mlock.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/pagevec.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/syscalls.h>
  16. #include <linux/sched.h>
  17. #include <linux/export.h>
  18. #include <linux/rmap.h>
  19. #include <linux/mmzone.h>
  20. #include <linux/hugetlb.h>
  21. #include <linux/memcontrol.h>
  22. #include <linux/mm_inline.h>
  23. #include "internal.h"
  24. int can_do_mlock(void)
  25. {
  26. if (capable(CAP_IPC_LOCK))
  27. return 1;
  28. if (rlimit(RLIMIT_MEMLOCK) != 0)
  29. return 1;
  30. return 0;
  31. }
  32. EXPORT_SYMBOL(can_do_mlock);
  33. /*
  34. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  35. * in vmscan and, possibly, the fault path; and to support semi-accurate
  36. * statistics.
  37. *
  38. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  39. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  40. * The unevictable list is an LRU sibling list to the [in]active lists.
  41. * PageUnevictable is set to indicate the unevictable state.
  42. *
  43. * When lazy mlocking via vmscan, it is important to ensure that the
  44. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  45. * may have mlocked a page that is being munlocked. So lazy mlock must take
  46. * the mmap_sem for read, and verify that the vma really is locked
  47. * (see mm/rmap.c).
  48. */
  49. /*
  50. * LRU accounting for clear_page_mlock()
  51. */
  52. void clear_page_mlock(struct page *page)
  53. {
  54. if (!TestClearPageMlocked(page))
  55. return;
  56. mod_zone_page_state(page_zone(page), NR_MLOCK,
  57. -hpage_nr_pages(page));
  58. count_vm_event(UNEVICTABLE_PGCLEARED);
  59. if (!isolate_lru_page(page)) {
  60. putback_lru_page(page);
  61. } else {
  62. /*
  63. * We lost the race. the page already moved to evictable list.
  64. */
  65. if (PageUnevictable(page))
  66. count_vm_event(UNEVICTABLE_PGSTRANDED);
  67. }
  68. }
  69. /*
  70. * Mark page as mlocked if not already.
  71. * If page on LRU, isolate and putback to move to unevictable list.
  72. */
  73. void mlock_vma_page(struct page *page)
  74. {
  75. BUG_ON(!PageLocked(page));
  76. if (!TestSetPageMlocked(page)) {
  77. mod_zone_page_state(page_zone(page), NR_MLOCK,
  78. hpage_nr_pages(page));
  79. count_vm_event(UNEVICTABLE_PGMLOCKED);
  80. if (!isolate_lru_page(page))
  81. putback_lru_page(page);
  82. }
  83. }
  84. /*
  85. * Isolate a page from LRU with optional get_page() pin.
  86. * Assumes lru_lock already held and page already pinned.
  87. */
  88. static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
  89. {
  90. if (PageLRU(page)) {
  91. struct lruvec *lruvec;
  92. lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
  93. if (getpage)
  94. get_page(page);
  95. ClearPageLRU(page);
  96. del_page_from_lru_list(page, lruvec, page_lru(page));
  97. return true;
  98. }
  99. return false;
  100. }
  101. /*
  102. * Finish munlock after successful page isolation
  103. *
  104. * Page must be locked. This is a wrapper for try_to_munlock()
  105. * and putback_lru_page() with munlock accounting.
  106. */
  107. static void __munlock_isolated_page(struct page *page)
  108. {
  109. int ret = SWAP_AGAIN;
  110. /*
  111. * Optimization: if the page was mapped just once, that's our mapping
  112. * and we don't need to check all the other vmas.
