huge_memory.c 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/shrinker.h>
  15. #include <linux/mm_inline.h>
  16. #include <linux/kthread.h>
  17. #include <linux/khugepaged.h>
  18. #include <linux/freezer.h>
  19. #include <linux/mman.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/migrate.h>
  22. #include <linux/hashtable.h>
  23. #include <asm/tlb.h>
  24. #include <asm/pgalloc.h>
  25. #include "internal.h"
  26. /*
  27. * By default transparent hugepage support is disabled in order that avoid
  28. * to risk increase the memory footprint of applications without a guaranteed
  29. * benefit. When transparent hugepage support is enabled, is for all mappings,
  30. * and khugepaged scans all mappings.
  31. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  32. * for all hugepage allocations.
  33. */
  34. unsigned long transparent_hugepage_flags __read_mostly =
  35. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  36. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  37. #endif
  38. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  39. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  40. #endif
  41. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  42. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  43. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  44. /* default scan 8*512 pte (or vmas) every 30 second */
  45. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  46. static unsigned int khugepaged_pages_collapsed;
  47. static unsigned int khugepaged_full_scans;
  48. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  49. /* during fragmentation poll the hugepage allocator once every minute */
  50. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  51. static struct task_struct *khugepaged_thread __read_mostly;
  52. static DEFINE_MUTEX(khugepaged_mutex);
  53. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  54. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  55. /*
  56. * default collapse hugepages if there is at least one pte mapped like
  57. * it would have happened if the vma was large enough during page
  58. * fault.
  59. */
  60. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  61. static int khugepaged(void *none);
  62. static int khugepaged_slab_init(void);
  63. #define MM_SLOTS_HASH_BITS 10
  64. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  65. static struct kmem_cache *mm_slot_cache __read_mostly;
  66. /**
  67. * struct mm_slot - hash lookup from mm to mm_slot
  68. * @hash: hash collision list
  69. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  70. * @mm: the mm that this information is valid for
  71. */
  72. struct mm_slot {
  73. struct hlist_node hash;
  74. struct list_head mm_node;
  75. struct mm_struct *mm;
  76. };
  77. /**
  78. * struct khugepaged_scan - cursor for scanning
  79. * @mm_head: the head of the mm list to scan
  80. * @mm_slot: the current mm_slot we are scanning
  81. * @address: the next address inside that to be scanned
  82. *
  83. * There is only the one khugepaged_scan instance of this cursor structure.
  84. */
  85. struct khugepaged_scan {
  86. struct list_head mm_head;
  87. struct mm_slot *mm_slot;
  88. unsigned long address;
  89. };
  90. static struct khugepaged_scan khugepaged_scan = {
  91. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  92. };
  93. static int set_recommended_min_free_kbytes(void)
  94. {
  95. struct zone *zone;
  96. int nr_zones = 0;
  97. unsigned long recommended_min;
  98. if (!khugepaged_enabled())
  99. return 0;
  100. for_each_populated_zone(zone)
  101. nr_zones++;
  102. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  103. recommended_min = pageblock_nr_pages * nr_zones * 2;
  104. /*
  105. * Make sure that on average at least two pageblocks are almost free
  106. * of another type, one for a migratetype to fall back to and a
  107. * second to avoid subsequent fallbacks of other types There are 3
  108. * MIGRATE_TYPES we care about.
  109. */
  110. recommended_min += pageblock_nr_pages * nr_zones *
  111. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  112. /* don't ever allow to reserve more than 5% of the lowmem */
  113. recommended_min = min(recommended_min,
  114. (unsigned long) nr_free_buffer_pages() / 20);
  115. recommended_min <<= (PAGE_SHIFT-10);
  116. if (recommended_min > min_free_kbytes) {
  117. if (user_min_free_kbytes >= 0)
  118. pr_info("raising min_free_kbytes from %d to %lu "
  119. "to help transparent hugepage allocations\n",
  120. min_free_kbytes, recommended_min);
  121. min_free_kbytes = recommended_min;
  122. }
  123. setup_per_zone_wmarks();
  124. return 0;
  125. }
  126. late_initcall(set_recommended_min_free_kbytes);
  127. static int start_khugepaged(void)
  128. {
  129. int err = 0;
  130. if (khugepaged_enabled()) {
  131. if (!khugepaged_thread)
  132. khugepaged_thread = kthread_run(khugepaged, NULL,
  133. "khugepaged");
  134. if (unlikely(IS_ERR(khugepaged_thread))) {
  135. printk(KERN_ERR
  136. "khugepaged: kthread_run(khugepaged) failed\n");
  137. err = PTR_ERR(khugepaged_thread);
  138. khugepaged_thread = NULL;
  139. }
  140. if (!list_empty(&khugepaged_scan.mm_head))
  141. wake_up_interruptible(&khugepaged_wait);
  142. set_recommended_min_free_kbytes();
  143. } else if (khugepaged_thread) {
  144. kthread_stop(khugepaged_thread);
  145. khugepaged_thread = NULL;
  146. }
  147. return err;
  148. }
  149. static atomic_t huge_zero_refcount;
  150. static struct page *huge_zero_page __read_mostly;
  151. static inline bool is_huge_zero_page(struct page *page)
  152. {
  153. return ACCESS_ONCE(huge_zero_page) == page;
  154. }
  155. static inline bool is_huge_zero_pmd(pmd_t pmd)
  156. {
  157. return is_huge_zero_page(pmd_page(pmd));
  158. }
  159. static struct page *get_huge_zero_page(void)
  160. {
  161. struct page *zero_page;
  162. retry:
  163. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  164. return ACCESS_ONCE(huge_zero_page);
  165. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  166. HPAGE_PMD_ORDER);
  167. if (!zero_page) {
  168. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  169. return NULL;
  170. }
  171. count_vm_event(THP_ZERO_PAGE_ALLOC);
  172. preempt_disable();
  173. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  174. preempt_enable();
  175. __free_page(zero_page);
  176. goto retry;
  177. }
  178. /* We take additional reference here. It will be put back by shrinker */
  179. atomic_set(&huge_zero_refcount, 2);
  180. preempt_enable();
  181. return ACCESS_ONCE(huge_zero_page);
  182. }
  183. static void put_huge_zero_page(void)
  184. {
  185. /*
  186. * Counter should never go to zero here. Only shrinker can put
  187. * last reference.
  188. */
  189. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  190. }
  191. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  192. struct shrink_control *sc)
  193. {
  194. /* we can free zero page only if last reference remains */
  195. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  196. }
  197. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  198. struct shrink_control *sc)
  199. {
  200. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  201. struct page *zero_page = xchg(&huge_zero_page, NULL);
  202. BUG_ON(zero_page == NULL);
  203. __free_page(zero_page);
  204. return HPAGE_PMD_NR;
  205. }
  206. return 0;
  207. }
  208. static struct shrinker huge_zero_page_shrinker = {
  209. .count_objects = shrink_huge_zero_page_count,
  210. .scan_objects = shrink_huge_zero_page_scan,
  211. .seeks = DEFAULT_SEEKS,
  212. };
  213. #ifdef CONFIG_SYSFS
  214. static ssize_t double_flag_show(struct kobject *kobj,
  215. struct kobj_attribute *attr, char *buf,
  216. enum transparent_hugepage_flag enabled,
  217. enum transparent_hugepage_flag req_madv)
  218. {
  219. if (test_bit(enabled, &transparent_hugepage_flags)) {
  220. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  221. return sprintf(buf, "[always] madvise never\n");
  222. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  223. return sprintf(buf, "always [madvise] never\n");
  224. else
  225. return sprintf(buf, "always madvise [never]\n");
  226. }
  227. static ssize_t double_flag_store(struct kobject *kobj,
  228. struct kobj_attribute *attr,
  229. const char *buf, size_t count,
  230. enum transparent_hugepage_flag enabled,
  231. enum transparent_hugepage_flag req_madv)
  232. {
  233. if (!memcmp("always", buf,
  234. min(sizeof("always")-1, count))) {
  235. set_bit(enabled, &transparent_hugepage_flags);
  236. clear_bit(req_madv, &transparent_hugepage_flags);
  237. } else if (!memcmp("madvise", buf,
  238. min(sizeof("madvise")-1, count))) {
  239. clear_bit(enabled, &transparent_hugepage_flags);
  240. set_bit(req_madv, &transparent_hugepage_flags);
  241. } else if (!memcmp("never", buf,
  242. min(sizeof("never")-1, count))) {
  243. clear_bit(enabled, &transparent_hugepage_flags);
  244. clear_bit(req_madv, &transparent_hugepage_flags);
  245. } else
  246. return -EINVAL;
  247. return count;
  248. }
  249. static ssize_t enabled_show(struct kobject *kobj,
  250. struct kobj_attribute *attr, char *buf)
  251. {
  252. return double_flag_show(kobj, attr, buf,
  253. TRANSPARENT_HUGEPAGE_FLAG,
  254. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  255. }
  256. static ssize_t enabled_store(struct kobject *kobj,
  257. struct kobj_attribute *attr,
  258. const char *buf, size_t count)
  259. {
  260. ssize_t ret;
  261. ret = double_flag_store(kobj, attr, buf, count,
  262. TRANSPARENT_HUGEPAGE_FLAG,
  263. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  264. if (ret > 0) {
  265. int err;
  266. mutex_lock(&khugepaged_mutex);
  267. err = start_khugepaged();
  268. mutex_unlock(&khugepaged_mutex);
  269. if (err)
  270. ret = err;
  271. }
  272. return ret;
  273. }
  274. static struct kobj_attribute enabled_attr =
  275. __ATTR(enabled, 0644, enabled_show, enabled_store);
  276. static ssize_t single_flag_show(struct kobject *kobj,
  277. struct kobj_attribute *attr, char *buf,
  278. enum transparent_hugepage_flag flag)
  279. {
  280. return sprintf(buf, "%d\n",
  281. !!test_bit(flag, &transparent_hugepage_flags));
  282. }
  283. static ssize_t single_flag_store(struct kobject *kobj,
  284. struct kobj_attribute *attr,
  285. const char *buf, size_t count,
  286. enum transparent_hugepage_flag flag)
  287. {
  288. unsigned long value;
  289. int ret;
  290. ret = kstrtoul(buf, 10, &value);
  291. if (ret < 0)
  292. return ret;
  293. if (value > 1)
  294. return -EINVAL;
  295. if (value)
  296. set_bit(flag, &transparent_hugepage_flags);
  297. else
  298. clear_bit(flag, &transparent_hugepage_flags);
  299. return count;
  300. }
  301. /*
  302. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  303. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  304. * memory just to allocate one more hugepage.
