start_time);
  1327. if (pause < -HZ) {
  1328. current->dirty_paused_when = now;
  1329. current->nr_dirtied = 0;
  1330. } else if (period) {
  1331. current->dirty_paused_when += period;
  1332. current->nr_dirtied = 0;
  1333. } else if (current->nr_dirtied_pause <= pages_dirtied)
  1334. current->nr_dirtied_pause += pages_dirtied;
  1335. break;
  1336. }
  1337. if (unlikely(pause > max_pause)) {
  1338. /* for occasional dropped task_ratelimit */
  1339. now += min(pause - max_pause, max_pause);
  1340. pause = max_pause;
  1341. }
  1342. pause:
  1343. trace_balance_dirty_pages(bdi,
  1344. dirty_thresh,
  1345. background_thresh,
  1346. nr_dirty,
  1347. bdi_thresh,
  1348. bdi_dirty,
  1349. dirty_ratelimit,
  1350. task_ratelimit,
  1351. pages_dirtied,
  1352. period,
  1353. pause,
  1354. start_time);
  1355. __set_current_state(TASK_KILLABLE);
  1356. io_schedule_timeout(pause);
  1357. current->dirty_paused_when = now + pause;
  1358. current->nr_dirtied = 0;
  1359. current->nr_dirtied_pause = nr_dirtied_pause;
  1360. /*
  1361. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1362. * also keep "1000+ dd on a slow USB stick" under control.
  1363. */
  1364. if (task_ratelimit)
  1365. break;
  1366. /*
  1367. * In the case of an unresponding NFS server and the NFS dirty
  1368. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1369. * to go through, so that tasks on them still remain responsive.
  1370. *
  1371. * In theory 1 page is enough to keep the comsumer-producer
  1372. * pipe going: the flusher cleans 1 page => the task dirties 1
  1373. * more page. However bdi_dirty has accounting errors. So use
  1374. * the larger and more IO friendly bdi_stat_error.
  1375. */
  1376. if (bdi_dirty <= bdi_stat_error(bdi))
  1377. break;
  1378. if (fatal_signal_pending(current))
  1379. break;
  1380. }
  1381. if (!dirty_exceeded && bdi->dirty_exceeded)
  1382. bdi->dirty_exceeded = 0;
  1383. if (writeback_in_progress(bdi))
  1384. return;
  1385. /*
  1386. * In laptop mode, we wait until hitting the higher threshold before
  1387. * starting background writeout, and then write out all the way down
  1388. * to the lower threshold. So slow writers cause minimal disk activity.
  1389. *
  1390. * In normal mode, we start background writeout at the lower
  1391. * background_thresh, to keep the amount of dirty memory low.
  1392. */
  1393. if (laptop_mode)
  1394. return;
  1395. if (nr_reclaimable > background_thresh)
  1396. bdi_start_background_writeback(bdi);
  1397. }
  1398. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1399. {
  1400. if (set_page_dirty(page) || page_mkwrite) {
  1401. struct address_space *mapping = page_mapping(page);
  1402. if (mapping)
  1403. balance_dirty_pages_ratelimited(mapping);
  1404. }
  1405. }
  1406. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1407. /*
  1408. * Normal tasks are throttled by
  1409. * loop {
  1410. * dirty tsk->nr_dirtied_pause pages;
  1411. * take a snap in balance_dirty_pages();
  1412. * }
  1413. * However there is a worst case. If every task exit immediately when dirtied
  1414. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1415. * called to throttle the page dirties. The solution is to save the not yet
  1416. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1417. * randomly into the running tasks. This works well for the above worst case,
  1418. * as the new task will pick up and accumulate the old task's leaked dirty
  1419. * count and eventually get throttled.
  1420. */
  1421. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1422. /**
  1423. * balance_dirty_pages_ratelimited - balance dirty memory state
  1424. * @mapping: address_space which was dirtied
  1425. *
  1426. * Processes which are dirtying memory should call in here once for each page
  1427. * which was newly dirtied. The function will periodically check the system's
  1428. * dirty state and will initiate writeback if needed.