  113. */
  114. if (page_mapcount(page) > 1)
  115. ret = try_to_munlock(page);
  116. /* Did try_to_unlock() succeed or punt? */
  117. if (ret != SWAP_MLOCK)
  118. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  119. putback_lru_page(page);
  120. }
  121. /*
  122. * Accounting for page isolation fail during munlock
  123. *
  124. * Performs accounting when page isolation fails in munlock. There is nothing
  125. * else to do because it means some other task has already removed the page
  126. * from the LRU. putback_lru_page() will take care of removing the page from
  127. * the unevictable list, if necessary. vmscan [page_referenced()] will move
  128. * the page back to the unevictable list if some other vma has it mlocked.
  129. */
  130. static void __munlock_isolation_failed(struct page *page)
  131. {
  132. if (PageUnevictable(page))
  133. __count_vm_event(UNEVICTABLE_PGSTRANDED);
  134. else
  135. __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  136. }
  137. /**
  138. * munlock_vma_page - munlock a vma page
  139. * @page - page to be unlocked, either a normal page or THP page head
  140. *
  141. * returns the size of the page as a page mask (0 for normal page,
  142. * HPAGE_PMD_NR - 1 for THP head page)
  143. *
  144. * called from munlock()/munmap() path with page supposedly on the LRU.
  145. * When we munlock a page, because the vma where we found the page is being
  146. * munlock()ed or munmap()ed, we want to check whether other vmas hold the
  147. * page locked so that we can leave it on the unevictable lru list and not
  148. * bother vmscan with it. However, to walk the page's rmap list in
  149. * try_to_munlock() we must isolate the page from the LRU. If some other
  150. * task has removed the page from the LRU, we won't be able to do that.
  151. * So we clear the PageMlocked as we might not get another chance. If we
  152. * can't isolate the page, we leave it for putback_lru_page() and vmscan
  153. * [page_referenced()/try_to_unmap()] to deal with.
  154. */
  155. unsigned int munlock_vma_page(struct page *page)
  156. {
  157. unsigned int nr_pages;
  158. struct zone *zone = page_zone(page);
  159. BUG_ON(!PageLocked(page));
  160. /*
  161. * Serialize with any parallel __split_huge_page_refcount() which
  162. * might otherwise copy PageMlocked to part of the tail pages before
  163. * we clear it in the head page. It also stabilizes hpage_nr_pages().
  164. */
  165. spin_lock_irq(&zone->lru_lock);
  166. nr_pages = hpage_nr_pages(page);
  167. if (!TestClearPageMlocked(page))
  168. goto unlock_out;
  169. __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
  170. if (__munlock_isolate_lru_page(page, true)) {
  171. spin_unlock_irq(&zone->lru_lock);
  172. __munlock_isolated_page(page);
  173. goto out;
  174. }
  175. __munlock_isolation_failed(page);
  176. unlock_out:
  177. spin_unlock_irq(&zone->lru_lock);
  178. out:
  179. return nr_pages - 1;
  180. }
  181. /**
  182. * __mlock_vma_pages_range() - mlock a range of pages in the vma.
  183. * @vma: target vma
  184. * @start: start address
  185. * @end: end address
  186. *
  187. * This takes care of making the pages present too.
  188. *
  189. * return 0 on success, negative error code on error.
  190. *
  191. * vma->vm_mm->mmap_sem must be held for at least read.
  192. */
  193. long __mlock_vma_pages_range(struct vm_area_struct *vma,
  194. unsigned long start, unsigned long end, int *nonblocking)
  195. {
  196. struct mm_struct *mm = vma->vm_mm;
  197. unsigned long nr_pages = (end - start) / PAGE_SIZE;
  198. int gup_flags;
  199. VM_BUG_ON(start & ~PAGE_MASK);
  200. VM_BUG_ON(end & ~PAGE_MASK);
  201. VM_BUG_ON(start < vma->vm_start);
  202. VM_BUG_ON(end > vma->vm_end);
  203. VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
  204. gup_flags = FOLL_TOUCH | FOLL_MLOCK;
  205. /*
  206. * We want to touch writable mappings with a write fault in order
  207. * to break COW, except for shared mappings because these don't COW
  208. * and we would not want to dirty them for nothing.
