memory.c 116 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <linux/string.h>
  57. #include <linux/dma-debug.h>
  58. #include <asm/io.h>
  59. #include <asm/pgalloc.h>
  60. #include <asm/uaccess.h>
  61. #include <asm/tlb.h>
  62. #include <asm/tlbflush.h>
  63. #include <asm/pgtable.h>
  64. #include "internal.h"
  65. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  66. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  67. #endif
  68. #ifndef CONFIG_NEED_MULTIPLE_NODES
  69. /* use the per-pgdat data instead for discontigmem - mbligh */
  70. unsigned long max_mapnr;
  71. struct page *mem_map;
  72. EXPORT_SYMBOL(max_mapnr);
  73. EXPORT_SYMBOL(mem_map);
  74. #endif
  75. /*
  76. * A number of key systems in x86 including ioremap() rely on the assumption
  77. * that high_memory defines the upper bound on direct map memory, then end
  78. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  79. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  80. * and ZONE_HIGHMEM.
  81. */
  82. void * high_memory;
  83. EXPORT_SYMBOL(high_memory);
  84. /*
  85. * Randomize the address space (stacks, mmaps, brk, etc.).
  86. *
  87. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  88. * as ancient (libc5 based) binaries can segfault. )
  89. */
  90. int randomize_va_space __read_mostly =
  91. #ifdef CONFIG_COMPAT_BRK
  92. 1;
  93. #else
  94. 2;
  95. #endif
  96. static int __init disable_randmaps(char *s)
  97. {
  98. randomize_va_space = 0;
  99. return 1;
  100. }
  101. __setup("norandmaps", disable_randmaps);
  102. unsigned long zero_pfn __read_mostly;
  103. unsigned long highest_memmap_pfn __read_mostly;
  104. /*
  105. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  106. */
  107. static int __init init_zero_pfn(void)
  108. {
  109. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  110. return 0;
  111. }
  112. core_initcall(init_zero_pfn);
  113. #if defined(SPLIT_RSS_COUNTING)
  114. void sync_mm_rss(struct mm_struct *mm)
  115. {
  116. int i;
  117. for (i = 0; i < NR_MM_COUNTERS; i++) {
  118. if (current->rss_stat.count[i]) {
  119. add_mm_counter(mm, i, current->rss_stat.count[i]);
  120. current->rss_stat.count[i] = 0;
  121. }
  122. }
  123. current->rss_stat.events = 0;
  124. }
  125. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  126. {
  127. struct task_struct *task = current;
  128. if (likely(task->mm == mm))
  129. task->rss_stat.count[member] += val;
  130. else
  131. add_mm_counter(mm, member, val);
  132. }
  133. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  134. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  135. /* sync counter once per 64 page faults */
  136. #define TASK_RSS_EVENTS_THRESH (64)
  137. static void check_sync_rss_stat(struct task_struct *task)
  138. {
  139. if (unlikely(task != current))
  140. return;
  141. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  142. sync_mm_rss(task->mm);
  143. }
  144. #else /* SPLIT_RSS_COUNTING */
  145. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  146. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  147. static void check_sync_rss_stat(struct task_struct *task)
  148. {
  149. }
  150. #endif /* SPLIT_RSS_COUNTING */
  151. #ifdef HAVE_GENERIC_MMU_GATHER
  152. static int tlb_next_batch(struct mmu_gather *tlb)
  153. {
  154. struct mmu_gather_batch *batch;
  155. batch = tlb->active;
  156. if (batch->next) {
  157. tlb->active = batch->next;
  158. return 1;
  159. }
  160. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  161. return 0;
  162. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  163. if (!batch)
  164. return 0;
  165. tlb->batch_count++;
  166. batch->next = NULL;
  167. batch->nr = 0;
  168. batch->max = MAX_GATHER_BATCH;
  169. tlb->active->next = batch;
  170. tlb->active = batch;
  171. return 1;
  172. }
  173. /* tlb_gather_mmu
  174. * Called to initialize an (on-stack) mmu_gather structure for page-table
  175. * tear-down from @mm. The @fullmm argument is used when @mm is without
  176. * users and we're going to destroy the full address space (exit/execve).
  177. */
  178. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  179. {
  180. tlb->mm = mm;
  181. /* Is it from 0 to ~0? */
  182. tlb->fullmm = !(start | (end+1));
  183. tlb->need_flush_all = 0;
  184. tlb->start = start;
  185. tlb->end = end;
  186. tlb->need_flush = 0;
  187. tlb->local.next = NULL;
  188. tlb->local.nr = 0;
  189. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  190. tlb->active = &tlb->local;
  191. tlb->batch_count = 0;
  192. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  193. tlb->batch = NULL;
  194. #endif
  195. }
  196. void tlb_flush_mmu(struct mmu_gather *tlb)
  197. {
  198. struct mmu_gather_batch *batch;
  199. if (!tlb->need_flush)
  200. return;
  201. tlb->need_flush = 0;
  202. tlb_flush(tlb);
  203. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  204. tlb_table_flush(tlb);
  205. #endif
  206. for (batch = &tlb->local; batch; batch = batch->next) {
  207. free_pages_and_swap_cache(batch->pages, batch->nr);
  208. batch->nr = 0;
  209. }
  210. tlb->active = &tlb->local;
  211. }
  212. /* tlb_finish_mmu
  213. * Called at the end of the shootdown operation to free up any resources
  214. * that were required.
  215. */
  216. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  217. {
  218. struct mmu_gather_batch *batch, *next;
  219. tlb_flush_mmu(tlb);
  220. /* keep the page table cache within bounds */
  221. check_pgt_cache();
  222. for (batch = tlb->local.next; batch; batch = next) {
  223. next = batch->next;
  224. free_pages((unsigned long)batch, 0);
  225. }
  226. tlb->local.next = NULL;
  227. }
  228. /* __tlb_remove_page
  229. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  230. * handling the additional races in SMP caused by other CPUs caching valid
  231. * mappings in their TLBs. Returns the number of free page slots left.
  232. * When out of page slots we must call tlb_flush_mmu().
  233. */
  234. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  235. {
  236. struct mmu_gather_batch *batch;
  237. VM_BUG_ON(!tlb->need_flush);
  238. batch = tlb->active;
  239. batch->pages[batch->nr++] = page;
  240. if (batch->nr == batch->max) {
  241. if (!tlb_next_batch(tlb))
  242. return 0;
  243. batch = tlb->active;
  244. }
  245. VM_BUG_ON_PAGE(batch->nr > batch->max, page);
  246. return batch->max - batch->nr;
  247. }
  248. #endif /* HAVE_GENERIC_MMU_GATHER */
  249. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  250. /*
  251. * See the comment near struct mmu_table_batch.
  252. */
  253. static void tlb_remove_table_smp_sync(void *arg)
  254. {
  255. /* Simply deliver the interrupt */
  256. }
  257. static void tlb_remove_table_one(void *table)
  258. {
  259. /*
  260. * This isn't an RCU grace period and hence the page-tables cannot be
  261. * assumed to be actually RCU-freed.
  262. *
  263. * It is however sufficient for software page-table walkers that rely on
  264. * IRQ disabling. See the comment near struct mmu_table_batch.
  265. */
  266. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  267. __tlb_remove_table(table);
  268. }
  269. static void tlb_remove_table_rcu(struct rcu_head *head)
  270. {
  271. struct mmu_table_batch *batch;
  272. int i;
  273. batch = container_of(head, struct mmu_table_batch, rcu);
  274. for (i = 0; i < batch->nr; i++)
  275. __tlb_remove_table(batch->tables[i]);
  276. free_page((unsigned long)batch);
  277. }
  278. void tlb_table_flush(struct mmu_gather *tlb)
  279. {
  280. struct mmu_table_batch **batch = &tlb->batch;
  281. if (*batch) {
  282. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  283. *batch = NULL;
  284. }
  285. }
  286. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  287. {
  288. struct mmu_table_batch **batch = &tlb->batch;
  289. tlb->need_flush = 1;
  290. /*
  291. * When there's less then two users of this mm there cannot be a
  292. * concurrent page-table walk.
  293. */
  294. if (atomic_read(&tlb->mm->mm_users) < 2) {
  295. __tlb_remove_table(table);
  296. return;
  297. }
  298. if (*batch == NULL) {
  299. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  300. if (*batch == NULL) {
  301. tlb_remove_table_one(table);
  302. return;
  303. }
  304. (*batch)->nr = 0;
  305. }
  306. (*batch)->tables[(*batch)->nr++] = table;
  307. if ((*batch)->nr == MAX_TABLE_BATCH)
  308. tlb_table_flush(tlb);
  309. }
  310. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  311. /*
  312. * Note: this doesn't free the actual pages themselves. That
  313. * has been handled earlier when unmapping all the memory regions.
  314. */
  315. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  316. unsigned long addr)
  317. {
  318. pgtable_t token = pmd_pgtable(*pmd);
  319. pmd_clear(pmd);
  320. pte_free_tlb(tlb, token, addr);
  321. atomic_long_dec(&tlb->mm->nr_ptes);
  322. }
  323. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  324. unsigned long addr, unsigned long end,
  325. unsigned long floor, unsigned long ceiling)
  326. {
  327. pmd_t *pmd;
  328. unsigned long next;
  329. unsigned long start;
  330. start = addr;
  331. pmd = pmd_offset(pud, addr);
  332. do {
  333. next = pmd_addr_end(addr, end);
  334. if (pmd_none_or_clear_bad(pmd))
  335. continue;
  336. free_pte_range(tlb, pmd, addr);
  337. } while (pmd++, addr = next, addr != end);
  338. start &= PUD_MASK;
  339. if (start < floor)
  340. return;
  341. if (ceiling) {
  342. ceiling &= PUD_MASK;
  343. if (!ceiling)
  344. return;
  345. }
  346. if (end - 1 > ceiling - 1)
  347. return;
  348. pmd = pmd_offset(pud, start);
  349. pud_clear(pud);
  350. pmd_free_tlb(tlb, pmd, start);
  351. }
  352. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  353. unsigned long addr, unsigned long end,
  354. unsigned long floor, unsigned long ceiling)
  355. {
  356. pud_t *pud;
  357. unsigned long next;
  358. unsigned long start;
  359. start = addr;
  360. pud = pud_offset(pgd, addr);
  361. do {
  362. next = pud_addr_end(addr, end);
  363. if (pud_none_or_clear_bad(pud))
  364. continue;
  365. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  366. } while (pud++, addr = next, addr != end);
  367. start &= PGDIR_MASK;
  368. if (start < floor)
  369. return;
  370. if (ceiling) {
  371. ceiling &= PGDIR_MASK;
  372. if (!ceiling)
  373. return;
  374. }
  375. if (end - 1 > ceiling - 1)
  376. return;
  377. pud = pud_offset(pgd, start);
  378. pgd_clear(pgd);
  379. pud_free_tlb(tlb, pud, start);
  380. }
  381. /*
  382. * This function frees user-level page tables of a process.
  383. */
  384. void free_pgd_range(struct mmu_gather *tlb,
  385. unsigned long addr, unsigned long end,
  386. unsigned long floor, unsigned long ceiling)
  387. {
  388. pgd_t *pgd;
  389. unsigned long next;
  390. /*
  391. * The next few lines have given us lots of grief...
  392. *
  393. * Why are we testing PMD* at this top level? Because often
  394. * there will be no work to do at all, and we'd prefer not to
  395. * go all the way down to the bottom just to discover that.
  396. *
  397. * Why all these "- 1"s? Because 0 represents both the bottom
  398. * of the address space and the top of it (using -1 for the
  399. * top wouldn't help much: the masks would do the wrong thing).
  400. * The rule is that addr 0 and floor 0 refer to the bottom of
  401. * the address space, but end 0 and ceiling 0 refer to the top
  402. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  403. * that end 0 case should be mythical).
  404. *
  405. * Wherever addr is brought up or ceiling brought down, we must
  406. * be careful to reject "the opposite 0" before it confuses the
  407. * subsequent tests. But what about where end is brought down
  408. * by PMD_SIZE below? no, end can't go down to 0 there.
  409. *
  410. * Whereas we round start (addr) and ceiling down, by different
  411. * masks at different levels, in order to test whether a table
  412. * now has no other vmas using it, so can be freed, we don't
  413. * bother to round floor or end up - the tests don't need that.
  414. */
  415. addr &= PMD_MASK;
  416. if (addr < floor) {
  417. addr += PMD_SIZE;
  418. if (!addr)
  419. return;
  420. }
  421. if (ceiling) {
  422. ceiling &= PMD_MASK;
  423. if (!ceiling)
  424. return;
  425. }
  426. if (end - 1 > ceiling - 1)
  427. end -= PMD_SIZE;
  428. if (addr > end - 1)
  429. return;
  430. pgd = pgd_offset(tlb->mm, addr);
  431. do {
  432. next = pgd_addr_end(addr, end);
  433. if (pgd_none_or_clear_bad(pgd))
  434. continue;
  435. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  436. } while (pgd++, addr = next, addr != end);
  437. }
  438. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  439. unsigned long floor, unsigned long ceiling)
  440. {
  441. while (vma) {
  442. struct vm_area_struct *next = vma->vm_next;
  443. unsigned long addr = vma->vm_start;
  444. /*
  445. * Hide vma from rmap and truncate_pagecache before freeing
  446. * pgtables
  447. */
  448. unlink_anon_vmas(vma);
  449. unlink_file_vma(vma);
  450. if (is_vm_hugetlb_page(vma)) {
  451. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  452. floor, next? next->vm_start: ceiling);
  453. } else {
  454. /*
  455. * Optimization: gather nearby vmas into one call down
  456. */
  457. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  458. && !is_vm_hugetlb_page(next)) {
  459. vma = next;
  460. next = vma->vm_next;
  461. unlink_anon_vmas(vma);
  462. unlink_file_vma(vma);
  463. }
  464. free_pgd_range(tlb, addr, vma->vm_end,
  465. floor, next? next->vm_start: ceiling);
  466. }
  467. vma = next;
  468. }
  469. }
  470. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  471. pmd_t *pmd, unsigned long address)
  472. {
  473. spinlock_t *ptl;
  474. pgtable_t new = pte_alloc_one(mm, address);
  475. int wait_split_huge_page;
  476. if (!new)
  477. return -ENOMEM;
  478. /*
  479. * Ensure all pte setup (eg. pte page lock and page clearing) are
  480. * visible before the pte is made visible to other CPUs by being
  481. * put into page tables.
  482. *
  483. * The other side of the story is the pointer chasing in the page
  484. * table walking code (when walking the page table without locking;
  485. * ie. most of the time). Fortunately, these data accesses consist
  486. * of a chain of data-dependent loads, meaning most CPUs (alpha
  487. * being the notable exception) will already guarantee loads are
  488. * seen in-order. See the alpha page table accessors for the
  489. * smp_read_barrier_depends() barriers in page table walking code.
  490. */
  491. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  492. ptl = pmd_lock(mm, pmd);
  493. wait_split_huge_page = 0;
  494. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  495. atomic_long_inc(&mm->nr_ptes);
  496. pmd_populate(mm, pmd, new);
  497. new = NULL;
  498. } else if (unlikely(pmd_trans_splitting(*pmd)))
  499. wait_split_huge_page = 1;
  500. spin_unlock(ptl);
  501. if (new)
  502. pte_free(mm, new);
  503. if (wait_split_huge_page)
  504. wait_split_huge_page(vma->anon_vma, pmd);
  505. return 0;
  506. }
  507. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  508. {
  509. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  510. if (!new)
  511. return -ENOMEM;
  512. smp_wmb(); /* See comment in __pte_alloc */
  513. spin_lock(&init_mm.page_table_lock);
  514. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  515. pmd_populate_kernel(&init_mm, pmd, new);
  516. new = NULL;
  517. } else
  518. VM_BUG_ON(pmd_trans_splitting(*pmd));
  519. spin_unlock(&init_mm.page_table_lock);
  520. if (new)
  521. pte_free_kernel(&init_mm, new);
  522. return 0;
  523. }
  524. static inline void init_rss_vec(int *rss)
  525. {
  526. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  527. }
  528. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  529. {
  530. int i;
  531. if (current->mm == mm)
  532. sync_mm_rss(mm);
  533. for (i = 0; i < NR_MM_COUNTERS; i++)
  534. if (rss[i])
  535. add_mm_counter(mm, i, rss[i]);
  536. }
  537. /*
  538. * This function is called to print an error when a bad pte
  539. * is found. For example, we might have a PFN-mapped pte in
  540. * a region that doesn't allow it.
  541. *
  542. * The calling function must still handle the error.