  1429. *
  1430. * On really big machines, get_writeback_state is expensive, so try to avoid
  1431. * calling it too often (ratelimiting). But once we're over the dirty memory
  1432. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1433. * from overshooting the limit by (ratelimit_pages) each.
  1434. */
  1435. void balance_dirty_pages_ratelimited(struct address_space *mapping)
  1436. {
  1437. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1438. int ratelimit;
  1439. int *p;
  1440. if (!bdi_cap_account_dirty(bdi))
  1441. return;
  1442. ratelimit = current->nr_dirtied_pause;
  1443. if (bdi->dirty_exceeded)
  1444. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1445. preempt_disable();
  1446. /*
  1447. * This prevents one CPU to accumulate too many dirtied pages without
  1448. * calling into balance_dirty_pages(), which can happen when there are
  1449. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1450. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1451. */
  1452. p = &__get_cpu_var(bdp_ratelimits);
  1453. if (unlikely(current->nr_dirtied >= ratelimit))
  1454. *p = 0;
  1455. else if (unlikely(*p >= ratelimit_pages)) {
  1456. *p = 0;
  1457. ratelimit = 0;
  1458. }
  1459. /*
  1460. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1461. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1462. * the dirty throttling and livelock other long-run dirtiers.
  1463. */
  1464. p = &__get_cpu_var(dirty_throttle_leaks);
  1465. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1466. unsigned long nr_pages_dirtied;
  1467. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1468. *p -= nr_pages_dirtied;
  1469. current->nr_dirtied += nr_pages_dirtied;
  1470. }
  1471. preempt_enable();
  1472. if (unlikely(current->nr_dirtied >= ratelimit))
  1473. balance_dirty_pages(mapping, current->nr_dirtied);
  1474. }
  1475. EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
  1476. void throttle_vm_writeout(gfp_t gfp_mask)
  1477. {
  1478. unsigned long background_thresh;
  1479. unsigned long dirty_thresh;
  1480. for ( ; ; ) {
  1481. global_dirty_limits(&background_thresh, &dirty_thresh);
  1482. dirty_thresh = hard_dirty_limit(dirty_thresh);
  1483. /*
  1484. * Boost the allowable dirty threshold a bit for page
  1485. * allocators so they don't get DoS'ed by heavy writers
  1486. */
  1487. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1488. if (global_page_state(NR_UNSTABLE_NFS) +
  1489. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1490. break;
  1491. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1492. /*
  1493. * The caller might hold locks which can prevent IO completion
  1494. * or progress in the filesystem. So we cannot just sit here
  1495. * waiting for IO to complete.
  1496. */
  1497. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1498. break;
  1499. }
  1500. }
  1501. /*
  1502. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1503. */
  1504. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1505. void __user *buffer, size_t *length, loff_t *ppos)
  1506. {
  1507. proc_dointvec(table, write, buffer, length, ppos);
  1508. return 0;
  1509. }
  1510. #ifdef CONFIG_BLOCK
  1511. void laptop_mode_timer_fn(unsigned long data)
  1512. {
  1513. struct request_queue *q = (struct request_queue *)data;
  1514. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1515. global_page_state(NR_UNSTABLE_NFS);
  1516. /*
  1517. * We want to write everything out, not just down to the dirty
  1518. * threshold
  1519. */
  1520. if (bdi_has_dirty_io(&q->backing_dev_info))
  1521. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1522. WB_REASON_LAPTOP_TIMER);
  1523. }
  1524. /*
  1525. * We've spun up the disk and we're in laptop mode: schedule writeback
  1526. * of all dirty data a few seconds from now. If the flush is already scheduled
  1527. * then push it back - the user is still using the disk.
  1528. */
  1529. void laptop_io_completion(struct backing_dev_info *info)
  1530. {
  1531. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1532. }
  1533. /*
  1534. * We're in laptop mode and we've just synced. The sync's writes will have
  1535. * caused another writeback to be scheduled by laptop_io_completion.
  1536. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1537. */
  1538. void laptop_sync_completion(void)
  1539. {
  1540. struct backing_dev_info *bdi;
  1541. rcu_read_lock();
  1542. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1543. del_timer(&bdi->laptop_mode_wb_timer);
  1544. rcu_read_unlock();
  1545. }
  1546. #endif
  1547. /*
  1548. * If ratelimit_pages is too high then we can get into dirty-data overload
  1549. * if a large number of processes all perform writes at the same time.