  305. */
  306. static ssize_t defrag_show(struct kobject *kobj,
  307. struct kobj_attribute *attr, char *buf)
  308. {
  309. return double_flag_show(kobj, attr, buf,
  310. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  311. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  312. }
  313. static ssize_t defrag_store(struct kobject *kobj,
  314. struct kobj_attribute *attr,
  315. const char *buf, size_t count)
  316. {
  317. return double_flag_store(kobj, attr, buf, count,
  318. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  319. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  320. }
  321. static struct kobj_attribute defrag_attr =
  322. __ATTR(defrag, 0644, defrag_show, defrag_store);
  323. static ssize_t use_zero_page_show(struct kobject *kobj,
  324. struct kobj_attribute *attr, char *buf)
  325. {
  326. return single_flag_show(kobj, attr, buf,
  327. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  328. }
  329. static ssize_t use_zero_page_store(struct kobject *kobj,
  330. struct kobj_attribute *attr, const char *buf, size_t count)
  331. {
  332. return single_flag_store(kobj, attr, buf, count,
  333. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  334. }
  335. static struct kobj_attribute use_zero_page_attr =
  336. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  337. #ifdef CONFIG_DEBUG_VM
  338. static ssize_t debug_cow_show(struct kobject *kobj,
  339. struct kobj_attribute *attr, char *buf)
  340. {
  341. return single_flag_show(kobj, attr, buf,
  342. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  343. }
  344. static ssize_t debug_cow_store(struct kobject *kobj,
  345. struct kobj_attribute *attr,
  346. const char *buf, size_t count)
  347. {
  348. return single_flag_store(kobj, attr, buf, count,
  349. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  350. }
  351. static struct kobj_attribute debug_cow_attr =
  352. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  353. #endif /* CONFIG_DEBUG_VM */
  354. static struct attribute *hugepage_attr[] = {
  355. &enabled_attr.attr,
  356. &defrag_attr.attr,
  357. &use_zero_page_attr.attr,
  358. #ifdef CONFIG_DEBUG_VM
  359. &debug_cow_attr.attr,
  360. #endif
  361. NULL,
  362. };
  363. static struct attribute_group hugepage_attr_group = {
  364. .attrs = hugepage_attr,
  365. };
  366. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. char *buf)
  369. {
  370. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  371. }
  372. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  373. struct kobj_attribute *attr,
  374. const char *buf, size_t count)
  375. {
  376. unsigned long msecs;
  377. int err;
  378. err = kstrtoul(buf, 10, &msecs);
  379. if (err || msecs > UINT_MAX)
  380. return -EINVAL;
  381. khugepaged_scan_sleep_millisecs = msecs;
  382. wake_up_interruptible(&khugepaged_wait);
  383. return count;
  384. }
  385. static struct kobj_attribute scan_sleep_millisecs_attr =
  386. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  387. scan_sleep_millisecs_store);
  388. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  389. struct kobj_attribute *attr,
  390. char *buf)
  391. {
  392. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  393. }
  394. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  395. struct kobj_attribute *attr,
  396. const char *buf, size_t count)
  397. {
  398. unsigned long msecs;
  399. int err;
  400. err = kstrtoul(buf, 10, &msecs);
  401. if (err || msecs > UINT_MAX)
  402. return -EINVAL;
  403. khugepaged_alloc_sleep_millisecs = msecs;
  404. wake_up_interruptible(&khugepaged_wait);
  405. return count;
  406. }
  407. static struct kobj_attribute alloc_sleep_millisecs_attr =
  408. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  409. alloc_sleep_millisecs_store);
  410. static ssize_t pages_to_scan_show(struct kobject *kobj,
  411. struct kobj_attribute *attr,
  412. char *buf)
  413. {
  414. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  415. }
  416. static ssize_t pages_to_scan_store(struct kobject *kobj,
  417. struct kobj_attribute *attr,
  418. const char *buf, size_t count)
  419. {
  420. int err;
  421. unsigned long pages;
  422. err = kstrtoul(buf, 10, &pages);
  423. if (err || !pages || pages > UINT_MAX)
  424. return -EINVAL;
  425. khugepaged_pages_to_scan = pages;
  426. return count;
  427. }
  428. static struct kobj_attribute pages_to_scan_attr =
  429. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  430. pages_to_scan_store);
  431. static ssize_t pages_collapsed_show(struct kobject *kobj,
  432. struct kobj_attribute *attr,
  433. char *buf)
  434. {
  435. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  436. }
  437. static struct kobj_attribute pages_collapsed_attr =
  438. __ATTR_RO(pages_collapsed);
  439. static ssize_t full_scans_show(struct kobject *kobj,
  440. struct kobj_attribute *attr,
  441. char *buf)
  442. {
  443. return sprintf(buf, "%u\n", khugepaged_full_scans);
  444. }
  445. static struct kobj_attribute full_scans_attr =
  446. __ATTR_RO(full_scans);
  447. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  448. struct kobj_attribute *attr, char *buf)
  449. {
  450. return single_flag_show(kobj, attr, buf,
  451. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  452. }
  453. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  454. struct kobj_attribute *attr,
  455. const char *buf, size_t count)
  456. {
  457. return single_flag_store(kobj, attr, buf, count,
  458. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  459. }
  460. static struct kobj_attribute khugepaged_defrag_attr =
  461. __ATTR(defrag, 0644, khugepaged_defrag_show,
  462. khugepaged_defrag_store);
  463. /*
  464. * max_ptes_none controls if khugepaged should collapse hugepages over
  465. * any unmapped ptes in turn potentially increasing the memory
  466. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  467. * reduce the available free memory in the system as it
  468. * runs. Increasing max_ptes_none will instead potentially reduce the
  469. * free memory in the system during the khugepaged scan.
  470. */
  471. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  472. struct kobj_attribute *attr,
  473. char *buf)
  474. {
  475. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  476. }
  477. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  478. struct kobj_attribute *attr,
  479. const char *buf, size_t count)
  480. {
  481. int err;
  482. unsigned long max_ptes_none;
  483. err = kstrtoul(buf, 10, &max_ptes_none);
  484. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  485. return -EINVAL;
  486. khugepaged_max_ptes_none = max_ptes_none;
  487. return count;
  488. }
  489. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  490. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  491. khugepaged_max_ptes_none_store);
  492. static struct attribute *khugepaged_attr[] = {
  493. &khugepaged_defrag_attr.attr,
  494. &khugepaged_max_ptes_none_attr.attr,
  495. &pages_to_scan_attr.attr,
  496. &pages_collapsed_attr.attr,
  497. &full_scans_attr.attr,
  498. &scan_sleep_millisecs_attr.attr,
  499. &alloc_sleep_millisecs_attr.attr,
  500. NULL,
  501. };
  502. static struct attribute_group khugepaged_attr_group = {
  503. .attrs = khugepaged_attr,
  504. .name = "khugepaged",
  505. };
  506. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  507. {
  508. int err;
  509. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  510. if (unlikely(!*hugepage_kobj)) {
  511. printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
  512. return -ENOMEM;
  513. }
  514. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  515. if (err) {
  516. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  517. goto delete_obj;
  518. }
  519. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  520. if (err) {
  521. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  522. goto remove_hp_group;
  523. }
  524. return 0;
  525. remove_hp_group:
  526. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  527. delete_obj:
  528. kobject_put(*hugepage_kobj);
  529. return err;
  530. }
  531. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  532. {
  533. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  534. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  535. kobject_put(hugepage_kobj);
  536. }
  537. #else
  538. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  539. {
  540. return 0;
  541. }
  542. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  543. {
  544. }
  545. #endif /* CONFIG_SYSFS */
  546. static int __init hugepage_init(void)
  547. {
  548. int err;
  549. struct kobject *hugepage_kobj;
  550. if (!has_transparent_hugepage()) {
  551. transparent_hugepage_flags = 0;
  552. return -EINVAL;
  553. }
  554. err = hugepage_init_sysfs(&hugepage_kobj);
  555. if (err)
  556. return err;
  557. err = khugepaged_slab_init();
  558. if (err)
  559. goto out;
  560. register_shrinker(&huge_zero_page_shrinker);
  561. /*
  562. * By default disable transparent hugepages on smaller systems,
  563. * where the extra memory used could hurt more than TLB overhead
  564. * is likely to save. The admin can still enable it through /sys.
  565. */
  566. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  567. transparent_hugepage_flags = 0;
  568. start_khugepaged();
  569. return 0;
  570. out:
  571. hugepage_exit_sysfs(hugepage_kobj);
  572. return err;
  573. }
  574. subsys_initcall(hugepage_init);
  575. static int __init setup_transparent_hugepage(char *str)
  576. {
  577. int ret = 0;
  578. if (!str)
  579. goto out;
  580. if (!strcmp(str, "always")) {
  581. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  582. &transparent_hugepage_flags);
  583. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  584. &transparent_hugepage_flags);
  585. ret = 1;
  586. } else if (!strcmp(str, "madvise")) {
  587. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  588. &transparent_hugepage_flags);
  589. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  590. &transparent_hugepage_flags);
  591. ret = 1;
  592. } else if (!strcmp(str, "never")) {
  593. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  594. &transparent_hugepage_flags);
  595. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  596. &transparent_hugepage_flags);
  597. ret = 1;
  598. }
  599. out:
  600. if (!ret)
  601. printk(KERN_WARNING
  602. "transparent_hugepage= cannot parse, ignored\n");
  603. return ret;
  604. }
  605. __setup("transparent_hugepage=", setup_transparent_hugepage);
  606. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  607. {
  608. if (likely(vma->vm_flags & VM_WRITE))
  609. pmd = pmd_mkwrite(pmd);
  610. return pmd;
  611. }
  612. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  613. {
  614. pmd_t entry;
  615. entry = mk_pmd(page, prot);
  616. entry = pmd_mkhuge(entry);
  617. return entry;
  618. }
  619. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  620. struct vm_area_struct *vma,
  621. unsigned long haddr, pmd_t *pmd,
  622. struct page *page)
  623. {
  624. pgtable_t pgtable;
  625. spinlock_t *ptl;
  626. VM_BUG_ON_PAGE(!PageCompound(page), page);
  627. pgtable = pte_alloc_one(mm, haddr);
  628. if (unlikely(!pgtable))
  629. return VM_FAULT_OOM;
  630. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  631. /*
  632. * The memory barrier inside __SetPageUptodate makes sure that
  633. * clear_huge_page writes become visible before the set_pmd_at()
  634. * write.