  543. */
  544. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  545. pte_t pte, struct page *page)
  546. {
  547. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  548. pud_t *pud = pud_offset(pgd, addr);
  549. pmd_t *pmd = pmd_offset(pud, addr);
  550. struct address_space *mapping;
  551. pgoff_t index;
  552. static unsigned long resume;
  553. static unsigned long nr_shown;
  554. static unsigned long nr_unshown;
  555. /*
  556. * Allow a burst of 60 reports, then keep quiet for that minute;
  557. * or allow a steady drip of one report per second.
  558. */
  559. if (nr_shown == 60) {
  560. if (time_before(jiffies, resume)) {
  561. nr_unshown++;
  562. return;
  563. }
  564. if (nr_unshown) {
  565. printk(KERN_ALERT
  566. "BUG: Bad page map: %lu messages suppressed\n",
  567. nr_unshown);
  568. nr_unshown = 0;
  569. }
  570. nr_shown = 0;
  571. }
  572. if (nr_shown++ == 0)
  573. resume = jiffies + 60 * HZ;
  574. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  575. index = linear_page_index(vma, addr);
  576. printk(KERN_ALERT
  577. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  578. current->comm,
  579. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  580. if (page)
  581. dump_page(page, "bad pte");
  582. printk(KERN_ALERT
  583. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  584. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  585. /*
  586. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  587. */
  588. if (vma->vm_ops)
  589. printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
  590. vma->vm_ops->fault);
  591. if (vma->vm_file)
  592. printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
  593. vma->vm_file->f_op->mmap);
  594. dump_stack();
  595. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  596. }
  597. static inline bool is_cow_mapping(vm_flags_t flags)
  598. {
  599. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  600. }
  601. /*
  602. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  603. *
  604. * "Special" mappings do not wish to be associated with a "struct page" (either
  605. * it doesn't exist, or it exists but they don't want to touch it). In this
  606. * case, NULL is returned here. "Normal" mappings do have a struct page.
  607. *
  608. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  609. * pte bit, in which case this function is trivial. Secondly, an architecture
  610. * may not have a spare pte bit, which requires a more complicated scheme,
  611. * described below.
  612. *
  613. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  614. * special mapping (even if there are underlying and valid "struct pages").
  615. * COWed pages of a VM_PFNMAP are always normal.
  616. *
  617. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  618. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  619. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  620. * mapping will always honor the rule
  621. *
  622. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  623. *
  624. * And for normal mappings this is false.
  625. *
  626. * This restricts such mappings to be a linear translation from virtual address
  627. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  628. * as the vma is not a COW mapping; in that case, we know that all ptes are
  629. * special (because none can have been COWed).
  630. *
  631. *
  632. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  633. *
  634. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  635. * page" backing, however the difference is that _all_ pages with a struct
  636. * page (that is, those where pfn_valid is true) are refcounted and considered
  637. * normal pages by the VM. The disadvantage is that pages are refcounted
  638. * (which can be slower and simply not an option for some PFNMAP users). The
  639. * advantage is that we don't have to follow the strict linearity rule of
  640. * PFNMAP mappings in order to support COWable mappings.
  641. *
  642. */
  643. #ifdef __HAVE_ARCH_PTE_SPECIAL
  644. # define HAVE_PTE_SPECIAL 1
  645. #else
  646. # define HAVE_PTE_SPECIAL 0
  647. #endif
  648. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  649. pte_t pte)
  650. {
  651. unsigned long pfn = pte_pfn(pte);
  652. if (HAVE_PTE_SPECIAL) {
  653. if (likely(!pte_special(pte)))
  654. goto check_pfn;
  655. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  656. return NULL;
  657. if (!is_zero_pfn(pfn))
  658. print_bad_pte(vma, addr, pte, NULL);
  659. return NULL;
  660. }
  661. /* !HAVE_PTE_SPECIAL case follows: */
  662. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  663. if (vma->vm_flags & VM_MIXEDMAP) {
  664. if (!pfn_valid(pfn))
  665. return NULL;
  666. goto out;
  667. } else {
  668. unsigned long off;
  669. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  670. if (pfn == vma->vm_pgoff + off)
  671. return NULL;
  672. if (!is_cow_mapping(vma->vm_flags))
  673. return NULL;
  674. }
  675. }
  676. if (is_zero_pfn(pfn))
  677. return NULL;
  678. check_pfn:
  679. if (unlikely(pfn > highest_memmap_pfn)) {
  680. print_bad_pte(vma, addr, pte, NULL);
  681. return NULL;
  682. }
  683. /*
  684. * NOTE! We still have PageReserved() pages in the page tables.
  685. * eg. VDSO mappings can cause them to exist.
  686. */
  687. out:
  688. return pfn_to_page(pfn);
  689. }
  690. /*
  691. * copy one vm_area from one task to the other. Assumes the page tables
  692. * already present in the new task to be cleared in the whole range
  693. * covered by this vma.
  694. */
  695. static inline unsigned long
  696. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  697. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  698. unsigned long addr, int *rss)
  699. {
  700. unsigned long vm_flags = vma->vm_flags;
  701. pte_t pte = *src_pte;
  702. struct page *page;
  703. /* pte contains position in swap or file, so copy. */
  704. if (unlikely(!pte_present(pte))) {
  705. if (!pte_file(pte)) {
  706. swp_entry_t entry = pte_to_swp_entry(pte);
  707. if (swap_duplicate(entry) < 0)
  708. return entry.val;
  709. /* make sure dst_mm is on swapoff's mmlist. */
  710. if (unlikely(list_empty(&dst_mm->mmlist))) {
  711. spin_lock(&mmlist_lock);
  712. if (list_empty(&dst_mm->mmlist))
  713. list_add(&dst_mm->mmlist,
  714. &src_mm->mmlist);
  715. spin_unlock(&mmlist_lock);
  716. }
  717. if (likely(!non_swap_entry(entry)))
  718. rss[MM_SWAPENTS]++;
  719. else if (is_migration_entry(entry)) {
  720. page = migration_entry_to_page(entry);
  721. if (PageAnon(page))
  722. rss[MM_ANONPAGES]++;
  723. else
  724. rss[MM_FILEPAGES]++;
  725. if (is_write_migration_entry(entry) &&
  726. is_cow_mapping(vm_flags)) {
  727. /*
  728. * COW mappings require pages in both
  729. * parent and child to be set to read.
  730. */
  731. make_migration_entry_read(&entry);
  732. pte = swp_entry_to_pte(entry);
  733. if (pte_swp_soft_dirty(*src_pte))
  734. pte = pte_swp_mksoft_dirty(pte);
  735. set_pte_at(src_mm, addr, src_pte, pte);
  736. }
  737. }
  738. }
  739. goto out_set_pte;
  740. }
  741. /*
  742. * If it's a COW mapping, write protect it both
  743. * in the parent and the child
  744. */
  745. if (is_cow_mapping(vm_flags)) {
  746. ptep_set_wrprotect(src_mm, addr, src_pte);
  747. pte = pte_wrprotect(pte);
  748. }
  749. /*
  750. * If it's a shared mapping, mark it clean in
  751. * the child
  752. */
  753. if (vm_flags & VM_SHARED)
  754. pte = pte_mkclean(pte);
  755. pte = pte_mkold(pte);
  756. page = vm_normal_page(vma, addr, pte);
  757. if (page) {
  758. get_page(page);
  759. page_dup_rmap(page);
  760. if (PageAnon(page))
  761. rss[MM_ANONPAGES]++;
  762. else
  763. rss[MM_FILEPAGES]++;
  764. }
  765. out_set_pte:
  766. set_pte_at(dst_mm, addr, dst_pte, pte);
  767. return 0;
  768. }
  769. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  770. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  771. unsigned long addr, unsigned long end)
  772. {
  773. pte_t *orig_src_pte, *orig_dst_pte;
  774. pte_t *src_pte, *dst_pte;
  775. spinlock_t *src_ptl, *dst_ptl;
  776. int progress = 0;
  777. int rss[NR_MM_COUNTERS];
  778. swp_entry_t entry = (swp_entry_t){0};
  779. again:
  780. init_rss_vec(rss);
  781. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  782. if (!dst_pte)
  783. return -ENOMEM;
  784. src_pte = pte_offset_map(src_pmd, addr);
  785. src_ptl = pte_lockptr(src_mm, src_pmd);
  786. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  787. orig_src_pte = src_pte;
  788. orig_dst_pte = dst_pte;
  789. arch_enter_lazy_mmu_mode();
  790. do {
  791. /*
  792. * We are holding two locks at this point - either of them
  793. * could generate latencies in another task on another CPU.
  794. */
  795. if (progress >= 32) {
  796. progress = 0;
  797. if (need_resched() ||
  798. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  799. break;
  800. }
  801. if (pte_none(*src_pte)) {
  802. progress++;
  803. continue;
  804. }
  805. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  806. vma, addr, rss);
  807. if (entry.val)
  808. break;
  809. progress += 8;
  810. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  811. arch_leave_lazy_mmu_mode();
  812. spin_unlock(src_ptl);
  813. pte_unmap(orig_src_pte);
  814. add_mm_rss_vec(dst_mm, rss);
  815. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  816. cond_resched();
  817. if (entry.val) {
  818. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  819. return -ENOMEM;
  820. progress = 0;
  821. }
  822. if (addr != end)
  823. goto again;
  824. return 0;
  825. }
  826. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  827. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  828. unsigned long addr, unsigned long end)
  829. {
  830. pmd_t *src_pmd, *dst_pmd;
  831. unsigned long next;
  832. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  833. if (!dst_pmd)
  834. return -ENOMEM;
  835. src_pmd = pmd_offset(src_pud, addr);
  836. do {
  837. next = pmd_addr_end(addr, end);
  838. if (pmd_trans_huge(*src_pmd)) {
  839. int err;
  840. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  841. err = copy_huge_pmd(dst_mm, src_mm,
  842. dst_pmd, src_pmd, addr, vma);
  843. if (err == -ENOMEM)
  844. return -ENOMEM;
  845. if (!err)
  846. continue;
  847. /* fall through */
  848. }
  849. if (pmd_none_or_clear_bad(src_pmd))
  850. continue;
  851. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  852. vma, addr, next))
  853. return -ENOMEM;
  854. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  855. return 0;
  856. }
  857. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  858. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  859. unsigned long addr, unsigned long end)
  860. {
  861. pud_t *src_pud, *dst_pud;
  862. unsigned long next;
  863. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  864. if (!dst_pud)
  865. return -ENOMEM;
  866. src_pud = pud_offset(src_pgd, addr);
  867. do {
  868. next = pud_addr_end(addr, end);
  869. if (pud_none_or_clear_bad(src_pud))
  870. continue;
  871. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  872. vma, addr, next))
  873. return -ENOMEM;
  874. } while (dst_pud++, src_pud++, addr = next, addr != end);
  875. return 0;
  876. }
  877. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  878. struct vm_area_struct *vma)
  879. {
  880. pgd_t *src_pgd, *dst_pgd;
  881. unsigned long next;
  882. unsigned long addr = vma->vm_start;
  883. unsigned long end = vma->vm_end;
  884. unsigned long mmun_start; /* For mmu_notifiers */
  885. unsigned long mmun_end; /* For mmu_notifiers */
  886. bool is_cow;
  887. int ret;
  888. /*
  889. * Don't copy ptes where a page fault will fill them correctly.
  890. * Fork becomes much lighter when there are big shared or private
  891. * readonly mappings. The tradeoff is that copy_page_range is more
  892. * efficient than faulting.
  893. */
  894. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  895. VM_PFNMAP | VM_MIXEDMAP))) {
  896. if (!vma->anon_vma)
  897. return 0;
  898. }
  899. if (is_vm_hugetlb_page(vma))
  900. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  901. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  902. /*
  903. * We do not free on error cases below as remove_vma
  904. * gets called on error from higher level routine
  905. */
  906. ret = track_pfn_copy(vma);
  907. if (ret)
  908. return ret;
  909. }
  910. /*
  911. * We need to invalidate the secondary MMU mappings only when
  912. * there could be a permission downgrade on the ptes of the
  913. * parent mm. And a permission downgrade will only happen if
  914. * is_cow_mapping() returns true.
  915. */
  916. is_cow = is_cow_mapping(vma->vm_flags);
  917. mmun_start = addr;
  918. mmun_end = end;
  919. if (is_cow)
  920. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  921. mmun_end);
  922. ret = 0;
  923. dst_pgd = pgd_offset(dst_mm, addr);
  924. src_pgd = pgd_offset(src_mm, addr);
  925. do {
  926. next = pgd_addr_end(addr, end);
  927. if (pgd_none_or_clear_bad(src_pgd))
  928. continue;
  929. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  930. vma, addr, next))) {
  931. ret = -ENOMEM;
  932. break;
  933. }
  934. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  935. if (is_cow)
  936. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  937. return ret;
  938. }
  939. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  940. struct vm_area_struct *vma, pmd_t *pmd,
  941. unsigned long addr, unsigned long end,
  942. struct zap_details *details)
  943. {
  944. struct mm_struct *mm = tlb->mm;
  945. int force_flush = 0;
  946. int rss[NR_MM_COUNTERS];
  947. spinlock_t *ptl;
  948. pte_t *start_pte;
  949. pte_t *pte;
  950. again:
  951. init_rss_vec(rss);
  952. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  953. pte = start_pte;
  954. arch_enter_lazy_mmu_mode();
  955. do {
  956. pte_t ptent = *pte;
  957. if (pte_none(ptent)) {
  958. continue;
  959. }
  960. if (pte_present(ptent)) {
  961. struct page *page;
  962. page = vm_normal_page(vma, addr, ptent);
  963. if (unlikely(details) && page) {
  964. /*
  965. * unmap_shared_mapping_pages() wants to
  966. * invalidate cache without truncating:
  967. * unmap shared but keep private pages.
  968. */
  969. if (details->check_mapping &&
  970. details->check_mapping != page->mapping)
  971. continue;
  972. /*
  973. * Each page->index must be checked when
  974. * invalidating or truncating nonlinear.
  975. */
  976. if (details->nonlinear_vma &&
  977. (page->index < details->first_index ||
  978. page->index > details->last_index))
  979. continue;
  980. }
  981. ptent = ptep_get_and_clear_full(mm, addr, pte,
  982. tlb->fullmm);
  983. tlb_remove_tlb_entry(tlb, pte, addr);
  984. if (unlikely(!page))
  985. continue;
  986. if (unlikely(details) && details->nonlinear_vma
  987. && linear_page_index(details->nonlinear_vma,
  988. addr) != page->index) {
  989. pte_t ptfile = pgoff_to_pte(page->index);
  990. if (pte_soft_dirty(ptent))
  991. pte_file_mksoft_dirty(ptfile);
  992. set_pte_at(mm, addr, pte, ptfile);
  993. }
  994. if (PageAnon(page))
  995. rss[MM_ANONPAGES]--;
  996. else {
  997. if (pte_dirty(ptent))
  998. set_page_dirty(page);
  999. if (pte_young(ptent) &&
  1000. likely(!(vma->vm_flags & VM_SEQ_READ)))
  1001. mark_page_accessed(page);
  1002. rss[MM_FILEPAGES]--;
  1003. }
  1004. page_remove_rmap(page);
  1005. if (unlikely(page_mapcount(page) < 0))
  1006. print_bad_pte(vma, addr, ptent, page);
  1007. force_flush = !__tlb_remove_page(tlb, page);
  1008. if (force_flush)
  1009. break;
  1010. continue;
  1011. }
  1012. /*
  1013. * If details->check_mapping, we leave swap entries;
  1014. * if details->nonlinear_vma, we leave file entries.
  1015. */
  1016. if (unlikely(details))
  1017. continue;
  1018. if (pte_file(ptent)) {
  1019. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1020. print_bad_pte(vma, addr, ptent, NULL);
  1021. } else {
  1022. swp_entry_t entry = pte_to_swp_entry(ptent);
  1023. if (!non_swap_entry(entry))
  1024. rss[MM_SWAPENTS]--;
  1025. else if (is_migration_entry(entry)) {
  1026. struct page *page;
  1027. page = migration_entry_to_page(entry);
  1028. if (PageAnon(page))
  1029. rss[MM_ANONPAGES]--;
  1030. else
  1031. rss[MM_FILEPAGES]--;
  1032. }
  1033. if (unlikely(!free_swap_and_cache(entry)))
  1034. print_bad_pte(vma, addr, ptent, NULL);
  1035. }
  1036. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1037. } while (pte++, addr += PAGE_SIZE, addr != end);
  1038. add_mm_rss_vec(mm, rss);
  1039. arch_leave_lazy_mmu_mode();
  1040. pte_unmap_unlock(start_pte, ptl);
  1041. /*
  1042. * mmu_gather ran out of room to batch pages, we break out of
  1043. * the PTE lock to avoid doing the potential expensive TLB invalidate
  1044. * and page-free while holding it.
  1045. */
  1046. if (force_flush) {
  1047. unsigned long old_end;
  1048. force_flush = 0;
  1049. /*
  1050. * Flush the TLB just for the previous segment,
  1051. * then update the range to be the remaining
  1052. * TLB range.