  1550. * If it is too low then SMP machines will call the (expensive)
  1551. * get_writeback_state too often.
  1552. *
  1553. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1554. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1555. * thresholds.
  1556. */
  1557. void writeback_set_ratelimit(void)
  1558. {
  1559. unsigned long background_thresh;
  1560. unsigned long dirty_thresh;
  1561. global_dirty_limits(&background_thresh, &dirty_thresh);
  1562. global_dirty_limit = dirty_thresh;
  1563. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1564. if (ratelimit_pages < 16)
  1565. ratelimit_pages = 16;
  1566. }
  1567. static int
  1568. ratelimit_handler(struct notifier_block *self, unsigned long action,
  1569. void *hcpu)
  1570. {
  1571. switch (action & ~CPU_TASKS_FROZEN) {
  1572. case CPU_ONLINE:
  1573. case CPU_DEAD:
  1574. writeback_set_ratelimit();
  1575. return NOTIFY_OK;
  1576. default:
  1577. return NOTIFY_DONE;
  1578. }
  1579. }
  1580. static struct notifier_block ratelimit_nb = {
  1581. .notifier_call = ratelimit_handler,
  1582. .next = NULL,
  1583. };
  1584. /*
  1585. * Called early on to tune the page writeback dirty limits.
  1586. *
  1587. * We used to scale dirty pages according to how total memory
  1588. * related to pages that could be allocated for buffers (by
  1589. * comparing nr_free_buffer_pages() to vm_total_pages.
  1590. *
  1591. * However, that was when we used "dirty_ratio" to scale with
  1592. * all memory, and we don't do that any more. "dirty_ratio"
  1593. * is now applied to total non-HIGHPAGE memory (by subtracting
  1594. * totalhigh_pages from vm_total_pages), and as such we can't
  1595. * get into the old insane situation any more where we had
  1596. * large amounts of dirty pages compared to a small amount of
  1597. * non-HIGHMEM memory.
  1598. *
  1599. * But we might still want to scale the dirty_ratio by how
  1600. * much memory the box has..
  1601. */
  1602. void __init page_writeback_init(void)
  1603. {
  1604. writeback_set_ratelimit();
  1605. register_cpu_notifier(&ratelimit_nb);
  1606. fprop_global_init(&writeout_completions);
  1607. }
  1608. /**
  1609. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1610. * @mapping: address space structure to write
  1611. * @start: starting page index
  1612. * @end: ending page index (inclusive)
  1613. *
  1614. * This function scans the page range from @start to @end (inclusive) and tags
  1615. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1616. * that write_cache_pages (or whoever calls this function) will then use
  1617. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1618. * used to avoid livelocking of writeback by a process steadily creating new
  1619. * dirty pages in the file (thus it is important for this function to be quick
  1620. * so that it can tag pages faster than a dirtying process can create them).
  1621. */
  1622. /*
  1623. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1624. */
  1625. void tag_pages_for_writeback(struct address_space *mapping,
  1626. pgoff_t start, pgoff_t end)
  1627. {
  1628. #define WRITEBACK_TAG_BATCH 4096
  1629. unsigned long tagged;
  1630. do {
  1631. spin_lock_irq(&mapping->tree_lock);
  1632. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1633. &start, end, WRITEBACK_TAG_BATCH,
  1634. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1635. spin_unlock_irq(&mapping->tree_lock);
  1636. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1637. cond_resched();
  1638. /* We check 'start' to handle wrapping when end == ~0UL */
  1639. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1640. }
  1641. EXPORT_SYMBOL(tag_pages_for_writeback);
  1642. /**
  1643. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1644. * @mapping: address space structure to write
  1645. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1646. * @writepage: function called for each page
  1647. * @data: data passed to writepage function
  1648. *
  1649. * If a page is already under I/O, write_cache_pages() skips it, even
  1650. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1651. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1652. * and msync() need to guarantee that all the data which was dirty at the time
  1653. * the call was made get new I/O started against them. If wbc->sync_mode is
  1654. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1655. * existing IO to complete.
