fair.c 188 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/mempolicy.h>
  29. #include <linux/migrate.h>
  30. #include <linux/task_work.h>
  31. #include <trace/events/sched.h>
  32. #include "sched.h"
  33. /*
  34. * Targeted preemption latency for CPU-bound tasks:
  35. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  36. *
  37. * NOTE: this latency value is not the same as the concept of
  38. * 'timeslice length' - timeslices in CFS are of variable length
  39. * and have no persistent notion like in traditional, time-slice
  40. * based scheduling concepts.
  41. *
  42. * (to see the precise effective timeslice length of your workload,
  43. * run vmstat and monitor the context-switches (cs) field)
  44. */
  45. unsigned int sysctl_sched_latency = 6000000ULL;
  46. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  47. /*
  48. * The initial- and re-scaling of tunables is configurable
  49. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  50. *
  51. * Options are:
  52. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  53. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  54. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  55. */
  56. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  57. = SCHED_TUNABLESCALING_LOG;
  58. /*
  59. * Minimal preemption granularity for CPU-bound tasks:
  60. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  61. */
  62. unsigned int sysctl_sched_min_granularity = 750000ULL;
  63. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  64. /*
  65. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  66. */
  67. static unsigned int sched_nr_latency = 8;
  68. /*
  69. * After fork, child runs first. If set to 0 (default) then
  70. * parent will (try to) run first.
  71. */
  72. unsigned int sysctl_sched_child_runs_first __read_mostly;
  73. /*
  74. * SCHED_OTHER wake-up granularity.
  75. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  76. *
  77. * This option delays the preemption effects of decoupled workloads
  78. * and reduces their over-scheduling. Synchronous workloads will still
  79. * have immediate wakeup/sleep latencies.
  80. */
  81. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  82. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  83. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  84. /*
  85. * The exponential sliding window over which load is averaged for shares
  86. * distribution.
  87. * (default: 10msec)
  88. */
  89. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  90. #ifdef CONFIG_CFS_BANDWIDTH
  91. /*
  92. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  93. * each time a cfs_rq requests quota.
  94. *
  95. * Note: in the case that the slice exceeds the runtime remaining (either due
  96. * to consumption or the quota being specified to be smaller than the slice)
  97. * we will always only issue the remaining available time.
  98. *
  99. * default: 5 msec, units: microseconds
  100. */
  101. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  102. #endif
  103. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  104. {
  105. lw->weight += inc;
  106. lw->inv_weight = 0;
  107. }
  108. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  109. {
  110. lw->weight -= dec;
  111. lw->inv_weight = 0;
  112. }
  113. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  114. {
  115. lw->weight = w;
  116. lw->inv_weight = 0;
  117. }
  118. /*
  119. * Increase the granularity value when there are more CPUs,
  120. * because with more CPUs the 'effective latency' as visible
  121. * to users decreases. But the relationship is not linear,
  122. * so pick a second-best guess by going with the log2 of the
  123. * number of CPUs.
  124. *
  125. * This idea comes from the SD scheduler of Con Kolivas:
  126. */
  127. static int get_update_sysctl_factor(void)
  128. {
  129. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  130. unsigned int factor;
  131. switch (sysctl_sched_tunable_scaling) {
  132. case SCHED_TUNABLESCALING_NONE:
  133. factor = 1;
  134. break;
  135. case SCHED_TUNABLESCALING_LINEAR:
  136. factor = cpus;
  137. break;
  138. case SCHED_TUNABLESCALING_LOG:
  139. default:
  140. factor = 1 + ilog2(cpus);
  141. break;
  142. }
  143. return factor;
  144. }
  145. static void update_sysctl(void)
  146. {
  147. unsigned int factor = get_update_sysctl_factor();
  148. #define SET_SYSCTL(name) \
  149. (sysctl_##name = (factor) * normalized_sysctl_##name)
  150. SET_SYSCTL(sched_min_granularity);
  151. SET_SYSCTL(sched_latency);
  152. SET_SYSCTL(sched_wakeup_granularity);
  153. #undef SET_SYSCTL
  154. }
  155. void sched_init_granularity(void)
  156. {
  157. update_sysctl();
  158. }
  159. #define WMULT_CONST (~0U)
  160. #define WMULT_SHIFT 32
  161. static void __update_inv_weight(struct load_weight *lw)
  162. {
  163. unsigned long w;
  164. if (likely(lw->inv_weight))
  165. return;
  166. w = scale_load_down(lw->weight);
  167. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  168. lw->inv_weight = 1;
  169. else if (unlikely(!w))
  170. lw->inv_weight = WMULT_CONST;
  171. else
  172. lw->inv_weight = WMULT_CONST / w;
  173. }
  174. /*
  175. * delta_exec * weight / lw.weight
  176. * OR
  177. * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
  178. *
  179. * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
  180. * we're guaranteed shift stays positive because inv_weight is guaranteed to
  181. * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
  182. *
  183. * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
  184. * weight/lw.weight <= 1, and therefore our shift will also be positive.
  185. */
  186. static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
  187. {
  188. u64 fact = scale_load_down(weight);
  189. int shift = WMULT_SHIFT;
  190. __update_inv_weight(lw);
  191. if (unlikely(fact >> 32)) {
  192. while (fact >> 32) {
  193. fact >>= 1;
  194. shift--;
  195. }
  196. }
  197. /* hint to use a 32x32->64 mul */
  198. fact = (u64)(u32)fact * lw->inv_weight;
  199. while (fact >> 32) {
  200. fact >>= 1;
  201. shift--;
  202. }
  203. return mul_u64_u32_shr(delta_exec, fact, shift);
  204. }
  205. const struct sched_class fair_sched_class;
  206. /**************************************************************
  207. * CFS operations on generic schedulable entities:
  208. */
  209. #ifdef CONFIG_FAIR_GROUP_SCHED
  210. /* cpu runqueue to which this cfs_rq is attached */
  211. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  212. {
  213. return cfs_rq->rq;
  214. }
  215. /* An entity is a task if it doesn't "own" a runqueue */
  216. #define entity_is_task(se) (!se->my_q)
  217. static inline struct task_struct *task_of(struct sched_entity *se)
  218. {
  219. #ifdef CONFIG_SCHED_DEBUG
  220. WARN_ON_ONCE(!entity_is_task(se));
  221. #endif
  222. return container_of(se, struct task_struct, se);
  223. }
  224. /* Walk up scheduling entities hierarchy */
  225. #define for_each_sched_entity(se) \
  226. for (; se; se = se->parent)
  227. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  228. {
  229. return p->se.cfs_rq;
  230. }
  231. /* runqueue on which this entity is (to be) queued */
  232. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  233. {
  234. return se->cfs_rq;
  235. }
  236. /* runqueue "owned" by this group */
  237. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  238. {
  239. return grp->my_q;
  240. }
  241. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  242. int force_update);
  243. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  244. {
  245. if (!cfs_rq->on_list) {
  246. /*
  247. * Ensure we either appear before our parent (if already
  248. * enqueued) or force our parent to appear after us when it is
  249. * enqueued. The fact that we always enqueue bottom-up
  250. * reduces this to two cases.
  251. */
  252. if (cfs_rq->tg->parent &&
  253. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  254. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  255. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  256. } else {
  257. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  258. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  259. }
  260. cfs_rq->on_list = 1;
  261. /* We should have no load, but we need to update last_decay. */
  262. update_cfs_rq_blocked_load(cfs_rq, 0);
  263. }
  264. }
  265. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  266. {
  267. if (cfs_rq->on_list) {
  268. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  269. cfs_rq->on_list = 0;
  270. }
  271. }
  272. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  273. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  274. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  275. /* Do the two (enqueued) entities belong to the same group ? */
  276. static inline int
  277. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  278. {
  279. if (se->cfs_rq == pse->cfs_rq)
  280. return 1;
  281. return 0;
  282. }
  283. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  284. {
  285. return se->parent;
  286. }
  287. /* return depth at which a sched entity is present in the hierarchy */
  288. static inline int depth_se(struct sched_entity *se)
  289. {
  290. int depth = 0;
  291. for_each_sched_entity(se)
  292. depth++;
  293. return depth;
  294. }
  295. static void
  296. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  297. {
  298. int se_depth, pse_depth;
  299. /*
  300. * preemption test can be made between sibling entities who are in the
  301. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  302. * both tasks until we find their ancestors who are siblings of common
  303. * parent.
  304. */
  305. /* First walk up until both entities are at same depth */
  306. se_depth = depth_se(*se);
  307. pse_depth = depth_se(*pse);
  308. while (se_depth > pse_depth) {
  309. se_depth--;
  310. *se = parent_entity(*se);
  311. }
  312. while (pse_depth > se_depth) {
  313. pse_depth--;
  314. *pse = parent_entity(*pse);
  315. }
  316. while (!is_same_group(*se, *pse)) {
  317. *se = parent_entity(*se);
  318. *pse = parent_entity(*pse);
  319. }
  320. }
  321. #else /* !CONFIG_FAIR_GROUP_SCHED */
  322. static inline struct task_struct *task_of(struct sched_entity *se)
  323. {
  324. return container_of(se, struct task_struct, se);
  325. }
  326. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  327. {
  328. return container_of(cfs_rq, struct rq, cfs);
  329. }
  330. #define entity_is_task(se) 1
  331. #define for_each_sched_entity(se) \
  332. for (; se; se = NULL)
  333. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  334. {
  335. return &task_rq(p)->cfs;
  336. }
  337. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  338. {
  339. struct task_struct *p = task_of(se);
  340. struct rq *rq = task_rq(p);
  341. return &rq->cfs;
  342. }
  343. /* runqueue "owned" by this group */
  344. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  345. {
  346. return NULL;
  347. }
  348. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  349. {
  350. }
  351. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  352. {
  353. }
  354. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  355. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  356. static inline int
  357. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  358. {
  359. return 1;
  360. }
  361. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  362. {
  363. return NULL;
  364. }
  365. static inline void
  366. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  367. {
  368. }
  369. #endif /* CONFIG_FAIR_GROUP_SCHED */
  370. static __always_inline
  371. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
  372. /**************************************************************
  373. * Scheduling class tree data structure manipulation methods:
  374. */
  375. static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
  376. {
  377. s64 delta = (s64)(vruntime - max_vruntime);
  378. if (delta > 0)
  379. max_vruntime = vruntime;
  380. return max_vruntime;
  381. }
  382. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  383. {
  384. s64 delta = (s64)(vruntime - min_vruntime);
  385. if (delta < 0)
  386. min_vruntime = vruntime;
  387. return min_vruntime;
  388. }
  389. static inline int entity_before(struct sched_entity *a,
  390. struct sched_entity *b)
  391. {
  392. return (s64)(a->vruntime - b->vruntime) < 0;
  393. }
  394. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  395. {
  396. u64 vruntime = cfs_rq->min_vruntime;
  397. if (cfs_rq->curr)
  398. vruntime = cfs_rq->curr->vruntime;
  399. if (cfs_rq->rb_leftmost) {
  400. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  401. struct sched_entity,
  402. run_node);
  403. if (!cfs_rq->curr)
  404. vruntime = se->vruntime;
  405. else
  406. vruntime = min_vruntime(vruntime, se->vruntime);
  407. }
  408. /* ensure we never gain time by being placed backwards. */
  409. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  410. #ifndef CONFIG_64BIT
  411. smp_wmb();
  412. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  413. #endif
  414. }
  415. /*
  416. * Enqueue an entity into the rb-tree:
  417. */
  418. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  419. {
  420. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  421. struct rb_node *parent = NULL;
  422. struct sched_entity *entry;
  423. int leftmost = 1;
  424. /*
  425. * Find the right place in the rbtree:
  426. */
  427. while (*link) {
  428. parent = *link;
  429. entry = rb_entry(parent, struct sched_entity, run_node);
  430. /*
  431. * We dont care about collisions. Nodes with
  432. * the same key stay together.
  433. */
  434. if (entity_before(se, entry)) {
  435. link = &parent->rb_left;
  436. } else {
  437. link = &parent->rb_right;
  438. leftmost = 0;
  439. }
  440. }
  441. /*
  442. * Maintain a cache of leftmost tree entries (it is frequently
  443. * used):
  444. */
  445. if (leftmost)
  446. cfs_rq->rb_leftmost = &se->run_node;
  447. rb_link_node(&se->run_node, parent, link);
  448. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  449. }
  450. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  451. {
  452. if (cfs_rq->rb_leftmost == &se->run_node) {
  453. struct rb_node *next_node;
  454. next_node = rb_next(&se->run_node);
  455. cfs_rq->rb_leftmost = next_node;
  456. }
  457. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  458. }
  459. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  460. {
  461. struct rb_node *left = cfs_rq->rb_leftmost;
  462. if (!left)
  463. return NULL;
  464. return rb_entry(left, struct sched_entity, run_node);
  465. }
  466. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  467. {
  468. struct rb_node *next = rb_next(&se->run_node);
  469. if (!next)
  470. return NULL;
  471. return rb_entry(next, struct sched_entity, run_node);
  472. }
  473. #ifdef CONFIG_SCHED_DEBUG
  474. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  475. {
  476. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  477. if (!last)
  478. return NULL;
  479. return rb_entry(last, struct sched_entity, run_node);
  480. }
  481. /**************************************************************
  482. * Scheduling class statistics methods:
  483. */
  484. int sched_proc_update_handler(struct ctl_table *table, int write,
  485. void __user *buffer, size_t *lenp,
  486. loff_t *ppos)
  487. {
  488. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  489. int factor = get_update_sysctl_factor();
  490. if (ret || !write)
  491. return ret;
  492. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  493. sysctl_sched_min_granularity);
  494. #define WRT_SYSCTL(name) \
  495. (normalized_sysctl_##name = sysctl_##name / (factor))
  496. WRT_SYSCTL(sched_min_granularity);
  497. WRT_SYSCTL(sched_latency);
  498. WRT_SYSCTL(sched_wakeup_granularity);
  499. #undef WRT_SYSCTL
  500. return 0;
  501. }
  502. #endif
  503. /*
  504. * delta /= w
  505. */
  506. static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
  507. {
  508. if (unlikely(se->load.weight != NICE_0_LOAD))
  509. delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
  510. return delta;
  511. }
  512. /*
  513. * The idea is to set a period in which each task runs once.
  514. *
  515. * When there are too many tasks (sched_nr_latency) we have to stretch
  516. * this period because otherwise the slices get too small.
  517. *
  518. * p = (nr <= nl) ? l : l*nr/nl
  519. */
  520. static u64 __sched_period(unsigned long nr_running)
  521. {
  522. u64 period = sysctl_sched_latency;
  523. unsigned long nr_latency = sched_nr_latency;
  524. if (unlikely(nr_running > nr_latency)) {
  525. period = sysctl_sched_min_granularity;
  526. period *= nr_running;
  527. }
  528. return period;
  529. }
  530. /*
  531. * We calculate the wall-time slice from the period by taking a part
  532. * proportional to the weight.
  533. *
  534. * s = p*P[w/rw]
  535. */
  536. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  537. {
  538. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  539. for_each_sched_entity(se) {
  540. struct load_weight *load;
  541. struct load_weight lw;
  542. cfs_rq = cfs_rq_of(se);
  543. load = &cfs_rq->load;
  544. if (unlikely(!se->on_rq)) {
  545. lw = cfs_rq->load;
  546. update_load_add(&lw, se->load.weight);
  547. load = &lw;
  548. }
  549. slice = __calc_delta(slice, se->load.weight, load);
  550. }
  551. return slice;
  552. }
  553. /*
  554. * We calculate the vruntime slice of a to-be-inserted task.
  555. *
  556. * vs = s/w
  557. */
  558. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  559. {
  560. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  561. }
  562. #ifdef CONFIG_SMP
  563. static unsigned long task_h_load(struct task_struct *p);
  564. static inline void __update_task_entity_contrib(struct sched_entity *se);
  565. /* Give new task start runnable values to heavy its load in infant time */
  566. void init_task_runnable_average(struct task_struct *p)
  567. {
  568. u32 slice;
  569. p->se.avg.decay_count = 0;
  570. slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
  571. p->se.avg.runnable_avg_sum = slice;
  572. p->se.avg.runnable_avg_period = slice;
  573. __update_task_entity_contrib(&p->se);
  574. }
  575. #else
  576. void init_task_runnable_average(struct task_struct *p)
  577. {
  578. }
  579. #endif
  580. /*
  581. * Update the current task's runtime statistics.