  635. */
  636. __SetPageUptodate(page);
  637. ptl = pmd_lock(mm, pmd);
  638. if (unlikely(!pmd_none(*pmd))) {
  639. spin_unlock(ptl);
  640. mem_cgroup_uncharge_page(page);
  641. put_page(page);
  642. pte_free(mm, pgtable);
  643. } else {
  644. pmd_t entry;
  645. entry = mk_huge_pmd(page, vma->vm_page_prot);
  646. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  647. page_add_new_anon_rmap(page, vma, haddr);
  648. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  649. set_pmd_at(mm, haddr, pmd, entry);
  650. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  651. atomic_long_inc(&mm->nr_ptes);
  652. spin_unlock(ptl);
  653. }
  654. return 0;
  655. }
  656. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  657. {
  658. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  659. }
  660. static inline struct page *alloc_hugepage_vma(int defrag,
  661. struct vm_area_struct *vma,
  662. unsigned long haddr, int nd,
  663. gfp_t extra_gfp)
  664. {
  665. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  666. HPAGE_PMD_ORDER, vma, haddr, nd);
  667. }
  668. /* Caller must hold page table lock. */
  669. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  670. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  671. struct page *zero_page)
  672. {
  673. pmd_t entry;
  674. if (!pmd_none(*pmd))
  675. return false;
  676. entry = mk_pmd(zero_page, vma->vm_page_prot);
  677. entry = pmd_wrprotect(entry);
  678. entry = pmd_mkhuge(entry);
  679. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  680. set_pmd_at(mm, haddr, pmd, entry);
  681. atomic_long_inc(&mm->nr_ptes);
  682. return true;
  683. }
  684. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  685. unsigned long address, pmd_t *pmd,
  686. unsigned int flags)
  687. {
  688. struct page *page;
  689. unsigned long haddr = address & HPAGE_PMD_MASK;
  690. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  691. return VM_FAULT_FALLBACK;
  692. if (unlikely(anon_vma_prepare(vma)))
  693. return VM_FAULT_OOM;
  694. if (unlikely(khugepaged_enter(vma)))
  695. return VM_FAULT_OOM;
  696. if (!(flags & FAULT_FLAG_WRITE) &&
  697. transparent_hugepage_use_zero_page()) {
  698. spinlock_t *ptl;
  699. pgtable_t pgtable;
  700. struct page *zero_page;
  701. bool set;
  702. pgtable = pte_alloc_one(mm, haddr);
  703. if (unlikely(!pgtable))
  704. return VM_FAULT_OOM;
  705. zero_page = get_huge_zero_page();
  706. if (unlikely(!zero_page)) {
  707. pte_free(mm, pgtable);
  708. count_vm_event(THP_FAULT_FALLBACK);
  709. return VM_FAULT_FALLBACK;
  710. }
  711. ptl = pmd_lock(mm, pmd);
  712. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  713. zero_page);
  714. spin_unlock(ptl);
  715. if (!set) {
  716. pte_free(mm, pgtable);
  717. put_huge_zero_page();
  718. }
  719. return 0;
  720. }
  721. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  722. vma, haddr, numa_node_id(), 0);
  723. if (unlikely(!page)) {
  724. count_vm_event(THP_FAULT_FALLBACK);
  725. return VM_FAULT_FALLBACK;
  726. }
  727. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  728. put_page(page);
  729. count_vm_event(THP_FAULT_FALLBACK);
  730. return VM_FAULT_FALLBACK;
  731. }
  732. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
  733. mem_cgroup_uncharge_page(page);
  734. put_page(page);
  735. count_vm_event(THP_FAULT_FALLBACK);
  736. return VM_FAULT_FALLBACK;
  737. }
  738. count_vm_event(THP_FAULT_ALLOC);
  739. return 0;
  740. }
  741. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  742. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  743. struct vm_area_struct *vma)
  744. {
  745. spinlock_t *dst_ptl, *src_ptl;
  746. struct page *src_page;
  747. pmd_t pmd;
  748. pgtable_t pgtable;
  749. int ret;
  750. ret = -ENOMEM;
  751. pgtable = pte_alloc_one(dst_mm, addr);
  752. if (unlikely(!pgtable))
  753. goto out;
  754. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  755. src_ptl = pmd_lockptr(src_mm, src_pmd);
  756. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  757. ret = -EAGAIN;
  758. pmd = *src_pmd;
  759. if (unlikely(!pmd_trans_huge(pmd))) {
  760. pte_free(dst_mm, pgtable);
  761. goto out_unlock;
  762. }
  763. /*
  764. * When page table lock is held, the huge zero pmd should not be
  765. * under splitting since we don't split the page itself, only pmd to
  766. * a page table.
  767. */
  768. if (is_huge_zero_pmd(pmd)) {
  769. struct page *zero_page;
  770. bool set;
  771. /*
  772. * get_huge_zero_page() will never allocate a new page here,
  773. * since we already have a zero page to copy. It just takes a
  774. * reference.
  775. */
  776. zero_page = get_huge_zero_page();
  777. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  778. zero_page);
  779. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  780. ret = 0;
  781. goto out_unlock;
  782. }
  783. if (unlikely(pmd_trans_splitting(pmd))) {
  784. /* split huge page running from under us */
  785. spin_unlock(src_ptl);
  786. spin_unlock(dst_ptl);
  787. pte_free(dst_mm, pgtable);
  788. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  789. goto out;
  790. }
  791. src_page = pmd_page(pmd);
  792. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  793. get_page(src_page);
  794. page_dup_rmap(src_page);
  795. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  796. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  797. pmd = pmd_mkold(pmd_wrprotect(pmd));
  798. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  799. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  800. atomic_long_inc(&dst_mm->nr_ptes);
  801. ret = 0;
  802. out_unlock:
  803. spin_unlock(src_ptl);
  804. spin_unlock(dst_ptl);
  805. out:
  806. return ret;
  807. }
  808. void huge_pmd_set_accessed(struct mm_struct *mm,
  809. struct vm_area_struct *vma,
  810. unsigned long address,
  811. pmd_t *pmd, pmd_t orig_pmd,
  812. int dirty)
  813. {
  814. spinlock_t *ptl;
  815. pmd_t entry;
  816. unsigned long haddr;
  817. ptl = pmd_lock(mm, pmd);
  818. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  819. goto unlock;
  820. entry = pmd_mkyoung(orig_pmd);
  821. haddr = address & HPAGE_PMD_MASK;
  822. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  823. update_mmu_cache_pmd(vma, address, pmd);
  824. unlock:
  825. spin_unlock(ptl);
  826. }
  827. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  828. struct vm_area_struct *vma, unsigned long address,
  829. pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
  830. {
  831. spinlock_t *ptl;
  832. pgtable_t pgtable;
  833. pmd_t _pmd;
  834. struct page *page;
  835. int i, ret = 0;
  836. unsigned long mmun_start; /* For mmu_notifiers */
  837. unsigned long mmun_end; /* For mmu_notifiers */
  838. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  839. if (!page) {
  840. ret |= VM_FAULT_OOM;
  841. goto out;
  842. }
  843. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  844. put_page(page);
  845. ret |= VM_FAULT_OOM;
  846. goto out;
  847. }
  848. clear_user_highpage(page, address);
  849. __SetPageUptodate(page);
  850. mmun_start = haddr;
  851. mmun_end = haddr + HPAGE_PMD_SIZE;
  852. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  853. ptl = pmd_lock(mm, pmd);
  854. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  855. goto out_free_page;
  856. pmdp_clear_flush(vma, haddr, pmd);
  857. /* leave pmd empty until pte is filled */
  858. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  859. pmd_populate(mm, &_pmd, pgtable);
  860. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  861. pte_t *pte, entry;
  862. if (haddr == (address & PAGE_MASK)) {
  863. entry = mk_pte(page, vma->vm_page_prot);
  864. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  865. page_add_new_anon_rmap(page, vma, haddr);
  866. } else {
  867. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  868. entry = pte_mkspecial(entry);
  869. }
  870. pte = pte_offset_map(&_pmd, haddr);
  871. VM_BUG_ON(!pte_none(*pte));
  872. set_pte_at(mm, haddr, pte, entry);
  873. pte_unmap(pte);
  874. }
  875. smp_wmb(); /* make pte visible before pmd */
  876. pmd_populate(mm, pmd, pgtable);
  877. spin_unlock(ptl);
  878. put_huge_zero_page();
  879. inc_mm_counter(mm, MM_ANONPAGES);
  880. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  881. ret |= VM_FAULT_WRITE;
  882. out:
  883. return ret;
  884. out_free_page:
  885. spin_unlock(ptl);
  886. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  887. mem_cgroup_uncharge_page(page);
  888. put_page(page);
  889. goto out;
  890. }
  891. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  892. struct vm_area_struct *vma,
  893. unsigned long address,
  894. pmd_t *pmd, pmd_t orig_pmd,
  895. struct page *page,
  896. unsigned long haddr)
  897. {
  898. spinlock_t *ptl;
  899. pgtable_t pgtable;
  900. pmd_t _pmd;
  901. int ret = 0, i;
  902. struct page **pages;
  903. unsigned long mmun_start; /* For mmu_notifiers */
  904. unsigned long mmun_end; /* For mmu_notifiers */
  905. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  906. GFP_KERNEL);
  907. if (unlikely(!pages)) {
  908. ret |= VM_FAULT_OOM;
  909. goto out;
  910. }
  911. for (i = 0; i < HPAGE_PMD_NR; i++) {
  912. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  913. __GFP_OTHER_NODE,
  914. vma, address, page_to_nid(page));
  915. if (unlikely(!pages[i] ||
  916. mem_cgroup_newpage_charge(pages[i], mm,
  917. GFP_KERNEL))) {
  918. if (pages[i])
  919. put_page(pages[i]);
  920. mem_cgroup_uncharge_start();
  921. while (--i >= 0) {
  922. mem_cgroup_uncharge_page(pages[i]);
  923. put_page(pages[i]);
  924. }
  925. mem_cgroup_uncharge_end();
  926. kfree(pages);
  927. ret |= VM_FAULT_OOM;
  928. goto out;
  929. }
  930. }
  931. for (i = 0; i < HPAGE_PMD_NR; i++) {
  932. copy_user_highpage(pages[i], page + i,
  933. haddr + PAGE_SIZE * i, vma);
  934. __SetPageUptodate(pages[i]);
  935. cond_resched();
  936. }
  937. mmun_start = haddr;
  938. mmun_end = haddr + HPAGE_PMD_SIZE;
  939. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  940. ptl = pmd_lock(mm, pmd);
  941. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  942. goto out_free_pages;
  943. VM_BUG_ON_PAGE(!PageHead(page), page);
  944. pmdp_clear_flush(vma, haddr, pmd);
  945. /* leave pmd empty until pte is filled */
  946. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  947. pmd_populate(mm, &_pmd, pgtable);
  948. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  949. pte_t *pte, entry;
  950. entry = mk_pte(pages[i], vma->vm_page_prot);
  951. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  952. page_add_new_anon_rmap(pages[i], vma, haddr);
  953. pte = pte_offset_map(&_pmd, haddr);
  954. VM_BUG_ON(!pte_none(*pte));
  955. set_pte_at(mm, haddr, pte, entry);
  956. pte_unmap(pte);
  957. }
  958. kfree(pages);
  959. smp_wmb(); /* make pte visible before pmd */
  960. pmd_populate(mm, pmd, pgtable);
  961. page_remove_rmap(page);
  962. spin_unlock(ptl);
  963. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  964. ret |= VM_FAULT_WRITE;
  965. put_page(page);
  966. out:
  967. return ret;
  968. out_free_pages:
  969. spin_unlock(ptl);
  970. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  971. mem_cgroup_uncharge_start();
  972. for (i = 0; i < HPAGE_PMD_NR; i++) {
  973. mem_cgroup_uncharge_page(pages[i]);
  974. put_page(pages[i]);
  975. }
  976. mem_cgroup_uncharge_end();
  977. kfree(pages);
  978. goto out;
  979. }
  980. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  981. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  982. {
  983. spinlock_t *ptl;
  984. int ret = 0;
  985. struct page *page = NULL, *new_page;
  986. unsigned long haddr;
  987. unsigned long mmun_start; /* For mmu_notifiers */
  988. unsigned long mmun_end; /* For mmu_notifiers */
  989. ptl = pmd_lockptr(mm, pmd);
  990. VM_BUG_ON(!vma->anon_vma);
  991. haddr = address & HPAGE_PMD_MASK;
  992. if (is_huge_zero_pmd(orig_pmd))
  993. goto alloc;
  994. spin_lock(ptl);
  995. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  996. goto out_unlock;
  997. page = pmd_page(orig_pmd);
  998. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  999. if (page_mapcount(page) == 1) {
  1000. pmd_t entry;
  1001. entry = pmd_mkyoung(orig_pmd);
  1002. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1003. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  1004. update_mmu_cache_pmd(vma, address, pmd);
  1005. ret |= VM_FAULT_WRITE;
  1006. goto out_unlock;
  1007. }
  1008. get_page(page);
  1009. spin_unlock(ptl);
  1010. alloc:
  1011. if (transparent_hugepage_enabled(vma) &&
  1012. !transparent_hugepage_debug_cow())
  1013. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  1014. vma, haddr, numa_node_id(), 0);
  1015. else
  1016. new_page = NULL;
  1017. if (unlikely(!new_page)) {
  1018. if (!page) {
  1019. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  1020. address, pmd, orig_pmd, haddr);
  1021. } else {
  1022. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1023. pmd, orig_pmd, page, haddr);
  1024. if (ret & VM_FAULT_OOM) {
  1025. split_huge_page(page);
  1026. ret |= VM_FAULT_FALLBACK;
  1027. }
  1028. put_page(page);
  1029. }
  1030. count_vm_event(THP_FAULT_FALLBACK);
  1031. goto out;
  1032. }
  1033. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1034. put_page(new_page);
  1035. if (page) {
  1036. split_huge_page(page);
  1037. put_page(page);
  1038. } else
  1039. split_huge_page_pmd(vma, address, pmd);
  1040. ret |= VM_FAULT_FALLBACK;
  1041. count_vm_event(THP_FAULT_FALLBACK);
  1042. goto out;
  1043. }
  1044. count_vm_event(THP_FAULT_ALLOC);
  1045. if (!page)
  1046. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1047. else
  1048. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1049. __SetPageUptodate(new_page);
  1050. mmun_start = haddr;
  1051. mmun_end = haddr + HPAGE_PMD_SIZE;
  1052. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1053. spin_lock(ptl);
  1054. if (page)
  1055. put_page(page);
  1056. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1057. spin_unlock(ptl);
  1058. mem_cgroup_uncharge_page(new_page);
  1059. put_page(new_page);
  1060. goto out_mn;
  1061. } else {
  1062. pmd_t entry;
  1063. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1064. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1065. pmdp_clear_flush(vma, haddr, pmd);
  1066. page_add_new_anon_rmap(new_page, vma, haddr);
  1067. set_pmd_at(mm, haddr, pmd, entry);
  1068. update_mmu_cache_pmd(vma, address, pmd);
  1069. if (!page) {
  1070. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1071. put_huge_zero_page();
  1072. } else {
  1073. VM_BUG_ON_PAGE(!PageHead(page), page);
  1074. page_remove_rmap(page);
  1075. put_page(page);
  1076. }
  1077. ret |= VM_FAULT_WRITE;
  1078. }
  1079. spin_unlock(ptl);
  1080. out_mn:
  1081. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1082. out:
  1083. return ret;
  1084. out_unlock:
  1085. spin_unlock(ptl);
  1086. return ret;
  1087. }
  1088. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1089. unsigned long addr,
  1090. pmd_t *pmd,
  1091. unsigned int flags)
  1092. {
  1093. struct mm_struct *mm = vma->vm_mm;
  1094. struct page *page = NULL;
  1095. assert_spin_locked(pmd_lockptr(mm, pmd));
  1096. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1097. goto out;
  1098. /* Avoid dumping huge zero page */
  1099. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1100. return ERR_PTR(-EFAULT);
  1101. /* Full NUMA hinting faults to serialise migration in fault paths */
  1102. if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
  1103. goto out;
  1104. page = pmd_page(*pmd);
  1105. VM_BUG_ON_PAGE(!PageHead(page), page);
  1106. if (flags & FOLL_TOUCH) {
  1107. pmd_t _pmd;
  1108. /*
  1109. * We should set the dirty bit only for FOLL_WRITE but
  1110. * for now the dirty bit in the pmd is meaningless.