  1656. *
  1657. * To avoid livelocks (when other process dirties new pages), we first tag
  1658. * pages which should be written back with TOWRITE tag and only then start
  1659. * writing them. For data-integrity sync we have to be careful so that we do
  1660. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1661. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1662. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1663. */
  1664. int write_cache_pages(struct address_space *mapping,
  1665. struct writeback_control *wbc, writepage_t writepage,
  1666. void *data)
  1667. {
  1668. int ret = 0;
  1669. int done = 0;
  1670. struct pagevec pvec;
  1671. int nr_pages;
  1672. pgoff_t uninitialized_var(writeback_index);
  1673. pgoff_t index;
  1674. pgoff_t end; /* Inclusive */
  1675. pgoff_t done_index;
  1676. int cycled;
  1677. int range_whole = 0;
  1678. int tag;
  1679. pagevec_init(&pvec, 0);
  1680. if (wbc->range_cyclic) {
  1681. writeback_index = mapping->writeback_index; /* prev offset */
  1682. index = writeback_index;
  1683. if (index == 0)
  1684. cycled = 1;
  1685. else
  1686. cycled = 0;
  1687. end = -1;
  1688. } else {
  1689. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1690. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1691. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1692. range_whole = 1;
  1693. cycled = 1; /* ignore range_cyclic tests */
  1694. }
  1695. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1696. tag = PAGECACHE_TAG_TOWRITE;
  1697. else
  1698. tag = PAGECACHE_TAG_DIRTY;
  1699. retry:
  1700. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1701. tag_pages_for_writeback(mapping, index, end);
  1702. done_index = index;
  1703. while (!done && (index <= end)) {
  1704. int i;
  1705. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1706. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1707. if (nr_pages == 0)
  1708. break;
  1709. for (i = 0; i < nr_pages; i++) {
  1710. struct page *page = pvec.pages[i];
  1711. /*
  1712. * At this point, the page may be truncated or
  1713. * invalidated (changing page->mapping to NULL), or
  1714. * even swizzled back from swapper_space to tmpfs file
  1715. * mapping. However, page->index will not change
  1716. * because we have a reference on the page.
  1717. */
  1718. if (page->index > end) {
  1719. /*
  1720. * can't be range_cyclic (1st pass) because
  1721. * end == -1 in that case.
  1722. */
  1723. done = 1;
  1724. break;
  1725. }
  1726. done_index = page->index;
  1727. lock_page(page);
  1728. /*
  1729. * Page truncated or invalidated. We can freely skip it
  1730. * then, even for data integrity operations: the page
  1731. * has disappeared concurrently, so there could be no
  1732. * real expectation of this data interity operation
  1733. * even if there is now a new, dirty page at the same
  1734. * pagecache address.
  1735. */
  1736. if (unlikely(page->mapping != mapping)) {
  1737. continue_unlock:
  1738. unlock_page(page);
  1739. continue;
  1740. }
  1741. if (!PageDirty(page)) {
  1742. /* someone wrote it for us */
  1743. goto continue_unlock;
  1744. }
  1745. if (PageWriteback(page)) {
  1746. if (wbc->sync_mode != WB_SYNC_NONE)
  1747. wait_on_page_writeback(page);
  1748. else
  1749. goto continue_unlock;
  1750. }
  1751. BUG_ON(PageWriteback(page));
  1752. if (!clear_page_dirty_for_io(page))
  1753. goto continue_unlock;
  1754. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1755. ret = (*writepage)(page, wbc, data);
  1756. if (unlikely(ret)) {
  1757. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1758. unlock_page(page);
  1759. ret = 0;
  1760. } else {
  1761. /*
  1762. * done_index is set past this page,
  1763. * so media errors will not choke
  1764. * background writeout for the entire
  1765. * file. This has consequences for
  1766. * range_cyclic semantics (ie. it may
  1767. * not be suitable for data integrity
  1768. * writeout).