  582. */
  583. static void update_curr(struct cfs_rq *cfs_rq)
  584. {
  585. struct sched_entity *curr = cfs_rq->curr;
  586. u64 now = rq_clock_task(rq_of(cfs_rq));
  587. u64 delta_exec;
  588. if (unlikely(!curr))
  589. return;
  590. delta_exec = now - curr->exec_start;
  591. if (unlikely((s64)delta_exec <= 0))
  592. return;
  593. curr->exec_start = now;
  594. schedstat_set(curr->statistics.exec_max,
  595. max(delta_exec, curr->statistics.exec_max));
  596. curr->sum_exec_runtime += delta_exec;
  597. schedstat_add(cfs_rq, exec_clock, delta_exec);
  598. curr->vruntime += calc_delta_fair(delta_exec, curr);
  599. update_min_vruntime(cfs_rq);
  600. if (entity_is_task(curr)) {
  601. struct task_struct *curtask = task_of(curr);
  602. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  603. cpuacct_charge(curtask, delta_exec);
  604. account_group_exec_runtime(curtask, delta_exec);
  605. }
  606. account_cfs_rq_runtime(cfs_rq, delta_exec);
  607. }
  608. static inline void
  609. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  610. {
  611. schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
  612. }
  613. /*
  614. * Task is being enqueued - update stats:
  615. */
  616. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  617. {
  618. /*
  619. * Are we enqueueing a waiting task? (for current tasks
  620. * a dequeue/enqueue event is a NOP)
  621. */
  622. if (se != cfs_rq->curr)
  623. update_stats_wait_start(cfs_rq, se);
  624. }
  625. static void
  626. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  627. {
  628. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  629. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
  630. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  631. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  632. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  633. #ifdef CONFIG_SCHEDSTATS
  634. if (entity_is_task(se)) {
  635. trace_sched_stat_wait(task_of(se),
  636. rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
  637. }
  638. #endif
  639. schedstat_set(se->statistics.wait_start, 0);
  640. }
  641. static inline void
  642. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  643. {
  644. /*
  645. * Mark the end of the wait period if dequeueing a
  646. * waiting task:
  647. */
  648. if (se != cfs_rq->curr)
  649. update_stats_wait_end(cfs_rq, se);
  650. }
  651. /*
  652. * We are picking a new current task - update its stats:
  653. */
  654. static inline void
  655. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  656. {
  657. /*
  658. * We are starting a new run period:
  659. */
  660. se->exec_start = rq_clock_task(rq_of(cfs_rq));
  661. }
  662. /**************************************************
  663. * Scheduling class queueing methods:
  664. */
  665. #ifdef CONFIG_NUMA_BALANCING
  666. /*
  667. * Approximate time to scan a full NUMA task in ms. The task scan period is
  668. * calculated based on the tasks virtual memory size and
  669. * numa_balancing_scan_size.
  670. */
  671. unsigned int sysctl_numa_balancing_scan_period_min = 1000;
  672. unsigned int sysctl_numa_balancing_scan_period_max = 60000;
  673. /* Portion of address space to scan in MB */
  674. unsigned int sysctl_numa_balancing_scan_size = 256;
  675. /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
  676. unsigned int sysctl_numa_balancing_scan_delay = 1000;
  677. /*
  678. * After skipping a page migration on a shared page, skip N more numa page
  679. * migrations unconditionally. This reduces the number of NUMA migrations
  680. * in shared memory workloads, and has the effect of pulling tasks towards
  681. * where their memory lives, over pulling the memory towards the task.
  682. */
  683. unsigned int sysctl_numa_balancing_migrate_deferred = 16;
  684. static unsigned int task_nr_scan_windows(struct task_struct *p)
  685. {
  686. unsigned long rss = 0;
  687. unsigned long nr_scan_pages;
  688. /*
  689. * Calculations based on RSS as non-present and empty pages are skipped
  690. * by the PTE scanner and NUMA hinting faults should be trapped based
  691. * on resident pages
  692. */
  693. nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
  694. rss = get_mm_rss(p->mm);
  695. if (!rss)
  696. rss = nr_scan_pages;
  697. rss = round_up(rss, nr_scan_pages);
  698. return rss / nr_scan_pages;
  699. }
  700. /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
  701. #define MAX_SCAN_WINDOW 2560
  702. static unsigned int task_scan_min(struct task_struct *p)
  703. {
  704. unsigned int scan, floor;
  705. unsigned int windows = 1;
  706. if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
  707. windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
  708. floor = 1000 / windows;
  709. scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
  710. return max_t(unsigned int, floor, scan);
  711. }
  712. static unsigned int task_scan_max(struct task_struct *p)
  713. {
  714. unsigned int smin = task_scan_min(p);
  715. unsigned int smax;
  716. /* Watch for min being lower than max due to floor calculations */
  717. smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
  718. return max(smin, smax);
  719. }
  720. static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  721. {
  722. rq->nr_numa_running += (p->numa_preferred_nid != -1);
  723. rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
  724. }
  725. static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  726. {
  727. rq->nr_numa_running -= (p->numa_preferred_nid != -1);
  728. rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
  729. }
  730. struct numa_group {
  731. atomic_t refcount;
  732. spinlock_t lock; /* nr_tasks, tasks */
  733. int nr_tasks;
  734. pid_t gid;
  735. struct list_head task_list;
  736. struct rcu_head rcu;
  737. unsigned long total_faults;
  738. unsigned long faults[0];
  739. };
  740. pid_t task_numa_group_id(struct task_struct *p)
  741. {
  742. return p->numa_group ? p->numa_group->gid : 0;
  743. }
  744. static inline int task_faults_idx(int nid, int priv)
  745. {
  746. return 2 * nid + priv;
  747. }
  748. static inline unsigned long task_faults(struct task_struct *p, int nid)
  749. {
  750. if (!p->numa_faults)
  751. return 0;
  752. return p->numa_faults[task_faults_idx(nid, 0)] +
  753. p->numa_faults[task_faults_idx(nid, 1)];
  754. }
  755. static inline unsigned long group_faults(struct task_struct *p, int nid)
  756. {
  757. if (!p->numa_group)
  758. return 0;
  759. return p->numa_group->faults[task_faults_idx(nid, 0)] +
  760. p->numa_group->faults[task_faults_idx(nid, 1)];
  761. }
  762. /*
  763. * These return the fraction of accesses done by a particular task, or
  764. * task group, on a particular numa node. The group weight is given a
  765. * larger multiplier, in order to group tasks together that are almost
  766. * evenly spread out between numa nodes.
  767. */
  768. static inline unsigned long task_weight(struct task_struct *p, int nid)
  769. {
  770. unsigned long total_faults;
  771. if (!p->numa_faults)
  772. return 0;
  773. total_faults = p->total_numa_faults;
  774. if (!total_faults)
  775. return 0;
  776. return 1000 * task_faults(p, nid) / total_faults;
  777. }
  778. static inline unsigned long group_weight(struct task_struct *p, int nid)
  779. {
  780. if (!p->numa_group || !p->numa_group->total_faults)
  781. return 0;
  782. return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
  783. }
  784. static unsigned long weighted_cpuload(const int cpu);
  785. static unsigned long source_load(int cpu, int type);
  786. static unsigned long target_load(int cpu, int type);
  787. static unsigned long power_of(int cpu);
  788. static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
  789. /* Cached statistics for all CPUs within a node */
  790. struct numa_stats {
  791. unsigned long nr_running;
  792. unsigned long load;
  793. /* Total compute capacity of CPUs on a node */
  794. unsigned long power;
  795. /* Approximate capacity in terms of runnable tasks on a node */
  796. unsigned long capacity;
  797. int has_capacity;
  798. };
  799. /*
  800. * XXX borrowed from update_sg_lb_stats
  801. */
  802. static void update_numa_stats(struct numa_stats *ns, int nid)
  803. {
  804. int cpu, cpus = 0;
  805. memset(ns, 0, sizeof(*ns));
  806. for_each_cpu(cpu, cpumask_of_node(nid)) {
  807. struct rq *rq = cpu_rq(cpu);
  808. ns->nr_running += rq->nr_running;
  809. ns->load += weighted_cpuload(cpu);
  810. ns->power += power_of(cpu);
  811. cpus++;
  812. }
  813. /*
  814. * If we raced with hotplug and there are no CPUs left in our mask
  815. * the @ns structure is NULL'ed and task_numa_compare() will
  816. * not find this node attractive.
  817. *
  818. * We'll either bail at !has_capacity, or we'll detect a huge imbalance
  819. * and bail there.
  820. */
  821. if (!cpus)
  822. return;
  823. ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
  824. ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
  825. ns->has_capacity = (ns->nr_running < ns->capacity);
  826. }
  827. struct task_numa_env {
  828. struct task_struct *p;
  829. int src_cpu, src_nid;
  830. int dst_cpu, dst_nid;
  831. struct numa_stats src_stats, dst_stats;
  832. int imbalance_pct;
  833. struct task_struct *best_task;
  834. long best_imp;
  835. int best_cpu;
  836. };
  837. static void task_numa_assign(struct task_numa_env *env,
  838. struct task_struct *p, long imp)
  839. {
  840. if (env->best_task)
  841. put_task_struct(env->best_task);
  842. if (p)
  843. get_task_struct(p);
  844. env->best_task = p;
  845. env->best_imp = imp;
  846. env->best_cpu = env->dst_cpu;
  847. }
  848. /*
  849. * This checks if the overall compute and NUMA accesses of the system would
  850. * be improved if the source tasks was migrated to the target dst_cpu taking
  851. * into account that it might be best if task running on the dst_cpu should
  852. * be exchanged with the source task
  853. */
  854. static void task_numa_compare(struct task_numa_env *env,
  855. long taskimp, long groupimp)
  856. {
  857. struct rq *src_rq = cpu_rq(env->src_cpu);
  858. struct rq *dst_rq = cpu_rq(env->dst_cpu);
  859. struct task_struct *cur;
  860. long dst_load, src_load;
  861. long load;
  862. long imp = (groupimp > 0) ? groupimp : taskimp;
  863. rcu_read_lock();
  864. cur = ACCESS_ONCE(dst_rq->curr);
  865. if (cur->pid == 0) /* idle */
  866. cur = NULL;
  867. /*
  868. * "imp" is the fault differential for the source task between the
  869. * source and destination node. Calculate the total differential for
  870. * the source task and potential destination task. The more negative
  871. * the value is, the more rmeote accesses that would be expected to
  872. * be incurred if the tasks were swapped.
  873. */
  874. if (cur) {
  875. /* Skip this swap candidate if cannot move to the source cpu */
  876. if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
  877. goto unlock;
  878. /*
  879. * If dst and source tasks are in the same NUMA group, or not
  880. * in any group then look only at task weights.
  881. */
  882. if (cur->numa_group == env->p->numa_group) {
  883. imp = taskimp + task_weight(cur, env->src_nid) -
  884. task_weight(cur, env->dst_nid);
  885. /*
  886. * Add some hysteresis to prevent swapping the
  887. * tasks within a group over tiny differences.
  888. */
  889. if (cur->numa_group)
  890. imp -= imp/16;
  891. } else {
  892. /*
  893. * Compare the group weights. If a task is all by
  894. * itself (not part of a group), use the task weight
  895. * instead.
  896. */
  897. if (env->p->numa_group)
  898. imp = groupimp;
  899. else
  900. imp = taskimp;
  901. if (cur->numa_group)
  902. imp += group_weight(cur, env->src_nid) -
  903. group_weight(cur, env->dst_nid);
  904. else
  905. imp += task_weight(cur, env->src_nid) -
  906. task_weight(cur, env->dst_nid);
  907. }
  908. }
  909. if (imp < env->best_imp)
  910. goto unlock;
  911. if (!cur) {
  912. /* Is there capacity at our destination? */
  913. if (env->src_stats.has_capacity &&
  914. !env->dst_stats.has_capacity)
  915. goto unlock;
  916. goto balance;
  917. }
  918. /* Balance doesn't matter much if we're running a task per cpu */
  919. if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
  920. goto assign;
  921. /*
  922. * In the overloaded case, try and keep the load balanced.
  923. */
  924. balance:
  925. dst_load = env->dst_stats.load;
  926. src_load = env->src_stats.load;
  927. /* XXX missing power terms */
  928. load = task_h_load(env->p);
  929. dst_load += load;
  930. src_load -= load;
  931. if (cur) {
  932. load = task_h_load(cur);
  933. dst_load -= load;
  934. src_load += load;
  935. }
  936. /* make src_load the smaller */
  937. if (dst_load < src_load)
  938. swap(dst_load, src_load);
  939. if (src_load * env->imbalance_pct < dst_load * 100)
  940. goto unlock;
  941. assign:
  942. task_numa_assign(env, cur, imp);
  943. unlock:
  944. rcu_read_unlock();
  945. }
  946. static void task_numa_find_cpu(struct task_numa_env *env,
  947. long taskimp, long groupimp)
  948. {
  949. int cpu;
  950. for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
  951. /* Skip this CPU if the source task cannot migrate */
  952. if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
  953. continue;
  954. env->dst_cpu = cpu;
  955. task_numa_compare(env, taskimp, groupimp);
  956. }
  957. }
  958. static int task_numa_migrate(struct task_struct *p)
  959. {
  960. struct task_numa_env env = {
  961. .p = p,
  962. .src_cpu = task_cpu(p),
  963. .src_nid = task_node(p),
  964. .imbalance_pct = 112,
  965. .best_task = NULL,
  966. .best_imp = 0,
  967. .best_cpu = -1
  968. };
  969. struct sched_domain *sd;
  970. unsigned long taskweight, groupweight;
  971. int nid, ret;
  972. long taskimp, groupimp;
  973. /*
  974. * Pick the lowest SD_NUMA domain, as that would have the smallest
  975. * imbalance and would be the first to start moving tasks about.
  976. *
  977. * And we want to avoid any moving of tasks about, as that would create
  978. * random movement of tasks -- counter the numa conditions we're trying
  979. * to satisfy here.
  980. */
  981. rcu_read_lock();
  982. sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
  983. if (sd)
  984. env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
  985. rcu_read_unlock();
  986. /*
  987. * Cpusets can break the scheduler domain tree into smaller
  988. * balance domains, some of which do not cross NUMA boundaries.
  989. * Tasks that are "trapped" in such domains cannot be migrated
  990. * elsewhere, so there is no point in (re)trying.
  991. */
  992. if (unlikely(!sd)) {
  993. p->numa_preferred_nid = task_node(p);
  994. return -EINVAL;
  995. }
  996. taskweight = task_weight(p, env.src_nid);
  997. groupweight = group_weight(p, env.src_nid);
  998. update_numa_stats(&env.src_stats, env.src_nid);
  999. env.dst_nid = p->numa_preferred_nid;
  1000. taskimp = task_weight(p, env.dst_nid) - taskweight;
  1001. groupimp = group_weight(p, env.dst_nid) - groupweight;
  1002. update_numa_stats(&env.dst_stats, env.dst_nid);
  1003. /* If the preferred nid has capacity, try to use it. */
  1004. if (env.dst_stats.has_capacity)
  1005. task_numa_find_cpu(&env, taskimp, groupimp);
  1006. /* No space available on the preferred nid. Look elsewhere. */
  1007. if (env.best_cpu == -1) {
  1008. for_each_online_node(nid) {
  1009. if (nid == env.src_nid || nid == p->numa_preferred_nid)
  1010. continue;
  1011. /* Only consider nodes where both task and groups benefit */
  1012. taskimp = task_weight(p, nid) - taskweight;
  1013. groupimp = group_weight(p, nid) - groupweight;
  1014. if (taskimp < 0 && groupimp < 0)
  1015. continue;
  1016. env.dst_nid = nid;
  1017. update_numa_stats(&env.dst_stats, env.dst_nid);
  1018. task_numa_find_cpu(&env, taskimp, groupimp);
  1019. }
  1020. }
  1021. /* No better CPU than the current one was found. */
  1022. if (env.best_cpu == -1)
  1023. return -EAGAIN;
  1024. sched_setnuma(p, env.dst_nid);
  1025. /*
  1026. * Reset the scan period if the task is being rescheduled on an
  1027. * alternative node to recheck if the tasks is now properly placed.
  1028. */
  1029. p->numa_scan_period = task_scan_min(p);
  1030. if (env.best_task == NULL) {
  1031. ret = migrate_task_to(p, env.best_cpu);
  1032. if (ret != 0)
  1033. trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
  1034. return ret;
  1035. }
  1036. ret = migrate_swap(p, env.best_task);
  1037. if (ret != 0)
  1038. trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
  1039. put_task_struct(env.best_task);
  1040. return ret;
  1041. }
  1042. /* Attempt to migrate a task to a CPU on the preferred node. */
  1043. static void numa_migrate_preferred(struct task_struct *p)
  1044. {
  1045. /* This task has no NUMA fault statistics yet */
  1046. if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
  1047. return;
  1048. /* Periodically retry migrating the task to the preferred node */
  1049. p->numa_migrate_retry = jiffies + HZ;
  1050. /* Success if task is already running on preferred CPU */
  1051. if (task_node(p) == p->numa_preferred_nid)
  1052. return;
  1053. /* Otherwise, try migrate to a CPU on the preferred node */
  1054. task_numa_migrate(p);
  1055. }
  1056. /*
  1057. * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
  1058. * increments. The more local the fault statistics are, the higher the scan
  1059. * period will be for the next scan window. If local/remote ratio is below
  1060. * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
  1061. * scan period will decrease
  1062. */
  1063. #define NUMA_PERIOD_SLOTS 10
  1064. #define NUMA_PERIOD_THRESHOLD 3
  1065. /*
  1066. * Increase the scan period (slow down scanning) if the majority of
  1067. * our memory is already on our local node, or if the majority of
  1068. * the page accesses are shared with other processes.
  1069. * Otherwise, decrease the scan period.
  1070. */
  1071. static void update_task_scan_period(struct task_struct *p,
  1072. unsigned long shared, unsigned long private)
  1073. {
  1074. unsigned int period_slot;
  1075. int ratio;
  1076. int diff;
  1077. unsigned long remote = p->numa_faults_locality[0];
  1078. unsigned long local = p->numa_faults_locality[1];
  1079. /*
  1080. * If there were no record hinting faults then either the task is
  1081. * completely idle or all activity is areas that are not of interest
  1082. * to automatic numa balancing. Scan slower
  1083. */
  1084. if (local + shared == 0) {
  1085. p->numa_scan_period = min(p->numa_scan_period_max,
  1086. p->numa_scan_period << 1);
  1087. p->mm->numa_next_scan = jiffies +
  1088. msecs_to_jiffies(p->numa_scan_period);
  1089. return;
  1090. }
  1091. /*
  1092. * Prepare to scale scan period relative to the current period.