  1053. */
  1054. old_end = tlb->end;
  1055. tlb->end = addr;
  1056. tlb_flush_mmu(tlb);
  1057. tlb->start = addr;
  1058. tlb->end = old_end;
  1059. if (addr != end)
  1060. goto again;
  1061. }
  1062. return addr;
  1063. }
  1064. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1065. struct vm_area_struct *vma, pud_t *pud,
  1066. unsigned long addr, unsigned long end,
  1067. struct zap_details *details)
  1068. {
  1069. pmd_t *pmd;
  1070. unsigned long next;
  1071. pmd = pmd_offset(pud, addr);
  1072. do {
  1073. next = pmd_addr_end(addr, end);
  1074. if (pmd_trans_huge(*pmd)) {
  1075. if (next - addr != HPAGE_PMD_SIZE) {
  1076. #ifdef CONFIG_DEBUG_VM
  1077. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1078. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1079. __func__, addr, end,
  1080. vma->vm_start,
  1081. vma->vm_end);
  1082. BUG();
  1083. }
  1084. #endif
  1085. split_huge_page_pmd(vma, addr, pmd);
  1086. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1087. goto next;
  1088. /* fall through */
  1089. }
  1090. /*
  1091. * Here there can be other concurrent MADV_DONTNEED or
  1092. * trans huge page faults running, and if the pmd is
  1093. * none or trans huge it can change under us. This is
  1094. * because MADV_DONTNEED holds the mmap_sem in read
  1095. * mode.
  1096. */
  1097. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1098. goto next;
  1099. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1100. next:
  1101. cond_resched();
  1102. } while (pmd++, addr = next, addr != end);
  1103. return addr;
  1104. }
  1105. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1106. struct vm_area_struct *vma, pgd_t *pgd,
  1107. unsigned long addr, unsigned long end,
  1108. struct zap_details *details)
  1109. {
  1110. pud_t *pud;
  1111. unsigned long next;
  1112. pud = pud_offset(pgd, addr);
  1113. do {
  1114. next = pud_addr_end(addr, end);
  1115. if (pud_none_or_clear_bad(pud))
  1116. continue;
  1117. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1118. } while (pud++, addr = next, addr != end);
  1119. return addr;
  1120. }
  1121. static void unmap_page_range(struct mmu_gather *tlb,
  1122. struct vm_area_struct *vma,
  1123. unsigned long addr, unsigned long end,
  1124. struct zap_details *details)
  1125. {
  1126. pgd_t *pgd;
  1127. unsigned long next;
  1128. if (details && !details->check_mapping && !details->nonlinear_vma)
  1129. details = NULL;
  1130. BUG_ON(addr >= end);
  1131. mem_cgroup_uncharge_start();
  1132. tlb_start_vma(tlb, vma);
  1133. pgd = pgd_offset(vma->vm_mm, addr);
  1134. do {
  1135. next = pgd_addr_end(addr, end);
  1136. if (pgd_none_or_clear_bad(pgd))
  1137. continue;
  1138. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1139. } while (pgd++, addr = next, addr != end);
  1140. tlb_end_vma(tlb, vma);
  1141. mem_cgroup_uncharge_end();
  1142. }
  1143. static void unmap_single_vma(struct mmu_gather *tlb,
  1144. struct vm_area_struct *vma, unsigned long start_addr,
  1145. unsigned long end_addr,
  1146. struct zap_details *details)
  1147. {
  1148. unsigned long start = max(vma->vm_start, start_addr);
  1149. unsigned long end;
  1150. if (start >= vma->vm_end)
  1151. return;
  1152. end = min(vma->vm_end, end_addr);
  1153. if (end <= vma->vm_start)
  1154. return;
  1155. if (vma->vm_file)
  1156. uprobe_munmap(vma, start, end);
  1157. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1158. untrack_pfn(vma, 0, 0);
  1159. if (start != end) {
  1160. if (unlikely(is_vm_hugetlb_page(vma))) {
  1161. /*
  1162. * It is undesirable to test vma->vm_file as it
  1163. * should be non-null for valid hugetlb area.
  1164. * However, vm_file will be NULL in the error
  1165. * cleanup path of do_mmap_pgoff. When
  1166. * hugetlbfs ->mmap method fails,
  1167. * do_mmap_pgoff() nullifies vma->vm_file
  1168. * before calling this function to clean up.
  1169. * Since no pte has actually been setup, it is
  1170. * safe to do nothing in this case.
  1171. */
  1172. if (vma->vm_file) {
  1173. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1174. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1175. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1176. }
  1177. } else
  1178. unmap_page_range(tlb, vma, start, end, details);
  1179. }
  1180. }
  1181. /**
  1182. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1183. * @tlb: address of the caller's struct mmu_gather
  1184. * @vma: the starting vma
  1185. * @start_addr: virtual address at which to start unmapping
  1186. * @end_addr: virtual address at which to end unmapping
  1187. *
  1188. * Unmap all pages in the vma list.
  1189. *
  1190. * Only addresses between `start' and `end' will be unmapped.
  1191. *
  1192. * The VMA list must be sorted in ascending virtual address order.
  1193. *
  1194. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1195. * range after unmap_vmas() returns. So the only responsibility here is to
  1196. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1197. * drops the lock and schedules.
  1198. */
  1199. void unmap_vmas(struct mmu_gather *tlb,
  1200. struct vm_area_struct *vma, unsigned long start_addr,
  1201. unsigned long end_addr)
  1202. {
  1203. struct mm_struct *mm = vma->vm_mm;
  1204. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1205. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1206. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1207. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1208. }
  1209. /**
  1210. * zap_page_range - remove user pages in a given range
  1211. * @vma: vm_area_struct holding the applicable pages
  1212. * @start: starting address of pages to zap
  1213. * @size: number of bytes to zap
  1214. * @details: details of nonlinear truncation or shared cache invalidation
  1215. *
  1216. * Caller must protect the VMA list
  1217. */
  1218. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1219. unsigned long size, struct zap_details *details)
  1220. {
  1221. struct mm_struct *mm = vma->vm_mm;
  1222. struct mmu_gather tlb;
  1223. unsigned long end = start + size;
  1224. lru_add_drain();
  1225. tlb_gather_mmu(&tlb, mm, start, end);
  1226. update_hiwater_rss(mm);
  1227. mmu_notifier_invalidate_range_start(mm, start, end);
  1228. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1229. unmap_single_vma(&tlb, vma, start, end, details);
  1230. mmu_notifier_invalidate_range_end(mm, start, end);
  1231. tlb_finish_mmu(&tlb, start, end);
  1232. }
  1233. /**
  1234. * zap_page_range_single - remove user pages in a given range
  1235. * @vma: vm_area_struct holding the applicable pages
  1236. * @address: starting address of pages to zap
  1237. * @size: number of bytes to zap
  1238. * @details: details of nonlinear truncation or shared cache invalidation
  1239. *
  1240. * The range must fit into one VMA.
  1241. */
  1242. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1243. unsigned long size, struct zap_details *details)
  1244. {
  1245. struct mm_struct *mm = vma->vm_mm;
  1246. struct mmu_gather tlb;
  1247. unsigned long end = address + size;
  1248. lru_add_drain();
  1249. tlb_gather_mmu(&tlb, mm, address, end);
  1250. update_hiwater_rss(mm);
  1251. mmu_notifier_invalidate_range_start(mm, address, end);
  1252. unmap_single_vma(&tlb, vma, address, end, details);
  1253. mmu_notifier_invalidate_range_end(mm, address, end);
  1254. tlb_finish_mmu(&tlb, address, end);
  1255. }
  1256. /**
  1257. * zap_vma_ptes - remove ptes mapping the vma
  1258. * @vma: vm_area_struct holding ptes to be zapped
  1259. * @address: starting address of pages to zap
  1260. * @size: number of bytes to zap
  1261. *
  1262. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1263. *
  1264. * The entire address range must be fully contained within the vma.
  1265. *
  1266. * Returns 0 if successful.
  1267. */
  1268. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1269. unsigned long size)
  1270. {
  1271. if (address < vma->vm_start || address + size > vma->vm_end ||
  1272. !(vma->vm_flags & VM_PFNMAP))
  1273. return -1;
  1274. zap_page_range_single(vma, address, size, NULL);
  1275. return 0;
  1276. }
  1277. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1278. /**
  1279. * follow_page_mask - look up a page descriptor from a user-virtual address
  1280. * @vma: vm_area_struct mapping @address
  1281. * @address: virtual address to look up
  1282. * @flags: flags modifying lookup behaviour
  1283. * @page_mask: on output, *page_mask is set according to the size of the page
  1284. *
  1285. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1286. *
  1287. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1288. * an error pointer if there is a mapping to something not represented
  1289. * by a page descriptor (see also vm_normal_page()).
  1290. */
  1291. struct page *follow_page_mask(struct vm_area_struct *vma,
  1292. unsigned long address, unsigned int flags,
  1293. unsigned int *page_mask)
  1294. {
  1295. pgd_t *pgd;
  1296. pud_t *pud;
  1297. pmd_t *pmd;
  1298. pte_t *ptep, pte;
  1299. spinlock_t *ptl;
  1300. struct page *page;
  1301. struct mm_struct *mm = vma->vm_mm;
  1302. *page_mask = 0;
  1303. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1304. if (!IS_ERR(page)) {
  1305. BUG_ON(flags & FOLL_GET);
  1306. goto out;
  1307. }
  1308. page = NULL;
  1309. pgd = pgd_offset(mm, address);
  1310. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1311. goto no_page_table;
  1312. pud = pud_offset(pgd, address);
  1313. if (pud_none(*pud))
  1314. goto no_page_table;
  1315. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1316. if (flags & FOLL_GET)
  1317. goto out;
  1318. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1319. goto out;
  1320. }
  1321. if (unlikely(pud_bad(*pud)))
  1322. goto no_page_table;
  1323. pmd = pmd_offset(pud, address);
  1324. if (pmd_none(*pmd))
  1325. goto no_page_table;
  1326. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1327. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1328. if (flags & FOLL_GET) {
  1329. /*
  1330. * Refcount on tail pages are not well-defined and
  1331. * shouldn't be taken. The caller should handle a NULL
  1332. * return when trying to follow tail pages.
  1333. */
  1334. if (PageHead(page))
  1335. get_page(page);
  1336. else {
  1337. page = NULL;
  1338. goto out;
  1339. }
  1340. }
  1341. goto out;
  1342. }
  1343. if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
  1344. goto no_page_table;
  1345. if (pmd_trans_huge(*pmd)) {
  1346. if (flags & FOLL_SPLIT) {
  1347. split_huge_page_pmd(vma, address, pmd);
  1348. goto split_fallthrough;
  1349. }
  1350. ptl = pmd_lock(mm, pmd);
  1351. if (likely(pmd_trans_huge(*pmd))) {
  1352. if (unlikely(pmd_trans_splitting(*pmd))) {
  1353. spin_unlock(ptl);
  1354. wait_split_huge_page(vma->anon_vma, pmd);
  1355. } else {
  1356. page = follow_trans_huge_pmd(vma, address,
  1357. pmd, flags);
  1358. spin_unlock(ptl);
  1359. *page_mask = HPAGE_PMD_NR - 1;
  1360. goto out;
  1361. }
  1362. } else
  1363. spin_unlock(ptl);
  1364. /* fall through */
  1365. }
  1366. split_fallthrough:
  1367. if (unlikely(pmd_bad(*pmd)))
  1368. goto no_page_table;
  1369. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1370. pte = *ptep;
  1371. if (!pte_present(pte)) {
  1372. swp_entry_t entry;
  1373. /*
  1374. * KSM's break_ksm() relies upon recognizing a ksm page
  1375. * even while it is being migrated, so for that case we
  1376. * need migration_entry_wait().
  1377. */
  1378. if (likely(!(flags & FOLL_MIGRATION)))
  1379. goto no_page;
  1380. if (pte_none(pte) || pte_file(pte))
  1381. goto no_page;
  1382. entry = pte_to_swp_entry(pte);
  1383. if (!is_migration_entry(entry))
  1384. goto no_page;
  1385. pte_unmap_unlock(ptep, ptl);
  1386. migration_entry_wait(mm, pmd, address);
  1387. goto split_fallthrough;
  1388. }
  1389. if ((flags & FOLL_NUMA) && pte_numa(pte))
  1390. goto no_page;
  1391. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1392. goto unlock;
  1393. page = vm_normal_page(vma, address, pte);
  1394. if (unlikely(!page)) {
  1395. if ((flags & FOLL_DUMP) ||
  1396. !is_zero_pfn(pte_pfn(pte)))
  1397. goto bad_page;
  1398. page = pte_page(pte);
  1399. }
  1400. if (flags & FOLL_GET)
  1401. get_page_foll(page);
  1402. if (flags & FOLL_TOUCH) {
  1403. if ((flags & FOLL_WRITE) &&
  1404. !pte_dirty(pte) && !PageDirty(page))
  1405. set_page_dirty(page);
  1406. /*
  1407. * pte_mkyoung() would be more correct here, but atomic care
  1408. * is needed to avoid losing the dirty bit: it is easier to use
  1409. * mark_page_accessed().
  1410. */
  1411. mark_page_accessed(page);
  1412. }
  1413. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1414. /*
  1415. * The preliminary mapping check is mainly to avoid the
  1416. * pointless overhead of lock_page on the ZERO_PAGE
  1417. * which might bounce very badly if there is contention.
  1418. *
  1419. * If the page is already locked, we don't need to
  1420. * handle it now - vmscan will handle it later if and
  1421. * when it attempts to reclaim the page.
  1422. */
  1423. if (page->mapping && trylock_page(page)) {
  1424. lru_add_drain(); /* push cached pages to LRU */
  1425. /*
  1426. * Because we lock page here, and migration is
  1427. * blocked by the pte's page reference, and we
  1428. * know the page is still mapped, we don't even
  1429. * need to check for file-cache page truncation.
  1430. */
  1431. mlock_vma_page(page);
  1432. unlock_page(page);
  1433. }
  1434. }
  1435. unlock:
  1436. pte_unmap_unlock(ptep, ptl);
  1437. out:
  1438. return page;
  1439. bad_page:
  1440. pte_unmap_unlock(ptep, ptl);
  1441. return ERR_PTR(-EFAULT);
  1442. no_page:
  1443. pte_unmap_unlock(ptep, ptl);
  1444. if (!pte_none(pte))
  1445. return page;
  1446. no_page_table:
  1447. /*
  1448. * When core dumping an enormous anonymous area that nobody
  1449. * has touched so far, we don't want to allocate unnecessary pages or
  1450. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1451. * then get_dump_page() will return NULL to leave a hole in the dump.
  1452. * But we can only make this optimization where a hole would surely
  1453. * be zero-filled if handle_mm_fault() actually did handle it.
  1454. */
  1455. if ((flags & FOLL_DUMP) &&
  1456. (!vma->vm_ops || !vma->vm_ops->fault))
  1457. return ERR_PTR(-EFAULT);
  1458. return page;
  1459. }
  1460. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  1461. {
  1462. return stack_guard_page_start(vma, addr) ||
  1463. stack_guard_page_end(vma, addr+PAGE_SIZE);
  1464. }
  1465. /**
  1466. * __get_user_pages() - pin user pages in memory
  1467. * @tsk: task_struct of target task
  1468. * @mm: mm_struct of target mm
  1469. * @start: starting user address
  1470. * @nr_pages: number of pages from start to pin
  1471. * @gup_flags: flags modifying pin behaviour
  1472. * @pages: array that receives pointers to the pages pinned.
  1473. * Should be at least nr_pages long. Or NULL, if caller
  1474. * only intends to ensure the pages are faulted in.
  1475. * @vmas: array of pointers to vmas corresponding to each page.
  1476. * Or NULL if the caller does not require them.
  1477. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1478. *
  1479. * Returns number of pages pinned. This may be fewer than the number
  1480. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1481. * were pinned, returns -errno. Each page returned must be released
  1482. * with a put_page() call when it is finished with. vmas will only
  1483. * remain valid while mmap_sem is held.
  1484. *
  1485. * Must be called with mmap_sem held for read or write.
  1486. *
  1487. * __get_user_pages walks a process's page tables and takes a reference to
  1488. * each struct page that each user address corresponds to at a given
  1489. * instant. That is, it takes the page that would be accessed if a user
  1490. * thread accesses the given user virtual address at that instant.
  1491. *
  1492. * This does not guarantee that the page exists in the user mappings when
  1493. * __get_user_pages returns, and there may even be a completely different
  1494. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1495. * and subsequently re faulted). However it does guarantee that the page
  1496. * won't be freed completely. And mostly callers simply care that the page
  1497. * contains data that was valid *at some point in time*. Typically, an IO
  1498. * or similar operation cannot guarantee anything stronger anyway because
  1499. * locks can't be held over the syscall boundary.