  1769. */
  1770. done_index = page->index + 1;
  1771. done = 1;
  1772. break;
  1773. }
  1774. }
  1775. /*
  1776. * We stop writing back only if we are not doing
  1777. * integrity sync. In case of integrity sync we have to
  1778. * keep going until we have written all the pages
  1779. * we tagged for writeback prior to entering this loop.
  1780. */
  1781. if (--wbc->nr_to_write <= 0 &&
  1782. wbc->sync_mode == WB_SYNC_NONE) {
  1783. done = 1;
  1784. break;
  1785. }
  1786. }
  1787. pagevec_release(&pvec);
  1788. cond_resched();
  1789. }
  1790. if (!cycled && !done) {
  1791. /*
  1792. * range_cyclic:
  1793. * We hit the last page and there is more work to be done: wrap
  1794. * back to the start of the file
  1795. */
  1796. cycled = 1;
  1797. index = 0;
  1798. end = writeback_index - 1;
  1799. goto retry;
  1800. }
  1801. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1802. mapping->writeback_index = done_index;
  1803. return ret;
  1804. }
  1805. EXPORT_SYMBOL(write_cache_pages);
  1806. /*
  1807. * Function used by generic_writepages to call the real writepage
  1808. * function and set the mapping flags on error
  1809. */
  1810. static int __writepage(struct page *page, struct writeback_control *wbc,
  1811. void *data)
  1812. {
  1813. struct address_space *mapping = data;
  1814. int ret = mapping->a_ops->writepage(page, wbc);
  1815. mapping_set_error(mapping, ret);
  1816. return ret;
  1817. }
  1818. /**
  1819. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1820. * @mapping: address space structure to write
  1821. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1822. *
  1823. * This is a library function, which implements the writepages()
  1824. * address_space_operation.
  1825. */
  1826. int generic_writepages(struct address_space *mapping,
  1827. struct writeback_control *wbc)
  1828. {
  1829. struct blk_plug plug;
  1830. int ret;
  1831. /* deal with chardevs and other special file */
  1832. if (!mapping->a_ops->writepage)
  1833. return 0;
  1834. blk_start_plug(&plug);
  1835. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1836. blk_finish_plug(&plug);
  1837. return ret;
  1838. }
  1839. EXPORT_SYMBOL(generic_writepages);
  1840. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1841. {
  1842. int ret;
  1843. if (wbc->nr_to_write <= 0)
  1844. return 0;
  1845. if (mapping->a_ops->writepages)
  1846. ret = mapping->a_ops->writepages(mapping, wbc);
  1847. else
  1848. ret = generic_writepages(mapping, wbc);
  1849. return ret;
  1850. }
  1851. /**
  1852. * write_one_page - write out a single page and optionally wait on I/O
  1853. * @page: the page to write
  1854. * @wait: if true, wait on writeout
  1855. *
  1856. * The page must be locked by the caller and will be unlocked upon return.
  1857. *
  1858. * write_one_page() returns a negative error code if I/O failed.
  1859. */
  1860. int write_one_page(struct page *page, int wait)
  1861. {
  1862. struct address_space *mapping = page->mapping;
  1863. int ret = 0;
  1864. struct writeback_control wbc = {
  1865. .sync_mode = WB_SYNC_ALL,
  1866. .nr_to_write = 1,
  1867. };
  1868. BUG_ON(!PageLocked(page));
  1869. if (wait)
  1870. wait_on_page_writeback(page);
  1871. if (clear_page_dirty_for_io(page)) {
  1872. page_cache_get(page);
  1873. ret = mapping->a_ops->writepage(page, &wbc);
  1874. if (ret == 0 && wait) {
  1875. wait_on_page_writeback(page);
  1876. if (PageError(page))
  1877. ret = -EIO;
  1878. }
  1879. page_cache_release(page);
  1880. } else {
  1881. unlock_page(page);
  1882. }
  1883. return ret;
  1884. }
  1885. EXPORT_SYMBOL(write_one_page);
  1886. /*
  1887. * For address_spaces which do not use buffers nor write back.
  1888. */
  1889. int __set_page_dirty_no_writeback(struct page *page)
  1890. {
  1891. if (!PageDirty(page))
  1892. return !TestSetPageDirty(page);
  1893. return 0;
  1894. }
  1895. /*
  1896. * Helper function for set_page_dirty family.