  1093. * == NUMA_PERIOD_THRESHOLD scan period stays the same
  1094. * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
  1095. * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
  1096. */
  1097. period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
  1098. ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
  1099. if (ratio >= NUMA_PERIOD_THRESHOLD) {
  1100. int slot = ratio - NUMA_PERIOD_THRESHOLD;
  1101. if (!slot)
  1102. slot = 1;
  1103. diff = slot * period_slot;
  1104. } else {
  1105. diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
  1106. /*
  1107. * Scale scan rate increases based on sharing. There is an
  1108. * inverse relationship between the degree of sharing and
  1109. * the adjustment made to the scanning period. Broadly
  1110. * speaking the intent is that there is little point
  1111. * scanning faster if shared accesses dominate as it may
  1112. * simply bounce migrations uselessly
  1113. */
  1114. ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
  1115. diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
  1116. }
  1117. p->numa_scan_period = clamp(p->numa_scan_period + diff,
  1118. task_scan_min(p), task_scan_max(p));
  1119. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1120. }
  1121. static void task_numa_placement(struct task_struct *p)
  1122. {
  1123. int seq, nid, max_nid = -1, max_group_nid = -1;
  1124. unsigned long max_faults = 0, max_group_faults = 0;
  1125. unsigned long fault_types[2] = { 0, 0 };
  1126. spinlock_t *group_lock = NULL;
  1127. seq = ACCESS_ONCE(p->mm->numa_scan_seq);
  1128. if (p->numa_scan_seq == seq)
  1129. return;
  1130. p->numa_scan_seq = seq;
  1131. p->numa_scan_period_max = task_scan_max(p);
  1132. /* If the task is part of a group prevent parallel updates to group stats */
  1133. if (p->numa_group) {
  1134. group_lock = &p->numa_group->lock;
  1135. spin_lock(group_lock);
  1136. }
  1137. /* Find the node with the highest number of faults */
  1138. for_each_online_node(nid) {
  1139. unsigned long faults = 0, group_faults = 0;
  1140. int priv, i;
  1141. for (priv = 0; priv < 2; priv++) {
  1142. long diff;
  1143. i = task_faults_idx(nid, priv);
  1144. diff = -p->numa_faults[i];
  1145. /* Decay existing window, copy faults since last scan */
  1146. p->numa_faults[i] >>= 1;
  1147. p->numa_faults[i] += p->numa_faults_buffer[i];
  1148. fault_types[priv] += p->numa_faults_buffer[i];
  1149. p->numa_faults_buffer[i] = 0;
  1150. faults += p->numa_faults[i];
  1151. diff += p->numa_faults[i];
  1152. p->total_numa_faults += diff;
  1153. if (p->numa_group) {
  1154. /* safe because we can only change our own group */
  1155. p->numa_group->faults[i] += diff;
  1156. p->numa_group->total_faults += diff;
  1157. group_faults += p->numa_group->faults[i];
  1158. }
  1159. }
  1160. if (faults > max_faults) {
  1161. max_faults = faults;
  1162. max_nid = nid;
  1163. }
  1164. if (group_faults > max_group_faults) {
  1165. max_group_faults = group_faults;
  1166. max_group_nid = nid;
  1167. }
  1168. }
  1169. update_task_scan_period(p, fault_types[0], fault_types[1]);
  1170. if (p->numa_group) {
  1171. /*
  1172. * If the preferred task and group nids are different,
  1173. * iterate over the nodes again to find the best place.
  1174. */
  1175. if (max_nid != max_group_nid) {
  1176. unsigned long weight, max_weight = 0;
  1177. for_each_online_node(nid) {
  1178. weight = task_weight(p, nid) + group_weight(p, nid);
  1179. if (weight > max_weight) {
  1180. max_weight = weight;
  1181. max_nid = nid;
  1182. }
  1183. }
  1184. }
  1185. spin_unlock(group_lock);
  1186. }
  1187. /* Preferred node as the node with the most faults */
  1188. if (max_faults && max_nid != p->numa_preferred_nid) {
  1189. /* Update the preferred nid and migrate task if possible */
  1190. sched_setnuma(p, max_nid);
  1191. numa_migrate_preferred(p);
  1192. }
  1193. }
  1194. static inline int get_numa_group(struct numa_group *grp)
  1195. {
  1196. return atomic_inc_not_zero(&grp->refcount);
  1197. }
  1198. static inline void put_numa_group(struct numa_group *grp)
  1199. {
  1200. if (atomic_dec_and_test(&grp->refcount))
  1201. kfree_rcu(grp, rcu);
  1202. }
  1203. static void task_numa_group(struct task_struct *p, int cpupid, int flags,
  1204. int *priv)
  1205. {
  1206. struct numa_group *grp, *my_grp;
  1207. struct task_struct *tsk;
  1208. bool join = false;
  1209. int cpu = cpupid_to_cpu(cpupid);
  1210. int i;
  1211. if (unlikely(!p->numa_group)) {
  1212. unsigned int size = sizeof(struct numa_group) +
  1213. 2*nr_node_ids*sizeof(unsigned long);
  1214. grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
  1215. if (!grp)
  1216. return;
  1217. atomic_set(&grp->refcount, 1);
  1218. spin_lock_init(&grp->lock);
  1219. INIT_LIST_HEAD(&grp->task_list);
  1220. grp->gid = p->pid;
  1221. for (i = 0; i < 2*nr_node_ids; i++)
  1222. grp->faults[i] = p->numa_faults[i];
  1223. grp->total_faults = p->total_numa_faults;
  1224. list_add(&p->numa_entry, &grp->task_list);
  1225. grp->nr_tasks++;
  1226. rcu_assign_pointer(p->numa_group, grp);
  1227. }
  1228. rcu_read_lock();
  1229. tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
  1230. if (!cpupid_match_pid(tsk, cpupid))
  1231. goto no_join;
  1232. grp = rcu_dereference(tsk->numa_group);
  1233. if (!grp)
  1234. goto no_join;
  1235. my_grp = p->numa_group;
  1236. if (grp == my_grp)
  1237. goto no_join;
  1238. /*
  1239. * Only join the other group if its bigger; if we're the bigger group,
  1240. * the other task will join us.
  1241. */
  1242. if (my_grp->nr_tasks > grp->nr_tasks)
  1243. goto no_join;
  1244. /*
  1245. * Tie-break on the grp address.
  1246. */
  1247. if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
  1248. goto no_join;
  1249. /* Always join threads in the same process. */
  1250. if (tsk->mm == current->mm)
  1251. join = true;
  1252. /* Simple filter to avoid false positives due to PID collisions */
  1253. if (flags & TNF_SHARED)
  1254. join = true;
  1255. /* Update priv based on whether false sharing was detected */
  1256. *priv = !join;
  1257. if (join && !get_numa_group(grp))
  1258. goto no_join;
  1259. rcu_read_unlock();
  1260. if (!join)
  1261. return;
  1262. double_lock(&my_grp->lock, &grp->lock);
  1263. for (i = 0; i < 2*nr_node_ids; i++) {
  1264. my_grp->faults[i] -= p->numa_faults[i];
  1265. grp->faults[i] += p->numa_faults[i];
  1266. }
  1267. my_grp->total_faults -= p->total_numa_faults;
  1268. grp->total_faults += p->total_numa_faults;
  1269. list_move(&p->numa_entry, &grp->task_list);
  1270. my_grp->nr_tasks--;
  1271. grp->nr_tasks++;
  1272. spin_unlock(&my_grp->lock);
  1273. spin_unlock(&grp->lock);
  1274. rcu_assign_pointer(p->numa_group, grp);
  1275. put_numa_group(my_grp);
  1276. return;
  1277. no_join:
  1278. rcu_read_unlock();
  1279. return;
  1280. }
  1281. void task_numa_free(struct task_struct *p)
  1282. {
  1283. struct numa_group *grp = p->numa_group;
  1284. int i;
  1285. void *numa_faults = p->numa_faults;
  1286. if (grp) {
  1287. spin_lock(&grp->lock);
  1288. for (i = 0; i < 2*nr_node_ids; i++)
  1289. grp->faults[i] -= p->numa_faults[i];
  1290. grp->total_faults -= p->total_numa_faults;
  1291. list_del(&p->numa_entry);
  1292. grp->nr_tasks--;
  1293. spin_unlock(&grp->lock);
  1294. rcu_assign_pointer(p->numa_group, NULL);
  1295. put_numa_group(grp);
  1296. }
  1297. p->numa_faults = NULL;
  1298. p->numa_faults_buffer = NULL;
  1299. kfree(numa_faults);
  1300. }
  1301. /*
  1302. * Got a PROT_NONE fault for a page on @node.
  1303. */
  1304. void task_numa_fault(int last_cpupid, int node, int pages, int flags)
  1305. {
  1306. struct task_struct *p = current;
  1307. bool migrated = flags & TNF_MIGRATED;
  1308. int priv;
  1309. if (!numabalancing_enabled)
  1310. return;
  1311. /* for example, ksmd faulting in a user's mm */
  1312. if (!p->mm)
  1313. return;
  1314. /* Do not worry about placement if exiting */
  1315. if (p->state == TASK_DEAD)
  1316. return;
  1317. /* Allocate buffer to track faults on a per-node basis */
  1318. if (unlikely(!p->numa_faults)) {
  1319. int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
  1320. /* numa_faults and numa_faults_buffer share the allocation */
  1321. p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
  1322. if (!p->numa_faults)
  1323. return;
  1324. BUG_ON(p->numa_faults_buffer);
  1325. p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
  1326. p->total_numa_faults = 0;
  1327. memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
  1328. }
  1329. /*
  1330. * First accesses are treated as private, otherwise consider accesses
  1331. * to be private if the accessing pid has not changed
  1332. */
  1333. if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
  1334. priv = 1;
  1335. } else {
  1336. priv = cpupid_match_pid(p, last_cpupid);
  1337. if (!priv && !(flags & TNF_NO_GROUP))
  1338. task_numa_group(p, last_cpupid, flags, &priv);
  1339. }
  1340. task_numa_placement(p);
  1341. /*
  1342. * Retry task to preferred node migration periodically, in case it
  1343. * case it previously failed, or the scheduler moved us.
  1344. */
  1345. if (time_after(jiffies, p->numa_migrate_retry))
  1346. numa_migrate_preferred(p);
  1347. if (migrated)
  1348. p->numa_pages_migrated += pages;
  1349. p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
  1350. p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
  1351. }
  1352. static void reset_ptenuma_scan(struct task_struct *p)
  1353. {
  1354. ACCESS_ONCE(p->mm->numa_scan_seq)++;
  1355. p->mm->numa_scan_offset = 0;
  1356. }
  1357. /*
  1358. * The expensive part of numa migration is done from task_work context.
  1359. * Triggered from task_tick_numa().
  1360. */
  1361. void task_numa_work(struct callback_head *work)
  1362. {
  1363. unsigned long migrate, next_scan, now = jiffies;
  1364. struct task_struct *p = current;
  1365. struct mm_struct *mm = p->mm;
  1366. struct vm_area_struct *vma;
  1367. unsigned long start, end;
  1368. unsigned long nr_pte_updates = 0;
  1369. long pages;
  1370. WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
  1371. work->next = work; /* protect against double add */
  1372. /*
  1373. * Who cares about NUMA placement when they're dying.
  1374. *
  1375. * NOTE: make sure not to dereference p->mm before this check,
  1376. * exit_task_work() happens _after_ exit_mm() so we could be called
  1377. * without p->mm even though we still had it when we enqueued this
  1378. * work.
  1379. */
  1380. if (p->flags & PF_EXITING)
  1381. return;
  1382. if (!mm->numa_next_scan) {
  1383. mm->numa_next_scan = now +
  1384. msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1385. }
  1386. /*
  1387. * Enforce maximal scan/migration frequency..
  1388. */
  1389. migrate = mm->numa_next_scan;
  1390. if (time_before(now, migrate))
  1391. return;
  1392. if (p->numa_scan_period == 0) {
  1393. p->numa_scan_period_max = task_scan_max(p);
  1394. p->numa_scan_period = task_scan_min(p);
  1395. }
  1396. next_scan = now + msecs_to_jiffies(p->numa_scan_period);
  1397. if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
  1398. return;
  1399. /*
  1400. * Delay this task enough that another task of this mm will likely win
  1401. * the next time around.
  1402. */
  1403. p->node_stamp += 2 * TICK_NSEC;
  1404. start = mm->numa_scan_offset;
  1405. pages = sysctl_numa_balancing_scan_size;
  1406. pages <<= 20 - PAGE_SHIFT; /* MB in pages */
  1407. if (!pages)
  1408. return;
  1409. down_read(&mm->mmap_sem);
  1410. vma = find_vma(mm, start);
  1411. if (!vma) {
  1412. reset_ptenuma_scan(p);
  1413. start = 0;
  1414. vma = mm->mmap;
  1415. }
  1416. for (; vma; vma = vma->vm_next) {
  1417. if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
  1418. continue;
  1419. /*
  1420. * Shared library pages mapped by multiple processes are not
  1421. * migrated as it is expected they are cache replicated. Avoid
  1422. * hinting faults in read-only file-backed mappings or the vdso
  1423. * as migrating the pages will be of marginal benefit.
  1424. */
  1425. if (!vma->vm_mm ||
  1426. (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
  1427. continue;
  1428. /*
  1429. * Skip inaccessible VMAs to avoid any confusion between
  1430. * PROT_NONE and NUMA hinting ptes
  1431. */
  1432. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  1433. continue;
  1434. do {
  1435. start = max(start, vma->vm_start);
  1436. end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
  1437. end = min(end, vma->vm_end);
  1438. nr_pte_updates += change_prot_numa(vma, start, end);
  1439. /*
  1440. * Scan sysctl_numa_balancing_scan_size but ensure that
  1441. * at least one PTE is updated so that unused virtual
  1442. * address space is quickly skipped.
  1443. */
  1444. if (nr_pte_updates)
  1445. pages -= (end - start) >> PAGE_SHIFT;
  1446. start = end;
  1447. if (pages <= 0)
  1448. goto out;
  1449. cond_resched();
  1450. } while (end != vma->vm_end);
  1451. }
  1452. out:
  1453. /*
  1454. * It is possible to reach the end of the VMA list but the last few
  1455. * VMAs are not guaranteed to the vma_migratable. If they are not, we
  1456. * would find the !migratable VMA on the next scan but not reset the
  1457. * scanner to the start so check it now.
  1458. */
  1459. if (vma)
  1460. mm->numa_scan_offset = start;
  1461. else
  1462. reset_ptenuma_scan(p);
  1463. up_read(&mm->mmap_sem);
  1464. }
  1465. /*
  1466. * Drive the periodic memory faults..
  1467. */
  1468. void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1469. {
  1470. struct callback_head *work = &curr->numa_work;
  1471. u64 period, now;
  1472. /*
  1473. * We don't care about NUMA placement if we don't have memory.
  1474. */
  1475. if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
  1476. return;
  1477. /*
  1478. * Using runtime rather than walltime has the dual advantage that
  1479. * we (mostly) drive the selection from busy threads and that the
  1480. * task needs to have done some actual work before we bother with
  1481. * NUMA placement.
  1482. */
  1483. now = curr->se.sum_exec_runtime;
  1484. period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
  1485. if (now - curr->node_stamp > period) {
  1486. if (!curr->node_stamp)
  1487. curr->numa_scan_period = task_scan_min(curr);
  1488. curr->node_stamp += period;
  1489. if (!time_before(jiffies, curr->mm->numa_next_scan)) {
  1490. init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
  1491. task_work_add(curr, work, true);
  1492. }
  1493. }
  1494. }
  1495. #else
  1496. static void task_tick_numa(struct rq *rq, struct task_struct *curr)
  1497. {
  1498. }
  1499. static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
  1500. {
  1501. }
  1502. static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
  1503. {
  1504. }
  1505. #endif /* CONFIG_NUMA_BALANCING */
  1506. static void
  1507. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1508. {
  1509. update_load_add(&cfs_rq->load, se->load.weight);
  1510. if (!parent_entity(se))
  1511. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  1512. #ifdef CONFIG_SMP
  1513. if (entity_is_task(se)) {
  1514. struct rq *rq = rq_of(cfs_rq);
  1515. account_numa_enqueue(rq, task_of(se));
  1516. list_add(&se->group_node, &rq->cfs_tasks);
  1517. }
  1518. #endif
  1519. cfs_rq->nr_running++;
  1520. }
  1521. static void
  1522. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1523. {
  1524. update_load_sub(&cfs_rq->load, se->load.weight);
  1525. if (!parent_entity(se))
  1526. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  1527. if (entity_is_task(se)) {
  1528. account_numa_dequeue(rq_of(cfs_rq), task_of(se));
  1529. list_del_init(&se->group_node);
  1530. }
  1531. cfs_rq->nr_running--;
  1532. }
  1533. #ifdef CONFIG_FAIR_GROUP_SCHED
  1534. # ifdef CONFIG_SMP
  1535. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  1536. {
  1537. long tg_weight;
  1538. /*
  1539. * Use this CPU's actual weight instead of the last load_contribution
  1540. * to gain a more accurate current total weight. See
  1541. * update_cfs_rq_load_contribution().