  209. */
  210. if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
  211. gup_flags |= FOLL_WRITE;
  212. /*
  213. * We want mlock to succeed for regions that have any permissions
  214. * other than PROT_NONE.
  215. */
  216. if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
  217. gup_flags |= FOLL_FORCE;
  218. /*
  219. * We made sure addr is within a VMA, so the following will
  220. * not result in a stack expansion that recurses back here.
  221. */
  222. return __get_user_pages(current, mm, start, nr_pages, gup_flags,
  223. NULL, NULL, nonblocking);
  224. }
  225. /*
  226. * convert get_user_pages() return value to posix mlock() error
  227. */
  228. static int __mlock_posix_error_return(long retval)
  229. {
  230. if (retval == -EFAULT)
  231. retval = -ENOMEM;
  232. else if (retval == -ENOMEM)
  233. retval = -EAGAIN;
  234. return retval;
  235. }
  236. /*
  237. * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
  238. *
  239. * The fast path is available only for evictable pages with single mapping.
  240. * Then we can bypass the per-cpu pvec and get better performance.
  241. * when mapcount > 1 we need try_to_munlock() which can fail.
  242. * when !page_evictable(), we need the full redo logic of putback_lru_page to
  243. * avoid leaving evictable page in unevictable list.
  244. *
  245. * In case of success, @page is added to @pvec and @pgrescued is incremented
  246. * in case that the page was previously unevictable. @page is also unlocked.
  247. */
  248. static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
  249. int *pgrescued)
  250. {
  251. VM_BUG_ON_PAGE(PageLRU(page), page);
  252. VM_BUG_ON_PAGE(!PageLocked(page), page);
  253. if (page_mapcount(page) <= 1 && page_evictable(page)) {
  254. pagevec_add(pvec, page);
  255. if (TestClearPageUnevictable(page))
  256. (*pgrescued)++;
  257. unlock_page(page);
  258. return true;
  259. }
  260. return false;
  261. }
  262. /*
  263. * Putback multiple evictable pages to the LRU
  264. *
  265. * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
  266. * the pages might have meanwhile become unevictable but that is OK.
  267. */
  268. static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
  269. {
  270. count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
  271. /*
  272. *__pagevec_lru_add() calls release_pages() so we don't call
  273. * put_page() explicitly
  274. */
  275. __pagevec_lru_add(pvec);
  276. count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
  277. }
  278. /*
  279. * Munlock a batch of pages from the same zone
  280. *
  281. * The work is split to two main phases. First phase clears the Mlocked flag
  282. * and attempts to isolate the pages, all under a single zone lru lock.
  283. * The second phase finishes the munlock only for pages where isolation
  284. * succeeded.
  285. *
  286. * Note that the pagevec may be modified during the process.
  287. */
  288. static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
  289. {
  290. int i;
  291. int nr = pagevec_count(pvec);
  292. int delta_munlocked;
  293. struct pagevec pvec_putback;
  294. int pgrescued = 0;
  295. pagevec_init(&pvec_putback, 0);
  296. /* Phase 1: page isolation */
  297. spin_lock_irq(&zone->lru_lock);
  298. for (i = 0; i < nr; i++) {
  299. struct page *page = pvec->pages[i];
  300. if (TestClearPageMlocked(page)) {
  301. /*
  302. * We already have pin from follow_page_mask()
  303. * so we can spare the get_page() here.
  304. */
  305. if (__munlock_isolate_lru_page(page, false))
  306. continue;
  307. else
  308. __munlock_isolation_failed(page);
  309. }
  310. /*
  311. * We won't be munlocking this page in the next phase
  312. * but we still need to release the follow_page_mask()
  313. * pin. We cannot do it under lru_lock however. If it's
  314. * the last pin, __page_cache_release() would deadlock.