  1500. *
  1501. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1502. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1503. * appropriate) must be called after the page is finished with, and
  1504. * before put_page is called.
  1505. *
  1506. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1507. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1508. * *@nonblocking will be set to 0.
  1509. *
  1510. * In most cases, get_user_pages or get_user_pages_fast should be used
  1511. * instead of __get_user_pages. __get_user_pages should be used only if
  1512. * you need some special @gup_flags.
  1513. */
  1514. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1515. unsigned long start, unsigned long nr_pages,
  1516. unsigned int gup_flags, struct page **pages,
  1517. struct vm_area_struct **vmas, int *nonblocking)
  1518. {
  1519. long i;
  1520. unsigned long vm_flags;
  1521. unsigned int page_mask;
  1522. if (!nr_pages)
  1523. return 0;
  1524. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1525. /*
  1526. * Require read or write permissions.
  1527. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1528. */
  1529. vm_flags = (gup_flags & FOLL_WRITE) ?
  1530. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1531. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1532. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1533. /*
  1534. * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
  1535. * would be called on PROT_NONE ranges. We must never invoke
  1536. * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
  1537. * page faults would unprotect the PROT_NONE ranges if
  1538. * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
  1539. * bitflag. So to avoid that, don't set FOLL_NUMA if
  1540. * FOLL_FORCE is set.
  1541. */
  1542. if (!(gup_flags & FOLL_FORCE))
  1543. gup_flags |= FOLL_NUMA;
  1544. i = 0;
  1545. do {
  1546. struct vm_area_struct *vma;
  1547. vma = find_extend_vma(mm, start);
  1548. if (!vma && in_gate_area(mm, start)) {
  1549. unsigned long pg = start & PAGE_MASK;
  1550. pgd_t *pgd;
  1551. pud_t *pud;
  1552. pmd_t *pmd;
  1553. pte_t *pte;
  1554. /* user gate pages are read-only */
  1555. if (gup_flags & FOLL_WRITE)
  1556. return i ? : -EFAULT;
  1557. if (pg > TASK_SIZE)
  1558. pgd = pgd_offset_k(pg);
  1559. else
  1560. pgd = pgd_offset_gate(mm, pg);
  1561. BUG_ON(pgd_none(*pgd));
  1562. pud = pud_offset(pgd, pg);
  1563. BUG_ON(pud_none(*pud));
  1564. pmd = pmd_offset(pud, pg);
  1565. if (pmd_none(*pmd))
  1566. return i ? : -EFAULT;
  1567. VM_BUG_ON(pmd_trans_huge(*pmd));
  1568. pte = pte_offset_map(pmd, pg);
  1569. if (pte_none(*pte)) {
  1570. pte_unmap(pte);
  1571. return i ? : -EFAULT;
  1572. }
  1573. vma = get_gate_vma(mm);
  1574. if (pages) {
  1575. struct page *page;
  1576. page = vm_normal_page(vma, start, *pte);
  1577. if (!page) {
  1578. if (!(gup_flags & FOLL_DUMP) &&
  1579. is_zero_pfn(pte_pfn(*pte)))
  1580. page = pte_page(*pte);
  1581. else {
  1582. pte_unmap(pte);
  1583. return i ? : -EFAULT;
  1584. }
  1585. }
  1586. pages[i] = page;
  1587. get_page(page);
  1588. }
  1589. pte_unmap(pte);
  1590. page_mask = 0;
  1591. goto next_page;
  1592. }
  1593. if (!vma ||
  1594. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1595. !(vm_flags & vma->vm_flags))
  1596. return i ? : -EFAULT;
  1597. if (is_vm_hugetlb_page(vma)) {
  1598. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1599. &start, &nr_pages, i, gup_flags);
  1600. continue;
  1601. }
  1602. do {
  1603. struct page *page;
  1604. unsigned int foll_flags = gup_flags;
  1605. unsigned int page_increm;
  1606. /*
  1607. * If we have a pending SIGKILL, don't keep faulting
  1608. * pages and potentially allocating memory.
  1609. */
  1610. if (unlikely(fatal_signal_pending(current)))
  1611. return i ? i : -ERESTARTSYS;
  1612. cond_resched();
  1613. while (!(page = follow_page_mask(vma, start,
  1614. foll_flags, &page_mask))) {
  1615. int ret;
  1616. unsigned int fault_flags = 0;
  1617. /* For mlock, just skip the stack guard page. */
  1618. if (foll_flags & FOLL_MLOCK) {
  1619. if (stack_guard_page(vma, start))
  1620. goto next_page;
  1621. }
  1622. if (foll_flags & FOLL_WRITE)
  1623. fault_flags |= FAULT_FLAG_WRITE;
  1624. if (nonblocking)
  1625. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1626. if (foll_flags & FOLL_NOWAIT)
  1627. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1628. ret = handle_mm_fault(mm, vma, start,
  1629. fault_flags);
  1630. if (ret & VM_FAULT_ERROR) {
  1631. if (ret & VM_FAULT_OOM)
  1632. return i ? i : -ENOMEM;
  1633. if (ret & (VM_FAULT_HWPOISON |
  1634. VM_FAULT_HWPOISON_LARGE)) {
  1635. if (i)
  1636. return i;
  1637. else if (gup_flags & FOLL_HWPOISON)
  1638. return -EHWPOISON;
  1639. else
  1640. return -EFAULT;
  1641. }
  1642. if (ret & VM_FAULT_SIGBUS)
  1643. return i ? i : -EFAULT;
  1644. BUG();
  1645. }
  1646. if (tsk) {
  1647. if (ret & VM_FAULT_MAJOR)
  1648. tsk->maj_flt++;
  1649. else
  1650. tsk->min_flt++;
  1651. }
  1652. if (ret & VM_FAULT_RETRY) {
  1653. if (nonblocking)
  1654. *nonblocking = 0;
  1655. return i;
  1656. }
  1657. /*
  1658. * The VM_FAULT_WRITE bit tells us that
  1659. * do_wp_page has broken COW when necessary,
  1660. * even if maybe_mkwrite decided not to set
  1661. * pte_write. We can thus safely do subsequent
  1662. * page lookups as if they were reads. But only
  1663. * do so when looping for pte_write is futile:
  1664. * in some cases userspace may also be wanting
  1665. * to write to the gotten user page, which a
  1666. * read fault here might prevent (a readonly
  1667. * page might get reCOWed by userspace write).
  1668. */
  1669. if ((ret & VM_FAULT_WRITE) &&
  1670. !(vma->vm_flags & VM_WRITE))
  1671. foll_flags &= ~FOLL_WRITE;
  1672. cond_resched();
  1673. }
  1674. if (IS_ERR(page))
  1675. return i ? i : PTR_ERR(page);
  1676. if (pages) {
  1677. pages[i] = page;
  1678. flush_anon_page(vma, page, start);
  1679. flush_dcache_page(page);
  1680. page_mask = 0;
  1681. }
  1682. next_page:
  1683. if (vmas) {
  1684. vmas[i] = vma;
  1685. page_mask = 0;
  1686. }
  1687. page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
  1688. if (page_increm > nr_pages)
  1689. page_increm = nr_pages;
  1690. i += page_increm;
  1691. start += page_increm * PAGE_SIZE;
  1692. nr_pages -= page_increm;
  1693. } while (nr_pages && start < vma->vm_end);
  1694. } while (nr_pages);
  1695. return i;
  1696. }
  1697. EXPORT_SYMBOL(__get_user_pages);
  1698. /*
  1699. * fixup_user_fault() - manually resolve a user page fault
  1700. * @tsk: the task_struct to use for page fault accounting, or
  1701. * NULL if faults are not to be recorded.
  1702. * @mm: mm_struct of target mm
  1703. * @address: user address
  1704. * @fault_flags:flags to pass down to handle_mm_fault()
  1705. *
  1706. * This is meant to be called in the specific scenario where for locking reasons
  1707. * we try to access user memory in atomic context (within a pagefault_disable()
  1708. * section), this returns -EFAULT, and we want to resolve the user fault before
  1709. * trying again.
  1710. *
  1711. * Typically this is meant to be used by the futex code.
  1712. *
  1713. * The main difference with get_user_pages() is that this function will
  1714. * unconditionally call handle_mm_fault() which will in turn perform all the
  1715. * necessary SW fixup of the dirty and young bits in the PTE, while
  1716. * handle_mm_fault() only guarantees to update these in the struct page.
  1717. *
  1718. * This is important for some architectures where those bits also gate the
  1719. * access permission to the page because they are maintained in software. On
  1720. * such architectures, gup() will not be enough to make a subsequent access
  1721. * succeed.
  1722. *
  1723. * This should be called with the mm_sem held for read.
  1724. */
  1725. int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1726. unsigned long address, unsigned int fault_flags)
  1727. {
  1728. struct vm_area_struct *vma;
  1729. int ret;
  1730. vma = find_extend_vma(mm, address);
  1731. if (!vma || address < vma->vm_start)
  1732. return -EFAULT;
  1733. ret = handle_mm_fault(mm, vma, address, fault_flags);
  1734. if (ret & VM_FAULT_ERROR) {
  1735. if (ret & VM_FAULT_OOM)
  1736. return -ENOMEM;
  1737. if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  1738. return -EHWPOISON;
  1739. if (ret & VM_FAULT_SIGBUS)
  1740. return -EFAULT;
  1741. BUG();
  1742. }
  1743. if (tsk) {
  1744. if (ret & VM_FAULT_MAJOR)
  1745. tsk->maj_flt++;
  1746. else
  1747. tsk->min_flt++;
  1748. }
  1749. return 0;
  1750. }
  1751. /*
  1752. * get_user_pages() - pin user pages in memory
  1753. * @tsk: the task_struct to use for page fault accounting, or
  1754. * NULL if faults are not to be recorded.
  1755. * @mm: mm_struct of target mm
  1756. * @start: starting user address
  1757. * @nr_pages: number of pages from start to pin
  1758. * @write: whether pages will be written to by the caller
  1759. * @force: whether to force write access even if user mapping is
  1760. * readonly. This will result in the page being COWed even
  1761. * in MAP_SHARED mappings. You do not want this.
  1762. * @pages: array that receives pointers to the pages pinned.
  1763. * Should be at least nr_pages long. Or NULL, if caller
  1764. * only intends to ensure the pages are faulted in.
  1765. * @vmas: array of pointers to vmas corresponding to each page.
  1766. * Or NULL if the caller does not require them.
  1767. *
  1768. * Returns number of pages pinned. This may be fewer than the number
  1769. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1770. * were pinned, returns -errno. Each page returned must be released
  1771. * with a put_page() call when it is finished with. vmas will only
  1772. * remain valid while mmap_sem is held.
  1773. *
  1774. * Must be called with mmap_sem held for read or write.
  1775. *
  1776. * get_user_pages walks a process's page tables and takes a reference to
  1777. * each struct page that each user address corresponds to at a given
  1778. * instant. That is, it takes the page that would be accessed if a user
  1779. * thread accesses the given user virtual address at that instant.
  1780. *
  1781. * This does not guarantee that the page exists in the user mappings when
  1782. * get_user_pages returns, and there may even be a completely different
  1783. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1784. * and subsequently re faulted). However it does guarantee that the page
  1785. * won't be freed completely. And mostly callers simply care that the page
  1786. * contains data that was valid *at some point in time*. Typically, an IO
  1787. * or similar operation cannot guarantee anything stronger anyway because
  1788. * locks can't be held over the syscall boundary.
  1789. *
  1790. * If write=0, the page must not be written to. If the page is written to,
  1791. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1792. * after the page is finished with, and before put_page is called.
  1793. *
  1794. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1795. * handle on the memory by some means other than accesses via the user virtual
  1796. * addresses. The pages may be submitted for DMA to devices or accessed via
  1797. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1798. * use the correct cache flushing APIs.
  1799. *
  1800. * See also get_user_pages_fast, for performance critical applications.
  1801. */
  1802. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1803. unsigned long start, unsigned long nr_pages, int write,
  1804. int force, struct page **pages, struct vm_area_struct **vmas)
  1805. {
  1806. int flags = FOLL_TOUCH;
  1807. if (pages)
  1808. flags |= FOLL_GET;
  1809. if (write)
  1810. flags |= FOLL_WRITE;
  1811. if (force)
  1812. flags |= FOLL_FORCE;
  1813. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1814. NULL);
  1815. }
  1816. EXPORT_SYMBOL(get_user_pages);
  1817. /**
  1818. * get_dump_page() - pin user page in memory while writing it to core dump
  1819. * @addr: user address
  1820. *
  1821. * Returns struct page pointer of user page pinned for dump,
  1822. * to be freed afterwards by page_cache_release() or put_page().
  1823. *
  1824. * Returns NULL on any kind of failure - a hole must then be inserted into
  1825. * the corefile, to preserve alignment with its headers; and also returns
  1826. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1827. * allowing a hole to be left in the corefile to save diskspace.
  1828. *
  1829. * Called without mmap_sem, but after all other threads have been killed.
  1830. */
  1831. #ifdef CONFIG_ELF_CORE
  1832. struct page *get_dump_page(unsigned long addr)
  1833. {
  1834. struct vm_area_struct *vma;
  1835. struct page *page;
  1836. if (__get_user_pages(current, current->mm, addr, 1,
  1837. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1838. NULL) < 1)
  1839. return NULL;
  1840. flush_cache_page(vma, addr, page_to_pfn(page));
  1841. return page;
  1842. }
  1843. #endif /* CONFIG_ELF_CORE */
  1844. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1845. spinlock_t **ptl)
  1846. {
  1847. pgd_t * pgd = pgd_offset(mm, addr);
  1848. pud_t * pud = pud_alloc(mm, pgd, addr);
  1849. if (pud) {
  1850. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1851. if (pmd) {
  1852. VM_BUG_ON(pmd_trans_huge(*pmd));
  1853. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1854. }
  1855. }
  1856. return NULL;
  1857. }
  1858. /*
  1859. * This is the old fallback for page remapping.
  1860. *
  1861. * For historical reasons, it only allows reserved pages. Only
  1862. * old drivers should use this, and they needed to mark their
  1863. * pages reserved for the old functions anyway.
  1864. */
  1865. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1866. struct page *page, pgprot_t prot)
  1867. {
  1868. struct mm_struct *mm = vma->vm_mm;
  1869. int retval;
  1870. pte_t *pte;
  1871. spinlock_t *ptl;
  1872. retval = -EINVAL;
  1873. if (PageAnon(page))
  1874. goto out;
  1875. retval = -ENOMEM;
  1876. flush_dcache_page(page);
  1877. pte = get_locked_pte(mm, addr, &ptl);
  1878. if (!pte)
  1879. goto out;
  1880. retval = -EBUSY;
  1881. if (!pte_none(*pte))
  1882. goto out_unlock;
  1883. /* Ok, finally just insert the thing.. */
  1884. get_page(page);
  1885. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1886. page_add_file_rmap(page);
  1887. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1888. retval = 0;
  1889. pte_unmap_unlock(pte, ptl);
  1890. return retval;
  1891. out_unlock:
  1892. pte_unmap_unlock(pte, ptl);
  1893. out:
  1894. return retval;
  1895. }
  1896. /**
  1897. * vm_insert_page - insert single page into user vma
  1898. * @vma: user vma to map to
  1899. * @addr: target user address of this page
  1900. * @page: source kernel page
  1901. *
  1902. * This allows drivers to insert individual pages they've allocated
  1903. * into a user vma.
  1904. *
  1905. * The page has to be a nice clean _individual_ kernel allocation.
  1906. * If you allocate a compound page, you need to have marked it as
  1907. * such (__GFP_COMP), or manually just split the page up yourself
  1908. * (see split_page()).
  1909. *
  1910. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1911. * took an arbitrary page protection parameter. This doesn't allow
  1912. * that. Your vma protection will have to be set up correctly, which
  1913. * means that if you want a shared writable mapping, you'd better
  1914. * ask for a shared writable mapping!
  1915. *
  1916. * The page does not need to be reserved.
  1917. *
  1918. * Usually this function is called from f_op->mmap() handler
  1919. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1920. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1921. * function from other places, for example from page-fault handler.