  1542. */
  1543. tg_weight = atomic_long_read(&tg->load_avg);
  1544. tg_weight -= cfs_rq->tg_load_contrib;
  1545. tg_weight += cfs_rq->load.weight;
  1546. return tg_weight;
  1547. }
  1548. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  1549. {
  1550. long tg_weight, load, shares;
  1551. tg_weight = calc_tg_weight(tg, cfs_rq);
  1552. load = cfs_rq->load.weight;
  1553. shares = (tg->shares * load);
  1554. if (tg_weight)
  1555. shares /= tg_weight;
  1556. if (shares < MIN_SHARES)
  1557. shares = MIN_SHARES;
  1558. if (shares > tg->shares)
  1559. shares = tg->shares;
  1560. return shares;
  1561. }
  1562. # else /* CONFIG_SMP */
  1563. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  1564. {
  1565. return tg->shares;
  1566. }
  1567. # endif /* CONFIG_SMP */
  1568. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  1569. unsigned long weight)
  1570. {
  1571. if (se->on_rq) {
  1572. /* commit outstanding execution time */
  1573. if (cfs_rq->curr == se)
  1574. update_curr(cfs_rq);
  1575. account_entity_dequeue(cfs_rq, se);
  1576. }
  1577. update_load_set(&se->load, weight);
  1578. if (se->on_rq)
  1579. account_entity_enqueue(cfs_rq, se);
  1580. }
  1581. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  1582. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  1583. {
  1584. struct task_group *tg;
  1585. struct sched_entity *se;
  1586. long shares;
  1587. tg = cfs_rq->tg;
  1588. se = tg->se[cpu_of(rq_of(cfs_rq))];
  1589. if (!se || throttled_hierarchy(cfs_rq))
  1590. return;
  1591. #ifndef CONFIG_SMP
  1592. if (likely(se->load.weight == tg->shares))
  1593. return;
  1594. #endif
  1595. shares = calc_cfs_shares(cfs_rq, tg);
  1596. reweight_entity(cfs_rq_of(se), se, shares);
  1597. }
  1598. #else /* CONFIG_FAIR_GROUP_SCHED */
  1599. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  1600. {
  1601. }
  1602. #endif /* CONFIG_FAIR_GROUP_SCHED */
  1603. #ifdef CONFIG_SMP
  1604. /*
  1605. * We choose a half-life close to 1 scheduling period.
  1606. * Note: The tables below are dependent on this value.
  1607. */
  1608. #define LOAD_AVG_PERIOD 32
  1609. #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
  1610. #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
  1611. /* Precomputed fixed inverse multiplies for multiplication by y^n */
  1612. static const u32 runnable_avg_yN_inv[] = {
  1613. 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
  1614. 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
  1615. 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
  1616. 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
  1617. 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
  1618. 0x85aac367, 0x82cd8698,
  1619. };
  1620. /*
  1621. * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
  1622. * over-estimates when re-combining.
  1623. */
  1624. static const u32 runnable_avg_yN_sum[] = {
  1625. 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
  1626. 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
  1627. 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
  1628. };
  1629. /*
  1630. * Approximate:
  1631. * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
  1632. */
  1633. static __always_inline u64 decay_load(u64 val, u64 n)
  1634. {
  1635. unsigned int local_n;
  1636. if (!n)
  1637. return val;
  1638. else if (unlikely(n > LOAD_AVG_PERIOD * 63))
  1639. return 0;
  1640. /* after bounds checking we can collapse to 32-bit */
  1641. local_n = n;
  1642. /*
  1643. * As y^PERIOD = 1/2, we can combine
  1644. * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
  1645. * With a look-up table which covers k^n (n<PERIOD)
  1646. *
  1647. * To achieve constant time decay_load.
  1648. */
  1649. if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
  1650. val >>= local_n / LOAD_AVG_PERIOD;
  1651. local_n %= LOAD_AVG_PERIOD;
  1652. }
  1653. val *= runnable_avg_yN_inv[local_n];
  1654. /* We don't use SRR here since we always want to round down. */
  1655. return val >> 32;
  1656. }
  1657. /*
  1658. * For updates fully spanning n periods, the contribution to runnable
  1659. * average will be: \Sum 1024*y^n
  1660. *
  1661. * We can compute this reasonably efficiently by combining:
  1662. * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
  1663. */
  1664. static u32 __compute_runnable_contrib(u64 n)
  1665. {
  1666. u32 contrib = 0;
  1667. if (likely(n <= LOAD_AVG_PERIOD))
  1668. return runnable_avg_yN_sum[n];
  1669. else if (unlikely(n >= LOAD_AVG_MAX_N))
  1670. return LOAD_AVG_MAX;
  1671. /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
  1672. do {
  1673. contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
  1674. contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
  1675. n -= LOAD_AVG_PERIOD;
  1676. } while (n > LOAD_AVG_PERIOD);
  1677. contrib = decay_load(contrib, n);
  1678. return contrib + runnable_avg_yN_sum[n];
  1679. }
  1680. /*
  1681. * We can represent the historical contribution to runnable average as the
  1682. * coefficients of a geometric series. To do this we sub-divide our runnable
  1683. * history into segments of approximately 1ms (1024us); label the segment that
  1684. * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
  1685. *
  1686. * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
  1687. * p0 p1 p2
  1688. * (now) (~1ms ago) (~2ms ago)
  1689. *
  1690. * Let u_i denote the fraction of p_i that the entity was runnable.
  1691. *
  1692. * We then designate the fractions u_i as our co-efficients, yielding the
  1693. * following representation of historical load:
  1694. * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
  1695. *
  1696. * We choose y based on the with of a reasonably scheduling period, fixing:
  1697. * y^32 = 0.5
  1698. *
  1699. * This means that the contribution to load ~32ms ago (u_32) will be weighted
  1700. * approximately half as much as the contribution to load within the last ms
  1701. * (u_0).
  1702. *
  1703. * When a period "rolls over" and we have new u_0`, multiplying the previous
  1704. * sum again by y is sufficient to update:
  1705. * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
  1706. * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
  1707. */
  1708. static __always_inline int __update_entity_runnable_avg(u64 now,
  1709. struct sched_avg *sa,
  1710. int runnable)
  1711. {
  1712. u64 delta, periods;
  1713. u32 runnable_contrib;
  1714. int delta_w, decayed = 0;
  1715. delta = now - sa->last_runnable_update;
  1716. /*
  1717. * This should only happen when time goes backwards, which it
  1718. * unfortunately does during sched clock init when we swap over to TSC.
  1719. */
  1720. if ((s64)delta < 0) {
  1721. sa->last_runnable_update = now;
  1722. return 0;
  1723. }
  1724. /*
  1725. * Use 1024ns as the unit of measurement since it's a reasonable
  1726. * approximation of 1us and fast to compute.
  1727. */
  1728. delta >>= 10;
  1729. if (!delta)
  1730. return 0;
  1731. sa->last_runnable_update = now;
  1732. /* delta_w is the amount already accumulated against our next period */
  1733. delta_w = sa->runnable_avg_period % 1024;
  1734. if (delta + delta_w >= 1024) {
  1735. /* period roll-over */
  1736. decayed = 1;
  1737. /*
  1738. * Now that we know we're crossing a period boundary, figure
  1739. * out how much from delta we need to complete the current
  1740. * period and accrue it.
  1741. */
  1742. delta_w = 1024 - delta_w;
  1743. if (runnable)
  1744. sa->runnable_avg_sum += delta_w;
  1745. sa->runnable_avg_period += delta_w;
  1746. delta -= delta_w;
  1747. /* Figure out how many additional periods this update spans */
  1748. periods = delta / 1024;
  1749. delta %= 1024;
  1750. sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
  1751. periods + 1);
  1752. sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
  1753. periods + 1);
  1754. /* Efficiently calculate \sum (1..n_period) 1024*y^i */
  1755. runnable_contrib = __compute_runnable_contrib(periods);
  1756. if (runnable)
  1757. sa->runnable_avg_sum += runnable_contrib;
  1758. sa->runnable_avg_period += runnable_contrib;
  1759. }
  1760. /* Remainder of delta accrued against u_0` */
  1761. if (runnable)
  1762. sa->runnable_avg_sum += delta;
  1763. sa->runnable_avg_period += delta;
  1764. return decayed;
  1765. }
  1766. /* Synchronize an entity's decay with its parenting cfs_rq.*/
  1767. static inline u64 __synchronize_entity_decay(struct sched_entity *se)
  1768. {
  1769. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1770. u64 decays = atomic64_read(&cfs_rq->decay_counter);
  1771. decays -= se->avg.decay_count;
  1772. if (!decays)
  1773. return 0;
  1774. se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
  1775. se->avg.decay_count = 0;
  1776. return decays;
  1777. }
  1778. #ifdef CONFIG_FAIR_GROUP_SCHED
  1779. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  1780. int force_update)
  1781. {
  1782. struct task_group *tg = cfs_rq->tg;
  1783. long tg_contrib;
  1784. tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
  1785. tg_contrib -= cfs_rq->tg_load_contrib;
  1786. if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
  1787. atomic_long_add(tg_contrib, &tg->load_avg);
  1788. cfs_rq->tg_load_contrib += tg_contrib;
  1789. }
  1790. }
  1791. /*
  1792. * Aggregate cfs_rq runnable averages into an equivalent task_group
  1793. * representation for computing load contributions.
  1794. */
  1795. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  1796. struct cfs_rq *cfs_rq)
  1797. {
  1798. struct task_group *tg = cfs_rq->tg;
  1799. long contrib;
  1800. /* The fraction of a cpu used by this cfs_rq */
  1801. contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
  1802. sa->runnable_avg_period + 1);
  1803. contrib -= cfs_rq->tg_runnable_contrib;
  1804. if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
  1805. atomic_add(contrib, &tg->runnable_avg);
  1806. cfs_rq->tg_runnable_contrib += contrib;
  1807. }
  1808. }
  1809. static inline void __update_group_entity_contrib(struct sched_entity *se)
  1810. {
  1811. struct cfs_rq *cfs_rq = group_cfs_rq(se);
  1812. struct task_group *tg = cfs_rq->tg;
  1813. int runnable_avg;
  1814. u64 contrib;
  1815. contrib = cfs_rq->tg_load_contrib * tg->shares;
  1816. se->avg.load_avg_contrib = div_u64(contrib,
  1817. atomic_long_read(&tg->load_avg) + 1);
  1818. /*
  1819. * For group entities we need to compute a correction term in the case
  1820. * that they are consuming <1 cpu so that we would contribute the same
  1821. * load as a task of equal weight.
  1822. *
  1823. * Explicitly co-ordinating this measurement would be expensive, but
  1824. * fortunately the sum of each cpus contribution forms a usable
  1825. * lower-bound on the true value.
  1826. *
  1827. * Consider the aggregate of 2 contributions. Either they are disjoint
  1828. * (and the sum represents true value) or they are disjoint and we are
  1829. * understating by the aggregate of their overlap.
  1830. *
  1831. * Extending this to N cpus, for a given overlap, the maximum amount we
  1832. * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
  1833. * cpus that overlap for this interval and w_i is the interval width.
  1834. *
  1835. * On a small machine; the first term is well-bounded which bounds the
  1836. * total error since w_i is a subset of the period. Whereas on a
  1837. * larger machine, while this first term can be larger, if w_i is the
  1838. * of consequential size guaranteed to see n_i*w_i quickly converge to
  1839. * our upper bound of 1-cpu.
  1840. */
  1841. runnable_avg = atomic_read(&tg->runnable_avg);
  1842. if (runnable_avg < NICE_0_LOAD) {
  1843. se->avg.load_avg_contrib *= runnable_avg;
  1844. se->avg.load_avg_contrib >>= NICE_0_SHIFT;
  1845. }
  1846. }
  1847. #else
  1848. static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
  1849. int force_update) {}
  1850. static inline void __update_tg_runnable_avg(struct sched_avg *sa,
  1851. struct cfs_rq *cfs_rq) {}
  1852. static inline void __update_group_entity_contrib(struct sched_entity *se) {}
  1853. #endif
  1854. static inline void __update_task_entity_contrib(struct sched_entity *se)
  1855. {
  1856. u32 contrib;
  1857. /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
  1858. contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
  1859. contrib /= (se->avg.runnable_avg_period + 1);
  1860. se->avg.load_avg_contrib = scale_load(contrib);
  1861. }
  1862. /* Compute the current contribution to load_avg by se, return any delta */
  1863. static long __update_entity_load_avg_contrib(struct sched_entity *se)
  1864. {
  1865. long old_contrib = se->avg.load_avg_contrib;
  1866. if (entity_is_task(se)) {
  1867. __update_task_entity_contrib(se);
  1868. } else {
  1869. __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
  1870. __update_group_entity_contrib(se);
  1871. }
  1872. return se->avg.load_avg_contrib - old_contrib;
  1873. }
  1874. static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
  1875. long load_contrib)
  1876. {
  1877. if (likely(load_contrib < cfs_rq->blocked_load_avg))
  1878. cfs_rq->blocked_load_avg -= load_contrib;
  1879. else
  1880. cfs_rq->blocked_load_avg = 0;
  1881. }
  1882. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
  1883. /* Update a sched_entity's runnable average */
  1884. static inline void update_entity_load_avg(struct sched_entity *se,
  1885. int update_cfs_rq)
  1886. {
  1887. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1888. long contrib_delta;
  1889. u64 now;
  1890. /*
  1891. * For a group entity we need to use their owned cfs_rq_clock_task() in
  1892. * case they are the parent of a throttled hierarchy.
  1893. */
  1894. if (entity_is_task(se))
  1895. now = cfs_rq_clock_task(cfs_rq);
  1896. else
  1897. now = cfs_rq_clock_task(group_cfs_rq(se));
  1898. if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
  1899. return;
  1900. contrib_delta = __update_entity_load_avg_contrib(se);
  1901. if (!update_cfs_rq)
  1902. return;
  1903. if (se->on_rq)
  1904. cfs_rq->runnable_load_avg += contrib_delta;
  1905. else
  1906. subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
  1907. }
  1908. /*
  1909. * Decay the load contributed by all blocked children and account this so that
  1910. * their contribution may appropriately discounted when they wake up.
  1911. */
  1912. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
  1913. {
  1914. u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
  1915. u64 decays;
  1916. decays = now - cfs_rq->last_decay;
  1917. if (!decays && !force_update)
  1918. return;
  1919. if (atomic_long_read(&cfs_rq->removed_load)) {
  1920. unsigned long removed_load;
  1921. removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
  1922. subtract_blocked_load_contrib(cfs_rq, removed_load);
  1923. }
  1924. if (decays) {
  1925. cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
  1926. decays);
  1927. atomic64_add(decays, &cfs_rq->decay_counter);
  1928. cfs_rq->last_decay = now;
  1929. }
  1930. __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
  1931. }
  1932. static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
  1933. {
  1934. __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
  1935. __update_tg_runnable_avg(&rq->avg, &rq->cfs);
  1936. }
  1937. /* Add the load generated by se into cfs_rq's child load-average */
  1938. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  1939. struct sched_entity *se,
  1940. int wakeup)
  1941. {
  1942. /*
  1943. * We track migrations using entity decay_count <= 0, on a wake-up
  1944. * migration we use a negative decay count to track the remote decays
  1945. * accumulated while sleeping.
  1946. *
  1947. * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
  1948. * are seen by enqueue_entity_load_avg() as a migration with an already
  1949. * constructed load_avg_contrib.
  1950. */
  1951. if (unlikely(se->avg.decay_count <= 0)) {
  1952. se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
  1953. if (se->avg.decay_count) {
  1954. /*
  1955. * In a wake-up migration we have to approximate the
  1956. * time sleeping. This is because we can't synchronize
  1957. * clock_task between the two cpus, and it is not
  1958. * guaranteed to be read-safe. Instead, we can
  1959. * approximate this using our carried decays, which are
  1960. * explicitly atomically readable.
  1961. */
  1962. se->avg.last_runnable_update -= (-se->avg.decay_count)
  1963. << 20;
  1964. update_entity_load_avg(se, 0);
  1965. /* Indicate that we're now synchronized and on-rq */
  1966. se->avg.decay_count = 0;
  1967. }
  1968. wakeup = 0;
  1969. } else {
  1970. __synchronize_entity_decay(se);
  1971. }
  1972. /* migrated tasks did not contribute to our blocked load */
  1973. if (wakeup) {
  1974. subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
  1975. update_entity_load_avg(se, 0);
  1976. }
  1977. cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
  1978. /* we force update consideration on load-balancer moves */
  1979. update_cfs_rq_blocked_load(cfs_rq, !wakeup);
  1980. }
  1981. /*
  1982. * Remove se's load from this cfs_rq child load-average, if the entity is
  1983. * transitioning to a blocked state we track its projected decay using
  1984. * blocked_load_avg.
  1985. */
  1986. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  1987. struct sched_entity *se,
  1988. int sleep)
  1989. {
  1990. update_entity_load_avg(se, 1);
  1991. /* we force update consideration on load-balancer moves */
  1992. update_cfs_rq_blocked_load(cfs_rq, !sleep);
  1993. cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
  1994. if (sleep) {
  1995. cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
  1996. se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  1997. } /* migrations, e.g. sleep=0 leave decay_count == 0 */
  1998. }
  1999. /*
  2000. * Update the rq's load with the elapsed running time before entering
  2001. * idle. if the last scheduled task is not a CFS task, idle_enter will
  2002. * be the only way to update the runnable statistic.
  2003. */
  2004. void idle_enter_fair(struct rq *this_rq)
  2005. {
  2006. update_rq_runnable_avg(this_rq, 1);
  2007. }
  2008. /*
  2009. * Update the rq's load with the elapsed idle time before a task is
  2010. * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
  2011. * be the only way to update the runnable statistic.