  1111. * And if the dirty bit will become meaningful and
  1112. * we'll only set it with FOLL_WRITE, an atomic
  1113. * set_bit will be required on the pmd to set the
  1114. * young bit, instead of the current set_pmd_at.
  1115. */
  1116. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1117. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  1118. pmd, _pmd, 1))
  1119. update_mmu_cache_pmd(vma, addr, pmd);
  1120. }
  1121. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1122. if (page->mapping && trylock_page(page)) {
  1123. lru_add_drain();
  1124. if (page->mapping)
  1125. mlock_vma_page(page);
  1126. unlock_page(page);
  1127. }
  1128. }
  1129. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1130. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1131. if (flags & FOLL_GET)
  1132. get_page_foll(page);
  1133. out:
  1134. return page;
  1135. }
  1136. /* NUMA hinting page fault entry point for trans huge pmds */
  1137. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1138. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1139. {
  1140. spinlock_t *ptl;
  1141. struct anon_vma *anon_vma = NULL;
  1142. struct page *page;
  1143. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1144. int page_nid = -1, this_nid = numa_node_id();
  1145. int target_nid, last_cpupid = -1;
  1146. bool page_locked;
  1147. bool migrated = false;
  1148. int flags = 0;
  1149. ptl = pmd_lock(mm, pmdp);
  1150. if (unlikely(!pmd_same(pmd, *pmdp)))
  1151. goto out_unlock;
  1152. /*
  1153. * If there are potential migrations, wait for completion and retry
  1154. * without disrupting NUMA hinting information. Do not relock and
  1155. * check_same as the page may no longer be mapped.
  1156. */
  1157. if (unlikely(pmd_trans_migrating(*pmdp))) {
  1158. spin_unlock(ptl);
  1159. wait_migrate_huge_page(vma->anon_vma, pmdp);
  1160. goto out;
  1161. }
  1162. page = pmd_page(pmd);
  1163. BUG_ON(is_huge_zero_page(page));
  1164. page_nid = page_to_nid(page);
  1165. last_cpupid = page_cpupid_last(page);
  1166. count_vm_numa_event(NUMA_HINT_FAULTS);
  1167. if (page_nid == this_nid) {
  1168. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1169. flags |= TNF_FAULT_LOCAL;
  1170. }
  1171. /*
  1172. * Avoid grouping on DSO/COW pages in specific and RO pages
  1173. * in general, RO pages shouldn't hurt as much anyway since
  1174. * they can be in shared cache state.
  1175. */
  1176. if (!pmd_write(pmd))
  1177. flags |= TNF_NO_GROUP;
  1178. /*
  1179. * Acquire the page lock to serialise THP migrations but avoid dropping
  1180. * page_table_lock if at all possible
  1181. */
  1182. page_locked = trylock_page(page);
  1183. target_nid = mpol_misplaced(page, vma, haddr);
  1184. if (target_nid == -1) {
  1185. /* If the page was locked, there are no parallel migrations */
  1186. if (page_locked)
  1187. goto clear_pmdnuma;
  1188. }
  1189. /* Migration could have started since the pmd_trans_migrating check */
  1190. if (!page_locked) {
  1191. spin_unlock(ptl);
  1192. wait_on_page_locked(page);
  1193. page_nid = -1;
  1194. goto out;
  1195. }
  1196. /*
  1197. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1198. * to serialises splits
  1199. */
  1200. get_page(page);
  1201. spin_unlock(ptl);
  1202. anon_vma = page_lock_anon_vma_read(page);
  1203. /* Confirm the PMD did not change while page_table_lock was released */
  1204. spin_lock(ptl);
  1205. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1206. unlock_page(page);
  1207. put_page(page);
  1208. page_nid = -1;
  1209. goto out_unlock;
  1210. }
  1211. /* Bail if we fail to protect against THP splits for any reason */
  1212. if (unlikely(!anon_vma)) {
  1213. put_page(page);
  1214. page_nid = -1;
  1215. goto clear_pmdnuma;
  1216. }
  1217. /*
  1218. * Migrate the THP to the requested node, returns with page unlocked
  1219. * and pmd_numa cleared.
  1220. */
  1221. spin_unlock(ptl);
  1222. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1223. pmdp, pmd, addr, page, target_nid);
  1224. if (migrated) {
  1225. flags |= TNF_MIGRATED;
  1226. page_nid = target_nid;
  1227. }
  1228. goto out;
  1229. clear_pmdnuma:
  1230. BUG_ON(!PageLocked(page));
  1231. pmd = pmd_mknonnuma(pmd);
  1232. set_pmd_at(mm, haddr, pmdp, pmd);
  1233. VM_BUG_ON(pmd_numa(*pmdp));
  1234. update_mmu_cache_pmd(vma, addr, pmdp);
  1235. unlock_page(page);
  1236. out_unlock:
  1237. spin_unlock(ptl);
  1238. out:
  1239. if (anon_vma)
  1240. page_unlock_anon_vma_read(anon_vma);
  1241. if (page_nid != -1)
  1242. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
  1243. return 0;
  1244. }
  1245. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1246. pmd_t *pmd, unsigned long addr)
  1247. {
  1248. spinlock_t *ptl;
  1249. int ret = 0;
  1250. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1251. struct page *page;
  1252. pgtable_t pgtable;
  1253. pmd_t orig_pmd;
  1254. /*
  1255. * For architectures like ppc64 we look at deposited pgtable
  1256. * when calling pmdp_get_and_clear. So do the
  1257. * pgtable_trans_huge_withdraw after finishing pmdp related
  1258. * operations.
  1259. */
  1260. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1261. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1262. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1263. if (is_huge_zero_pmd(orig_pmd)) {
  1264. atomic_long_dec(&tlb->mm->nr_ptes);
  1265. spin_unlock(ptl);
  1266. put_huge_zero_page();
  1267. } else {
  1268. page = pmd_page(orig_pmd);
  1269. page_remove_rmap(page);
  1270. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1271. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1272. VM_BUG_ON_PAGE(!PageHead(page), page);
  1273. atomic_long_dec(&tlb->mm->nr_ptes);
  1274. spin_unlock(ptl);
  1275. tlb_remove_page(tlb, page);
  1276. }
  1277. pte_free(tlb->mm, pgtable);
  1278. ret = 1;
  1279. }
  1280. return ret;
  1281. }
  1282. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1283. unsigned long addr, unsigned long end,
  1284. unsigned char *vec)
  1285. {
  1286. spinlock_t *ptl;
  1287. int ret = 0;
  1288. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1289. /*
  1290. * All logical pages in the range are present
  1291. * if backed by a huge page.
  1292. */
  1293. spin_unlock(ptl);
  1294. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1295. ret = 1;
  1296. }
  1297. return ret;
  1298. }
  1299. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1300. unsigned long old_addr,
  1301. unsigned long new_addr, unsigned long old_end,
  1302. pmd_t *old_pmd, pmd_t *new_pmd)
  1303. {
  1304. spinlock_t *old_ptl, *new_ptl;
  1305. int ret = 0;
  1306. pmd_t pmd;
  1307. struct mm_struct *mm = vma->vm_mm;
  1308. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1309. (new_addr & ~HPAGE_PMD_MASK) ||
  1310. old_end - old_addr < HPAGE_PMD_SIZE ||
  1311. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1312. goto out;
  1313. /*
  1314. * The destination pmd shouldn't be established, free_pgtables()
  1315. * should have release it.
  1316. */
  1317. if (WARN_ON(!pmd_none(*new_pmd))) {
  1318. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1319. goto out;
  1320. }
  1321. /*
  1322. * We don't have to worry about the ordering of src and dst
  1323. * ptlocks because exclusive mmap_sem prevents deadlock.
  1324. */
  1325. ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
  1326. if (ret == 1) {
  1327. new_ptl = pmd_lockptr(mm, new_pmd);
  1328. if (new_ptl != old_ptl)
  1329. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1330. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1331. VM_BUG_ON(!pmd_none(*new_pmd));
  1332. if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
  1333. pgtable_t pgtable;
  1334. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1335. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1336. }
  1337. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1338. if (new_ptl != old_ptl)
  1339. spin_unlock(new_ptl);
  1340. spin_unlock(old_ptl);
  1341. }
  1342. out:
  1343. return ret;
  1344. }
  1345. /*
  1346. * Returns
  1347. * - 0 if PMD could not be locked
  1348. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1349. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1350. */
  1351. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1352. unsigned long addr, pgprot_t newprot, int prot_numa)
  1353. {
  1354. struct mm_struct *mm = vma->vm_mm;
  1355. spinlock_t *ptl;
  1356. int ret = 0;
  1357. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1358. pmd_t entry;
  1359. ret = 1;
  1360. if (!prot_numa) {
  1361. entry = pmdp_get_and_clear(mm, addr, pmd);
  1362. if (pmd_numa(entry))
  1363. entry = pmd_mknonnuma(entry);
  1364. entry = pmd_modify(entry, newprot);
  1365. ret = HPAGE_PMD_NR;
  1366. set_pmd_at(mm, addr, pmd, entry);
  1367. BUG_ON(pmd_write(entry));
  1368. } else {
  1369. struct page *page = pmd_page(*pmd);
  1370. /*
  1371. * Do not trap faults against the zero page. The
  1372. * read-only data is likely to be read-cached on the
  1373. * local CPU cache and it is less useful to know about
  1374. * local vs remote hits on the zero page.