  1922. */
  1923. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1924. struct page *page)
  1925. {
  1926. if (addr < vma->vm_start || addr >= vma->vm_end)
  1927. return -EFAULT;
  1928. if (!page_count(page))
  1929. return -EINVAL;
  1930. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1931. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1932. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1933. vma->vm_flags |= VM_MIXEDMAP;
  1934. }
  1935. return insert_page(vma, addr, page, vma->vm_page_prot);
  1936. }
  1937. EXPORT_SYMBOL(vm_insert_page);
  1938. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1939. unsigned long pfn, pgprot_t prot)
  1940. {
  1941. struct mm_struct *mm = vma->vm_mm;
  1942. int retval;
  1943. pte_t *pte, entry;
  1944. spinlock_t *ptl;
  1945. retval = -ENOMEM;
  1946. pte = get_locked_pte(mm, addr, &ptl);
  1947. if (!pte)
  1948. goto out;
  1949. retval = -EBUSY;
  1950. if (!pte_none(*pte))
  1951. goto out_unlock;
  1952. /* Ok, finally just insert the thing.. */
  1953. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1954. set_pte_at(mm, addr, pte, entry);
  1955. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1956. retval = 0;
  1957. out_unlock:
  1958. pte_unmap_unlock(pte, ptl);
  1959. out:
  1960. return retval;
  1961. }
  1962. /**
  1963. * vm_insert_pfn - insert single pfn into user vma
  1964. * @vma: user vma to map to
  1965. * @addr: target user address of this page
  1966. * @pfn: source kernel pfn
  1967. *
  1968. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1969. * they've allocated into a user vma. Same comments apply.
  1970. *
  1971. * This function should only be called from a vm_ops->fault handler, and
  1972. * in that case the handler should return NULL.
  1973. *
  1974. * vma cannot be a COW mapping.
  1975. *
  1976. * As this is called only for pages that do not currently exist, we
  1977. * do not need to flush old virtual caches or the TLB.
  1978. */
  1979. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1980. unsigned long pfn)
  1981. {
  1982. int ret;
  1983. pgprot_t pgprot = vma->vm_page_prot;
  1984. /*
  1985. * Technically, architectures with pte_special can avoid all these
  1986. * restrictions (same for remap_pfn_range). However we would like
  1987. * consistency in testing and feature parity among all, so we should
  1988. * try to keep these invariants in place for everybody.
  1989. */
  1990. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1991. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1992. (VM_PFNMAP|VM_MIXEDMAP));
  1993. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1994. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1995. if (addr < vma->vm_start || addr >= vma->vm_end)
  1996. return -EFAULT;
  1997. if (track_pfn_insert(vma, &pgprot, pfn))
  1998. return -EINVAL;
  1999. ret = insert_pfn(vma, addr, pfn, pgprot);
  2000. return ret;
  2001. }
  2002. EXPORT_SYMBOL(vm_insert_pfn);
  2003. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  2004. unsigned long pfn)
  2005. {
  2006. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  2007. if (addr < vma->vm_start || addr >= vma->vm_end)
  2008. return -EFAULT;
  2009. /*
  2010. * If we don't have pte special, then we have to use the pfn_valid()
  2011. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  2012. * refcount the page if pfn_valid is true (hence insert_page rather
  2013. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  2014. * without pte special, it would there be refcounted as a normal page.
  2015. */
  2016. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  2017. struct page *page;
  2018. page = pfn_to_page(pfn);
  2019. return insert_page(vma, addr, page, vma->vm_page_prot);
  2020. }
  2021. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  2022. }
  2023. EXPORT_SYMBOL(vm_insert_mixed);
  2024. /*
  2025. * maps a range of physical memory into the requested pages. the old
  2026. * mappings are removed. any references to nonexistent pages results
  2027. * in null mappings (currently treated as "copy-on-access")
  2028. */
  2029. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2030. unsigned long addr, unsigned long end,
  2031. unsigned long pfn, pgprot_t prot)
  2032. {
  2033. pte_t *pte;
  2034. spinlock_t *ptl;
  2035. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2036. if (!pte)
  2037. return -ENOMEM;
  2038. arch_enter_lazy_mmu_mode();
  2039. do {
  2040. BUG_ON(!pte_none(*pte));
  2041. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  2042. pfn++;
  2043. } while (pte++, addr += PAGE_SIZE, addr != end);
  2044. arch_leave_lazy_mmu_mode();
  2045. pte_unmap_unlock(pte - 1, ptl);
  2046. return 0;
  2047. }
  2048. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  2049. unsigned long addr, unsigned long end,
  2050. unsigned long pfn, pgprot_t prot)
  2051. {
  2052. pmd_t *pmd;
  2053. unsigned long next;
  2054. pfn -= addr >> PAGE_SHIFT;
  2055. pmd = pmd_alloc(mm, pud, addr);
  2056. if (!pmd)
  2057. return -ENOMEM;
  2058. VM_BUG_ON(pmd_trans_huge(*pmd));
  2059. do {
  2060. next = pmd_addr_end(addr, end);
  2061. if (remap_pte_range(mm, pmd, addr, next,
  2062. pfn + (addr >> PAGE_SHIFT), prot))
  2063. return -ENOMEM;
  2064. } while (pmd++, addr = next, addr != end);
  2065. return 0;
  2066. }
  2067. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2068. unsigned long addr, unsigned long end,
  2069. unsigned long pfn, pgprot_t prot)
  2070. {
  2071. pud_t *pud;
  2072. unsigned long next;
  2073. pfn -= addr >> PAGE_SHIFT;
  2074. pud = pud_alloc(mm, pgd, addr);
  2075. if (!pud)
  2076. return -ENOMEM;
  2077. do {
  2078. next = pud_addr_end(addr, end);
  2079. if (remap_pmd_range(mm, pud, addr, next,
  2080. pfn + (addr >> PAGE_SHIFT), prot))
  2081. return -ENOMEM;
  2082. } while (pud++, addr = next, addr != end);
  2083. return 0;
  2084. }
  2085. /**
  2086. * remap_pfn_range - remap kernel memory to userspace
  2087. * @vma: user vma to map to
  2088. * @addr: target user address to start at
  2089. * @pfn: physical address of kernel memory
  2090. * @size: size of map area
  2091. * @prot: page protection flags for this mapping
  2092. *
  2093. * Note: this is only safe if the mm semaphore is held when called.
  2094. */
  2095. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  2096. unsigned long pfn, unsigned long size, pgprot_t prot)
  2097. {
  2098. pgd_t *pgd;
  2099. unsigned long next;
  2100. unsigned long end = addr + PAGE_ALIGN(size);
  2101. struct mm_struct *mm = vma->vm_mm;
  2102. int err;
  2103. /*
  2104. * Physically remapped pages are special. Tell the
  2105. * rest of the world about it:
  2106. * VM_IO tells people not to look at these pages
  2107. * (accesses can have side effects).
  2108. * VM_PFNMAP tells the core MM that the base pages are just
  2109. * raw PFN mappings, and do not have a "struct page" associated
  2110. * with them.
  2111. * VM_DONTEXPAND
  2112. * Disable vma merging and expanding with mremap().
  2113. * VM_DONTDUMP
  2114. * Omit vma from core dump, even when VM_IO turned off.
  2115. *
  2116. * There's a horrible special case to handle copy-on-write
  2117. * behaviour that some programs depend on. We mark the "original"
  2118. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  2119. * See vm_normal_page() for details.
  2120. */
  2121. if (is_cow_mapping(vma->vm_flags)) {
  2122. if (addr != vma->vm_start || end != vma->vm_end)
  2123. return -EINVAL;
  2124. vma->vm_pgoff = pfn;
  2125. }
  2126. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  2127. if (err)
  2128. return -EINVAL;
  2129. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  2130. BUG_ON(addr >= end);
  2131. pfn -= addr >> PAGE_SHIFT;
  2132. pgd = pgd_offset(mm, addr);
  2133. flush_cache_range(vma, addr, end);
  2134. do {
  2135. next = pgd_addr_end(addr, end);
  2136. err = remap_pud_range(mm, pgd, addr, next,
  2137. pfn + (addr >> PAGE_SHIFT), prot);
  2138. if (err)
  2139. break;
  2140. } while (pgd++, addr = next, addr != end);
  2141. if (err)
  2142. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  2143. return err;
  2144. }
  2145. EXPORT_SYMBOL(remap_pfn_range);
  2146. /**
  2147. * vm_iomap_memory - remap memory to userspace
  2148. * @vma: user vma to map to
  2149. * @start: start of area
  2150. * @len: size of area
  2151. *
  2152. * This is a simplified io_remap_pfn_range() for common driver use. The
  2153. * driver just needs to give us the physical memory range to be mapped,
  2154. * we'll figure out the rest from the vma information.
  2155. *
  2156. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  2157. * whatever write-combining details or similar.
  2158. */
  2159. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  2160. {
  2161. unsigned long vm_len, pfn, pages;
  2162. /* Check that the physical memory area passed in looks valid */
  2163. if (start + len < start)
  2164. return -EINVAL;
  2165. /*
  2166. * You *really* shouldn't map things that aren't page-aligned,
  2167. * but we've historically allowed it because IO memory might
  2168. * just have smaller alignment.
  2169. */
  2170. len += start & ~PAGE_MASK;
  2171. pfn = start >> PAGE_SHIFT;
  2172. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  2173. if (pfn + pages < pfn)
  2174. return -EINVAL;
  2175. /* We start the mapping 'vm_pgoff' pages into the area */
  2176. if (vma->vm_pgoff > pages)
  2177. return -EINVAL;
  2178. pfn += vma->vm_pgoff;
  2179. pages -= vma->vm_pgoff;
  2180. /* Can we fit all of the mapping? */
  2181. vm_len = vma->vm_end - vma->vm_start;
  2182. if (vm_len >> PAGE_SHIFT > pages)
  2183. return -EINVAL;
  2184. /* Ok, let it rip */
  2185. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  2186. }
  2187. EXPORT_SYMBOL(vm_iomap_memory);
  2188. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2189. unsigned long addr, unsigned long end,
  2190. pte_fn_t fn, void *data)
  2191. {
  2192. pte_t *pte;
  2193. int err;
  2194. pgtable_t token;
  2195. spinlock_t *uninitialized_var(ptl);
  2196. pte = (mm == &init_mm) ?
  2197. pte_alloc_kernel(pmd, addr) :
  2198. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2199. if (!pte)
  2200. return -ENOMEM;
  2201. BUG_ON(pmd_huge(*pmd));
  2202. arch_enter_lazy_mmu_mode();
  2203. token = pmd_pgtable(*pmd);
  2204. do {
  2205. err = fn(pte++, token, addr, data);
  2206. if (err)
  2207. break;
  2208. } while (addr += PAGE_SIZE, addr != end);
  2209. arch_leave_lazy_mmu_mode();
  2210. if (mm != &init_mm)
  2211. pte_unmap_unlock(pte-1, ptl);
  2212. return err;
  2213. }
  2214. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  2215. unsigned long addr, unsigned long end,
  2216. pte_fn_t fn, void *data)
  2217. {
  2218. pmd_t *pmd;
  2219. unsigned long next;
  2220. int err;
  2221. BUG_ON(pud_huge(*pud));
  2222. pmd = pmd_alloc(mm, pud, addr);
  2223. if (!pmd)
  2224. return -ENOMEM;
  2225. do {
  2226. next = pmd_addr_end(addr, end);
  2227. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  2228. if (err)
  2229. break;
  2230. } while (pmd++, addr = next, addr != end);
  2231. return err;
  2232. }
  2233. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2234. unsigned long addr, unsigned long end,
  2235. pte_fn_t fn, void *data)
  2236. {
  2237. pud_t *pud;
  2238. unsigned long next;
  2239. int err;
  2240. pud = pud_alloc(mm, pgd, addr);
  2241. if (!pud)
  2242. return -ENOMEM;
  2243. do {
  2244. next = pud_addr_end(addr, end);
  2245. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  2246. if (err)
  2247. break;
  2248. } while (pud++, addr = next, addr != end);
  2249. return err;
  2250. }
  2251. /*
  2252. * Scan a region of virtual memory, filling in page tables as necessary
  2253. * and calling a provided function on each leaf page table.
  2254. */
  2255. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  2256. unsigned long size, pte_fn_t fn, void *data)
  2257. {
  2258. pgd_t *pgd;
  2259. unsigned long next;
  2260. unsigned long end = addr + size;
  2261. int err;
  2262. BUG_ON(addr >= end);
  2263. pgd = pgd_offset(mm, addr);
  2264. do {
  2265. next = pgd_addr_end(addr, end);
  2266. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  2267. if (err)
  2268. break;
  2269. } while (pgd++, addr = next, addr != end);
  2270. return err;
  2271. }
  2272. EXPORT_SYMBOL_GPL(apply_to_page_range);
  2273. /*
  2274. * handle_pte_fault chooses page fault handler according to an entry
  2275. * which was read non-atomically. Before making any commitment, on
  2276. * those architectures or configurations (e.g. i386 with PAE) which
  2277. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  2278. * must check under lock before unmapping the pte and proceeding
  2279. * (but do_wp_page is only called after already making such a check;
  2280. * and do_anonymous_page can safely check later on).
  2281. */
  2282. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  2283. pte_t *page_table, pte_t orig_pte)
  2284. {
  2285. int same = 1;
  2286. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  2287. if (sizeof(pte_t) > sizeof(unsigned long)) {
  2288. spinlock_t *ptl = pte_lockptr(mm, pmd);
  2289. spin_lock(ptl);
  2290. same = pte_same(*page_table, orig_pte);
  2291. spin_unlock(ptl);
  2292. }
  2293. #endif
  2294. pte_unmap(page_table);
  2295. return same;
  2296. }
  2297. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  2298. {
  2299. debug_dma_assert_idle(src);
  2300. /*
  2301. * If the source page was a PFN mapping, we don't have
  2302. * a "struct page" for it. We do a best-effort copy by
  2303. * just copying from the original user address. If that
  2304. * fails, we just zero-fill it. Live with it.
  2305. */
  2306. if (unlikely(!src)) {
  2307. void *kaddr = kmap_atomic(dst);
  2308. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  2309. /*
  2310. * This really shouldn't fail, because the page is there
  2311. * in the page tables. But it might just be unreadable,
  2312. * in which case we just give up and fill the result with
  2313. * zeroes.
  2314. */
  2315. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2316. clear_page(kaddr);
  2317. kunmap_atomic(kaddr);
  2318. flush_dcache_page(dst);
  2319. } else
  2320. copy_user_highpage(dst, src, va, vma);
  2321. }
  2322. /*
  2323. * This routine handles present pages, when users try to write
  2324. * to a shared page. It is done by copying the page to a new address
  2325. * and decrementing the shared-page counter for the old page.
  2326. *
  2327. * Note that this routine assumes that the protection checks have been
  2328. * done by the caller (the low-level page fault routine in most cases).
  2329. * Thus we can safely just mark it writable once we've done any necessary
  2330. * COW.
  2331. *
  2332. * We also mark the page dirty at this point even though the page will
  2333. * change only once the write actually happens. This avoids a few races,
  2334. * and potentially makes it more efficient.
  2335. *
  2336. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2337. * but allow concurrent faults), with pte both mapped and locked.
  2338. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2339. */
  2340. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2341. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2342. spinlock_t *ptl, pte_t orig_pte)
  2343. __releases(ptl)
  2344. {
  2345. struct page *old_page, *new_page = NULL;
  2346. pte_t entry;
  2347. int ret = 0;
  2348. int page_mkwrite = 0;
  2349. struct page *dirty_page = NULL;
  2350. unsigned long mmun_start = 0; /* For mmu_notifiers */
  2351. unsigned long mmun_end = 0; /* For mmu_notifiers */
  2352. old_page = vm_normal_page(vma, address, orig_pte);
  2353. if (!old_page) {
  2354. /*
  2355. * VM_MIXEDMAP !pfn_valid() case
  2356. *
  2357. * We should not cow pages in a shared writeable mapping.
  2358. * Just mark the pages writable as we can't do any dirty
  2359. * accounting on raw pfn maps.
  2360. */
  2361. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2362. (VM_WRITE|VM_SHARED))
  2363. goto reuse;
  2364. goto gotten;
  2365. }
  2366. /*
  2367. * Take out anonymous pages first, anonymous shared vmas are
  2368. * not dirty accountable.
  2369. */
  2370. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2371. if (!trylock_page(old_page)) {
  2372. page_cache_get(old_page);
  2373. pte_unmap_unlock(page_table, ptl);
  2374. lock_page(old_page);
  2375. page_table = pte_offset_map_lock(mm, pmd, address,
  2376. &ptl);
  2377. if (!pte_same(*page_table, orig_pte)) {
  2378. unlock_page(old_page);
  2379. goto unlock;
  2380. }
  2381. page_cache_release(old_page);
  2382. }
  2383. if (reuse_swap_page(old_page)) {
  2384. /*
  2385. * The page is all ours. Move it to our anon_vma so
  2386. * the rmap code will not search our parent or siblings.
  2387. * Protected against the rmap code by the page lock.
  2388. */
  2389. page_move_anon_rmap(old_page, vma, address);
  2390. unlock_page(old_page);
  2391. goto reuse;
  2392. }
  2393. unlock_page(old_page);
  2394. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2395. (VM_WRITE|VM_SHARED))) {
  2396. /*
  2397. * Only catch write-faults on shared writable pages,
  2398. * read-only shared pages can get COWed by
  2399. * get_user_pages(.write=1, .force=1).