  2012. */
  2013. void idle_exit_fair(struct rq *this_rq)
  2014. {
  2015. update_rq_runnable_avg(this_rq, 0);
  2016. }
  2017. #else
  2018. static inline void update_entity_load_avg(struct sched_entity *se,
  2019. int update_cfs_rq) {}
  2020. static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
  2021. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  2022. struct sched_entity *se,
  2023. int wakeup) {}
  2024. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  2025. struct sched_entity *se,
  2026. int sleep) {}
  2027. static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
  2028. int force_update) {}
  2029. #endif
  2030. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2031. {
  2032. #ifdef CONFIG_SCHEDSTATS
  2033. struct task_struct *tsk = NULL;
  2034. if (entity_is_task(se))
  2035. tsk = task_of(se);
  2036. if (se->statistics.sleep_start) {
  2037. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
  2038. if ((s64)delta < 0)
  2039. delta = 0;
  2040. if (unlikely(delta > se->statistics.sleep_max))
  2041. se->statistics.sleep_max = delta;
  2042. se->statistics.sleep_start = 0;
  2043. se->statistics.sum_sleep_runtime += delta;
  2044. if (tsk) {
  2045. account_scheduler_latency(tsk, delta >> 10, 1);
  2046. trace_sched_stat_sleep(tsk, delta);
  2047. }
  2048. }
  2049. if (se->statistics.block_start) {
  2050. u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
  2051. if ((s64)delta < 0)
  2052. delta = 0;
  2053. if (unlikely(delta > se->statistics.block_max))
  2054. se->statistics.block_max = delta;
  2055. se->statistics.block_start = 0;
  2056. se->statistics.sum_sleep_runtime += delta;
  2057. if (tsk) {
  2058. if (tsk->in_iowait) {
  2059. se->statistics.iowait_sum += delta;
  2060. se->statistics.iowait_count++;
  2061. trace_sched_stat_iowait(tsk, delta);
  2062. }
  2063. trace_sched_stat_blocked(tsk, delta);
  2064. /*
  2065. * Blocking time is in units of nanosecs, so shift by
  2066. * 20 to get a milliseconds-range estimation of the
  2067. * amount of time that the task spent sleeping:
  2068. */
  2069. if (unlikely(prof_on == SLEEP_PROFILING)) {
  2070. profile_hits(SLEEP_PROFILING,
  2071. (void *)get_wchan(tsk),
  2072. delta >> 20);
  2073. }
  2074. account_scheduler_latency(tsk, delta >> 10, 0);
  2075. }
  2076. }
  2077. #endif
  2078. }
  2079. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2080. {
  2081. #ifdef CONFIG_SCHED_DEBUG
  2082. s64 d = se->vruntime - cfs_rq->min_vruntime;
  2083. if (d < 0)
  2084. d = -d;
  2085. if (d > 3*sysctl_sched_latency)
  2086. schedstat_inc(cfs_rq, nr_spread_over);
  2087. #endif
  2088. }
  2089. static void
  2090. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  2091. {
  2092. u64 vruntime = cfs_rq->min_vruntime;
  2093. /*
  2094. * The 'current' period is already promised to the current tasks,
  2095. * however the extra weight of the new task will slow them down a
  2096. * little, place the new task so that it fits in the slot that
  2097. * stays open at the end.
  2098. */
  2099. if (initial && sched_feat(START_DEBIT))
  2100. vruntime += sched_vslice(cfs_rq, se);
  2101. /* sleeps up to a single latency don't count. */
  2102. if (!initial) {
  2103. unsigned long thresh = sysctl_sched_latency;
  2104. /*
  2105. * Halve their sleep time's effect, to allow
  2106. * for a gentler effect of sleepers:
  2107. */
  2108. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  2109. thresh >>= 1;
  2110. vruntime -= thresh;
  2111. }
  2112. /* ensure we never gain time by being placed backwards. */
  2113. se->vruntime = max_vruntime(se->vruntime, vruntime);
  2114. }
  2115. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  2116. static void
  2117. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2118. {
  2119. /*
  2120. * Update the normalized vruntime before updating min_vruntime
  2121. * through calling update_curr().
  2122. */
  2123. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  2124. se->vruntime += cfs_rq->min_vruntime;
  2125. /*
  2126. * Update run-time statistics of the 'current'.
  2127. */
  2128. update_curr(cfs_rq);
  2129. enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
  2130. account_entity_enqueue(cfs_rq, se);
  2131. update_cfs_shares(cfs_rq);
  2132. if (flags & ENQUEUE_WAKEUP) {
  2133. place_entity(cfs_rq, se, 0);
  2134. enqueue_sleeper(cfs_rq, se);
  2135. }
  2136. update_stats_enqueue(cfs_rq, se);
  2137. check_spread(cfs_rq, se);
  2138. if (se != cfs_rq->curr)
  2139. __enqueue_entity(cfs_rq, se);
  2140. se->on_rq = 1;
  2141. if (cfs_rq->nr_running == 1) {
  2142. list_add_leaf_cfs_rq(cfs_rq);
  2143. check_enqueue_throttle(cfs_rq);
  2144. }
  2145. }
  2146. static void __clear_buddies_last(struct sched_entity *se)
  2147. {
  2148. for_each_sched_entity(se) {
  2149. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2150. if (cfs_rq->last == se)
  2151. cfs_rq->last = NULL;
  2152. else
  2153. break;
  2154. }
  2155. }
  2156. static void __clear_buddies_next(struct sched_entity *se)
  2157. {
  2158. for_each_sched_entity(se) {
  2159. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2160. if (cfs_rq->next == se)
  2161. cfs_rq->next = NULL;
  2162. else
  2163. break;
  2164. }
  2165. }
  2166. static void __clear_buddies_skip(struct sched_entity *se)
  2167. {
  2168. for_each_sched_entity(se) {
  2169. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2170. if (cfs_rq->skip == se)
  2171. cfs_rq->skip = NULL;
  2172. else
  2173. break;
  2174. }
  2175. }
  2176. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2177. {
  2178. if (cfs_rq->last == se)
  2179. __clear_buddies_last(se);
  2180. if (cfs_rq->next == se)
  2181. __clear_buddies_next(se);
  2182. if (cfs_rq->skip == se)
  2183. __clear_buddies_skip(se);
  2184. }
  2185. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  2186. static void
  2187. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  2188. {
  2189. /*
  2190. * Update run-time statistics of the 'current'.
  2191. */
  2192. update_curr(cfs_rq);
  2193. dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
  2194. update_stats_dequeue(cfs_rq, se);
  2195. if (flags & DEQUEUE_SLEEP) {
  2196. #ifdef CONFIG_SCHEDSTATS
  2197. if (entity_is_task(se)) {
  2198. struct task_struct *tsk = task_of(se);
  2199. if (tsk->state & TASK_INTERRUPTIBLE)
  2200. se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
  2201. if (tsk->state & TASK_UNINTERRUPTIBLE)
  2202. se->statistics.block_start = rq_clock(rq_of(cfs_rq));
  2203. }
  2204. #endif
  2205. }
  2206. clear_buddies(cfs_rq, se);
  2207. if (se != cfs_rq->curr)
  2208. __dequeue_entity(cfs_rq, se);
  2209. se->on_rq = 0;
  2210. account_entity_dequeue(cfs_rq, se);
  2211. /*
  2212. * Normalize the entity after updating the min_vruntime because the
  2213. * update can refer to the ->curr item and we need to reflect this
  2214. * movement in our normalized position.
  2215. */
  2216. if (!(flags & DEQUEUE_SLEEP))
  2217. se->vruntime -= cfs_rq->min_vruntime;
  2218. /* return excess runtime on last dequeue */
  2219. return_cfs_rq_runtime(cfs_rq);
  2220. update_min_vruntime(cfs_rq);
  2221. update_cfs_shares(cfs_rq);
  2222. }
  2223. /*
  2224. * Preempt the current task with a newly woken task if needed:
  2225. */
  2226. static void
  2227. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  2228. {
  2229. unsigned long ideal_runtime, delta_exec;
  2230. struct sched_entity *se;
  2231. s64 delta;
  2232. ideal_runtime = sched_slice(cfs_rq, curr);
  2233. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  2234. if (delta_exec > ideal_runtime) {
  2235. resched_task(rq_of(cfs_rq)->curr);
  2236. /*
  2237. * The current task ran long enough, ensure it doesn't get
  2238. * re-elected due to buddy favours.
  2239. */
  2240. clear_buddies(cfs_rq, curr);
  2241. return;
  2242. }
  2243. /*
  2244. * Ensure that a task that missed wakeup preemption by a
  2245. * narrow margin doesn't have to wait for a full slice.
  2246. * This also mitigates buddy induced latencies under load.
  2247. */
  2248. if (delta_exec < sysctl_sched_min_granularity)
  2249. return;
  2250. se = __pick_first_entity(cfs_rq);
  2251. delta = curr->vruntime - se->vruntime;
  2252. if (delta < 0)
  2253. return;
  2254. if (delta > ideal_runtime)
  2255. resched_task(rq_of(cfs_rq)->curr);
  2256. }
  2257. static void
  2258. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  2259. {
  2260. /* 'current' is not kept within the tree. */
  2261. if (se->on_rq) {
  2262. /*
  2263. * Any task has to be enqueued before it get to execute on
  2264. * a CPU. So account for the time it spent waiting on the
  2265. * runqueue.
  2266. */
  2267. update_stats_wait_end(cfs_rq, se);
  2268. __dequeue_entity(cfs_rq, se);
  2269. }
  2270. update_stats_curr_start(cfs_rq, se);
  2271. cfs_rq->curr = se;
  2272. #ifdef CONFIG_SCHEDSTATS
  2273. /*
  2274. * Track our maximum slice length, if the CPU's load is at
  2275. * least twice that of our own weight (i.e. dont track it
  2276. * when there are only lesser-weight tasks around):
  2277. */
  2278. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  2279. se->statistics.slice_max = max(se->statistics.slice_max,
  2280. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  2281. }
  2282. #endif
  2283. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  2284. }
  2285. static int
  2286. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  2287. /*
  2288. * Pick the next process, keeping these things in mind, in this order:
  2289. * 1) keep things fair between processes/task groups
  2290. * 2) pick the "next" process, since someone really wants that to run
  2291. * 3) pick the "last" process, for cache locality
  2292. * 4) do not run the "skip" process, if something else is available
  2293. */
  2294. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  2295. {
  2296. struct sched_entity *se = __pick_first_entity(cfs_rq);
  2297. struct sched_entity *left = se;
  2298. /*
  2299. * Avoid running the skip buddy, if running something else can
  2300. * be done without getting too unfair.
  2301. */
  2302. if (cfs_rq->skip == se) {
  2303. struct sched_entity *second = __pick_next_entity(se);
  2304. if (second && wakeup_preempt_entity(second, left) < 1)
  2305. se = second;
  2306. }
  2307. /*
  2308. * Prefer last buddy, try to return the CPU to a preempted task.
  2309. */
  2310. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  2311. se = cfs_rq->last;
  2312. /*
  2313. * Someone really wants this to run. If it's not unfair, run it.
  2314. */
  2315. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  2316. se = cfs_rq->next;
  2317. clear_buddies(cfs_rq, se);
  2318. return se;
  2319. }
  2320. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  2321. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  2322. {
  2323. /*
  2324. * If still on the runqueue then deactivate_task()
  2325. * was not called and update_curr() has to be done:
  2326. */
  2327. if (prev->on_rq)
  2328. update_curr(cfs_rq);
  2329. /* throttle cfs_rqs exceeding runtime */
  2330. check_cfs_rq_runtime(cfs_rq);
  2331. check_spread(cfs_rq, prev);
  2332. if (prev->on_rq) {
  2333. update_stats_wait_start(cfs_rq, prev);
  2334. /* Put 'current' back into the tree. */
  2335. __enqueue_entity(cfs_rq, prev);
  2336. /* in !on_rq case, update occurred at dequeue */
  2337. update_entity_load_avg(prev, 1);
  2338. }
  2339. cfs_rq->curr = NULL;
  2340. }
  2341. static void
  2342. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  2343. {
  2344. /*
  2345. * Update run-time statistics of the 'current'.
  2346. */
  2347. update_curr(cfs_rq);
  2348. /*
  2349. * Ensure that runnable average is periodically updated.
  2350. */
  2351. update_entity_load_avg(curr, 1);
  2352. update_cfs_rq_blocked_load(cfs_rq, 1);
  2353. update_cfs_shares(cfs_rq);
  2354. #ifdef CONFIG_SCHED_HRTICK
  2355. /*
  2356. * queued ticks are scheduled to match the slice, so don't bother
  2357. * validating it and just reschedule.
  2358. */
  2359. if (queued) {
  2360. resched_task(rq_of(cfs_rq)->curr);
  2361. return;
  2362. }
  2363. /*
  2364. * don't let the period tick interfere with the hrtick preemption
  2365. */
  2366. if (!sched_feat(DOUBLE_TICK) &&
  2367. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  2368. return;
  2369. #endif
  2370. if (cfs_rq->nr_running > 1)
  2371. check_preempt_tick(cfs_rq, curr);
  2372. }
  2373. /**************************************************
  2374. * CFS bandwidth control machinery
  2375. */
  2376. #ifdef CONFIG_CFS_BANDWIDTH
  2377. #ifdef HAVE_JUMP_LABEL
  2378. static struct static_key __cfs_bandwidth_used;
  2379. static inline bool cfs_bandwidth_used(void)
  2380. {
  2381. return static_key_false(&__cfs_bandwidth_used);
  2382. }
  2383. void cfs_bandwidth_usage_inc(void)
  2384. {
  2385. static_key_slow_inc(&__cfs_bandwidth_used);
  2386. }
  2387. void cfs_bandwidth_usage_dec(void)
  2388. {
  2389. static_key_slow_dec(&__cfs_bandwidth_used);
  2390. }
  2391. #else /* HAVE_JUMP_LABEL */
  2392. static bool cfs_bandwidth_used(void)
  2393. {
  2394. return true;
  2395. }
  2396. void cfs_bandwidth_usage_inc(void) {}
  2397. void cfs_bandwidth_usage_dec(void) {}
  2398. #endif /* HAVE_JUMP_LABEL */
  2399. /*
  2400. * default period for cfs group bandwidth.
  2401. * default: 0.1s, units: nanoseconds
  2402. */
  2403. static inline u64 default_cfs_period(void)
  2404. {
  2405. return 100000000ULL;
  2406. }
  2407. static inline u64 sched_cfs_bandwidth_slice(void)
  2408. {
  2409. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  2410. }
  2411. /*
  2412. * Replenish runtime according to assigned quota and update expiration time.
  2413. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  2414. * additional synchronization around rq->lock.
  2415. *
  2416. * requires cfs_b->lock
  2417. */
  2418. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  2419. {
  2420. u64 now;
  2421. if (cfs_b->quota == RUNTIME_INF)
  2422. return;
  2423. now = sched_clock_cpu(smp_processor_id());
  2424. cfs_b->runtime = cfs_b->quota;
  2425. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  2426. }
  2427. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  2428. {
  2429. return &tg->cfs_bandwidth;
  2430. }
  2431. /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
  2432. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  2433. {
  2434. if (unlikely(cfs_rq->throttle_count))
  2435. return cfs_rq->throttled_clock_task;
  2436. return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
  2437. }
  2438. /* returns 0 on failure to allocate runtime */
  2439. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2440. {
  2441. struct task_group *tg = cfs_rq->tg;
  2442. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  2443. u64 amount = 0, min_amount, expires;
  2444. /* note: this is a positive sum as runtime_remaining <= 0 */
  2445. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  2446. raw_spin_lock(&cfs_b->lock);
  2447. if (cfs_b->quota == RUNTIME_INF)
  2448. amount = min_amount;
  2449. else {
  2450. /*
  2451. * If the bandwidth pool has become inactive, then at least one
  2452. * period must have elapsed since the last consumption.
  2453. * Refresh the global state and ensure bandwidth timer becomes
  2454. * active.
  2455. */
  2456. if (!cfs_b->timer_active) {
  2457. __refill_cfs_bandwidth_runtime(cfs_b);
  2458. __start_cfs_bandwidth(cfs_b);
  2459. }
  2460. if (cfs_b->runtime > 0) {
  2461. amount = min(cfs_b->runtime, min_amount);
  2462. cfs_b->runtime -= amount;
  2463. cfs_b->idle = 0;
  2464. }
  2465. }
  2466. expires = cfs_b->runtime_expires;
  2467. raw_spin_unlock(&cfs_b->lock);
  2468. cfs_rq->runtime_remaining += amount;
  2469. /*
  2470. * we may have advanced our local expiration to account for allowed
  2471. * spread between our sched_clock and the one on which runtime was
  2472. * issued.
  2473. */
  2474. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  2475. cfs_rq->runtime_expires = expires;
  2476. return cfs_rq->runtime_remaining > 0;
  2477. }
  2478. /*
  2479. * Note: This depends on the synchronization provided by sched_clock and the
  2480. * fact that rq->clock snapshots this value.
  2481. */
  2482. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2483. {
  2484. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2485. /* if the deadline is ahead of our clock, nothing to do */
  2486. if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
  2487. return;
  2488. if (cfs_rq->runtime_remaining < 0)
  2489. return;
  2490. /*
  2491. * If the local deadline has passed we have to consider the
  2492. * possibility that our sched_clock is 'fast' and the global deadline
  2493. * has not truly expired.
  2494. *
  2495. * Fortunately we can check determine whether this the case by checking
  2496. * whether the global deadline has advanced.