  1375. */
  1376. if (!is_huge_zero_page(page) &&
  1377. !pmd_numa(*pmd)) {
  1378. pmdp_set_numa(mm, addr, pmd);
  1379. ret = HPAGE_PMD_NR;
  1380. }
  1381. }
  1382. spin_unlock(ptl);
  1383. }
  1384. return ret;
  1385. }
  1386. /*
  1387. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1388. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1389. *
  1390. * Note that if it returns 1, this routine returns without unlocking page
  1391. * table locks. So callers must unlock them.
  1392. */
  1393. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
  1394. spinlock_t **ptl)
  1395. {
  1396. *ptl = pmd_lock(vma->vm_mm, pmd);
  1397. if (likely(pmd_trans_huge(*pmd))) {
  1398. if (unlikely(pmd_trans_splitting(*pmd))) {
  1399. spin_unlock(*ptl);
  1400. wait_split_huge_page(vma->anon_vma, pmd);
  1401. return -1;
  1402. } else {
  1403. /* Thp mapped by 'pmd' is stable, so we can
  1404. * handle it as it is. */
  1405. return 1;
  1406. }
  1407. }
  1408. spin_unlock(*ptl);
  1409. return 0;
  1410. }
  1411. /*
  1412. * This function returns whether a given @page is mapped onto the @address
  1413. * in the virtual space of @mm.
  1414. *
  1415. * When it's true, this function returns *pmd with holding the page table lock
  1416. * and passing it back to the caller via @ptl.
  1417. * If it's false, returns NULL without holding the page table lock.
  1418. */
  1419. pmd_t *page_check_address_pmd(struct page *page,
  1420. struct mm_struct *mm,
  1421. unsigned long address,
  1422. enum page_check_address_pmd_flag flag,
  1423. spinlock_t **ptl)
  1424. {
  1425. pmd_t *pmd;
  1426. if (address & ~HPAGE_PMD_MASK)
  1427. return NULL;
  1428. pmd = mm_find_pmd(mm, address);
  1429. if (!pmd)
  1430. return NULL;
  1431. *ptl = pmd_lock(mm, pmd);
  1432. if (pmd_none(*pmd))
  1433. goto unlock;
  1434. if (pmd_page(*pmd) != page)
  1435. goto unlock;
  1436. /*
  1437. * split_vma() may create temporary aliased mappings. There is
  1438. * no risk as long as all huge pmd are found and have their
  1439. * splitting bit set before __split_huge_page_refcount
  1440. * runs. Finding the same huge pmd more than once during the
  1441. * same rmap walk is not a problem.
  1442. */
  1443. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1444. pmd_trans_splitting(*pmd))
  1445. goto unlock;
  1446. if (pmd_trans_huge(*pmd)) {
  1447. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1448. !pmd_trans_splitting(*pmd));
  1449. return pmd;
  1450. }
  1451. unlock:
  1452. spin_unlock(*ptl);
  1453. return NULL;
  1454. }
  1455. static int __split_huge_page_splitting(struct page *page,
  1456. struct vm_area_struct *vma,
  1457. unsigned long address)
  1458. {
  1459. struct mm_struct *mm = vma->vm_mm;
  1460. spinlock_t *ptl;
  1461. pmd_t *pmd;
  1462. int ret = 0;
  1463. /* For mmu_notifiers */
  1464. const unsigned long mmun_start = address;
  1465. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1466. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1467. pmd = page_check_address_pmd(page, mm, address,
  1468. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
  1469. if (pmd) {
  1470. /*
  1471. * We can't temporarily set the pmd to null in order
  1472. * to split it, the pmd must remain marked huge at all
  1473. * times or the VM won't take the pmd_trans_huge paths
  1474. * and it won't wait on the anon_vma->root->rwsem to
  1475. * serialize against split_huge_page*.
  1476. */
  1477. pmdp_splitting_flush(vma, address, pmd);
  1478. ret = 1;
  1479. spin_unlock(ptl);
  1480. }
  1481. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1482. return ret;
  1483. }
  1484. static void __split_huge_page_refcount(struct page *page,
  1485. struct list_head *list)
  1486. {
  1487. int i;
  1488. struct zone *zone = page_zone(page);
  1489. struct lruvec *lruvec;
  1490. int tail_count = 0;
  1491. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1492. spin_lock_irq(&zone->lru_lock);
  1493. lruvec = mem_cgroup_page_lruvec(page, zone);
  1494. compound_lock(page);
  1495. /* complete memcg works before add pages to LRU */
  1496. mem_cgroup_split_huge_fixup(page);
  1497. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1498. struct page *page_tail = page + i;
  1499. /* tail_page->_mapcount cannot change */
  1500. BUG_ON(page_mapcount(page_tail) < 0);
  1501. tail_count += page_mapcount(page_tail);
  1502. /* check for overflow */
  1503. BUG_ON(tail_count < 0);
  1504. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1505. /*
  1506. * tail_page->_count is zero and not changing from
  1507. * under us. But get_page_unless_zero() may be running
  1508. * from under us on the tail_page. If we used
  1509. * atomic_set() below instead of atomic_add(), we
  1510. * would then run atomic_set() concurrently with
  1511. * get_page_unless_zero(), and atomic_set() is
  1512. * implemented in C not using locked ops. spin_unlock
  1513. * on x86 sometime uses locked ops because of PPro
  1514. * errata 66, 92, so unless somebody can guarantee
  1515. * atomic_set() here would be safe on all archs (and
  1516. * not only on x86), it's safer to use atomic_add().
  1517. */
  1518. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1519. &page_tail->_count);
  1520. /* after clearing PageTail the gup refcount can be released */
  1521. smp_mb();
  1522. /*
  1523. * retain hwpoison flag of the poisoned tail page:
  1524. * fix for the unsuitable process killed on Guest Machine(KVM)
  1525. * by the memory-failure.
  1526. */
  1527. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1528. page_tail->flags |= (page->flags &
  1529. ((1L << PG_referenced) |
  1530. (1L << PG_swapbacked) |
  1531. (1L << PG_mlocked) |
  1532. (1L << PG_uptodate) |
  1533. (1L << PG_active) |
  1534. (1L << PG_unevictable)));
  1535. page_tail->flags |= (1L << PG_dirty);
  1536. /* clear PageTail before overwriting first_page */
  1537. smp_wmb();
  1538. /*
  1539. * __split_huge_page_splitting() already set the
  1540. * splitting bit in all pmd that could map this
  1541. * hugepage, that will ensure no CPU can alter the
  1542. * mapcount on the head page. The mapcount is only
  1543. * accounted in the head page and it has to be
  1544. * transferred to all tail pages in the below code. So
  1545. * for this code to be safe, the split the mapcount
  1546. * can't change. But that doesn't mean userland can't
  1547. * keep changing and reading the page contents while
  1548. * we transfer the mapcount, so the pmd splitting
  1549. * status is achieved setting a reserved bit in the
  1550. * pmd, not by clearing the present bit.
  1551. */
  1552. page_tail->_mapcount = page->_mapcount;
  1553. BUG_ON(page_tail->mapping);
  1554. page_tail->mapping = page->mapping;
  1555. page_tail->index = page->index + i;
  1556. page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
  1557. BUG_ON(!PageAnon(page_tail));
  1558. BUG_ON(!PageUptodate(page_tail));
  1559. BUG_ON(!PageDirty(page_tail));
  1560. BUG_ON(!PageSwapBacked(page_tail));
  1561. lru_add_page_tail(page, page_tail, lruvec, list);
  1562. }
  1563. atomic_sub(tail_count, &page->_count);
  1564. BUG_ON(atomic_read(&page->_count) <= 0);
  1565. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1566. ClearPageCompound(page);
  1567. compound_unlock(page);
  1568. spin_unlock_irq(&zone->lru_lock);
  1569. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1570. struct page *page_tail = page + i;
  1571. BUG_ON(page_count(page_tail) <= 0);
  1572. /*
  1573. * Tail pages may be freed if there wasn't any mapping
  1574. * like if add_to_swap() is running on a lru page that
  1575. * had its mapping zapped. And freeing these pages
  1576. * requires taking the lru_lock so we do the put_page
  1577. * of the tail pages after the split is complete.
  1578. */
  1579. put_page(page_tail);
  1580. }
  1581. /*
  1582. * Only the head page (now become a regular page) is required
  1583. * to be pinned by the caller.
  1584. */
  1585. BUG_ON(page_count(page) <= 0);
  1586. }
  1587. static int __split_huge_page_map(struct page *page,
  1588. struct vm_area_struct *vma,
  1589. unsigned long address)
  1590. {
  1591. struct mm_struct *mm = vma->vm_mm;
  1592. spinlock_t *ptl;
  1593. pmd_t *pmd, _pmd;
  1594. int ret = 0, i;
  1595. pgtable_t pgtable;
  1596. unsigned long haddr;
  1597. pmd = page_check_address_pmd(page, mm, address,
  1598. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
  1599. if (pmd) {
  1600. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1601. pmd_populate(mm, &_pmd, pgtable);
  1602. haddr = address;
  1603. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1604. pte_t *pte, entry;
  1605. BUG_ON(PageCompound(page+i));
  1606. entry = mk_pte(page + i, vma->vm_page_prot);
  1607. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1608. if (!pmd_write(*pmd))
  1609. entry = pte_wrprotect(entry);
  1610. else
  1611. BUG_ON(page_mapcount(page) != 1);
  1612. if (!pmd_young(*pmd))
  1613. entry = pte_mkold(entry);
  1614. if (pmd_numa(*pmd))
  1615. entry = pte_mknuma(entry);
  1616. pte = pte_offset_map(&_pmd, haddr);
  1617. BUG_ON(!pte_none(*pte));
  1618. set_pte_at(mm, haddr, pte, entry);
  1619. pte_unmap(pte);
  1620. }
  1621. smp_wmb(); /* make pte visible before pmd */
  1622. /*
  1623. * Up to this point the pmd is present and huge and
  1624. * userland has the whole access to the hugepage
  1625. * during the split (which happens in place). If we
  1626. * overwrite the pmd with the not-huge version
  1627. * pointing to the pte here (which of course we could
  1628. * if all CPUs were bug free), userland could trigger
  1629. * a small page size TLB miss on the small sized TLB
  1630. * while the hugepage TLB entry is still established
  1631. * in the huge TLB. Some CPU doesn't like that. See
  1632. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1633. * Erratum 383 on page 93. Intel should be safe but is
  1634. * also warns that it's only safe if the permission
  1635. * and cache attributes of the two entries loaded in
  1636. * the two TLB is identical (which should be the case
  1637. * here). But it is generally safer to never allow
  1638. * small and huge TLB entries for the same virtual
  1639. * address to be loaded simultaneously. So instead of
  1640. * doing "pmd_populate(); flush_tlb_range();" we first
  1641. * mark the current pmd notpresent (atomically because
  1642. * here the pmd_trans_huge and pmd_trans_splitting
  1643. * must remain set at all times on the pmd until the
  1644. * split is complete for this pmd), then we flush the
  1645. * SMP TLB and finally we write the non-huge version
  1646. * of the pmd entry with pmd_populate.