  315. */
  316. pagevec_add(&pvec_putback, pvec->pages[i]);
  317. pvec->pages[i] = NULL;
  318. }
  319. delta_munlocked = -nr + pagevec_count(&pvec_putback);
  320. __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
  321. spin_unlock_irq(&zone->lru_lock);
  322. /* Now we can release pins of pages that we are not munlocking */
  323. pagevec_release(&pvec_putback);
  324. /* Phase 2: page munlock */
  325. for (i = 0; i < nr; i++) {
  326. struct page *page = pvec->pages[i];
  327. if (page) {
  328. lock_page(page);
  329. if (!__putback_lru_fast_prepare(page, &pvec_putback,
  330. &pgrescued)) {
  331. /*
  332. * Slow path. We don't want to lose the last
  333. * pin before unlock_page()
  334. */
  335. get_page(page); /* for putback_lru_page() */
  336. __munlock_isolated_page(page);
  337. unlock_page(page);
  338. put_page(page); /* from follow_page_mask() */
  339. }
  340. }
  341. }
  342. /*
  343. * Phase 3: page putback for pages that qualified for the fast path
  344. * This will also call put_page() to return pin from follow_page_mask()
  345. */
  346. if (pagevec_count(&pvec_putback))
  347. __putback_lru_fast(&pvec_putback, pgrescued);
  348. }
  349. /*
  350. * Fill up pagevec for __munlock_pagevec using pte walk
  351. *
  352. * The function expects that the struct page corresponding to @start address is
  353. * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
  354. *
  355. * The rest of @pvec is filled by subsequent pages within the same pmd and same
  356. * zone, as long as the pte's are present and vm_normal_page() succeeds. These
  357. * pages also get pinned.
  358. *
  359. * Returns the address of the next page that should be scanned. This equals
  360. * @start + PAGE_SIZE when no page could be added by the pte walk.
  361. */
  362. static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
  363. struct vm_area_struct *vma, int zoneid, unsigned long start,
  364. unsigned long end)
  365. {
  366. pte_t *pte;
  367. spinlock_t *ptl;
  368. /*
  369. * Initialize pte walk starting at the already pinned page where we
  370. * are sure that there is a pte, as it was pinned under the same
  371. * mmap_sem write op.
  372. */
  373. pte = get_locked_pte(vma->vm_mm, start, &ptl);
  374. /* Make sure we do not cross the page table boundary */
  375. end = pgd_addr_end(start, end);
  376. end = pud_addr_end(start, end);
  377. end = pmd_addr_end(start, end);
  378. /* The page next to the pinned page is the first we will try to get */
  379. start += PAGE_SIZE;
  380. while (start < end) {
  381. struct page *page = NULL;
  382. pte++;
  383. if (pte_present(*pte))
  384. page = vm_normal_page(vma, start, *pte);
  385. /*
  386. * Break if page could not be obtained or the page's node+zone does not
  387. * match
  388. */
  389. if (!page || page_zone_id(page) != zoneid)
  390. break;
  391. get_page(page);
  392. /*
  393. * Increase the address that will be returned *before* the
  394. * eventual break due to pvec becoming full by adding the page
  395. */
  396. start += PAGE_SIZE;
  397. if (pagevec_add(pvec, page) == 0)
  398. break;
  399. }
  400. pte_unmap_unlock(pte, ptl);
  401. return start;
  402. }
  403. /*
  404. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  405. * @vma - vma containing range to be munlock()ed.
  406. * @start - start address in @vma of the range
  407. * @end - end of range in @vma.
  408. *
  409. * For mremap(), munmap() and exit().
  410. *
  411. * Called with @vma VM_LOCKED.
  412. *
  413. * Returns with VM_LOCKED cleared. Callers must be prepared to
  414. * deal with this.
  415. *
  416. * We don't save and restore VM_LOCKED here because pages are
  417. * still on lru. In unmap path, pages might be scanned by reclaim
  418. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  419. * free them. This will result in freeing mlocked pages.