  2497. */
  2498. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  2499. /* extend local deadline, drift is bounded above by 2 ticks */
  2500. cfs_rq->runtime_expires += TICK_NSEC;
  2501. } else {
  2502. /* global deadline is ahead, expiration has passed */
  2503. cfs_rq->runtime_remaining = 0;
  2504. }
  2505. }
  2506. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  2507. {
  2508. /* dock delta_exec before expiring quota (as it could span periods) */
  2509. cfs_rq->runtime_remaining -= delta_exec;
  2510. expire_cfs_rq_runtime(cfs_rq);
  2511. if (likely(cfs_rq->runtime_remaining > 0))
  2512. return;
  2513. /*
  2514. * if we're unable to extend our runtime we resched so that the active
  2515. * hierarchy can be throttled
  2516. */
  2517. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  2518. resched_task(rq_of(cfs_rq)->curr);
  2519. }
  2520. static __always_inline
  2521. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
  2522. {
  2523. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  2524. return;
  2525. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  2526. }
  2527. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  2528. {
  2529. return cfs_bandwidth_used() && cfs_rq->throttled;
  2530. }
  2531. /* check whether cfs_rq, or any parent, is throttled */
  2532. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  2533. {
  2534. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  2535. }
  2536. /*
  2537. * Ensure that neither of the group entities corresponding to src_cpu or
  2538. * dest_cpu are members of a throttled hierarchy when performing group
  2539. * load-balance operations.
  2540. */
  2541. static inline int throttled_lb_pair(struct task_group *tg,
  2542. int src_cpu, int dest_cpu)
  2543. {
  2544. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  2545. src_cfs_rq = tg->cfs_rq[src_cpu];
  2546. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  2547. return throttled_hierarchy(src_cfs_rq) ||
  2548. throttled_hierarchy(dest_cfs_rq);
  2549. }
  2550. /* updated child weight may affect parent so we have to do this bottom up */
  2551. static int tg_unthrottle_up(struct task_group *tg, void *data)
  2552. {
  2553. struct rq *rq = data;
  2554. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  2555. cfs_rq->throttle_count--;
  2556. #ifdef CONFIG_SMP
  2557. if (!cfs_rq->throttle_count) {
  2558. /* adjust cfs_rq_clock_task() */
  2559. cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
  2560. cfs_rq->throttled_clock_task;
  2561. }
  2562. #endif
  2563. return 0;
  2564. }
  2565. static int tg_throttle_down(struct task_group *tg, void *data)
  2566. {
  2567. struct rq *rq = data;
  2568. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  2569. /* group is entering throttled state, stop time */
  2570. if (!cfs_rq->throttle_count)
  2571. cfs_rq->throttled_clock_task = rq_clock_task(rq);
  2572. cfs_rq->throttle_count++;
  2573. return 0;
  2574. }
  2575. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  2576. {
  2577. struct rq *rq = rq_of(cfs_rq);
  2578. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2579. struct sched_entity *se;
  2580. long task_delta, dequeue = 1;
  2581. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  2582. /* freeze hierarchy runnable averages while throttled */
  2583. rcu_read_lock();
  2584. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  2585. rcu_read_unlock();
  2586. task_delta = cfs_rq->h_nr_running;
  2587. for_each_sched_entity(se) {
  2588. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  2589. /* throttled entity or throttle-on-deactivate */
  2590. if (!se->on_rq)
  2591. break;
  2592. if (dequeue)
  2593. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  2594. qcfs_rq->h_nr_running -= task_delta;
  2595. if (qcfs_rq->load.weight)
  2596. dequeue = 0;
  2597. }
  2598. if (!se)
  2599. rq->nr_running -= task_delta;
  2600. cfs_rq->throttled = 1;
  2601. cfs_rq->throttled_clock = rq_clock(rq);
  2602. raw_spin_lock(&cfs_b->lock);
  2603. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  2604. if (!cfs_b->timer_active)
  2605. __start_cfs_bandwidth(cfs_b);
  2606. raw_spin_unlock(&cfs_b->lock);
  2607. }
  2608. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  2609. {
  2610. struct rq *rq = rq_of(cfs_rq);
  2611. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2612. struct sched_entity *se;
  2613. int enqueue = 1;
  2614. long task_delta;
  2615. se = cfs_rq->tg->se[cpu_of(rq)];
  2616. cfs_rq->throttled = 0;
  2617. update_rq_clock(rq);
  2618. raw_spin_lock(&cfs_b->lock);
  2619. cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
  2620. list_del_rcu(&cfs_rq->throttled_list);
  2621. raw_spin_unlock(&cfs_b->lock);
  2622. /* update hierarchical throttle state */
  2623. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  2624. if (!cfs_rq->load.weight)
  2625. return;
  2626. task_delta = cfs_rq->h_nr_running;
  2627. for_each_sched_entity(se) {
  2628. if (se->on_rq)
  2629. enqueue = 0;
  2630. cfs_rq = cfs_rq_of(se);
  2631. if (enqueue)
  2632. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  2633. cfs_rq->h_nr_running += task_delta;
  2634. if (cfs_rq_throttled(cfs_rq))
  2635. break;
  2636. }
  2637. if (!se)
  2638. rq->nr_running += task_delta;
  2639. /* determine whether we need to wake up potentially idle cpu */
  2640. if (rq->curr == rq->idle && rq->cfs.nr_running)
  2641. resched_task(rq->curr);
  2642. }
  2643. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  2644. u64 remaining, u64 expires)
  2645. {
  2646. struct cfs_rq *cfs_rq;
  2647. u64 runtime = remaining;
  2648. rcu_read_lock();
  2649. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  2650. throttled_list) {
  2651. struct rq *rq = rq_of(cfs_rq);
  2652. raw_spin_lock(&rq->lock);
  2653. if (!cfs_rq_throttled(cfs_rq))
  2654. goto next;
  2655. runtime = -cfs_rq->runtime_remaining + 1;
  2656. if (runtime > remaining)
  2657. runtime = remaining;
  2658. remaining -= runtime;
  2659. cfs_rq->runtime_remaining += runtime;
  2660. cfs_rq->runtime_expires = expires;
  2661. /* we check whether we're throttled above */
  2662. if (cfs_rq->runtime_remaining > 0)
  2663. unthrottle_cfs_rq(cfs_rq);
  2664. next:
  2665. raw_spin_unlock(&rq->lock);
  2666. if (!remaining)
  2667. break;
  2668. }
  2669. rcu_read_unlock();
  2670. return remaining;
  2671. }
  2672. /*
  2673. * Responsible for refilling a task_group's bandwidth and unthrottling its
  2674. * cfs_rqs as appropriate. If there has been no activity within the last
  2675. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  2676. * used to track this state.
  2677. */
  2678. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  2679. {
  2680. u64 runtime, runtime_expires;
  2681. int idle = 1, throttled;
  2682. raw_spin_lock(&cfs_b->lock);
  2683. /* no need to continue the timer with no bandwidth constraint */
  2684. if (cfs_b->quota == RUNTIME_INF)
  2685. goto out_unlock;
  2686. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  2687. /* idle depends on !throttled (for the case of a large deficit) */
  2688. idle = cfs_b->idle && !throttled;
  2689. cfs_b->nr_periods += overrun;
  2690. /* if we're going inactive then everything else can be deferred */
  2691. if (idle)
  2692. goto out_unlock;
  2693. /*
  2694. * if we have relooped after returning idle once, we need to update our
  2695. * status as actually running, so that other cpus doing
  2696. * __start_cfs_bandwidth will stop trying to cancel us.
  2697. */
  2698. cfs_b->timer_active = 1;
  2699. __refill_cfs_bandwidth_runtime(cfs_b);
  2700. if (!throttled) {
  2701. /* mark as potentially idle for the upcoming period */
  2702. cfs_b->idle = 1;
  2703. goto out_unlock;
  2704. }
  2705. /* account preceding periods in which throttling occurred */
  2706. cfs_b->nr_throttled += overrun;
  2707. /*
  2708. * There are throttled entities so we must first use the new bandwidth
  2709. * to unthrottle them before making it generally available. This
  2710. * ensures that all existing debts will be paid before a new cfs_rq is
  2711. * allowed to run.
  2712. */
  2713. runtime = cfs_b->runtime;
  2714. runtime_expires = cfs_b->runtime_expires;
  2715. cfs_b->runtime = 0;
  2716. /*
  2717. * This check is repeated as we are holding onto the new bandwidth
  2718. * while we unthrottle. This can potentially race with an unthrottled
  2719. * group trying to acquire new bandwidth from the global pool.
  2720. */
  2721. while (throttled && runtime > 0) {
  2722. raw_spin_unlock(&cfs_b->lock);
  2723. /* we can't nest cfs_b->lock while distributing bandwidth */
  2724. runtime = distribute_cfs_runtime(cfs_b, runtime,
  2725. runtime_expires);
  2726. raw_spin_lock(&cfs_b->lock);
  2727. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  2728. }
  2729. /* return (any) remaining runtime */
  2730. cfs_b->runtime = runtime;
  2731. /*
  2732. * While we are ensured activity in the period following an
  2733. * unthrottle, this also covers the case in which the new bandwidth is
  2734. * insufficient to cover the existing bandwidth deficit. (Forcing the
  2735. * timer to remain active while there are any throttled entities.)
  2736. */
  2737. cfs_b->idle = 0;
  2738. out_unlock:
  2739. if (idle)
  2740. cfs_b->timer_active = 0;
  2741. raw_spin_unlock(&cfs_b->lock);
  2742. return idle;
  2743. }
  2744. /* a cfs_rq won't donate quota below this amount */
  2745. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  2746. /* minimum remaining period time to redistribute slack quota */
  2747. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  2748. /* how long we wait to gather additional slack before distributing */
  2749. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  2750. /*
  2751. * Are we near the end of the current quota period?
  2752. *
  2753. * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
  2754. * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
  2755. * migrate_hrtimers, base is never cleared, so we are fine.
  2756. */
  2757. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  2758. {
  2759. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  2760. u64 remaining;
  2761. /* if the call-back is running a quota refresh is already occurring */
  2762. if (hrtimer_callback_running(refresh_timer))
  2763. return 1;
  2764. /* is a quota refresh about to occur? */
  2765. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  2766. if (remaining < min_expire)
  2767. return 1;
  2768. return 0;
  2769. }
  2770. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  2771. {
  2772. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  2773. /* if there's a quota refresh soon don't bother with slack */
  2774. if (runtime_refresh_within(cfs_b, min_left))
  2775. return;
  2776. start_bandwidth_timer(&cfs_b->slack_timer,
  2777. ns_to_ktime(cfs_bandwidth_slack_period));
  2778. }
  2779. /* we know any runtime found here is valid as update_curr() precedes return */
  2780. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2781. {
  2782. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2783. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  2784. if (slack_runtime <= 0)
  2785. return;
  2786. raw_spin_lock(&cfs_b->lock);
  2787. if (cfs_b->quota != RUNTIME_INF &&
  2788. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  2789. cfs_b->runtime += slack_runtime;
  2790. /* we are under rq->lock, defer unthrottling using a timer */
  2791. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  2792. !list_empty(&cfs_b->throttled_cfs_rq))
  2793. start_cfs_slack_bandwidth(cfs_b);
  2794. }
  2795. raw_spin_unlock(&cfs_b->lock);
  2796. /* even if it's not valid for return we don't want to try again */
  2797. cfs_rq->runtime_remaining -= slack_runtime;
  2798. }
  2799. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2800. {
  2801. if (!cfs_bandwidth_used())
  2802. return;
  2803. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  2804. return;
  2805. __return_cfs_rq_runtime(cfs_rq);
  2806. }
  2807. /*
  2808. * This is done with a timer (instead of inline with bandwidth return) since
  2809. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  2810. */
  2811. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  2812. {
  2813. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  2814. u64 expires;
  2815. /* confirm we're still not at a refresh boundary */
  2816. raw_spin_lock(&cfs_b->lock);
  2817. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
  2818. raw_spin_unlock(&cfs_b->lock);
  2819. return;
  2820. }
  2821. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  2822. runtime = cfs_b->runtime;
  2823. cfs_b->runtime = 0;
  2824. }
  2825. expires = cfs_b->runtime_expires;
  2826. raw_spin_unlock(&cfs_b->lock);
  2827. if (!runtime)
  2828. return;
  2829. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  2830. raw_spin_lock(&cfs_b->lock);
  2831. if (expires == cfs_b->runtime_expires)
  2832. cfs_b->runtime = runtime;
  2833. raw_spin_unlock(&cfs_b->lock);
  2834. }
  2835. /*
  2836. * When a group wakes up we want to make sure that its quota is not already
  2837. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  2838. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  2839. */
  2840. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  2841. {
  2842. if (!cfs_bandwidth_used())
  2843. return;
  2844. /* an active group must be handled by the update_curr()->put() path */
  2845. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  2846. return;
  2847. /* ensure the group is not already throttled */
  2848. if (cfs_rq_throttled(cfs_rq))
  2849. return;
  2850. /* update runtime allocation */
  2851. account_cfs_rq_runtime(cfs_rq, 0);
  2852. if (cfs_rq->runtime_remaining <= 0)
  2853. throttle_cfs_rq(cfs_rq);
  2854. }
  2855. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  2856. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2857. {
  2858. if (!cfs_bandwidth_used())
  2859. return;
  2860. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  2861. return;
  2862. /*
  2863. * it's possible for a throttled entity to be forced into a running
  2864. * state (e.g. set_curr_task), in this case we're finished.
  2865. */
  2866. if (cfs_rq_throttled(cfs_rq))
  2867. return;
  2868. throttle_cfs_rq(cfs_rq);
  2869. }
  2870. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  2871. {
  2872. struct cfs_bandwidth *cfs_b =
  2873. container_of(timer, struct cfs_bandwidth, slack_timer);
  2874. do_sched_cfs_slack_timer(cfs_b);
  2875. return HRTIMER_NORESTART;
  2876. }
  2877. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  2878. {
  2879. struct cfs_bandwidth *cfs_b =
  2880. container_of(timer, struct cfs_bandwidth, period_timer);
  2881. ktime_t now;
  2882. int overrun;
  2883. int idle = 0;
  2884. for (;;) {
  2885. now = hrtimer_cb_get_time(timer);
  2886. overrun = hrtimer_forward(timer, now, cfs_b->period);
  2887. if (!overrun)
  2888. break;
  2889. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  2890. }
  2891. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  2892. }
  2893. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2894. {
  2895. raw_spin_lock_init(&cfs_b->lock);
  2896. cfs_b->runtime = 0;
  2897. cfs_b->quota = RUNTIME_INF;
  2898. cfs_b->period = ns_to_ktime(default_cfs_period());
  2899. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  2900. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  2901. cfs_b->period_timer.function = sched_cfs_period_timer;
  2902. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  2903. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  2904. }
  2905. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  2906. {
  2907. cfs_rq->runtime_enabled = 0;
  2908. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  2909. }
  2910. /* requires cfs_b->lock, may release to reprogram timer */
  2911. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2912. {
  2913. /*
  2914. * The timer may be active because we're trying to set a new bandwidth
  2915. * period or because we're racing with the tear-down path
  2916. * (timer_active==0 becomes visible before the hrtimer call-back
  2917. * terminates). In either case we ensure that it's re-programmed
  2918. */
  2919. while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
  2920. hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
  2921. /* bounce the lock to allow do_sched_cfs_period_timer to run */
  2922. raw_spin_unlock(&cfs_b->lock);
  2923. cpu_relax();
  2924. raw_spin_lock(&cfs_b->lock);
  2925. /* if someone else restarted the timer then we're done */
  2926. if (cfs_b->timer_active)
  2927. return;
  2928. }
  2929. cfs_b->timer_active = 1;
  2930. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  2931. }
  2932. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  2933. {
  2934. hrtimer_cancel(&cfs_b->period_timer);
  2935. hrtimer_cancel(&cfs_b->slack_timer);
  2936. }
  2937. static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
  2938. {
  2939. struct cfs_rq *cfs_rq;
  2940. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2941. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  2942. if (!cfs_rq->runtime_enabled)
  2943. continue;
  2944. /*
  2945. * clock_task is not advancing so we just need to make sure
  2946. * there's some valid quota amount
  2947. */
  2948. cfs_rq->runtime_remaining = cfs_b->quota;
  2949. if (cfs_rq_throttled(cfs_rq))
  2950. unthrottle_cfs_rq(cfs_rq);
  2951. }
  2952. }
  2953. #else /* CONFIG_CFS_BANDWIDTH */
  2954. static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
  2955. {
  2956. return rq_clock_task(rq_of(cfs_rq));
  2957. }
  2958. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
  2959. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2960. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  2961. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2962. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  2963. {
  2964. return 0;
  2965. }
  2966. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  2967. {
  2968. return 0;
  2969. }
  2970. static inline int throttled_lb_pair(struct task_group *tg,
  2971. int src_cpu, int dest_cpu)
  2972. {
  2973. return 0;
  2974. }
  2975. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  2976. #ifdef CONFIG_FAIR_GROUP_SCHED
  2977. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  2978. #endif
  2979. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  2980. {
  2981. return NULL;
  2982. }
  2983. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  2984. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  2985. #endif /* CONFIG_CFS_BANDWIDTH */
  2986. /**************************************************
  2987. * CFS operations on tasks:
  2988. */
  2989. #ifdef CONFIG_SCHED_HRTICK
  2990. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  2991. {
  2992. struct sched_entity *se = &p->se;
  2993. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2994. WARN_ON(task_rq(p) != rq);
  2995. if (cfs_rq->nr_running > 1) {
  2996. u64 slice = sched_slice(cfs_rq, se);
  2997. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  2998. s64 delta = slice - ran;
  2999. if (delta < 0) {
  3000. if (rq->curr == p)
  3001. resched_task(p);
  3002. return;
  3003. }
  3004. /*
  3005. * Don't schedule slices shorter than 10000ns, that just
  3006. * doesn't make sense. Rely on vruntime for fairness.