  2400. */
  2401. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2402. struct vm_fault vmf;
  2403. int tmp;
  2404. vmf.virtual_address = (void __user *)(address &
  2405. PAGE_MASK);
  2406. vmf.pgoff = old_page->index;
  2407. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2408. vmf.page = old_page;
  2409. /*
  2410. * Notify the address space that the page is about to
  2411. * become writable so that it can prohibit this or wait
  2412. * for the page to get into an appropriate state.
  2413. *
  2414. * We do this without the lock held, so that it can
  2415. * sleep if it needs to.
  2416. */
  2417. page_cache_get(old_page);
  2418. pte_unmap_unlock(page_table, ptl);
  2419. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2420. if (unlikely(tmp &
  2421. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2422. ret = tmp;
  2423. goto unwritable_page;
  2424. }
  2425. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2426. lock_page(old_page);
  2427. if (!old_page->mapping) {
  2428. ret = 0; /* retry the fault */
  2429. unlock_page(old_page);
  2430. goto unwritable_page;
  2431. }
  2432. } else
  2433. VM_BUG_ON_PAGE(!PageLocked(old_page), old_page);
  2434. /*
  2435. * Since we dropped the lock we need to revalidate
  2436. * the PTE as someone else may have changed it. If
  2437. * they did, we just return, as we can count on the
  2438. * MMU to tell us if they didn't also make it writable.
  2439. */
  2440. page_table = pte_offset_map_lock(mm, pmd, address,
  2441. &ptl);
  2442. if (!pte_same(*page_table, orig_pte)) {
  2443. unlock_page(old_page);
  2444. goto unlock;
  2445. }
  2446. page_mkwrite = 1;
  2447. }
  2448. dirty_page = old_page;
  2449. get_page(dirty_page);
  2450. reuse:
  2451. /*
  2452. * Clear the pages cpupid information as the existing
  2453. * information potentially belongs to a now completely
  2454. * unrelated process.
  2455. */
  2456. if (old_page)
  2457. page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
  2458. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2459. entry = pte_mkyoung(orig_pte);
  2460. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2461. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2462. update_mmu_cache(vma, address, page_table);
  2463. pte_unmap_unlock(page_table, ptl);
  2464. ret |= VM_FAULT_WRITE;
  2465. if (!dirty_page)
  2466. return ret;
  2467. /*
  2468. * Yes, Virginia, this is actually required to prevent a race
  2469. * with clear_page_dirty_for_io() from clearing the page dirty
  2470. * bit after it clear all dirty ptes, but before a racing
  2471. * do_wp_page installs a dirty pte.
  2472. *
  2473. * __do_fault is protected similarly.
  2474. */
  2475. if (!page_mkwrite) {
  2476. wait_on_page_locked(dirty_page);
  2477. set_page_dirty_balance(dirty_page, page_mkwrite);
  2478. /* file_update_time outside page_lock */
  2479. if (vma->vm_file)
  2480. file_update_time(vma->vm_file);
  2481. }
  2482. put_page(dirty_page);
  2483. if (page_mkwrite) {
  2484. struct address_space *mapping = dirty_page->mapping;
  2485. set_page_dirty(dirty_page);
  2486. unlock_page(dirty_page);
  2487. page_cache_release(dirty_page);
  2488. if (mapping) {
  2489. /*
  2490. * Some device drivers do not set page.mapping
  2491. * but still dirty their pages
  2492. */
  2493. balance_dirty_pages_ratelimited(mapping);
  2494. }
  2495. }
  2496. return ret;
  2497. }
  2498. /*
  2499. * Ok, we need to copy. Oh, well..
  2500. */
  2501. page_cache_get(old_page);
  2502. gotten:
  2503. pte_unmap_unlock(page_table, ptl);
  2504. if (unlikely(anon_vma_prepare(vma)))
  2505. goto oom;
  2506. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2507. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2508. if (!new_page)
  2509. goto oom;
  2510. } else {
  2511. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2512. if (!new_page)
  2513. goto oom;
  2514. cow_user_page(new_page, old_page, address, vma);
  2515. }
  2516. __SetPageUptodate(new_page);
  2517. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2518. goto oom_free_new;
  2519. mmun_start = address & PAGE_MASK;
  2520. mmun_end = mmun_start + PAGE_SIZE;
  2521. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2522. /*
  2523. * Re-check the pte - we dropped the lock
  2524. */
  2525. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2526. if (likely(pte_same(*page_table, orig_pte))) {
  2527. if (old_page) {
  2528. if (!PageAnon(old_page)) {
  2529. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2530. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2531. }
  2532. } else
  2533. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2534. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2535. entry = mk_pte(new_page, vma->vm_page_prot);
  2536. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2537. /*
  2538. * Clear the pte entry and flush it first, before updating the
  2539. * pte with the new entry. This will avoid a race condition
  2540. * seen in the presence of one thread doing SMC and another
  2541. * thread doing COW.
  2542. */
  2543. ptep_clear_flush(vma, address, page_table);
  2544. page_add_new_anon_rmap(new_page, vma, address);
  2545. /*
  2546. * We call the notify macro here because, when using secondary
  2547. * mmu page tables (such as kvm shadow page tables), we want the
  2548. * new page to be mapped directly into the secondary page table.
  2549. */
  2550. set_pte_at_notify(mm, address, page_table, entry);
  2551. update_mmu_cache(vma, address, page_table);
  2552. if (old_page) {
  2553. /*
  2554. * Only after switching the pte to the new page may
  2555. * we remove the mapcount here. Otherwise another
  2556. * process may come and find the rmap count decremented
  2557. * before the pte is switched to the new page, and
  2558. * "reuse" the old page writing into it while our pte
  2559. * here still points into it and can be read by other
  2560. * threads.
  2561. *
  2562. * The critical issue is to order this
  2563. * page_remove_rmap with the ptp_clear_flush above.
  2564. * Those stores are ordered by (if nothing else,)
  2565. * the barrier present in the atomic_add_negative
  2566. * in page_remove_rmap.
  2567. *
  2568. * Then the TLB flush in ptep_clear_flush ensures that
  2569. * no process can access the old page before the
  2570. * decremented mapcount is visible. And the old page
  2571. * cannot be reused until after the decremented
  2572. * mapcount is visible. So transitively, TLBs to
  2573. * old page will be flushed before it can be reused.
  2574. */
  2575. page_remove_rmap(old_page);
  2576. }
  2577. /* Free the old page.. */
  2578. new_page = old_page;
  2579. ret |= VM_FAULT_WRITE;
  2580. } else
  2581. mem_cgroup_uncharge_page(new_page);
  2582. if (new_page)
  2583. page_cache_release(new_page);
  2584. unlock:
  2585. pte_unmap_unlock(page_table, ptl);
  2586. if (mmun_end > mmun_start)
  2587. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2588. if (old_page) {
  2589. /*
  2590. * Don't let another task, with possibly unlocked vma,
  2591. * keep the mlocked page.
  2592. */
  2593. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2594. lock_page(old_page); /* LRU manipulation */
  2595. munlock_vma_page(old_page);
  2596. unlock_page(old_page);
  2597. }
  2598. page_cache_release(old_page);
  2599. }
  2600. return ret;
  2601. oom_free_new:
  2602. page_cache_release(new_page);
  2603. oom:
  2604. if (old_page)
  2605. page_cache_release(old_page);
  2606. return VM_FAULT_OOM;
  2607. unwritable_page:
  2608. page_cache_release(old_page);
  2609. return ret;
  2610. }
  2611. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2612. unsigned long start_addr, unsigned long end_addr,
  2613. struct zap_details *details)
  2614. {
  2615. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2616. }
  2617. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2618. struct zap_details *details)
  2619. {
  2620. struct vm_area_struct *vma;
  2621. pgoff_t vba, vea, zba, zea;
  2622. vma_interval_tree_foreach(vma, root,
  2623. details->first_index, details->last_index) {
  2624. vba = vma->vm_pgoff;
  2625. vea = vba + vma_pages(vma) - 1;
  2626. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2627. zba = details->first_index;
  2628. if (zba < vba)
  2629. zba = vba;
  2630. zea = details->last_index;
  2631. if (zea > vea)
  2632. zea = vea;
  2633. unmap_mapping_range_vma(vma,
  2634. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2635. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2636. details);
  2637. }
  2638. }
  2639. static inline void unmap_mapping_range_list(struct list_head *head,
  2640. struct zap_details *details)
  2641. {
  2642. struct vm_area_struct *vma;
  2643. /*
  2644. * In nonlinear VMAs there is no correspondence between virtual address
  2645. * offset and file offset. So we must perform an exhaustive search
  2646. * across *all* the pages in each nonlinear VMA, not just the pages
  2647. * whose virtual address lies outside the file truncation point.
  2648. */
  2649. list_for_each_entry(vma, head, shared.nonlinear) {
  2650. details->nonlinear_vma = vma;
  2651. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2652. }
  2653. }
  2654. /**
  2655. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2656. * @mapping: the address space containing mmaps to be unmapped.
  2657. * @holebegin: byte in first page to unmap, relative to the start of
  2658. * the underlying file. This will be rounded down to a PAGE_SIZE
  2659. * boundary. Note that this is different from truncate_pagecache(), which
  2660. * must keep the partial page. In contrast, we must get rid of
  2661. * partial pages.
  2662. * @holelen: size of prospective hole in bytes. This will be rounded
  2663. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2664. * end of the file.
  2665. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2666. * but 0 when invalidating pagecache, don't throw away private data.
  2667. */
  2668. void unmap_mapping_range(struct address_space *mapping,
  2669. loff_t const holebegin, loff_t const holelen, int even_cows)
  2670. {
  2671. struct zap_details details;
  2672. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2673. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2674. /* Check for overflow. */
  2675. if (sizeof(holelen) > sizeof(hlen)) {
  2676. long long holeend =
  2677. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2678. if (holeend & ~(long long)ULONG_MAX)
  2679. hlen = ULONG_MAX - hba + 1;
  2680. }
  2681. details.check_mapping = even_cows? NULL: mapping;
  2682. details.nonlinear_vma = NULL;
  2683. details.first_index = hba;
  2684. details.last_index = hba + hlen - 1;
  2685. if (details.last_index < details.first_index)
  2686. details.last_index = ULONG_MAX;
  2687. mutex_lock(&mapping->i_mmap_mutex);
  2688. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2689. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2690. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2691. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2692. mutex_unlock(&mapping->i_mmap_mutex);
  2693. }
  2694. EXPORT_SYMBOL(unmap_mapping_range);
  2695. /*
  2696. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2697. * but allow concurrent faults), and pte mapped but not yet locked.
  2698. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2699. */
  2700. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2701. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2702. unsigned int flags, pte_t orig_pte)
  2703. {
  2704. spinlock_t *ptl;
  2705. struct page *page, *swapcache;
  2706. swp_entry_t entry;
  2707. pte_t pte;
  2708. int locked;
  2709. struct mem_cgroup *ptr;
  2710. int exclusive = 0;
  2711. int ret = 0;
  2712. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2713. goto out;
  2714. entry = pte_to_swp_entry(orig_pte);
  2715. if (unlikely(non_swap_entry(entry))) {
  2716. if (is_migration_entry(entry)) {
  2717. migration_entry_wait(mm, pmd, address);
  2718. } else if (is_hwpoison_entry(entry)) {
  2719. ret = VM_FAULT_HWPOISON;
  2720. } else {
  2721. print_bad_pte(vma, address, orig_pte, NULL);
  2722. ret = VM_FAULT_SIGBUS;
  2723. }
  2724. goto out;
  2725. }
  2726. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2727. page = lookup_swap_cache(entry);
  2728. if (!page) {
  2729. page = swapin_readahead(entry,
  2730. GFP_HIGHUSER_MOVABLE, vma, address);
  2731. if (!page) {
  2732. /*
  2733. * Back out if somebody else faulted in this pte
  2734. * while we released the pte lock.
  2735. */
  2736. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2737. if (likely(pte_same(*page_table, orig_pte)))
  2738. ret = VM_FAULT_OOM;
  2739. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2740. goto unlock;
  2741. }
  2742. /* Had to read the page from swap area: Major fault */
  2743. ret = VM_FAULT_MAJOR;
  2744. count_vm_event(PGMAJFAULT);
  2745. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2746. } else if (PageHWPoison(page)) {
  2747. /*
  2748. * hwpoisoned dirty swapcache pages are kept for killing
  2749. * owner processes (which may be unknown at hwpoison time)
  2750. */
  2751. ret = VM_FAULT_HWPOISON;
  2752. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2753. swapcache = page;
  2754. goto out_release;
  2755. }
  2756. swapcache = page;
  2757. locked = lock_page_or_retry(page, mm, flags);
  2758. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2759. if (!locked) {
  2760. ret |= VM_FAULT_RETRY;
  2761. goto out_release;
  2762. }
  2763. /*
  2764. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2765. * release the swapcache from under us. The page pin, and pte_same
  2766. * test below, are not enough to exclude that. Even if it is still
  2767. * swapcache, we need to check that the page's swap has not changed.
  2768. */
  2769. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2770. goto out_page;
  2771. page = ksm_might_need_to_copy(page, vma, address);
  2772. if (unlikely(!page)) {
  2773. ret = VM_FAULT_OOM;
  2774. page = swapcache;
  2775. goto out_page;
  2776. }
  2777. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2778. ret = VM_FAULT_OOM;
  2779. goto out_page;
  2780. }
  2781. /*
  2782. * Back out if somebody else already faulted in this pte.
  2783. */
  2784. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2785. if (unlikely(!pte_same(*page_table, orig_pte)))
  2786. goto out_nomap;
  2787. if (unlikely(!PageUptodate(page))) {
  2788. ret = VM_FAULT_SIGBUS;
  2789. goto out_nomap;
  2790. }
  2791. /*
  2792. * The page isn't present yet, go ahead with the fault.
  2793. *
  2794. * Be careful about the sequence of operations here.
  2795. * To get its accounting right, reuse_swap_page() must be called
  2796. * while the page is counted on swap but not yet in mapcount i.e.
  2797. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2798. * must be called after the swap_free(), or it will never succeed.
  2799. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2800. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2801. * in page->private. In this case, a record in swap_cgroup is silently
  2802. * discarded at swap_free().
  2803. */
  2804. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2805. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2806. pte = mk_pte(page, vma->vm_page_prot);
  2807. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2808. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2809. flags &= ~FAULT_FLAG_WRITE;
  2810. ret |= VM_FAULT_WRITE;
  2811. exclusive = 1;
  2812. }
  2813. flush_icache_page(vma, page);
  2814. if (pte_swp_soft_dirty(orig_pte))
  2815. pte = pte_mksoft_dirty(pte);
  2816. set_pte_at(mm, address, page_table, pte);
  2817. if (page == swapcache)
  2818. do_page_add_anon_rmap(page, vma, address, exclusive);
  2819. else /* ksm created a completely new copy */
  2820. page_add_new_anon_rmap(page, vma, address);
  2821. /* It's better to call commit-charge after rmap is established */
  2822. mem_cgroup_commit_charge_swapin(page, ptr);
  2823. swap_free(entry);
  2824. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2825. try_to_free_swap(page);
  2826. unlock_page(page);
  2827. if (page != swapcache) {
  2828. /*
  2829. * Hold the lock to avoid the swap entry to be reused
  2830. * until we take the PT lock for the pte_same() check
  2831. * (to avoid false positives from pte_same). For
  2832. * further safety release the lock after the swap_free
  2833. * so that the swap count won't change under a
  2834. * parallel locked swapcache.
  2835. */
  2836. unlock_page(swapcache);
  2837. page_cache_release(swapcache);
  2838. }
  2839. if (flags & FAULT_FLAG_WRITE) {
  2840. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2841. if (ret & VM_FAULT_ERROR)
  2842. ret &= VM_FAULT_ERROR;
  2843. goto out;
  2844. }
  2845. /* No need to invalidate - it was non-present before */
  2846. update_mmu_cache(vma, address, page_table);
  2847. unlock:
  2848. pte_unmap_unlock(page_table, ptl);
  2849. out:
  2850. return ret;
  2851. out_nomap:
  2852. mem_cgroup_cancel_charge_swapin(ptr);
  2853. pte_unmap_unlock(page_table, ptl);
  2854. out_page:
  2855. unlock_page(page);
  2856. out_release:
  2857. page_cache_release(page);
  2858. if (page != swapcache) {
  2859. unlock_page(swapcache);
  2860. page_cache_release(swapcache);
  2861. }
  2862. return ret;
  2863. }
  2864. /*
  2865. * This is like a special single-page "expand_{down|up}wards()",
  2866. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2867. * doesn't hit another vma.
  2868. */
  2869. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2870. {
  2871. address &= PAGE_MASK;
  2872. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2873. struct vm_area_struct *prev = vma->vm_prev;
  2874. /*
  2875. * Is there a mapping abutting this one below?