  420. */
  421. void munlock_vma_pages_range(struct vm_area_struct *vma,
  422. unsigned long start, unsigned long end)
  423. {
  424. vma->vm_flags &= ~VM_LOCKED;
  425. while (start < end) {
  426. struct page *page = NULL;
  427. unsigned int page_mask;
  428. unsigned long page_increm;
  429. struct pagevec pvec;
  430. struct zone *zone;
  431. int zoneid;
  432. pagevec_init(&pvec, 0);
  433. /*
  434. * Although FOLL_DUMP is intended for get_dump_page(),
  435. * it just so happens that its special treatment of the
  436. * ZERO_PAGE (returning an error instead of doing get_page)
  437. * suits munlock very well (and if somehow an abnormal page
  438. * has sneaked into the range, we won't oops here: great).
  439. */
  440. page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
  441. &page_mask);
  442. if (page && !IS_ERR(page)) {
  443. if (PageTransHuge(page)) {
  444. lock_page(page);
  445. /*
  446. * Any THP page found by follow_page_mask() may
  447. * have gotten split before reaching
  448. * munlock_vma_page(), so we need to recompute
  449. * the page_mask here.
  450. */
  451. page_mask = munlock_vma_page(page);
  452. unlock_page(page);
  453. put_page(page); /* follow_page_mask() */
  454. } else {
  455. /*
  456. * Non-huge pages are handled in batches via
  457. * pagevec. The pin from follow_page_mask()
  458. * prevents them from collapsing by THP.
  459. */
  460. pagevec_add(&pvec, page);
  461. zone = page_zone(page);
  462. zoneid = page_zone_id(page);
  463. /*
  464. * Try to fill the rest of pagevec using fast
  465. * pte walk. This will also update start to
  466. * the next page to process. Then munlock the
  467. * pagevec.
  468. */
  469. start = __munlock_pagevec_fill(&pvec, vma,
  470. zoneid, start, end);
  471. __munlock_pagevec(&pvec, zone);
  472. goto next;
  473. }
  474. }
  475. /* It's a bug to munlock in the middle of a THP page */
  476. VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
  477. page_increm = 1 + page_mask;
  478. start += page_increm * PAGE_SIZE;
  479. next:
  480. cond_resched();
  481. }
  482. }
  483. /*
  484. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  485. *
  486. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  487. * munlock is a no-op. However, for some special vmas, we go ahead and
  488. * populate the ptes.
  489. *
  490. * For vmas that pass the filters, merge/split as appropriate.
  491. */
  492. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  493. unsigned long start, unsigned long end, vm_flags_t newflags)
  494. {
  495. struct mm_struct *mm = vma->vm_mm;
  496. pgoff_t pgoff;
  497. int nr_pages;
  498. int ret = 0;
  499. int lock = !!(newflags & VM_LOCKED);
  500. if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
  501. is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
  502. goto out; /* don't set VM_LOCKED, don't count */
  503. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  504. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  505. vma->vm_file, pgoff, vma_policy(vma));
  506. if (*prev) {
  507. vma = *prev;
  508. goto success;
  509. }
  510. if (start != vma->vm_start) {
  511. ret = split_vma(mm, vma, start, 1);
  512. if (ret)
  513. goto out;
  514. }
  515. if (end != vma->vm_end) {
  516. ret = split_vma(mm, vma, end, 0);
  517. if (ret)
  518. goto out;
  519. }
  520. success:
  521. /*
  522. * Keep track of amount of locked VM.
  523. */
  524. nr_pages = (end - start) >> PAGE_SHIFT;
  525. if (!lock)
  526. nr_pages = -nr_pages;
  527. mm->locked_vm += nr_pages;
  528. /*
  529. * vm_flags is protected by the mmap_sem held in write mode.