  1897. * NOTE: This relies on being atomic wrt interrupts.
  1898. */
  1899. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1900. {
  1901. trace_writeback_dirty_page(page, mapping);
  1902. if (mapping_cap_account_dirty(mapping)) {
  1903. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1904. __inc_zone_page_state(page, NR_DIRTIED);
  1905. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1906. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1907. task_io_account_write(PAGE_CACHE_SIZE);
  1908. current->nr_dirtied++;
  1909. this_cpu_inc(bdp_ratelimits);
  1910. }
  1911. }
  1912. EXPORT_SYMBOL(account_page_dirtied);
  1913. /*
  1914. * Helper function for set_page_writeback family.
  1915. *
  1916. * The caller must hold mem_cgroup_begin/end_update_page_stat() lock
  1917. * while calling this function.
  1918. * See test_set_page_writeback for example.
  1919. *
  1920. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1921. * wrt interrupts.
  1922. */
  1923. void account_page_writeback(struct page *page)
  1924. {
  1925. mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
  1926. inc_zone_page_state(page, NR_WRITEBACK);
  1927. }
  1928. EXPORT_SYMBOL(account_page_writeback);
  1929. /*
  1930. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1931. * its radix tree.
  1932. *
  1933. * This is also used when a single buffer is being dirtied: we want to set the
  1934. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1935. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1936. *
  1937. * Most callers have locked the page, which pins the address_space in memory.
  1938. * But zap_pte_range() does not lock the page, however in that case the
  1939. * mapping is pinned by the vma's ->vm_file reference.
  1940. *
  1941. * We take care to handle the case where the page was truncated from the
  1942. * mapping by re-checking page_mapping() inside tree_lock.
  1943. */
  1944. int __set_page_dirty_nobuffers(struct page *page)
  1945. {
  1946. if (!TestSetPageDirty(page)) {
  1947. struct address_space *mapping = page_mapping(page);
  1948. struct address_space *mapping2;
  1949. unsigned long flags;
  1950. if (!mapping)
  1951. return 1;
  1952. spin_lock_irqsave(&mapping->tree_lock, flags);
  1953. mapping2 = page_mapping(page);
  1954. if (mapping2) { /* Race with truncate? */
  1955. BUG_ON(mapping2 != mapping);
  1956. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1957. account_page_dirtied(page, mapping);
  1958. radix_tree_tag_set(&mapping->page_tree,
  1959. page_index(page), PAGECACHE_TAG_DIRTY);
  1960. }
  1961. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1962. if (mapping->host) {
  1963. /* !PageAnon && !swapper_space */
  1964. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1965. }
  1966. return 1;
  1967. }
  1968. return 0;
  1969. }
  1970. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1971. /*
  1972. * Call this whenever redirtying a page, to de-account the dirty counters
  1973. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  1974. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  1975. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  1976. * control.
  1977. */
  1978. void account_page_redirty(struct page *page)
  1979. {
  1980. struct address_space *mapping = page->mapping;
  1981. if (mapping && mapping_cap_account_dirty(mapping)) {
  1982. current->nr_dirtied--;
  1983. dec_zone_page_state(page, NR_DIRTIED);
  1984. dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1985. }
  1986. }
  1987. EXPORT_SYMBOL(account_page_redirty);
  1988. /*
  1989. * When a writepage implementation decides that it doesn't want to write this
  1990. * page for some reason, it should redirty the locked page via
  1991. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1992. */
  1993. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1994. {
  1995. wbc->pages_skipped++;
  1996. account_page_redirty(page);
  1997. return __set_page_dirty_nobuffers(page);
  1998. }
  1999. EXPORT_SYMBOL(redirty_page_for_writepage);
  2000. /*
  2001. * Dirty a page.
  2002. *
  2003. * For pages with a mapping this should be done under the page lock
  2004. * for the benefit of asynchronous memory errors who prefer a consistent
  2005. * dirty state. This rule can be broken in some special cases,
  2006. * but should be better not to.
  2007. *
  2008. * If the mapping doesn't provide a set_page_dirty a_op, then
  2009. * just fall through and assume that it wants buffer_heads.