  3007. */
  3008. if (rq->curr != p)
  3009. delta = max_t(s64, 10000LL, delta);
  3010. hrtick_start(rq, delta);
  3011. }
  3012. }
  3013. /*
  3014. * called from enqueue/dequeue and updates the hrtick when the
  3015. * current task is from our class and nr_running is low enough
  3016. * to matter.
  3017. */
  3018. static void hrtick_update(struct rq *rq)
  3019. {
  3020. struct task_struct *curr = rq->curr;
  3021. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  3022. return;
  3023. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  3024. hrtick_start_fair(rq, curr);
  3025. }
  3026. #else /* !CONFIG_SCHED_HRTICK */
  3027. static inline void
  3028. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  3029. {
  3030. }
  3031. static inline void hrtick_update(struct rq *rq)
  3032. {
  3033. }
  3034. #endif
  3035. /*
  3036. * The enqueue_task method is called before nr_running is
  3037. * increased. Here we update the fair scheduling stats and
  3038. * then put the task into the rbtree:
  3039. */
  3040. static void
  3041. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  3042. {
  3043. struct cfs_rq *cfs_rq;
  3044. struct sched_entity *se = &p->se;
  3045. for_each_sched_entity(se) {
  3046. if (se->on_rq)
  3047. break;
  3048. cfs_rq = cfs_rq_of(se);
  3049. enqueue_entity(cfs_rq, se, flags);
  3050. /*
  3051. * end evaluation on encountering a throttled cfs_rq
  3052. *
  3053. * note: in the case of encountering a throttled cfs_rq we will
  3054. * post the final h_nr_running increment below.
  3055. */
  3056. if (cfs_rq_throttled(cfs_rq))
  3057. break;
  3058. cfs_rq->h_nr_running++;
  3059. flags = ENQUEUE_WAKEUP;
  3060. }
  3061. for_each_sched_entity(se) {
  3062. cfs_rq = cfs_rq_of(se);
  3063. cfs_rq->h_nr_running++;
  3064. if (cfs_rq_throttled(cfs_rq))
  3065. break;
  3066. update_cfs_shares(cfs_rq);
  3067. update_entity_load_avg(se, 1);
  3068. }
  3069. if (!se) {
  3070. update_rq_runnable_avg(rq, rq->nr_running);
  3071. inc_nr_running(rq);
  3072. }
  3073. hrtick_update(rq);
  3074. }
  3075. static void set_next_buddy(struct sched_entity *se);
  3076. /*
  3077. * The dequeue_task method is called before nr_running is
  3078. * decreased. We remove the task from the rbtree and
  3079. * update the fair scheduling stats:
  3080. */
  3081. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  3082. {
  3083. struct cfs_rq *cfs_rq;
  3084. struct sched_entity *se = &p->se;
  3085. int task_sleep = flags & DEQUEUE_SLEEP;
  3086. for_each_sched_entity(se) {
  3087. cfs_rq = cfs_rq_of(se);
  3088. dequeue_entity(cfs_rq, se, flags);
  3089. /*
  3090. * end evaluation on encountering a throttled cfs_rq
  3091. *
  3092. * note: in the case of encountering a throttled cfs_rq we will
  3093. * post the final h_nr_running decrement below.
  3094. */
  3095. if (cfs_rq_throttled(cfs_rq))
  3096. break;
  3097. cfs_rq->h_nr_running--;
  3098. /* Don't dequeue parent if it has other entities besides us */
  3099. if (cfs_rq->load.weight) {
  3100. /*
  3101. * Bias pick_next to pick a task from this cfs_rq, as
  3102. * p is sleeping when it is within its sched_slice.
  3103. */
  3104. if (task_sleep && parent_entity(se))
  3105. set_next_buddy(parent_entity(se));
  3106. /* avoid re-evaluating load for this entity */
  3107. se = parent_entity(se);
  3108. break;
  3109. }
  3110. flags |= DEQUEUE_SLEEP;
  3111. }
  3112. for_each_sched_entity(se) {
  3113. cfs_rq = cfs_rq_of(se);
  3114. cfs_rq->h_nr_running--;
  3115. if (cfs_rq_throttled(cfs_rq))
  3116. break;
  3117. update_cfs_shares(cfs_rq);
  3118. update_entity_load_avg(se, 1);
  3119. }
  3120. if (!se) {
  3121. dec_nr_running(rq);
  3122. update_rq_runnable_avg(rq, 1);
  3123. }
  3124. hrtick_update(rq);
  3125. }
  3126. #ifdef CONFIG_SMP
  3127. /* Used instead of source_load when we know the type == 0 */
  3128. static unsigned long weighted_cpuload(const int cpu)
  3129. {
  3130. return cpu_rq(cpu)->cfs.runnable_load_avg;
  3131. }
  3132. /*
  3133. * Return a low guess at the load of a migration-source cpu weighted
  3134. * according to the scheduling class and "nice" value.
  3135. *
  3136. * We want to under-estimate the load of migration sources, to
  3137. * balance conservatively.
  3138. */
  3139. static unsigned long source_load(int cpu, int type)
  3140. {
  3141. struct rq *rq = cpu_rq(cpu);
  3142. unsigned long total = weighted_cpuload(cpu);
  3143. if (type == 0 || !sched_feat(LB_BIAS))
  3144. return total;
  3145. return min(rq->cpu_load[type-1], total);
  3146. }
  3147. /*
  3148. * Return a high guess at the load of a migration-target cpu weighted
  3149. * according to the scheduling class and "nice" value.
  3150. */
  3151. static unsigned long target_load(int cpu, int type)
  3152. {
  3153. struct rq *rq = cpu_rq(cpu);
  3154. unsigned long total = weighted_cpuload(cpu);
  3155. if (type == 0 || !sched_feat(LB_BIAS))
  3156. return total;
  3157. return max(rq->cpu_load[type-1], total);
  3158. }
  3159. static unsigned long power_of(int cpu)
  3160. {
  3161. return cpu_rq(cpu)->cpu_power;
  3162. }
  3163. static unsigned long cpu_avg_load_per_task(int cpu)
  3164. {
  3165. struct rq *rq = cpu_rq(cpu);
  3166. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  3167. unsigned long load_avg = rq->cfs.runnable_load_avg;
  3168. if (nr_running)
  3169. return load_avg / nr_running;
  3170. return 0;
  3171. }
  3172. static void record_wakee(struct task_struct *p)
  3173. {
  3174. /*
  3175. * Rough decay (wiping) for cost saving, don't worry
  3176. * about the boundary, really active task won't care
  3177. * about the loss.
  3178. */
  3179. if (jiffies > current->wakee_flip_decay_ts + HZ) {
  3180. current->wakee_flips = 0;
  3181. current->wakee_flip_decay_ts = jiffies;
  3182. }
  3183. if (current->last_wakee != p) {
  3184. current->last_wakee = p;
  3185. current->wakee_flips++;
  3186. }
  3187. }
  3188. static void task_waking_fair(struct task_struct *p)
  3189. {
  3190. struct sched_entity *se = &p->se;
  3191. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3192. u64 min_vruntime;
  3193. #ifndef CONFIG_64BIT
  3194. u64 min_vruntime_copy;
  3195. do {
  3196. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  3197. smp_rmb();
  3198. min_vruntime = cfs_rq->min_vruntime;
  3199. } while (min_vruntime != min_vruntime_copy);
  3200. #else
  3201. min_vruntime = cfs_rq->min_vruntime;
  3202. #endif
  3203. se->vruntime -= min_vruntime;
  3204. record_wakee(p);
  3205. }
  3206. #ifdef CONFIG_FAIR_GROUP_SCHED
  3207. /*
  3208. * effective_load() calculates the load change as seen from the root_task_group
  3209. *
  3210. * Adding load to a group doesn't make a group heavier, but can cause movement
  3211. * of group shares between cpus. Assuming the shares were perfectly aligned one
  3212. * can calculate the shift in shares.
  3213. *
  3214. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  3215. * on this @cpu and results in a total addition (subtraction) of @wg to the
  3216. * total group weight.
  3217. *
  3218. * Given a runqueue weight distribution (rw_i) we can compute a shares
  3219. * distribution (s_i) using:
  3220. *
  3221. * s_i = rw_i / \Sum rw_j (1)
  3222. *
  3223. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  3224. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  3225. * shares distribution (s_i):
  3226. *
  3227. * rw_i = { 2, 4, 1, 0 }
  3228. * s_i = { 2/7, 4/7, 1/7, 0 }
  3229. *
  3230. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  3231. * task used to run on and the CPU the waker is running on), we need to
  3232. * compute the effect of waking a task on either CPU and, in case of a sync
  3233. * wakeup, compute the effect of the current task going to sleep.
  3234. *
  3235. * So for a change of @wl to the local @cpu with an overall group weight change
  3236. * of @wl we can compute the new shares distribution (s'_i) using:
  3237. *
  3238. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  3239. *
  3240. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  3241. * differences in waking a task to CPU 0. The additional task changes the
  3242. * weight and shares distributions like:
  3243. *
  3244. * rw'_i = { 3, 4, 1, 0 }
  3245. * s'_i = { 3/8, 4/8, 1/8, 0 }
  3246. *
  3247. * We can then compute the difference in effective weight by using:
  3248. *
  3249. * dw_i = S * (s'_i - s_i) (3)
  3250. *
  3251. * Where 'S' is the group weight as seen by its parent.
  3252. *
  3253. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  3254. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  3255. * 4/7) times the weight of the group.
  3256. */
  3257. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  3258. {
  3259. struct sched_entity *se = tg->se[cpu];
  3260. if (!tg->parent) /* the trivial, non-cgroup case */
  3261. return wl;
  3262. for_each_sched_entity(se) {
  3263. long w, W;
  3264. tg = se->my_q->tg;
  3265. /*
  3266. * W = @wg + \Sum rw_j
  3267. */
  3268. W = wg + calc_tg_weight(tg, se->my_q);
  3269. /*
  3270. * w = rw_i + @wl
  3271. */
  3272. w = se->my_q->load.weight + wl;
  3273. /*
  3274. * wl = S * s'_i; see (2)
  3275. */
  3276. if (W > 0 && w < W)
  3277. wl = (w * tg->shares) / W;
  3278. else
  3279. wl = tg->shares;
  3280. /*
  3281. * Per the above, wl is the new se->load.weight value; since
  3282. * those are clipped to [MIN_SHARES, ...) do so now. See
  3283. * calc_cfs_shares().
  3284. */
  3285. if (wl < MIN_SHARES)
  3286. wl = MIN_SHARES;
  3287. /*
  3288. * wl = dw_i = S * (s'_i - s_i); see (3)
  3289. */
  3290. wl -= se->load.weight;
  3291. /*
  3292. * Recursively apply this logic to all parent groups to compute
  3293. * the final effective load change on the root group. Since
  3294. * only the @tg group gets extra weight, all parent groups can
  3295. * only redistribute existing shares. @wl is the shift in shares
  3296. * resulting from this level per the above.
  3297. */
  3298. wg = 0;
  3299. }
  3300. return wl;
  3301. }
  3302. #else
  3303. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  3304. {
  3305. return wl;
  3306. }
  3307. #endif
  3308. static int wake_wide(struct task_struct *p)
  3309. {
  3310. int factor = this_cpu_read(sd_llc_size);
  3311. /*
  3312. * Yeah, it's the switching-frequency, could means many wakee or
  3313. * rapidly switch, use factor here will just help to automatically
  3314. * adjust the loose-degree, so bigger node will lead to more pull.
  3315. */
  3316. if (p->wakee_flips > factor) {
  3317. /*
  3318. * wakee is somewhat hot, it needs certain amount of cpu
  3319. * resource, so if waker is far more hot, prefer to leave
  3320. * it alone.
  3321. */
  3322. if (current->wakee_flips > (factor * p->wakee_flips))
  3323. return 1;
  3324. }
  3325. return 0;
  3326. }
  3327. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  3328. {
  3329. s64 this_load, load;
  3330. int idx, this_cpu, prev_cpu;
  3331. unsigned long tl_per_task;
  3332. struct task_group *tg;
  3333. unsigned long weight;
  3334. int balanced;
  3335. /*
  3336. * If we wake multiple tasks be careful to not bounce
  3337. * ourselves around too much.
  3338. */
  3339. if (wake_wide(p))
  3340. return 0;
  3341. idx = sd->wake_idx;
  3342. this_cpu = smp_processor_id();
  3343. prev_cpu = task_cpu(p);
  3344. load = source_load(prev_cpu, idx);
  3345. this_load = target_load(this_cpu, idx);
  3346. /*
  3347. * If sync wakeup then subtract the (maximum possible)
  3348. * effect of the currently running task from the load
  3349. * of the current CPU:
  3350. */
  3351. if (sync) {
  3352. tg = task_group(current);
  3353. weight = current->se.load.weight;
  3354. this_load += effective_load(tg, this_cpu, -weight, -weight);
  3355. load += effective_load(tg, prev_cpu, 0, -weight);
  3356. }
  3357. tg = task_group(p);
  3358. weight = p->se.load.weight;
  3359. /*
  3360. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  3361. * due to the sync cause above having dropped this_load to 0, we'll
  3362. * always have an imbalance, but there's really nothing you can do
  3363. * about that, so that's good too.
  3364. *
  3365. * Otherwise check if either cpus are near enough in load to allow this
  3366. * task to be woken on this_cpu.
  3367. */
  3368. if (this_load > 0) {
  3369. s64 this_eff_load, prev_eff_load;
  3370. this_eff_load = 100;
  3371. this_eff_load *= power_of(prev_cpu);
  3372. this_eff_load *= this_load +
  3373. effective_load(tg, this_cpu, weight, weight);
  3374. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  3375. prev_eff_load *= power_of(this_cpu);
  3376. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  3377. balanced = this_eff_load <= prev_eff_load;
  3378. } else
  3379. balanced = true;
  3380. /*
  3381. * If the currently running task will sleep within
  3382. * a reasonable amount of time then attract this newly
  3383. * woken task:
  3384. */
  3385. if (sync && balanced)
  3386. return 1;
  3387. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  3388. tl_per_task = cpu_avg_load_per_task(this_cpu);
  3389. if (balanced ||
  3390. (this_load <= load &&
  3391. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  3392. /*
  3393. * This domain has SD_WAKE_AFFINE and
  3394. * p is cache cold in this domain, and
  3395. * there is no bad imbalance.
  3396. */
  3397. schedstat_inc(sd, ttwu_move_affine);
  3398. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  3399. return 1;
  3400. }
  3401. return 0;
  3402. }
  3403. /*
  3404. * find_idlest_group finds and returns the least busy CPU group within the
  3405. * domain.
  3406. */
  3407. static struct sched_group *
  3408. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  3409. int this_cpu, int sd_flag)
  3410. {
  3411. struct sched_group *idlest = NULL, *group = sd->groups;
  3412. unsigned long min_load = ULONG_MAX, this_load = 0;
  3413. int load_idx = sd->forkexec_idx;
  3414. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  3415. if (sd_flag & SD_BALANCE_WAKE)
  3416. load_idx = sd->wake_idx;
  3417. do {
  3418. unsigned long load, avg_load;
  3419. int local_group;
  3420. int i;
  3421. /* Skip over this group if it has no CPUs allowed */
  3422. if (!cpumask_intersects(sched_group_cpus(group),
  3423. tsk_cpus_allowed(p)))
  3424. continue;
  3425. local_group = cpumask_test_cpu(this_cpu,
  3426. sched_group_cpus(group));
  3427. /* Tally up the load of all CPUs in the group */
  3428. avg_load = 0;
  3429. for_each_cpu(i, sched_group_cpus(group)) {
  3430. /* Bias balancing toward cpus of our domain */
  3431. if (local_group)
  3432. load = source_load(i, load_idx);
  3433. else
  3434. load = target_load(i, load_idx);
  3435. avg_load += load;
  3436. }
  3437. /* Adjust by relative CPU power of the group */
  3438. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  3439. if (local_group) {
  3440. this_load = avg_load;
  3441. } else if (avg_load < min_load) {
  3442. min_load = avg_load;
  3443. idlest = group;
  3444. }
  3445. } while (group = group->next, group != sd->groups);
  3446. if (!idlest || 100*this_load < imbalance*min_load)
  3447. return NULL;
  3448. return idlest;
  3449. }
  3450. /*
  3451. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  3452. */
  3453. static int
  3454. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  3455. {
  3456. unsigned long load, min_load = ULONG_MAX;
  3457. int idlest = -1;
  3458. int i;
  3459. /* Traverse only the allowed CPUs */
  3460. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  3461. load = weighted_cpuload(i);
  3462. if (load < min_load || (load == min_load && i == this_cpu)) {
  3463. min_load = load;
  3464. idlest = i;
  3465. }
  3466. }
  3467. return idlest;
  3468. }
  3469. /*
  3470. * Try and locate an idle CPU in the sched_domain.
  3471. */
  3472. static int select_idle_sibling(struct task_struct *p, int target)
  3473. {
  3474. struct sched_domain *sd;
  3475. struct sched_group *sg;
  3476. int i = task_cpu(p);
  3477. if (idle_cpu(target))
  3478. return target;
  3479. /*
  3480. * If the prevous cpu is cache affine and idle, don't be stupid.
  3481. */
  3482. if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
  3483. return i;
  3484. /*
  3485. * Otherwise, iterate the domains and find an elegible idle cpu.