  2876. *
  2877. * That's only ok if it's the same stack mapping
  2878. * that has gotten split..
  2879. */
  2880. if (prev && prev->vm_end == address)
  2881. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2882. expand_downwards(vma, address - PAGE_SIZE);
  2883. }
  2884. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2885. struct vm_area_struct *next = vma->vm_next;
  2886. /* As VM_GROWSDOWN but s/below/above/ */
  2887. if (next && next->vm_start == address + PAGE_SIZE)
  2888. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2889. expand_upwards(vma, address + PAGE_SIZE);
  2890. }
  2891. return 0;
  2892. }
  2893. /*
  2894. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2895. * but allow concurrent faults), and pte mapped but not yet locked.
  2896. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2897. */
  2898. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2899. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2900. unsigned int flags)
  2901. {
  2902. struct page *page;
  2903. spinlock_t *ptl;
  2904. pte_t entry;
  2905. pte_unmap(page_table);
  2906. /* Check if we need to add a guard page to the stack */
  2907. if (check_stack_guard_page(vma, address) < 0)
  2908. return VM_FAULT_SIGBUS;
  2909. /* Use the zero-page for reads */
  2910. if (!(flags & FAULT_FLAG_WRITE)) {
  2911. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2912. vma->vm_page_prot));
  2913. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2914. if (!pte_none(*page_table))
  2915. goto unlock;
  2916. goto setpte;
  2917. }
  2918. /* Allocate our own private page. */
  2919. if (unlikely(anon_vma_prepare(vma)))
  2920. goto oom;
  2921. page = alloc_zeroed_user_highpage_movable(vma, address);
  2922. if (!page)
  2923. goto oom;
  2924. /*
  2925. * The memory barrier inside __SetPageUptodate makes sure that
  2926. * preceeding stores to the page contents become visible before
  2927. * the set_pte_at() write.
  2928. */
  2929. __SetPageUptodate(page);
  2930. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2931. goto oom_free_page;
  2932. entry = mk_pte(page, vma->vm_page_prot);
  2933. if (vma->vm_flags & VM_WRITE)
  2934. entry = pte_mkwrite(pte_mkdirty(entry));
  2935. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2936. if (!pte_none(*page_table))
  2937. goto release;
  2938. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2939. page_add_new_anon_rmap(page, vma, address);
  2940. setpte:
  2941. set_pte_at(mm, address, page_table, entry);
  2942. /* No need to invalidate - it was non-present before */
  2943. update_mmu_cache(vma, address, page_table);
  2944. unlock:
  2945. pte_unmap_unlock(page_table, ptl);
  2946. return 0;
  2947. release:
  2948. mem_cgroup_uncharge_page(page);
  2949. page_cache_release(page);
  2950. goto unlock;
  2951. oom_free_page:
  2952. page_cache_release(page);
  2953. oom:
  2954. return VM_FAULT_OOM;
  2955. }
  2956. /*
  2957. * __do_fault() tries to create a new page mapping. It aggressively
  2958. * tries to share with existing pages, but makes a separate copy if
  2959. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2960. * the next page fault.
  2961. *
  2962. * As this is called only for pages that do not currently exist, we
  2963. * do not need to flush old virtual caches or the TLB.
  2964. *
  2965. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2966. * but allow concurrent faults), and pte neither mapped nor locked.
  2967. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2968. */
  2969. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2970. unsigned long address, pmd_t *pmd,
  2971. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2972. {
  2973. pte_t *page_table;
  2974. spinlock_t *ptl;
  2975. struct page *page;
  2976. struct page *cow_page;
  2977. pte_t entry;
  2978. int anon = 0;
  2979. struct page *dirty_page = NULL;
  2980. struct vm_fault vmf;
  2981. int ret;
  2982. int page_mkwrite = 0;
  2983. /*
  2984. * If we do COW later, allocate page befor taking lock_page()
  2985. * on the file cache page. This will reduce lock holding time.
  2986. */
  2987. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2988. if (unlikely(anon_vma_prepare(vma)))
  2989. return VM_FAULT_OOM;
  2990. cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2991. if (!cow_page)
  2992. return VM_FAULT_OOM;
  2993. if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
  2994. page_cache_release(cow_page);
  2995. return VM_FAULT_OOM;
  2996. }
  2997. } else
  2998. cow_page = NULL;
  2999. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  3000. vmf.pgoff = pgoff;
  3001. vmf.flags = flags;
  3002. vmf.page = NULL;
  3003. ret = vma->vm_ops->fault(vma, &vmf);
  3004. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  3005. VM_FAULT_RETRY)))
  3006. goto uncharge_out;
  3007. if (unlikely(PageHWPoison(vmf.page))) {
  3008. if (ret & VM_FAULT_LOCKED)
  3009. unlock_page(vmf.page);
  3010. ret = VM_FAULT_HWPOISON;
  3011. page_cache_release(vmf.page);
  3012. goto uncharge_out;
  3013. }
  3014. /*
  3015. * For consistency in subsequent calls, make the faulted page always
  3016. * locked.
  3017. */
  3018. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  3019. lock_page(vmf.page);
  3020. else
  3021. VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
  3022. /*
  3023. * Should we do an early C-O-W break?
  3024. */
  3025. page = vmf.page;
  3026. if (flags & FAULT_FLAG_WRITE) {
  3027. if (!(vma->vm_flags & VM_SHARED)) {
  3028. page = cow_page;
  3029. anon = 1;
  3030. copy_user_highpage(page, vmf.page, address, vma);
  3031. __SetPageUptodate(page);
  3032. } else {
  3033. /*
  3034. * If the page will be shareable, see if the backing
  3035. * address space wants to know that the page is about
  3036. * to become writable
  3037. */
  3038. if (vma->vm_ops->page_mkwrite) {
  3039. int tmp;
  3040. unlock_page(page);
  3041. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  3042. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  3043. if (unlikely(tmp &
  3044. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  3045. ret = tmp;
  3046. goto unwritable_page;
  3047. }
  3048. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  3049. lock_page(page);
  3050. if (!page->mapping) {
  3051. ret = 0; /* retry the fault */
  3052. unlock_page(page);
  3053. goto unwritable_page;
  3054. }
  3055. } else
  3056. VM_BUG_ON_PAGE(!PageLocked(page), page);
  3057. page_mkwrite = 1;
  3058. }
  3059. }
  3060. }
  3061. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  3062. /*
  3063. * This silly early PAGE_DIRTY setting removes a race
  3064. * due to the bad i386 page protection. But it's valid
  3065. * for other architectures too.
  3066. *
  3067. * Note that if FAULT_FLAG_WRITE is set, we either now have
  3068. * an exclusive copy of the page, or this is a shared mapping,
  3069. * so we can make it writable and dirty to avoid having to
  3070. * handle that later.
  3071. */
  3072. /* Only go through if we didn't race with anybody else... */
  3073. if (likely(pte_same(*page_table, orig_pte))) {
  3074. flush_icache_page(vma, page);
  3075. entry = mk_pte(page, vma->vm_page_prot);
  3076. if (flags & FAULT_FLAG_WRITE)
  3077. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  3078. else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
  3079. pte_mksoft_dirty(entry);
  3080. if (anon) {
  3081. inc_mm_counter_fast(mm, MM_ANONPAGES);
  3082. page_add_new_anon_rmap(page, vma, address);
  3083. } else {
  3084. inc_mm_counter_fast(mm, MM_FILEPAGES);
  3085. page_add_file_rmap(page);
  3086. if (flags & FAULT_FLAG_WRITE) {
  3087. dirty_page = page;
  3088. get_page(dirty_page);
  3089. }
  3090. }
  3091. set_pte_at(mm, address, page_table, entry);
  3092. /* no need to invalidate: a not-present page won't be cached */
  3093. update_mmu_cache(vma, address, page_table);
  3094. } else {
  3095. if (cow_page)
  3096. mem_cgroup_uncharge_page(cow_page);
  3097. if (anon)
  3098. page_cache_release(page);
  3099. else
  3100. anon = 1; /* no anon but release faulted_page */
  3101. }
  3102. pte_unmap_unlock(page_table, ptl);
  3103. if (dirty_page) {
  3104. struct address_space *mapping = page->mapping;
  3105. int dirtied = 0;
  3106. if (set_page_dirty(dirty_page))
  3107. dirtied = 1;
  3108. unlock_page(dirty_page);
  3109. put_page(dirty_page);
  3110. if ((dirtied || page_mkwrite) && mapping) {
  3111. /*
  3112. * Some device drivers do not set page.mapping but still
  3113. * dirty their pages
  3114. */
  3115. balance_dirty_pages_ratelimited(mapping);
  3116. }
  3117. /* file_update_time outside page_lock */
  3118. if (vma->vm_file && !page_mkwrite)
  3119. file_update_time(vma->vm_file);
  3120. } else {
  3121. unlock_page(vmf.page);
  3122. if (anon)
  3123. page_cache_release(vmf.page);
  3124. }
  3125. return ret;
  3126. unwritable_page:
  3127. page_cache_release(page);
  3128. return ret;
  3129. uncharge_out:
  3130. /* fs's fault handler get error */
  3131. if (cow_page) {
  3132. mem_cgroup_uncharge_page(cow_page);
  3133. page_cache_release(cow_page);
  3134. }
  3135. return ret;
  3136. }
  3137. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3138. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3139. unsigned int flags, pte_t orig_pte)
  3140. {
  3141. pgoff_t pgoff = (((address & PAGE_MASK)
  3142. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  3143. pte_unmap(page_table);
  3144. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3145. }
  3146. /*
  3147. * Fault of a previously existing named mapping. Repopulate the pte
  3148. * from the encoded file_pte if possible. This enables swappable
  3149. * nonlinear vmas.
  3150. *
  3151. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3152. * but allow concurrent faults), and pte mapped but not yet locked.
  3153. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3154. */
  3155. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3156. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3157. unsigned int flags, pte_t orig_pte)
  3158. {
  3159. pgoff_t pgoff;
  3160. flags |= FAULT_FLAG_NONLINEAR;
  3161. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  3162. return 0;
  3163. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  3164. /*
  3165. * Page table corrupted: show pte and kill process.
  3166. */
  3167. print_bad_pte(vma, address, orig_pte, NULL);
  3168. return VM_FAULT_SIGBUS;
  3169. }
  3170. pgoff = pte_to_pgoff(orig_pte);
  3171. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3172. }
  3173. int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  3174. unsigned long addr, int page_nid,
  3175. int *flags)
  3176. {
  3177. get_page(page);
  3178. count_vm_numa_event(NUMA_HINT_FAULTS);
  3179. if (page_nid == numa_node_id()) {
  3180. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  3181. *flags |= TNF_FAULT_LOCAL;
  3182. }
  3183. return mpol_misplaced(page, vma, addr);
  3184. }
  3185. int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3186. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  3187. {
  3188. struct page *page = NULL;
  3189. spinlock_t *ptl;
  3190. int page_nid = -1;
  3191. int last_cpupid;
  3192. int target_nid;
  3193. bool migrated = false;
  3194. int flags = 0;
  3195. /*
  3196. * The "pte" at this point cannot be used safely without
  3197. * validation through pte_unmap_same(). It's of NUMA type but
  3198. * the pfn may be screwed if the read is non atomic.
  3199. *
  3200. * ptep_modify_prot_start is not called as this is clearing
  3201. * the _PAGE_NUMA bit and it is not really expected that there
  3202. * would be concurrent hardware modifications to the PTE.
  3203. */
  3204. ptl = pte_lockptr(mm, pmd);
  3205. spin_lock(ptl);
  3206. if (unlikely(!pte_same(*ptep, pte))) {
  3207. pte_unmap_unlock(ptep, ptl);
  3208. goto out;
  3209. }
  3210. pte = pte_mknonnuma(pte);
  3211. set_pte_at(mm, addr, ptep, pte);
  3212. update_mmu_cache(vma, addr, ptep);
  3213. page = vm_normal_page(vma, addr, pte);
  3214. if (!page) {
  3215. pte_unmap_unlock(ptep, ptl);
  3216. return 0;
  3217. }
  3218. BUG_ON(is_zero_pfn(page_to_pfn(page)));
  3219. /*
  3220. * Avoid grouping on DSO/COW pages in specific and RO pages
  3221. * in general, RO pages shouldn't hurt as much anyway since
  3222. * they can be in shared cache state.
  3223. */
  3224. if (!pte_write(pte))
  3225. flags |= TNF_NO_GROUP;
  3226. /*
  3227. * Flag if the page is shared between multiple address spaces. This
  3228. * is later used when determining whether to group tasks together
  3229. */
  3230. if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
  3231. flags |= TNF_SHARED;
  3232. last_cpupid = page_cpupid_last(page);
  3233. page_nid = page_to_nid(page);
  3234. target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
  3235. pte_unmap_unlock(ptep, ptl);
  3236. if (target_nid == -1) {
  3237. put_page(page);
  3238. goto out;
  3239. }
  3240. /* Migrate to the requested node */
  3241. migrated = migrate_misplaced_page(page, vma, target_nid);
  3242. if (migrated) {
  3243. page_nid = target_nid;
  3244. flags |= TNF_MIGRATED;
  3245. }
  3246. out:
  3247. if (page_nid != -1)
  3248. task_numa_fault(last_cpupid, page_nid, 1, flags);
  3249. return 0;
  3250. }
  3251. /*
  3252. * These routines also need to handle stuff like marking pages dirty
  3253. * and/or accessed for architectures that don't do it in hardware (most
  3254. * RISC architectures). The early dirtying is also good on the i386.
  3255. *
  3256. * There is also a hook called "update_mmu_cache()" that architectures
  3257. * with external mmu caches can use to update those (ie the Sparc or
  3258. * PowerPC hashed page tables that act as extended TLBs).
  3259. *
  3260. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3261. * but allow concurrent faults), and pte mapped but not yet locked.
  3262. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3263. */
  3264. static int handle_pte_fault(struct mm_struct *mm,
  3265. struct vm_area_struct *vma, unsigned long address,
  3266. pte_t *pte, pmd_t *pmd, unsigned int flags)
  3267. {
  3268. pte_t entry;
  3269. spinlock_t *ptl;
  3270. entry = *pte;
  3271. if (!pte_present(entry)) {
  3272. if (pte_none(entry)) {
  3273. if (vma->vm_ops) {
  3274. if (likely(vma->vm_ops->fault))
  3275. return do_linear_fault(mm, vma, address,
  3276. pte, pmd, flags, entry);
  3277. }
  3278. return do_anonymous_page(mm, vma, address,
  3279. pte, pmd, flags);
  3280. }
  3281. if (pte_file(entry))
  3282. return do_nonlinear_fault(mm, vma, address,
  3283. pte, pmd, flags, entry);
  3284. return do_swap_page(mm, vma, address,
  3285. pte, pmd, flags, entry);
  3286. }
  3287. if (pte_numa(entry))
  3288. return do_numa_page(mm, vma, address, entry, pte, pmd);
  3289. ptl = pte_lockptr(mm, pmd);
  3290. spin_lock(ptl);
  3291. if (unlikely(!pte_same(*pte, entry)))
  3292. goto unlock;
  3293. if (flags & FAULT_FLAG_WRITE) {
  3294. if (!pte_write(entry))
  3295. return do_wp_page(mm, vma, address,
  3296. pte, pmd, ptl, entry);
  3297. entry = pte_mkdirty(entry);
  3298. }
  3299. entry = pte_mkyoung(entry);
  3300. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  3301. update_mmu_cache(vma, address, pte);
  3302. } else {
  3303. /*
  3304. * This is needed only for protection faults but the arch code
  3305. * is not yet telling us if this is a protection fault or not.
  3306. * This still avoids useless tlb flushes for .text page faults
  3307. * with threads.
  3308. */
  3309. if (flags & FAULT_FLAG_WRITE)
  3310. flush_tlb_fix_spurious_fault(vma, address);
  3311. }
  3312. unlock:
  3313. pte_unmap_unlock(pte, ptl);
  3314. return 0;
  3315. }
  3316. /*
  3317. * By the time we get here, we already hold the mm semaphore
  3318. */
  3319. static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3320. unsigned long address, unsigned int flags)
  3321. {
  3322. pgd_t *pgd;
  3323. pud_t *pud;
  3324. pmd_t *pmd;
  3325. pte_t *pte;
  3326. if (unlikely(is_vm_hugetlb_page(vma)))
  3327. return hugetlb_fault(mm, vma, address, flags);
  3328. pgd = pgd_offset(mm, address);
  3329. pud = pud_alloc(mm, pgd, address);
  3330. if (!pud)
  3331. return VM_FAULT_OOM;
  3332. pmd = pmd_alloc(mm, pud, address);
  3333. if (!pmd)
  3334. return VM_FAULT_OOM;
  3335. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3336. int ret = VM_FAULT_FALLBACK;
  3337. if (!vma->vm_ops)
  3338. ret = do_huge_pmd_anonymous_page(mm, vma, address,
  3339. pmd, flags);
  3340. if (!(ret & VM_FAULT_FALLBACK))
  3341. return ret;
  3342. } else {
  3343. pmd_t orig_pmd = *pmd;
  3344. int ret;
  3345. barrier();
  3346. if (pmd_trans_huge(orig_pmd)) {
  3347. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  3348. /*
  3349. * If the pmd is splitting, return and retry the
  3350. * the fault. Alternative: wait until the split
  3351. * is done, and goto retry.