  1647. */
  1648. pmdp_invalidate(vma, address, pmd);
  1649. pmd_populate(mm, pmd, pgtable);
  1650. ret = 1;
  1651. spin_unlock(ptl);
  1652. }
  1653. return ret;
  1654. }
  1655. /* must be called with anon_vma->root->rwsem held */
  1656. static void __split_huge_page(struct page *page,
  1657. struct anon_vma *anon_vma,
  1658. struct list_head *list)
  1659. {
  1660. int mapcount, mapcount2;
  1661. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1662. struct anon_vma_chain *avc;
  1663. BUG_ON(!PageHead(page));
  1664. BUG_ON(PageTail(page));
  1665. mapcount = 0;
  1666. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1667. struct vm_area_struct *vma = avc->vma;
  1668. unsigned long addr = vma_address(page, vma);
  1669. BUG_ON(is_vma_temporary_stack(vma));
  1670. mapcount += __split_huge_page_splitting(page, vma, addr);
  1671. }
  1672. /*
  1673. * It is critical that new vmas are added to the tail of the
  1674. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1675. * and establishes a child pmd before
  1676. * __split_huge_page_splitting() freezes the parent pmd (so if
  1677. * we fail to prevent copy_huge_pmd() from running until the
  1678. * whole __split_huge_page() is complete), we will still see
  1679. * the newly established pmd of the child later during the
  1680. * walk, to be able to set it as pmd_trans_splitting too.
  1681. */
  1682. if (mapcount != page_mapcount(page))
  1683. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1684. mapcount, page_mapcount(page));
  1685. BUG_ON(mapcount != page_mapcount(page));
  1686. __split_huge_page_refcount(page, list);
  1687. mapcount2 = 0;
  1688. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1689. struct vm_area_struct *vma = avc->vma;
  1690. unsigned long addr = vma_address(page, vma);
  1691. BUG_ON(is_vma_temporary_stack(vma));
  1692. mapcount2 += __split_huge_page_map(page, vma, addr);
  1693. }
  1694. if (mapcount != mapcount2)
  1695. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1696. mapcount, mapcount2, page_mapcount(page));
  1697. BUG_ON(mapcount != mapcount2);
  1698. }
  1699. /*
  1700. * Split a hugepage into normal pages. This doesn't change the position of head
  1701. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1702. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1703. * from the hugepage.
  1704. * Return 0 if the hugepage is split successfully otherwise return 1.
  1705. */
  1706. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1707. {
  1708. struct anon_vma *anon_vma;
  1709. int ret = 1;
  1710. BUG_ON(is_huge_zero_page(page));
  1711. BUG_ON(!PageAnon(page));
  1712. /*
  1713. * The caller does not necessarily hold an mmap_sem that would prevent
  1714. * the anon_vma disappearing so we first we take a reference to it
  1715. * and then lock the anon_vma for write. This is similar to
  1716. * page_lock_anon_vma_read except the write lock is taken to serialise
  1717. * against parallel split or collapse operations.
  1718. */
  1719. anon_vma = page_get_anon_vma(page);
  1720. if (!anon_vma)
  1721. goto out;
  1722. anon_vma_lock_write(anon_vma);
  1723. ret = 0;
  1724. if (!PageCompound(page))
  1725. goto out_unlock;
  1726. BUG_ON(!PageSwapBacked(page));
  1727. __split_huge_page(page, anon_vma, list);
  1728. count_vm_event(THP_SPLIT);
  1729. BUG_ON(PageCompound(page));
  1730. out_unlock:
  1731. anon_vma_unlock_write(anon_vma);
  1732. put_anon_vma(anon_vma);
  1733. out:
  1734. return ret;
  1735. }
  1736. #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
  1737. int hugepage_madvise(struct vm_area_struct *vma,
  1738. unsigned long *vm_flags, int advice)
  1739. {
  1740. struct mm_struct *mm = vma->vm_mm;
  1741. switch (advice) {
  1742. case MADV_HUGEPAGE:
  1743. /*
  1744. * Be somewhat over-protective like KSM for now!
  1745. */
  1746. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1747. return -EINVAL;
  1748. if (mm->def_flags & VM_NOHUGEPAGE)
  1749. return -EINVAL;
  1750. *vm_flags &= ~VM_NOHUGEPAGE;
  1751. *vm_flags |= VM_HUGEPAGE;
  1752. /*
  1753. * If the vma become good for khugepaged to scan,
  1754. * register it here without waiting a page fault that
  1755. * may not happen any time soon.
  1756. */
  1757. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1758. return -ENOMEM;
  1759. break;
  1760. case MADV_NOHUGEPAGE:
  1761. /*
  1762. * Be somewhat over-protective like KSM for now!
  1763. */
  1764. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1765. return -EINVAL;
  1766. *vm_flags &= ~VM_HUGEPAGE;
  1767. *vm_flags |= VM_NOHUGEPAGE;
  1768. /*
  1769. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1770. * this vma even if we leave the mm registered in khugepaged if
  1771. * it got registered before VM_NOHUGEPAGE was set.
  1772. */
  1773. break;
  1774. }
  1775. return 0;
  1776. }
  1777. static int __init khugepaged_slab_init(void)
  1778. {
  1779. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1780. sizeof(struct mm_slot),
  1781. __alignof__(struct mm_slot), 0, NULL);
  1782. if (!mm_slot_cache)
  1783. return -ENOMEM;
  1784. return 0;
  1785. }
  1786. static inline struct mm_slot *alloc_mm_slot(void)
  1787. {
  1788. if (!mm_slot_cache) /* initialization failed */
  1789. return NULL;
  1790. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1791. }
  1792. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1793. {
  1794. kmem_cache_free(mm_slot_cache, mm_slot);
  1795. }
  1796. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1797. {
  1798. struct mm_slot *mm_slot;
  1799. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1800. if (mm == mm_slot->mm)
  1801. return mm_slot;
  1802. return NULL;
  1803. }
  1804. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1805. struct mm_slot *mm_slot)
  1806. {
  1807. mm_slot->mm = mm;
  1808. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1809. }
  1810. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1811. {
  1812. return atomic_read(&mm->mm_users) == 0;
  1813. }
  1814. int __khugepaged_enter(struct mm_struct *mm)
  1815. {
  1816. struct mm_slot *mm_slot;
  1817. int wakeup;
  1818. mm_slot = alloc_mm_slot();
  1819. if (!mm_slot)
  1820. return -ENOMEM;
  1821. /* __khugepaged_exit() must not run from under us */
  1822. VM_BUG_ON(khugepaged_test_exit(mm));
  1823. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1824. free_mm_slot(mm_slot);
  1825. return 0;
  1826. }
  1827. spin_lock(&khugepaged_mm_lock);
  1828. insert_to_mm_slots_hash(mm, mm_slot);
  1829. /*
  1830. * Insert just behind the scanning cursor, to let the area settle
  1831. * down a little.
  1832. */
  1833. wakeup = list_empty(&khugepaged_scan.mm_head);
  1834. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1835. spin_unlock(&khugepaged_mm_lock);
  1836. atomic_inc(&mm->mm_count);
  1837. if (wakeup)
  1838. wake_up_interruptible(&khugepaged_wait);
  1839. return 0;
  1840. }
  1841. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1842. {
  1843. unsigned long hstart, hend;
  1844. if (!vma->anon_vma)
  1845. /*
  1846. * Not yet faulted in so we will register later in the
  1847. * page fault if needed.
  1848. */
  1849. return 0;
  1850. if (vma->vm_ops)
  1851. /* khugepaged not yet working on file or special mappings */
  1852. return 0;
  1853. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1854. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1855. hend = vma->vm_end & HPAGE_PMD_MASK;
  1856. if (hstart < hend)
  1857. return khugepaged_enter(vma);
  1858. return 0;
  1859. }
  1860. void __khugepaged_exit(struct mm_struct *mm)
  1861. {
  1862. struct mm_slot *mm_slot;
  1863. int free = 0;
  1864. spin_lock(&khugepaged_mm_lock);
  1865. mm_slot = get_mm_slot(mm);
  1866. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1867. hash_del(&mm_slot->hash);
  1868. list_del(&mm_slot->mm_node);
  1869. free = 1;
  1870. }
  1871. spin_unlock(&khugepaged_mm_lock);
  1872. if (free) {
  1873. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1874. free_mm_slot(mm_slot);
  1875. mmdrop(mm);
  1876. } else if (mm_slot) {
  1877. /*
  1878. * This is required to serialize against
  1879. * khugepaged_test_exit() (which is guaranteed to run
  1880. * under mmap sem read mode). Stop here (after we
  1881. * return all pagetables will be destroyed) until
  1882. * khugepaged has finished working on the pagetables
  1883. * under the mmap_sem.
  1884. */
  1885. down_write(&mm->mmap_sem);
  1886. up_write(&mm->mmap_sem);
  1887. }
  1888. }
  1889. static void release_pte_page(struct page *page)
  1890. {
  1891. /* 0 stands for page_is_file_cache(page) == false */
  1892. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1893. unlock_page(page);
  1894. putback_lru_page(page);
  1895. }
  1896. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1897. {
  1898. while (--_pte >= pte) {
  1899. pte_t pteval = *_pte;
  1900. if (!pte_none(pteval))
  1901. release_pte_page(pte_page(pteval));
  1902. }
  1903. }
  1904. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1905. unsigned long address,
  1906. pte_t *pte)
  1907. {
  1908. struct page *page;
  1909. pte_t *_pte;
  1910. int referenced = 0, none = 0;
  1911. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1912. _pte++, address += PAGE_SIZE) {
  1913. pte_t pteval = *_pte;
  1914. if (pte_none(pteval)) {
  1915. if (++none <= khugepaged_max_ptes_none)
  1916. continue;
  1917. else
  1918. goto out;
  1919. }
  1920. if (!pte_present(pteval) || !pte_write(pteval))
  1921. goto out;
  1922. page = vm_normal_page(vma, address, pteval);
  1923. if (unlikely(!page))
  1924. goto out;
  1925. VM_BUG_ON_PAGE(PageCompound(page), page);
  1926. VM_BUG_ON_PAGE(!PageAnon(page), page);
  1927. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1928. /* cannot use mapcount: can't collapse if there's a gup pin */
  1929. if (page_count(page) != 1)
  1930. goto out;
  1931. /*
  1932. * We can do it before isolate_lru_page because the
  1933. * page can't be freed from under us. NOTE: PG_lock
  1934. * is needed to serialize against split_huge_page
  1935. * when invoked from the VM.
  1936. */
  1937. if (!trylock_page(page))
  1938. goto out;
  1939. /*
  1940. * Isolate the page to avoid collapsing an hugepage
  1941. * currently in use by the VM.
  1942. */
  1943. if (isolate_lru_page(page)) {
  1944. unlock_page(page);
  1945. goto out;
  1946. }
  1947. /* 0 stands for page_is_file_cache(page) == false */
  1948. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1949. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1950. VM_BUG_ON_PAGE(PageLRU(page), page);
  1951. /* If there is no mapped pte young don't collapse the page */
  1952. if (pte_young(pteval) || PageReferenced(page) ||
  1953. mmu_notifier_test_young(vma->vm_mm, address))
  1954. referenced = 1;
  1955. }
  1956. if (likely(referenced))
  1957. return 1;
  1958. out:
  1959. release_pte_pages(pte, _pte);
  1960. return 0;
  1961. }
  1962. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1963. struct vm_area_struct *vma,
  1964. unsigned long address,
  1965. spinlock_t *ptl)
  1966. {
  1967. pte_t *_pte;
  1968. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1969. pte_t pteval = *_pte;
  1970. struct page *src_page;
  1971. if (pte_none(pteval)) {
  1972. clear_user_highpage(page, address);
  1973. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1974. } else {
  1975. src_page = pte_page(pteval);
  1976. copy_user_highpage(page, src_page, address, vma);
  1977. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  1978. release_pte_page(src_page);
  1979. /*
  1980. * ptl mostly unnecessary, but preempt has to
  1981. * be disabled to update the per-cpu stats
  1982. * inside page_remove_rmap().