  530. * It's okay if try_to_unmap_one unmaps a page just after we
  531. * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
  532. */
  533. if (lock)
  534. vma->vm_flags = newflags;
  535. else
  536. munlock_vma_pages_range(vma, start, end);
  537. out:
  538. *prev = vma;
  539. return ret;
  540. }
  541. static int do_mlock(unsigned long start, size_t len, int on)
  542. {
  543. unsigned long nstart, end, tmp;
  544. struct vm_area_struct * vma, * prev;
  545. int error;
  546. VM_BUG_ON(start & ~PAGE_MASK);
  547. VM_BUG_ON(len != PAGE_ALIGN(len));
  548. end = start + len;
  549. if (end < start)
  550. return -EINVAL;
  551. if (end == start)
  552. return 0;
  553. vma = find_vma(current->mm, start);
  554. if (!vma || vma->vm_start > start)
  555. return -ENOMEM;
  556. prev = vma->vm_prev;
  557. if (start > vma->vm_start)
  558. prev = vma;
  559. for (nstart = start ; ; ) {
  560. vm_flags_t newflags;
  561. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  562. newflags = vma->vm_flags & ~VM_LOCKED;
  563. if (on)
  564. newflags |= VM_LOCKED;
  565. tmp = vma->vm_end;
  566. if (tmp > end)
  567. tmp = end;
  568. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  569. if (error)
  570. break;
  571. nstart = tmp;
  572. if (nstart < prev->vm_end)
  573. nstart = prev->vm_end;
  574. if (nstart >= end)
  575. break;
  576. vma = prev->vm_next;
  577. if (!vma || vma->vm_start != nstart) {
  578. error = -ENOMEM;
  579. break;
  580. }
  581. }
  582. return error;
  583. }
  584. /*
  585. * __mm_populate - populate and/or mlock pages within a range of address space.
  586. *
  587. * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
  588. * flags. VMAs must be already marked with the desired vm_flags, and
  589. * mmap_sem must not be held.
  590. */
  591. int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
  592. {
  593. struct mm_struct *mm = current->mm;
  594. unsigned long end, nstart, nend;
  595. struct vm_area_struct *vma = NULL;
  596. int locked = 0;
  597. long ret = 0;
  598. VM_BUG_ON(start & ~PAGE_MASK);
  599. VM_BUG_ON(len != PAGE_ALIGN(len));
  600. end = start + len;
  601. for (nstart = start; nstart < end; nstart = nend) {
  602. /*
  603. * We want to fault in pages for [nstart; end) address range.
  604. * Find first corresponding VMA.
  605. */
  606. if (!locked) {
  607. locked = 1;
  608. down_read(&mm->mmap_sem);
  609. vma = find_vma(mm, nstart);
  610. } else if (nstart >= vma->vm_end)
  611. vma = vma->vm_next;
  612. if (!vma || vma->vm_start >= end)
  613. break;
  614. /*
  615. * Set [nstart; nend) to intersection of desired address
  616. * range with the first VMA. Also, skip undesirable VMA types.
  617. */
  618. nend = min(end, vma->vm_end);
  619. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  620. continue;
  621. if (nstart < vma->vm_start)
  622. nstart = vma->vm_start;
  623. /*
  624. * Now fault in a range of pages. __mlock_vma_pages_range()
  625. * double checks the vma flags, so that it won't mlock pages
  626. * if the vma was already munlocked.