  2010. */
  2011. int set_page_dirty(struct page *page)
  2012. {
  2013. struct address_space *mapping = page_mapping(page);
  2014. if (likely(mapping)) {
  2015. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  2016. /*
  2017. * readahead/lru_deactivate_page could remain
  2018. * PG_readahead/PG_reclaim due to race with end_page_writeback
  2019. * About readahead, if the page is written, the flags would be
  2020. * reset. So no problem.
  2021. * About lru_deactivate_page, if the page is redirty, the flag
  2022. * will be reset. So no problem. but if the page is used by readahead
  2023. * it will confuse readahead and make it restart the size rampup
  2024. * process. But it's a trivial problem.
  2025. */
  2026. ClearPageReclaim(page);
  2027. #ifdef CONFIG_BLOCK
  2028. if (!spd)
  2029. spd = __set_page_dirty_buffers;
  2030. #endif
  2031. return (*spd)(page);
  2032. }
  2033. if (!PageDirty(page)) {
  2034. if (!TestSetPageDirty(page))
  2035. return 1;
  2036. }
  2037. return 0;
  2038. }
  2039. EXPORT_SYMBOL(set_page_dirty);
  2040. /*
  2041. * set_page_dirty() is racy if the caller has no reference against
  2042. * page->mapping->host, and if the page is unlocked. This is because another
  2043. * CPU could truncate the page off the mapping and then free the mapping.
  2044. *
  2045. * Usually, the page _is_ locked, or the caller is a user-space process which
  2046. * holds a reference on the inode by having an open file.
  2047. *
  2048. * In other cases, the page should be locked before running set_page_dirty().
  2049. */
  2050. int set_page_dirty_lock(struct page *page)
  2051. {
  2052. int ret;
  2053. lock_page(page);
  2054. ret = set_page_dirty(page);
  2055. unlock_page(page);
  2056. return ret;
  2057. }
  2058. EXPORT_SYMBOL(set_page_dirty_lock);
  2059. /*
  2060. * Clear a page's dirty flag, while caring for dirty memory accounting.
  2061. * Returns true if the page was previously dirty.
  2062. *
  2063. * This is for preparing to put the page under writeout. We leave the page
  2064. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  2065. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  2066. * implementation will run either set_page_writeback() or set_page_dirty(),
  2067. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  2068. * back into sync.
  2069. *
  2070. * This incoherency between the page's dirty flag and radix-tree tag is
  2071. * unfortunate, but it only exists while the page is locked.
  2072. */
  2073. int clear_page_dirty_for_io(struct page *page)
  2074. {
  2075. struct address_space *mapping = page_mapping(page);
  2076. BUG_ON(!PageLocked(page));
  2077. if (mapping && mapping_cap_account_dirty(mapping)) {
  2078. /*
  2079. * Yes, Virginia, this is indeed insane.
  2080. *
  2081. * We use this sequence to make sure that
  2082. * (a) we account for dirty stats properly
  2083. * (b) we tell the low-level filesystem to
  2084. * mark the whole page dirty if it was
  2085. * dirty in a pagetable. Only to then
  2086. * (c) clean the page again and return 1 to
  2087. * cause the writeback.
  2088. *
  2089. * This way we avoid all nasty races with the
  2090. * dirty bit in multiple places and clearing
  2091. * them concurrently from different threads.
  2092. *
  2093. * Note! Normally the "set_page_dirty(page)"
  2094. * has no effect on the actual dirty bit - since
  2095. * that will already usually be set. But we
  2096. * need the side effects, and it can help us
  2097. * avoid races.
  2098. *
  2099. * We basically use the page "master dirty bit"
  2100. * as a serialization point for all the different
  2101. * threads doing their things.
  2102. */
  2103. if (page_mkclean(page))
  2104. set_page_dirty(page);
  2105. /*
  2106. * We carefully synchronise fault handlers against
  2107. * installing a dirty pte and marking the page dirty
  2108. * at this point. We do this by having them hold the
  2109. * page lock at some point after installing their
  2110. * pte, but before marking the page dirty.