  1983. */
  1984. spin_lock(ptl);
  1985. /*
  1986. * paravirt calls inside pte_clear here are
  1987. * superfluous.
  1988. */
  1989. pte_clear(vma->vm_mm, address, _pte);
  1990. page_remove_rmap(src_page);
  1991. spin_unlock(ptl);
  1992. free_page_and_swap_cache(src_page);
  1993. }
  1994. address += PAGE_SIZE;
  1995. page++;
  1996. }
  1997. }
  1998. static void khugepaged_alloc_sleep(void)
  1999. {
  2000. wait_event_freezable_timeout(khugepaged_wait, false,
  2001. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  2002. }
  2003. static int khugepaged_node_load[MAX_NUMNODES];
  2004. #ifdef CONFIG_NUMA
  2005. static int khugepaged_find_target_node(void)
  2006. {
  2007. static int last_khugepaged_target_node = NUMA_NO_NODE;
  2008. int nid, target_node = 0, max_value = 0;
  2009. /* find first node with max normal pages hit */
  2010. for (nid = 0; nid < MAX_NUMNODES; nid++)
  2011. if (khugepaged_node_load[nid] > max_value) {
  2012. max_value = khugepaged_node_load[nid];
  2013. target_node = nid;
  2014. }
  2015. /* do some balance if several nodes have the same hit record */
  2016. if (target_node <= last_khugepaged_target_node)
  2017. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  2018. nid++)
  2019. if (max_value == khugepaged_node_load[nid]) {
  2020. target_node = nid;
  2021. break;
  2022. }
  2023. last_khugepaged_target_node = target_node;
  2024. return target_node;
  2025. }
  2026. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2027. {
  2028. if (IS_ERR(*hpage)) {
  2029. if (!*wait)
  2030. return false;
  2031. *wait = false;
  2032. *hpage = NULL;
  2033. khugepaged_alloc_sleep();
  2034. } else if (*hpage) {
  2035. put_page(*hpage);
  2036. *hpage = NULL;
  2037. }
  2038. return true;
  2039. }
  2040. static struct page
  2041. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  2042. struct vm_area_struct *vma, unsigned long address,
  2043. int node)
  2044. {
  2045. VM_BUG_ON_PAGE(*hpage, *hpage);
  2046. /*
  2047. * Allocate the page while the vma is still valid and under
  2048. * the mmap_sem read mode so there is no memory allocation
  2049. * later when we take the mmap_sem in write mode. This is more
  2050. * friendly behavior (OTOH it may actually hide bugs) to
  2051. * filesystems in userland with daemons allocating memory in
  2052. * the userland I/O paths. Allocating memory with the
  2053. * mmap_sem in read mode is good idea also to allow greater
  2054. * scalability.
  2055. */
  2056. *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
  2057. khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
  2058. /*
  2059. * After allocating the hugepage, release the mmap_sem read lock in
  2060. * preparation for taking it in write mode.
  2061. */
  2062. up_read(&mm->mmap_sem);
  2063. if (unlikely(!*hpage)) {
  2064. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2065. *hpage = ERR_PTR(-ENOMEM);
  2066. return NULL;
  2067. }
  2068. count_vm_event(THP_COLLAPSE_ALLOC);
  2069. return *hpage;
  2070. }
  2071. #else
  2072. static int khugepaged_find_target_node(void)
  2073. {
  2074. return 0;
  2075. }
  2076. static inline struct page *alloc_hugepage(int defrag)
  2077. {
  2078. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  2079. HPAGE_PMD_ORDER);
  2080. }
  2081. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2082. {
  2083. struct page *hpage;
  2084. do {
  2085. hpage = alloc_hugepage(khugepaged_defrag());
  2086. if (!hpage) {
  2087. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2088. if (!*wait)
  2089. return NULL;
  2090. *wait = false;
  2091. khugepaged_alloc_sleep();
  2092. } else
  2093. count_vm_event(THP_COLLAPSE_ALLOC);
  2094. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2095. return hpage;
  2096. }
  2097. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2098. {
  2099. if (!*hpage)
  2100. *hpage = khugepaged_alloc_hugepage(wait);
  2101. if (unlikely(!*hpage))
  2102. return false;
  2103. return true;
  2104. }
  2105. static struct page
  2106. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  2107. struct vm_area_struct *vma, unsigned long address,
  2108. int node)
  2109. {
  2110. up_read(&mm->mmap_sem);
  2111. VM_BUG_ON(!*hpage);
  2112. return *hpage;
  2113. }
  2114. #endif
  2115. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2116. {
  2117. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2118. (vma->vm_flags & VM_NOHUGEPAGE))
  2119. return false;
  2120. if (!vma->anon_vma || vma->vm_ops)
  2121. return false;
  2122. if (is_vma_temporary_stack(vma))
  2123. return false;
  2124. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  2125. return true;
  2126. }
  2127. static void collapse_huge_page(struct mm_struct *mm,
  2128. unsigned long address,
  2129. struct page **hpage,
  2130. struct vm_area_struct *vma,
  2131. int node)
  2132. {
  2133. pmd_t *pmd, _pmd;
  2134. pte_t *pte;
  2135. pgtable_t pgtable;
  2136. struct page *new_page;
  2137. spinlock_t *pmd_ptl, *pte_ptl;
  2138. int isolated;
  2139. unsigned long hstart, hend;
  2140. unsigned long mmun_start; /* For mmu_notifiers */
  2141. unsigned long mmun_end; /* For mmu_notifiers */
  2142. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2143. /* release the mmap_sem read lock. */
  2144. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  2145. if (!new_page)
  2146. return;
  2147. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  2148. return;
  2149. /*
  2150. * Prevent all access to pagetables with the exception of
  2151. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2152. * handled by the anon_vma lock + PG_lock.
  2153. */
  2154. down_write(&mm->mmap_sem);
  2155. if (unlikely(khugepaged_test_exit(mm)))
  2156. goto out;
  2157. vma = find_vma(mm, address);
  2158. if (!vma)
  2159. goto out;
  2160. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2161. hend = vma->vm_end & HPAGE_PMD_MASK;
  2162. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2163. goto out;
  2164. if (!hugepage_vma_check(vma))
  2165. goto out;
  2166. pmd = mm_find_pmd(mm, address);
  2167. if (!pmd)
  2168. goto out;
  2169. if (pmd_trans_huge(*pmd))
  2170. goto out;
  2171. anon_vma_lock_write(vma->anon_vma);
  2172. pte = pte_offset_map(pmd, address);
  2173. pte_ptl = pte_lockptr(mm, pmd);
  2174. mmun_start = address;
  2175. mmun_end = address + HPAGE_PMD_SIZE;
  2176. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2177. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  2178. /*
  2179. * After this gup_fast can't run anymore. This also removes
  2180. * any huge TLB entry from the CPU so we won't allow
  2181. * huge and small TLB entries for the same virtual address
  2182. * to avoid the risk of CPU bugs in that area.
  2183. */
  2184. _pmd = pmdp_clear_flush(vma, address, pmd);
  2185. spin_unlock(pmd_ptl);
  2186. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2187. spin_lock(pte_ptl);
  2188. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2189. spin_unlock(pte_ptl);
  2190. if (unlikely(!isolated)) {
  2191. pte_unmap(pte);
  2192. spin_lock(pmd_ptl);
  2193. BUG_ON(!pmd_none(*pmd));
  2194. /*
  2195. * We can only use set_pmd_at when establishing
  2196. * hugepmds and never for establishing regular pmds that
  2197. * points to regular pagetables. Use pmd_populate for that
  2198. */
  2199. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2200. spin_unlock(pmd_ptl);
  2201. anon_vma_unlock_write(vma->anon_vma);
  2202. goto out;
  2203. }
  2204. /*
  2205. * All pages are isolated and locked so anon_vma rmap
  2206. * can't run anymore.
  2207. */
  2208. anon_vma_unlock_write(vma->anon_vma);
  2209. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  2210. pte_unmap(pte);
  2211. __SetPageUptodate(new_page);
  2212. pgtable = pmd_pgtable(_pmd);
  2213. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2214. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2215. /*
  2216. * spin_lock() below is not the equivalent of smp_wmb(), so
  2217. * this is needed to avoid the copy_huge_page writes to become
  2218. * visible after the set_pmd_at() write.
  2219. */
  2220. smp_wmb();
  2221. spin_lock(pmd_ptl);
  2222. BUG_ON(!pmd_none(*pmd));
  2223. page_add_new_anon_rmap(new_page, vma, address);
  2224. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2225. set_pmd_at(mm, address, pmd, _pmd);
  2226. update_mmu_cache_pmd(vma, address, pmd);
  2227. spin_unlock(pmd_ptl);
  2228. *hpage = NULL;
  2229. khugepaged_pages_collapsed++;
  2230. out_up_write:
  2231. up_write(&mm->mmap_sem);
  2232. return;
  2233. out:
  2234. mem_cgroup_uncharge_page(new_page);
  2235. goto out_up_write;
  2236. }
  2237. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2238. struct vm_area_struct *vma,
  2239. unsigned long address,
  2240. struct page **hpage)
  2241. {
  2242. pmd_t *pmd;
  2243. pte_t *pte, *_pte;
  2244. int ret = 0, referenced = 0, none = 0;
  2245. struct page *page;
  2246. unsigned long _address;
  2247. spinlock_t *ptl;
  2248. int node = NUMA_NO_NODE;
  2249. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2250. pmd = mm_find_pmd(mm, address);
  2251. if (!pmd)
  2252. goto out;
  2253. if (pmd_trans_huge(*pmd))
  2254. goto out;
  2255. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2256. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2257. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2258. _pte++, _address += PAGE_SIZE) {
  2259. pte_t pteval = *_pte;
  2260. if (pte_none(pteval)) {
  2261. if (++none <= khugepaged_max_ptes_none)
  2262. continue;
  2263. else
  2264. goto out_unmap;
  2265. }
  2266. if (!pte_present(pteval) || !pte_write(pteval))
  2267. goto out_unmap;
  2268. page = vm_normal_page(vma, _address, pteval);
  2269. if (unlikely(!page))
  2270. goto out_unmap;
  2271. /*
  2272. * Record which node the original page is from and save this
  2273. * information to khugepaged_node_load[].
  2274. * Khupaged will allocate hugepage from the node has the max
  2275. * hit record.