  627. */
  628. ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
  629. if (ret < 0) {
  630. if (ignore_errors) {
  631. ret = 0;
  632. continue; /* continue at next VMA */
  633. }
  634. ret = __mlock_posix_error_return(ret);
  635. break;
  636. }
  637. nend = nstart + ret * PAGE_SIZE;
  638. ret = 0;
  639. }
  640. if (locked)
  641. up_read(&mm->mmap_sem);
  642. return ret; /* 0 or negative error code */
  643. }
  644. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  645. {
  646. unsigned long locked;
  647. unsigned long lock_limit;
  648. int error = -ENOMEM;
  649. if (!can_do_mlock())
  650. return -EPERM;
  651. lru_add_drain_all(); /* flush pagevec */
  652. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  653. start &= PAGE_MASK;
  654. lock_limit = rlimit(RLIMIT_MEMLOCK);
  655. lock_limit >>= PAGE_SHIFT;
  656. locked = len >> PAGE_SHIFT;
  657. down_write(&current->mm->mmap_sem);
  658. locked += current->mm->locked_vm;
  659. /* check against resource limits */
  660. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  661. error = do_mlock(start, len, 1);
  662. up_write(&current->mm->mmap_sem);
  663. if (!error)
  664. error = __mm_populate(start, len, 0);
  665. return error;
  666. }
  667. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  668. {
  669. int ret;
  670. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  671. start &= PAGE_MASK;
  672. down_write(&current->mm->mmap_sem);
  673. ret = do_mlock(start, len, 0);
  674. up_write(&current->mm->mmap_sem);
  675. return ret;
  676. }
  677. static int do_mlockall(int flags)
  678. {
  679. struct vm_area_struct * vma, * prev = NULL;
  680. if (flags & MCL_FUTURE)
  681. current->mm->def_flags |= VM_LOCKED;
  682. else
  683. current->mm->def_flags &= ~VM_LOCKED;
  684. if (flags == MCL_FUTURE)
  685. goto out;
  686. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  687. vm_flags_t newflags;
  688. newflags = vma->vm_flags & ~VM_LOCKED;
  689. if (flags & MCL_CURRENT)
  690. newflags |= VM_LOCKED;
  691. /* Ignore errors */
  692. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  693. cond_resched();
  694. }
  695. out:
  696. return 0;
  697. }
  698. SYSCALL_DEFINE1(mlockall, int, flags)
  699. {
  700. unsigned long lock_limit;
  701. int ret = -EINVAL;
  702. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
  703. goto out;
  704. ret = -EPERM;
  705. if (!can_do_mlock())
  706. goto out;
  707. if (flags & MCL_CURRENT)
  708. lru_add_drain_all(); /* flush pagevec */
  709. lock_limit = rlimit(RLIMIT_MEMLOCK);
  710. lock_limit >>= PAGE_SHIFT;
  711. ret = -ENOMEM;
  712. down_write(&current->mm->mmap_sem);
  713. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  714. capable(CAP_IPC_LOCK))
  715. ret = do_mlockall(flags);
  716. up_write(&current->mm->mmap_sem);
  717. if (!ret && (flags & MCL_CURRENT))
  718. mm_populate(0, TASK_SIZE);
  719. out:
  720. return ret;
  721. }
  722. SYSCALL_DEFINE0(munlockall)
  723. {
  724. int ret;
  725. down_write(&current->mm->mmap_sem);
  726. ret = do_mlockall(0);
  727. up_write(&current->mm->mmap_sem);
  728. return ret;
  729. }
  730. /*
  731. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  732. * shm segments) get accounted against the user_struct instead.
  733. */
  734. static DEFINE_SPINLOCK(shmlock_user_lock);
  735. int user_shm_lock(size_t size, struct user_struct *user)
  736. {
  737. unsigned long lock_limit, locked;
  738. int allowed = 0;
  739. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  740. lock_limit = rlimit(RLIMIT_MEMLOCK);
  741. if (lock_limit == RLIM_INFINITY)
  742. allowed = 1;
  743. lock_limit >>= PAGE_SHIFT;
  744. spin_lock(&shmlock_user_lock);
  745. if (!allowed &&
  746. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  747. goto out;
  748. get_uid(user);
  749. user->locked_shm += locked;
  750. allowed = 1;
  751. out:
  752. spin_unlock(&shmlock_user_lock);
  753. return allowed;
  754. }
  755. void user_shm_unlock(size_t size, struct user_struct *user)
  756. {
  757. spin_lock(&shmlock_user_lock);
  758. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  759. spin_unlock(&shmlock_user_lock);
  760. free_uid(user);
  761. }