  3352. */
  3353. if (pmd_trans_splitting(orig_pmd))
  3354. return 0;
  3355. if (pmd_numa(orig_pmd))
  3356. return do_huge_pmd_numa_page(mm, vma, address,
  3357. orig_pmd, pmd);
  3358. if (dirty && !pmd_write(orig_pmd)) {
  3359. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  3360. orig_pmd);
  3361. if (!(ret & VM_FAULT_FALLBACK))
  3362. return ret;
  3363. } else {
  3364. huge_pmd_set_accessed(mm, vma, address, pmd,
  3365. orig_pmd, dirty);
  3366. return 0;
  3367. }
  3368. }
  3369. }
  3370. /* THP should already have been handled */
  3371. BUG_ON(pmd_numa(*pmd));
  3372. /*
  3373. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3374. * run pte_offset_map on the pmd, if an huge pmd could
  3375. * materialize from under us from a different thread.
  3376. */
  3377. if (unlikely(pmd_none(*pmd)) &&
  3378. unlikely(__pte_alloc(mm, vma, pmd, address)))
  3379. return VM_FAULT_OOM;
  3380. /* if an huge pmd materialized from under us just retry later */
  3381. if (unlikely(pmd_trans_huge(*pmd)))
  3382. return 0;
  3383. /*
  3384. * A regular pmd is established and it can't morph into a huge pmd
  3385. * from under us anymore at this point because we hold the mmap_sem
  3386. * read mode and khugepaged takes it in write mode. So now it's
  3387. * safe to run pte_offset_map().
  3388. */
  3389. pte = pte_offset_map(pmd, address);
  3390. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3391. }
  3392. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3393. unsigned long address, unsigned int flags)
  3394. {
  3395. int ret;
  3396. __set_current_state(TASK_RUNNING);
  3397. count_vm_event(PGFAULT);
  3398. mem_cgroup_count_vm_event(mm, PGFAULT);
  3399. /* do counter updates before entering really critical section. */
  3400. check_sync_rss_stat(current);
  3401. /*
  3402. * Enable the memcg OOM handling for faults triggered in user
  3403. * space. Kernel faults are handled more gracefully.
  3404. */
  3405. if (flags & FAULT_FLAG_USER)
  3406. mem_cgroup_oom_enable();
  3407. ret = __handle_mm_fault(mm, vma, address, flags);
  3408. if (flags & FAULT_FLAG_USER) {
  3409. mem_cgroup_oom_disable();
  3410. /*
  3411. * The task may have entered a memcg OOM situation but
  3412. * if the allocation error was handled gracefully (no
  3413. * VM_FAULT_OOM), there is no need to kill anything.
  3414. * Just clean up the OOM state peacefully.
  3415. */
  3416. if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
  3417. mem_cgroup_oom_synchronize(false);
  3418. }
  3419. return ret;
  3420. }
  3421. #ifndef __PAGETABLE_PUD_FOLDED
  3422. /*
  3423. * Allocate page upper directory.
  3424. * We've already handled the fast-path in-line.
  3425. */
  3426. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3427. {
  3428. pud_t *new = pud_alloc_one(mm, address);
  3429. if (!new)
  3430. return -ENOMEM;
  3431. smp_wmb(); /* See comment in __pte_alloc */
  3432. spin_lock(&mm->page_table_lock);
  3433. if (pgd_present(*pgd)) /* Another has populated it */
  3434. pud_free(mm, new);
  3435. else
  3436. pgd_populate(mm, pgd, new);
  3437. spin_unlock(&mm->page_table_lock);
  3438. return 0;
  3439. }
  3440. #endif /* __PAGETABLE_PUD_FOLDED */
  3441. #ifndef __PAGETABLE_PMD_FOLDED
  3442. /*
  3443. * Allocate page middle directory.
  3444. * We've already handled the fast-path in-line.
  3445. */
  3446. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3447. {
  3448. pmd_t *new = pmd_alloc_one(mm, address);
  3449. if (!new)
  3450. return -ENOMEM;
  3451. smp_wmb(); /* See comment in __pte_alloc */
  3452. spin_lock(&mm->page_table_lock);
  3453. #ifndef __ARCH_HAS_4LEVEL_HACK
  3454. if (pud_present(*pud)) /* Another has populated it */
  3455. pmd_free(mm, new);
  3456. else
  3457. pud_populate(mm, pud, new);
  3458. #else
  3459. if (pgd_present(*pud)) /* Another has populated it */
  3460. pmd_free(mm, new);
  3461. else
  3462. pgd_populate(mm, pud, new);
  3463. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3464. spin_unlock(&mm->page_table_lock);
  3465. return 0;
  3466. }
  3467. #endif /* __PAGETABLE_PMD_FOLDED */
  3468. #if !defined(__HAVE_ARCH_GATE_AREA)
  3469. #if defined(AT_SYSINFO_EHDR)
  3470. static struct vm_area_struct gate_vma;
  3471. static int __init gate_vma_init(void)
  3472. {
  3473. gate_vma.vm_mm = NULL;
  3474. gate_vma.vm_start = FIXADDR_USER_START;
  3475. gate_vma.vm_end = FIXADDR_USER_END;
  3476. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3477. gate_vma.vm_page_prot = __P101;
  3478. return 0;
  3479. }
  3480. __initcall(gate_vma_init);
  3481. #endif
  3482. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3483. {
  3484. #ifdef AT_SYSINFO_EHDR
  3485. return &gate_vma;
  3486. #else
  3487. return NULL;
  3488. #endif
  3489. }
  3490. int in_gate_area_no_mm(unsigned long addr)
  3491. {
  3492. #ifdef AT_SYSINFO_EHDR
  3493. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3494. return 1;
  3495. #endif
  3496. return 0;
  3497. }
  3498. #endif /* __HAVE_ARCH_GATE_AREA */
  3499. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3500. pte_t **ptepp, spinlock_t **ptlp)
  3501. {
  3502. pgd_t *pgd;
  3503. pud_t *pud;
  3504. pmd_t *pmd;
  3505. pte_t *ptep;
  3506. pgd = pgd_offset(mm, address);
  3507. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3508. goto out;
  3509. pud = pud_offset(pgd, address);
  3510. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3511. goto out;
  3512. pmd = pmd_offset(pud, address);
  3513. VM_BUG_ON(pmd_trans_huge(*pmd));
  3514. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3515. goto out;
  3516. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3517. if (pmd_huge(*pmd))
  3518. goto out;
  3519. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3520. if (!ptep)
  3521. goto out;
  3522. if (!pte_present(*ptep))
  3523. goto unlock;
  3524. *ptepp = ptep;
  3525. return 0;
  3526. unlock:
  3527. pte_unmap_unlock(ptep, *ptlp);
  3528. out:
  3529. return -EINVAL;
  3530. }
  3531. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3532. pte_t **ptepp, spinlock_t **ptlp)
  3533. {
  3534. int res;
  3535. /* (void) is needed to make gcc happy */
  3536. (void) __cond_lock(*ptlp,
  3537. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3538. return res;
  3539. }
  3540. /**
  3541. * follow_pfn - look up PFN at a user virtual address
  3542. * @vma: memory mapping
  3543. * @address: user virtual address
  3544. * @pfn: location to store found PFN
  3545. *
  3546. * Only IO mappings and raw PFN mappings are allowed.
  3547. *
  3548. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3549. */
  3550. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3551. unsigned long *pfn)
  3552. {
  3553. int ret = -EINVAL;
  3554. spinlock_t *ptl;
  3555. pte_t *ptep;
  3556. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3557. return ret;
  3558. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3559. if (ret)
  3560. return ret;
  3561. *pfn = pte_pfn(*ptep);
  3562. pte_unmap_unlock(ptep, ptl);
  3563. return 0;
  3564. }
  3565. EXPORT_SYMBOL(follow_pfn);
  3566. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3567. int follow_phys(struct vm_area_struct *vma,
  3568. unsigned long address, unsigned int flags,
  3569. unsigned long *prot, resource_size_t *phys)
  3570. {
  3571. int ret = -EINVAL;
  3572. pte_t *ptep, pte;
  3573. spinlock_t *ptl;
  3574. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3575. goto out;
  3576. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3577. goto out;
  3578. pte = *ptep;
  3579. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3580. goto unlock;
  3581. *prot = pgprot_val(pte_pgprot(pte));
  3582. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3583. ret = 0;
  3584. unlock:
  3585. pte_unmap_unlock(ptep, ptl);
  3586. out:
  3587. return ret;
  3588. }
  3589. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3590. void *buf, int len, int write)
  3591. {
  3592. resource_size_t phys_addr;
  3593. unsigned long prot = 0;
  3594. void __iomem *maddr;
  3595. int offset = addr & (PAGE_SIZE-1);
  3596. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3597. return -EINVAL;
  3598. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3599. if (write)
  3600. memcpy_toio(maddr + offset, buf, len);
  3601. else
  3602. memcpy_fromio(buf, maddr + offset, len);
  3603. iounmap(maddr);
  3604. return len;
  3605. }
  3606. EXPORT_SYMBOL_GPL(generic_access_phys);
  3607. #endif
  3608. /*
  3609. * Access another process' address space as given in mm. If non-NULL, use the
  3610. * given task for page fault accounting.
  3611. */
  3612. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3613. unsigned long addr, void *buf, int len, int write)
  3614. {
  3615. struct vm_area_struct *vma;
  3616. void *old_buf = buf;
  3617. down_read(&mm->mmap_sem);
  3618. /* ignore errors, just check how much was successfully transferred */
  3619. while (len) {
  3620. int bytes, ret, offset;
  3621. void *maddr;
  3622. struct page *page = NULL;
  3623. ret = get_user_pages(tsk, mm, addr, 1,
  3624. write, 1, &page, &vma);
  3625. if (ret <= 0) {
  3626. /*
  3627. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3628. * we can access using slightly different code.
  3629. */
  3630. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3631. vma = find_vma(mm, addr);
  3632. if (!vma || vma->vm_start > addr)
  3633. break;
  3634. if (vma->vm_ops && vma->vm_ops->access)
  3635. ret = vma->vm_ops->access(vma, addr, buf,
  3636. len, write);
  3637. if (ret <= 0)
  3638. #endif
  3639. break;
  3640. bytes = ret;
  3641. } else {
  3642. bytes = len;
  3643. offset = addr & (PAGE_SIZE-1);
  3644. if (bytes > PAGE_SIZE-offset)
  3645. bytes = PAGE_SIZE-offset;
  3646. maddr = kmap(page);
  3647. if (write) {
  3648. copy_to_user_page(vma, page, addr,
  3649. maddr + offset, buf, bytes);
  3650. set_page_dirty_lock(page);
  3651. } else {
  3652. copy_from_user_page(vma, page, addr,
  3653. buf, maddr + offset, bytes);
  3654. }
  3655. kunmap(page);
  3656. page_cache_release(page);
  3657. }
  3658. len -= bytes;
  3659. buf += bytes;
  3660. addr += bytes;
  3661. }
  3662. up_read(&mm->mmap_sem);
  3663. return buf - old_buf;
  3664. }
  3665. /**
  3666. * access_remote_vm - access another process' address space
  3667. * @mm: the mm_struct of the target address space
  3668. * @addr: start address to access
  3669. * @buf: source or destination buffer
  3670. * @len: number of bytes to transfer
  3671. * @write: whether the access is a write
  3672. *
  3673. * The caller must hold a reference on @mm.
  3674. */
  3675. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3676. void *buf, int len, int write)
  3677. {
  3678. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3679. }
  3680. /*
  3681. * Access another process' address space.
  3682. * Source/target buffer must be kernel space,
  3683. * Do not walk the page table directly, use get_user_pages
  3684. */
  3685. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3686. void *buf, int len, int write)
  3687. {
  3688. struct mm_struct *mm;
  3689. int ret;
  3690. mm = get_task_mm(tsk);
  3691. if (!mm)
  3692. return 0;
  3693. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3694. mmput(mm);
  3695. return ret;
  3696. }
  3697. /*
  3698. * Print the name of a VMA.
  3699. */
  3700. void print_vma_addr(char *prefix, unsigned long ip)
  3701. {
  3702. struct mm_struct *mm = current->mm;
  3703. struct vm_area_struct *vma;
  3704. /*
  3705. * Do not print if we are in atomic
  3706. * contexts (in exception stacks, etc.):
  3707. */
  3708. if (preempt_count())
  3709. return;
  3710. down_read(&mm->mmap_sem);
  3711. vma = find_vma(mm, ip);
  3712. if (vma && vma->vm_file) {
  3713. struct file *f = vma->vm_file;
  3714. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3715. if (buf) {
  3716. char *p;
  3717. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3718. if (IS_ERR(p))
  3719. p = "?";
  3720. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3721. vma->vm_start,
  3722. vma->vm_end - vma->vm_start);
  3723. free_page((unsigned long)buf);
  3724. }
  3725. }
  3726. up_read(&mm->mmap_sem);
  3727. }
  3728. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3729. void might_fault(void)
  3730. {
  3731. /*
  3732. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3733. * holding the mmap_sem, this is safe because kernel memory doesn't
  3734. * get paged out, therefore we'll never actually fault, and the
  3735. * below annotations will generate false positives.
  3736. */
  3737. if (segment_eq(get_fs(), KERNEL_DS))
  3738. return;
  3739. /*
  3740. * it would be nicer only to annotate paths which are not under
  3741. * pagefault_disable, however that requires a larger audit and
  3742. * providing helpers like get_user_atomic.
  3743. */
  3744. if (in_atomic())
  3745. return;
  3746. __might_sleep(__FILE__, __LINE__, 0);
  3747. if (current->mm)
  3748. might_lock_read(&current->mm->mmap_sem);
  3749. }
  3750. EXPORT_SYMBOL(might_fault);
  3751. #endif
  3752. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3753. static void clear_gigantic_page(struct page *page,
  3754. unsigned long addr,
  3755. unsigned int pages_per_huge_page)
  3756. {
  3757. int i;
  3758. struct page *p = page;
  3759. might_sleep();
  3760. for (i = 0; i < pages_per_huge_page;
  3761. i++, p = mem_map_next(p, page, i)) {
  3762. cond_resched();
  3763. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3764. }
  3765. }
  3766. void clear_huge_page(struct page *page,
  3767. unsigned long addr, unsigned int pages_per_huge_page)
  3768. {
  3769. int i;
  3770. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3771. clear_gigantic_page(page, addr, pages_per_huge_page);
  3772. return;
  3773. }
  3774. might_sleep();
  3775. for (i = 0; i < pages_per_huge_page; i++) {
  3776. cond_resched();
  3777. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3778. }
  3779. }
  3780. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3781. unsigned long addr,
  3782. struct vm_area_struct *vma,
  3783. unsigned int pages_per_huge_page)
  3784. {
  3785. int i;
  3786. struct page *dst_base = dst;
  3787. struct page *src_base = src;
  3788. for (i = 0; i < pages_per_huge_page; ) {
  3789. cond_resched();
  3790. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3791. i++;
  3792. dst = mem_map_next(dst, dst_base, i);
  3793. src = mem_map_next(src, src_base, i);
  3794. }
  3795. }
  3796. void copy_user_huge_page(struct page *dst, struct page *src,
  3797. unsigned long addr, struct vm_area_struct *vma,
  3798. unsigned int pages_per_huge_page)
  3799. {
  3800. int i;
  3801. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3802. copy_user_gigantic_page(dst, src, addr, vma,
  3803. pages_per_huge_page);
  3804. return;
  3805. }
  3806. might_sleep();
  3807. for (i = 0; i < pages_per_huge_page; i++) {
  3808. cond_resched();
  3809. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3810. }
  3811. }
  3812. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  3813. #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
  3814. static struct kmem_cache *page_ptl_cachep;
  3815. void __init ptlock_cache_init(void)
  3816. {
  3817. page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
  3818. SLAB_PANIC, NULL);
  3819. }
  3820. bool ptlock_alloc(struct page *page)
  3821. {
  3822. spinlock_t *ptl;
  3823. ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
  3824. if (!ptl)
  3825. return false;
  3826. page->ptl = ptl;
  3827. return true;
  3828. }
  3829. void ptlock_free(struct page *page)
  3830. {
  3831. kmem_cache_free(page_ptl_cachep, page->ptl);
  3832. }
  3833. #endif