  2111. * Pages are always locked coming in here, so we get
  2112. * the desired exclusion. See mm/memory.c:do_wp_page()
  2113. * for more comments.
  2114. */
  2115. if (TestClearPageDirty(page)) {
  2116. dec_zone_page_state(page, NR_FILE_DIRTY);
  2117. dec_bdi_stat(mapping->backing_dev_info,
  2118. BDI_RECLAIMABLE);
  2119. return 1;
  2120. }
  2121. return 0;
  2122. }
  2123. return TestClearPageDirty(page);
  2124. }
  2125. EXPORT_SYMBOL(clear_page_dirty_for_io);
  2126. int test_clear_page_writeback(struct page *page)
  2127. {
  2128. struct address_space *mapping = page_mapping(page);
  2129. int ret;
  2130. bool locked;
  2131. unsigned long memcg_flags;
  2132. mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
  2133. if (mapping) {
  2134. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2135. unsigned long flags;
  2136. spin_lock_irqsave(&mapping->tree_lock, flags);
  2137. ret = TestClearPageWriteback(page);
  2138. if (ret) {
  2139. radix_tree_tag_clear(&mapping->page_tree,
  2140. page_index(page),
  2141. PAGECACHE_TAG_WRITEBACK);
  2142. if (bdi_cap_account_writeback(bdi)) {
  2143. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  2144. __bdi_writeout_inc(bdi);
  2145. }
  2146. }
  2147. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2148. } else {
  2149. ret = TestClearPageWriteback(page);
  2150. }
  2151. if (ret) {
  2152. mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
  2153. dec_zone_page_state(page, NR_WRITEBACK);
  2154. inc_zone_page_state(page, NR_WRITTEN);
  2155. }
  2156. mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
  2157. return ret;
  2158. }
  2159. int test_set_page_writeback(struct page *page)
  2160. {
  2161. struct address_space *mapping = page_mapping(page);
  2162. int ret;
  2163. bool locked;
  2164. unsigned long memcg_flags;
  2165. mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
  2166. if (mapping) {
  2167. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2168. unsigned long flags;
  2169. spin_lock_irqsave(&mapping->tree_lock, flags);
  2170. ret = TestSetPageWriteback(page);
  2171. if (!ret) {
  2172. radix_tree_tag_set(&mapping->page_tree,
  2173. page_index(page),
  2174. PAGECACHE_TAG_WRITEBACK);
  2175. if (bdi_cap_account_writeback(bdi))
  2176. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  2177. }
  2178. if (!PageDirty(page))
  2179. radix_tree_tag_clear(&mapping->page_tree,
  2180. page_index(page),
  2181. PAGECACHE_TAG_DIRTY);
  2182. radix_tree_tag_clear(&mapping->page_tree,
  2183. page_index(page),
  2184. PAGECACHE_TAG_TOWRITE);
  2185. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2186. } else {
  2187. ret = TestSetPageWriteback(page);
  2188. }
  2189. if (!ret)
  2190. account_page_writeback(page);
  2191. mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
  2192. return ret;
  2193. }
  2194. EXPORT_SYMBOL(test_set_page_writeback);
  2195. /*
  2196. * Return true if any of the pages in the mapping are marked with the
  2197. * passed tag.
  2198. */
  2199. int mapping_tagged(struct address_space *mapping, int tag)
  2200. {
  2201. return radix_tree_tagged(&mapping->page_tree, tag);
  2202. }
  2203. EXPORT_SYMBOL(mapping_tagged);
  2204. /**
  2205. * wait_for_stable_page() - wait for writeback to finish, if necessary.
  2206. * @page: The page to wait on.
  2207. *
  2208. * This function determines if the given page is related to a backing device
  2209. * that requires page contents to be held stable during writeback. If so, then
  2210. * it will wait for any pending writeback to complete.
  2211. */
  2212. void wait_for_stable_page(struct page *page)
  2213. {
  2214. struct address_space *mapping = page_mapping(page);
  2215. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2216. if (!bdi_cap_stable_pages_required(bdi))
  2217. return;
  2218. wait_on_page_writeback(page);
  2219. }
  2220. EXPORT_SYMBOL_GPL(wait_for_stable_page);