  2276. */
  2277. node = page_to_nid(page);
  2278. khugepaged_node_load[node]++;
  2279. VM_BUG_ON_PAGE(PageCompound(page), page);
  2280. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2281. goto out_unmap;
  2282. /* cannot use mapcount: can't collapse if there's a gup pin */
  2283. if (page_count(page) != 1)
  2284. goto out_unmap;
  2285. if (pte_young(pteval) || PageReferenced(page) ||
  2286. mmu_notifier_test_young(vma->vm_mm, address))
  2287. referenced = 1;
  2288. }
  2289. if (referenced)
  2290. ret = 1;
  2291. out_unmap:
  2292. pte_unmap_unlock(pte, ptl);
  2293. if (ret) {
  2294. node = khugepaged_find_target_node();
  2295. /* collapse_huge_page will return with the mmap_sem released */
  2296. collapse_huge_page(mm, address, hpage, vma, node);
  2297. }
  2298. out:
  2299. return ret;
  2300. }
  2301. static void collect_mm_slot(struct mm_slot *mm_slot)
  2302. {
  2303. struct mm_struct *mm = mm_slot->mm;
  2304. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2305. if (khugepaged_test_exit(mm)) {
  2306. /* free mm_slot */
  2307. hash_del(&mm_slot->hash);
  2308. list_del(&mm_slot->mm_node);
  2309. /*
  2310. * Not strictly needed because the mm exited already.
  2311. *
  2312. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2313. */
  2314. /* khugepaged_mm_lock actually not necessary for the below */
  2315. free_mm_slot(mm_slot);
  2316. mmdrop(mm);
  2317. }
  2318. }
  2319. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2320. struct page **hpage)
  2321. __releases(&khugepaged_mm_lock)
  2322. __acquires(&khugepaged_mm_lock)
  2323. {
  2324. struct mm_slot *mm_slot;
  2325. struct mm_struct *mm;
  2326. struct vm_area_struct *vma;
  2327. int progress = 0;
  2328. VM_BUG_ON(!pages);
  2329. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2330. if (khugepaged_scan.mm_slot)
  2331. mm_slot = khugepaged_scan.mm_slot;
  2332. else {
  2333. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2334. struct mm_slot, mm_node);
  2335. khugepaged_scan.address = 0;
  2336. khugepaged_scan.mm_slot = mm_slot;
  2337. }
  2338. spin_unlock(&khugepaged_mm_lock);
  2339. mm = mm_slot->mm;
  2340. down_read(&mm->mmap_sem);
  2341. if (unlikely(khugepaged_test_exit(mm)))
  2342. vma = NULL;
  2343. else
  2344. vma = find_vma(mm, khugepaged_scan.address);
  2345. progress++;
  2346. for (; vma; vma = vma->vm_next) {
  2347. unsigned long hstart, hend;
  2348. cond_resched();
  2349. if (unlikely(khugepaged_test_exit(mm))) {
  2350. progress++;
  2351. break;
  2352. }
  2353. if (!hugepage_vma_check(vma)) {
  2354. skip:
  2355. progress++;
  2356. continue;
  2357. }
  2358. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2359. hend = vma->vm_end & HPAGE_PMD_MASK;
  2360. if (hstart >= hend)
  2361. goto skip;
  2362. if (khugepaged_scan.address > hend)
  2363. goto skip;
  2364. if (khugepaged_scan.address < hstart)
  2365. khugepaged_scan.address = hstart;
  2366. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2367. while (khugepaged_scan.address < hend) {
  2368. int ret;
  2369. cond_resched();
  2370. if (unlikely(khugepaged_test_exit(mm)))
  2371. goto breakouterloop;
  2372. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2373. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2374. hend);
  2375. ret = khugepaged_scan_pmd(mm, vma,
  2376. khugepaged_scan.address,
  2377. hpage);
  2378. /* move to next address */
  2379. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2380. progress += HPAGE_PMD_NR;
  2381. if (ret)
  2382. /* we released mmap_sem so break loop */
  2383. goto breakouterloop_mmap_sem;
  2384. if (progress >= pages)
  2385. goto breakouterloop;
  2386. }
  2387. }
  2388. breakouterloop:
  2389. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2390. breakouterloop_mmap_sem:
  2391. spin_lock(&khugepaged_mm_lock);
  2392. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2393. /*
  2394. * Release the current mm_slot if this mm is about to die, or
  2395. * if we scanned all vmas of this mm.
  2396. */
  2397. if (khugepaged_test_exit(mm) || !vma) {
  2398. /*
  2399. * Make sure that if mm_users is reaching zero while
  2400. * khugepaged runs here, khugepaged_exit will find
  2401. * mm_slot not pointing to the exiting mm.
  2402. */
  2403. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2404. khugepaged_scan.mm_slot = list_entry(
  2405. mm_slot->mm_node.next,
  2406. struct mm_slot, mm_node);
  2407. khugepaged_scan.address = 0;
  2408. } else {
  2409. khugepaged_scan.mm_slot = NULL;
  2410. khugepaged_full_scans++;
  2411. }
  2412. collect_mm_slot(mm_slot);
  2413. }
  2414. return progress;
  2415. }
  2416. static int khugepaged_has_work(void)
  2417. {
  2418. return !list_empty(&khugepaged_scan.mm_head) &&
  2419. khugepaged_enabled();
  2420. }
  2421. static int khugepaged_wait_event(void)
  2422. {
  2423. return !list_empty(&khugepaged_scan.mm_head) ||
  2424. kthread_should_stop();
  2425. }
  2426. static void khugepaged_do_scan(void)
  2427. {
  2428. struct page *hpage = NULL;
  2429. unsigned int progress = 0, pass_through_head = 0;
  2430. unsigned int pages = khugepaged_pages_to_scan;
  2431. bool wait = true;
  2432. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2433. while (progress < pages) {
  2434. if (!khugepaged_prealloc_page(&hpage, &wait))
  2435. break;
  2436. cond_resched();
  2437. if (unlikely(kthread_should_stop() || freezing(current)))
  2438. break;
  2439. spin_lock(&khugepaged_mm_lock);
  2440. if (!khugepaged_scan.mm_slot)
  2441. pass_through_head++;
  2442. if (khugepaged_has_work() &&
  2443. pass_through_head < 2)
  2444. progress += khugepaged_scan_mm_slot(pages - progress,
  2445. &hpage);
  2446. else
  2447. progress = pages;
  2448. spin_unlock(&khugepaged_mm_lock);
  2449. }
  2450. if (!IS_ERR_OR_NULL(hpage))
  2451. put_page(hpage);
  2452. }
  2453. static void khugepaged_wait_work(void)
  2454. {
  2455. try_to_freeze();
  2456. if (khugepaged_has_work()) {
  2457. if (!khugepaged_scan_sleep_millisecs)
  2458. return;
  2459. wait_event_freezable_timeout(khugepaged_wait,
  2460. kthread_should_stop(),
  2461. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2462. return;
  2463. }
  2464. if (khugepaged_enabled())
  2465. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2466. }
  2467. static int khugepaged(void *none)
  2468. {
  2469. struct mm_slot *mm_slot;
  2470. set_freezable();
  2471. set_user_nice(current, 19);
  2472. while (!kthread_should_stop()) {
  2473. khugepaged_do_scan();
  2474. khugepaged_wait_work();
  2475. }
  2476. spin_lock(&khugepaged_mm_lock);
  2477. mm_slot = khugepaged_scan.mm_slot;
  2478. khugepaged_scan.mm_slot = NULL;
  2479. if (mm_slot)
  2480. collect_mm_slot(mm_slot);
  2481. spin_unlock(&khugepaged_mm_lock);
  2482. return 0;
  2483. }
  2484. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2485. unsigned long haddr, pmd_t *pmd)
  2486. {
  2487. struct mm_struct *mm = vma->vm_mm;
  2488. pgtable_t pgtable;
  2489. pmd_t _pmd;
  2490. int i;
  2491. pmdp_clear_flush(vma, haddr, pmd);
  2492. /* leave pmd empty until pte is filled */
  2493. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2494. pmd_populate(mm, &_pmd, pgtable);
  2495. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2496. pte_t *pte, entry;
  2497. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2498. entry = pte_mkspecial(entry);
  2499. pte = pte_offset_map(&_pmd, haddr);
  2500. VM_BUG_ON(!pte_none(*pte));
  2501. set_pte_at(mm, haddr, pte, entry);
  2502. pte_unmap(pte);
  2503. }
  2504. smp_wmb(); /* make pte visible before pmd */
  2505. pmd_populate(mm, pmd, pgtable);
  2506. put_huge_zero_page();
  2507. }
  2508. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2509. pmd_t *pmd)
  2510. {
  2511. spinlock_t *ptl;
  2512. struct page *page;
  2513. struct mm_struct *mm = vma->vm_mm;
  2514. unsigned long haddr = address & HPAGE_PMD_MASK;
  2515. unsigned long mmun_start; /* For mmu_notifiers */
  2516. unsigned long mmun_end; /* For mmu_notifiers */
  2517. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2518. mmun_start = haddr;
  2519. mmun_end = haddr + HPAGE_PMD_SIZE;
  2520. again:
  2521. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2522. ptl = pmd_lock(mm, pmd);
  2523. if (unlikely(!pmd_trans_huge(*pmd))) {
  2524. spin_unlock(ptl);
  2525. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2526. return;
  2527. }
  2528. if (is_huge_zero_pmd(*pmd)) {
  2529. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2530. spin_unlock(ptl);
  2531. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2532. return;
  2533. }
  2534. page = pmd_page(*pmd);
  2535. VM_BUG_ON_PAGE(!page_count(page), page);
  2536. get_page(page);
  2537. spin_unlock(ptl);
  2538. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2539. split_huge_page(page);
  2540. put_page(page);
  2541. /*
  2542. * We don't always have down_write of mmap_sem here: a racing
  2543. * do_huge_pmd_wp_page() might have copied-on-write to another
  2544. * huge page before our split_huge_page() got the anon_vma lock.
  2545. */
  2546. if (unlikely(pmd_trans_huge(*pmd)))
  2547. goto again;
  2548. }
  2549. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2550. pmd_t *pmd)
  2551. {
  2552. struct vm_area_struct *vma;
  2553. vma = find_vma(mm, address);
  2554. BUG_ON(vma == NULL);
  2555. split_huge_page_pmd(vma, address, pmd);
  2556. }
  2557. static void split_huge_page_address(struct mm_struct *mm,
  2558. unsigned long address)
  2559. {
  2560. pmd_t *pmd;
  2561. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2562. pmd = mm_find_pmd(mm, address);
  2563. if (!pmd)
  2564. return;
  2565. /*
  2566. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2567. * materialize from under us.
  2568. */
  2569. split_huge_page_pmd_mm(mm, address, pmd);
  2570. }
  2571. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2572. unsigned long start,
  2573. unsigned long end,
  2574. long adjust_next)
  2575. {
  2576. /*
  2577. * If the new start address isn't hpage aligned and it could
  2578. * previously contain an hugepage: check if we need to split
  2579. * an huge pmd.
  2580. */
  2581. if (start & ~HPAGE_PMD_MASK &&
  2582. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2583. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2584. split_huge_page_address(vma->vm_mm, start);
  2585. /*
  2586. * If the new end address isn't hpage aligned and it could
  2587. * previously contain an hugepage: check if we need to split
  2588. * an huge pmd.
  2589. */
  2590. if (end & ~HPAGE_PMD_MASK &&
  2591. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2592. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2593. split_huge_page_address(vma->vm_mm, end);
  2594. /*
  2595. * If we're also updating the vma->vm_next->vm_start, if the new
  2596. * vm_next->vm_start isn't page aligned and it could previously
  2597. * contain an hugepage: check if we need to split an huge pmd.
  2598. */
  2599. if (adjust_next > 0) {
  2600. struct vm_area_struct *next = vma->vm_next;
  2601. unsigned long nstart = next->vm_start;
  2602. nstart += adjust_next << PAGE_SHIFT;
  2603. if (nstart & ~HPAGE_PMD_MASK &&
  2604. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2605. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2606. split_huge_page_address(next->vm_mm, nstart);
  2607. }
  2608. }