  3486. */
  3487. sd = rcu_dereference(per_cpu(sd_llc, target));
  3488. for_each_lower_domain(sd) {
  3489. sg = sd->groups;
  3490. do {
  3491. if (!cpumask_intersects(sched_group_cpus(sg),
  3492. tsk_cpus_allowed(p)))
  3493. goto next;
  3494. for_each_cpu(i, sched_group_cpus(sg)) {
  3495. if (i == target || !idle_cpu(i))
  3496. goto next;
  3497. }
  3498. target = cpumask_first_and(sched_group_cpus(sg),
  3499. tsk_cpus_allowed(p));
  3500. goto done;
  3501. next:
  3502. sg = sg->next;
  3503. } while (sg != sd->groups);
  3504. }
  3505. done:
  3506. return target;
  3507. }
  3508. /*
  3509. * sched_balance_self: balance the current task (running on cpu) in domains
  3510. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  3511. * SD_BALANCE_EXEC.
  3512. *
  3513. * Balance, ie. select the least loaded group.
  3514. *
  3515. * Returns the target CPU number, or the same CPU if no balancing is needed.
  3516. *
  3517. * preempt must be disabled.
  3518. */
  3519. static int
  3520. select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
  3521. {
  3522. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  3523. int cpu = smp_processor_id();
  3524. int new_cpu = cpu;
  3525. int want_affine = 0;
  3526. int sync = wake_flags & WF_SYNC;
  3527. if (p->nr_cpus_allowed == 1)
  3528. return prev_cpu;
  3529. if (sd_flag & SD_BALANCE_WAKE) {
  3530. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  3531. want_affine = 1;
  3532. new_cpu = prev_cpu;
  3533. }
  3534. rcu_read_lock();
  3535. for_each_domain(cpu, tmp) {
  3536. if (!(tmp->flags & SD_LOAD_BALANCE))
  3537. continue;
  3538. /*
  3539. * If both cpu and prev_cpu are part of this domain,
  3540. * cpu is a valid SD_WAKE_AFFINE target.
  3541. */
  3542. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  3543. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  3544. affine_sd = tmp;
  3545. break;
  3546. }
  3547. if (tmp->flags & sd_flag)
  3548. sd = tmp;
  3549. }
  3550. if (affine_sd) {
  3551. if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
  3552. prev_cpu = cpu;
  3553. new_cpu = select_idle_sibling(p, prev_cpu);
  3554. goto unlock;
  3555. }
  3556. while (sd) {
  3557. struct sched_group *group;
  3558. int weight;
  3559. if (!(sd->flags & sd_flag)) {
  3560. sd = sd->child;
  3561. continue;
  3562. }
  3563. group = find_idlest_group(sd, p, cpu, sd_flag);
  3564. if (!group) {
  3565. sd = sd->child;
  3566. continue;
  3567. }
  3568. new_cpu = find_idlest_cpu(group, p, cpu);
  3569. if (new_cpu == -1 || new_cpu == cpu) {
  3570. /* Now try balancing at a lower domain level of cpu */
  3571. sd = sd->child;
  3572. continue;
  3573. }
  3574. /* Now try balancing at a lower domain level of new_cpu */
  3575. cpu = new_cpu;
  3576. weight = sd->span_weight;
  3577. sd = NULL;
  3578. for_each_domain(cpu, tmp) {
  3579. if (weight <= tmp->span_weight)
  3580. break;
  3581. if (tmp->flags & sd_flag)
  3582. sd = tmp;
  3583. }
  3584. /* while loop will break here if sd == NULL */
  3585. }
  3586. unlock:
  3587. rcu_read_unlock();
  3588. return new_cpu;
  3589. }
  3590. /*
  3591. * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
  3592. * cfs_rq_of(p) references at time of call are still valid and identify the
  3593. * previous cpu. However, the caller only guarantees p->pi_lock is held; no
  3594. * other assumptions, including the state of rq->lock, should be made.
  3595. */
  3596. static void
  3597. migrate_task_rq_fair(struct task_struct *p, int next_cpu)
  3598. {
  3599. struct sched_entity *se = &p->se;
  3600. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3601. /*
  3602. * Load tracking: accumulate removed load so that it can be processed
  3603. * when we next update owning cfs_rq under rq->lock. Tasks contribute
  3604. * to blocked load iff they have a positive decay-count. It can never
  3605. * be negative here since on-rq tasks have decay-count == 0.
  3606. */
  3607. if (se->avg.decay_count) {
  3608. se->avg.decay_count = -__synchronize_entity_decay(se);
  3609. atomic_long_add(se->avg.load_avg_contrib,
  3610. &cfs_rq->removed_load);
  3611. }
  3612. }
  3613. #endif /* CONFIG_SMP */
  3614. static unsigned long
  3615. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  3616. {
  3617. unsigned long gran = sysctl_sched_wakeup_granularity;
  3618. /*
  3619. * Since its curr running now, convert the gran from real-time
  3620. * to virtual-time in his units.
  3621. *
  3622. * By using 'se' instead of 'curr' we penalize light tasks, so
  3623. * they get preempted easier. That is, if 'se' < 'curr' then
  3624. * the resulting gran will be larger, therefore penalizing the
  3625. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  3626. * be smaller, again penalizing the lighter task.
  3627. *
  3628. * This is especially important for buddies when the leftmost
  3629. * task is higher priority than the buddy.
  3630. */
  3631. return calc_delta_fair(gran, se);
  3632. }
  3633. /*
  3634. * Should 'se' preempt 'curr'.
  3635. *
  3636. * |s1
  3637. * |s2
  3638. * |s3
  3639. * g
  3640. * |<--->|c
  3641. *
  3642. * w(c, s1) = -1
  3643. * w(c, s2) = 0
  3644. * w(c, s3) = 1
  3645. *
  3646. */
  3647. static int
  3648. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  3649. {
  3650. s64 gran, vdiff = curr->vruntime - se->vruntime;
  3651. if (vdiff <= 0)
  3652. return -1;
  3653. gran = wakeup_gran(curr, se);
  3654. if (vdiff > gran)
  3655. return 1;
  3656. return 0;
  3657. }
  3658. static void set_last_buddy(struct sched_entity *se)
  3659. {
  3660. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  3661. return;
  3662. for_each_sched_entity(se)
  3663. cfs_rq_of(se)->last = se;
  3664. }
  3665. static void set_next_buddy(struct sched_entity *se)
  3666. {
  3667. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  3668. return;
  3669. for_each_sched_entity(se)
  3670. cfs_rq_of(se)->next = se;
  3671. }
  3672. static void set_skip_buddy(struct sched_entity *se)
  3673. {
  3674. for_each_sched_entity(se)
  3675. cfs_rq_of(se)->skip = se;
  3676. }
  3677. /*
  3678. * Preempt the current task with a newly woken task if needed:
  3679. */
  3680. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  3681. {
  3682. struct task_struct *curr = rq->curr;
  3683. struct sched_entity *se = &curr->se, *pse = &p->se;
  3684. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  3685. int scale = cfs_rq->nr_running >= sched_nr_latency;
  3686. int next_buddy_marked = 0;
  3687. if (unlikely(se == pse))
  3688. return;
  3689. /*
  3690. * This is possible from callers such as move_task(), in which we
  3691. * unconditionally check_prempt_curr() after an enqueue (which may have
  3692. * lead to a throttle). This both saves work and prevents false
  3693. * next-buddy nomination below.
  3694. */
  3695. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  3696. return;
  3697. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  3698. set_next_buddy(pse);
  3699. next_buddy_marked = 1;
  3700. }
  3701. /*
  3702. * We can come here with TIF_NEED_RESCHED already set from new task
  3703. * wake up path.
  3704. *
  3705. * Note: this also catches the edge-case of curr being in a throttled
  3706. * group (e.g. via set_curr_task), since update_curr() (in the
  3707. * enqueue of curr) will have resulted in resched being set. This
  3708. * prevents us from potentially nominating it as a false LAST_BUDDY
  3709. * below.
  3710. */
  3711. if (test_tsk_need_resched(curr))
  3712. return;
  3713. /* Idle tasks are by definition preempted by non-idle tasks. */
  3714. if (unlikely(curr->policy == SCHED_IDLE) &&
  3715. likely(p->policy != SCHED_IDLE))
  3716. goto preempt;
  3717. /*
  3718. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  3719. * is driven by the tick):
  3720. */
  3721. if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
  3722. return;
  3723. find_matching_se(&se, &pse);
  3724. update_curr(cfs_rq_of(se));
  3725. BUG_ON(!pse);
  3726. if (wakeup_preempt_entity(se, pse) == 1) {
  3727. /*
  3728. * Bias pick_next to pick the sched entity that is
  3729. * triggering this preemption.
  3730. */
  3731. if (!next_buddy_marked)
  3732. set_next_buddy(pse);
  3733. goto preempt;
  3734. }
  3735. return;
  3736. preempt:
  3737. resched_task(curr);
  3738. /*
  3739. * Only set the backward buddy when the current task is still
  3740. * on the rq. This can happen when a wakeup gets interleaved
  3741. * with schedule on the ->pre_schedule() or idle_balance()
  3742. * point, either of which can * drop the rq lock.
  3743. *
  3744. * Also, during early boot the idle thread is in the fair class,
  3745. * for obvious reasons its a bad idea to schedule back to it.
  3746. */
  3747. if (unlikely(!se->on_rq || curr == rq->idle))
  3748. return;
  3749. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  3750. set_last_buddy(se);
  3751. }
  3752. static struct task_struct *pick_next_task_fair(struct rq *rq)
  3753. {
  3754. struct task_struct *p;
  3755. struct cfs_rq *cfs_rq = &rq->cfs;
  3756. struct sched_entity *se;
  3757. if (!cfs_rq->nr_running)
  3758. return NULL;
  3759. do {
  3760. se = pick_next_entity(cfs_rq);
  3761. set_next_entity(cfs_rq, se);
  3762. cfs_rq = group_cfs_rq(se);
  3763. } while (cfs_rq);
  3764. p = task_of(se);
  3765. if (hrtick_enabled(rq))
  3766. hrtick_start_fair(rq, p);
  3767. return p;
  3768. }
  3769. /*
  3770. * Account for a descheduled task:
  3771. */
  3772. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  3773. {
  3774. struct sched_entity *se = &prev->se;
  3775. struct cfs_rq *cfs_rq;
  3776. for_each_sched_entity(se) {
  3777. cfs_rq = cfs_rq_of(se);
  3778. put_prev_entity(cfs_rq, se);
  3779. }
  3780. }
  3781. /*
  3782. * sched_yield() is very simple
  3783. *
  3784. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  3785. */
  3786. static void yield_task_fair(struct rq *rq)
  3787. {
  3788. struct task_struct *curr = rq->curr;
  3789. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  3790. struct sched_entity *se = &curr->se;
  3791. /*
  3792. * Are we the only task in the tree?
  3793. */
  3794. if (unlikely(rq->nr_running == 1))
  3795. return;
  3796. clear_buddies(cfs_rq, se);
  3797. if (curr->policy != SCHED_BATCH) {
  3798. update_rq_clock(rq);
  3799. /*
  3800. * Update run-time statistics of the 'current'.
  3801. */
  3802. update_curr(cfs_rq);
  3803. /*
  3804. * Tell update_rq_clock() that we've just updated,
  3805. * so we don't do microscopic update in schedule()
  3806. * and double the fastpath cost.
  3807. */
  3808. rq->skip_clock_update = 1;
  3809. }
  3810. set_skip_buddy(se);
  3811. }
  3812. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  3813. {
  3814. struct sched_entity *se = &p->se;
  3815. /* throttled hierarchies are not runnable */
  3816. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  3817. return false;
  3818. /* Tell the scheduler that we'd really like pse to run next. */
  3819. set_next_buddy(se);
  3820. yield_task_fair(rq);
  3821. return true;
  3822. }
  3823. #ifdef CONFIG_SMP
  3824. /**************************************************
  3825. * Fair scheduling class load-balancing methods.
  3826. *
  3827. * BASICS
  3828. *
  3829. * The purpose of load-balancing is to achieve the same basic fairness the
  3830. * per-cpu scheduler provides, namely provide a proportional amount of compute
  3831. * time to each task. This is expressed in the following equation:
  3832. *
  3833. * W_i,n/P_i == W_j,n/P_j for all i,j (1)
  3834. *
  3835. * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
  3836. * W_i,0 is defined as:
  3837. *
  3838. * W_i,0 = \Sum_j w_i,j (2)
  3839. *
  3840. * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
  3841. * is derived from the nice value as per prio_to_weight[].
  3842. *
  3843. * The weight average is an exponential decay average of the instantaneous
  3844. * weight:
  3845. *
  3846. * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
  3847. *
  3848. * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
  3849. * fraction of 'recent' time available for SCHED_OTHER task execution. But it
  3850. * can also include other factors [XXX].
  3851. *
  3852. * To achieve this balance we define a measure of imbalance which follows
  3853. * directly from (1):
  3854. *
  3855. * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
  3856. *
  3857. * We them move tasks around to minimize the imbalance. In the continuous
  3858. * function space it is obvious this converges, in the discrete case we get
  3859. * a few fun cases generally called infeasible weight scenarios.
  3860. *
  3861. * [XXX expand on:
  3862. * - infeasible weights;
  3863. * - local vs global optima in the discrete case. ]
  3864. *
  3865. *
  3866. * SCHED DOMAINS
  3867. *
  3868. * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
  3869. * for all i,j solution, we create a tree of cpus that follows the hardware
  3870. * topology where each level pairs two lower groups (or better). This results
  3871. * in O(log n) layers. Furthermore we reduce the number of cpus going up the
  3872. * tree to only the first of the previous level and we decrease the frequency
  3873. * of load-balance at each level inv. proportional to the number of cpus in
  3874. * the groups.
  3875. *
  3876. * This yields:
  3877. *
  3878. * log_2 n 1 n
  3879. * \Sum { --- * --- * 2^i } = O(n) (5)
  3880. * i = 0 2^i 2^i
  3881. * `- size of each group
  3882. * | | `- number of cpus doing load-balance
  3883. * | `- freq
  3884. * `- sum over all levels
  3885. *
  3886. * Coupled with a limit on how many tasks we can migrate every balance pass,
  3887. * this makes (5) the runtime complexity of the balancer.
  3888. *
  3889. * An important property here is that each CPU is still (indirectly) connected
  3890. * to every other cpu in at most O(log n) steps:
  3891. *
  3892. * The adjacency matrix of the resulting graph is given by:
  3893. *
  3894. * log_2 n
  3895. * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
  3896. * k = 0
  3897. *
  3898. * And you'll find that:
  3899. *
  3900. * A^(log_2 n)_i,j != 0 for all i,j (7)
  3901. *
  3902. * Showing there's indeed a path between every cpu in at most O(log n) steps.
  3903. * The task movement gives a factor of O(m), giving a convergence complexity
  3904. * of:
  3905. *
  3906. * O(nm log n), n := nr_cpus, m := nr_tasks (8)
  3907. *
  3908. *
  3909. * WORK CONSERVING
  3910. *
  3911. * In order to avoid CPUs going idle while there's still work to do, new idle
  3912. * balancing is more aggressive and has the newly idle cpu iterate up the domain
  3913. * tree itself instead of relying on other CPUs to bring it work.
  3914. *
  3915. * This adds some complexity to both (5) and (8) but it reduces the total idle
  3916. * time.
  3917. *
  3918. * [XXX more?]
  3919. *
  3920. *
  3921. * CGROUPS
  3922. *
  3923. * Cgroups make a horror show out of (2), instead of a simple sum we get:
  3924. *
  3925. * s_k,i
  3926. * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
  3927. * S_k
  3928. *
  3929. * Where
  3930. *
  3931. * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
  3932. *
  3933. * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
  3934. *
  3935. * The big problem is S_k, its a global sum needed to compute a local (W_i)
  3936. * property.
  3937. *
  3938. * [XXX write more on how we solve this.. _after_ merging pjt's patches that
  3939. * rewrite all of this once again.]
  3940. */
  3941. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3942. enum fbq_type { regular, remote, all };
  3943. #define LBF_ALL_PINNED 0x01
  3944. #define LBF_NEED_BREAK 0x02
  3945. #define LBF_DST_PINNED 0x04
  3946. #define LBF_SOME_PINNED 0x08
  3947. struct lb_env {
  3948. struct sched_domain *sd;
  3949. struct rq *src_rq;
  3950. int src_cpu;
  3951. int dst_cpu;
  3952. struct rq *dst_rq;
  3953. struct cpumask *dst_grpmask;
  3954. int new_dst_cpu;
  3955. enum cpu_idle_type idle;
  3956. long imbalance;
  3957. /* The set of CPUs under consideration for load-balancing */
  3958. struct cpumask *cpus;
  3959. unsigned int flags;
  3960. unsigned int loop;
  3961. unsigned int loop_break;
  3962. unsigned int loop_max;
  3963. enum fbq_type fbq_type;
  3964. };
  3965. /*
  3966. * move_task - move a task from one runqueue to another runqueue.
  3967. * Both runqueues must be locked.
  3968. */
  3969. static void move_task(struct task_struct *p, struct lb_env *env)
  3970. {
  3971. deactivate_task(env->src_rq, p, 0);
  3972. set_task_cpu(p, env->dst_cpu);
  3973. activate_task(env->dst_rq, p, 0);
  3974. check_preempt_curr(env->dst_rq, p, 0);
  3975. }
  3976. /*
  3977. * Is this task likely cache-hot:
  3978. */
  3979. static int
  3980. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  3981. {
  3982. s64 delta;
  3983. if (p->sched_class != &fair_sched_class)
  3984. return 0;
  3985. if (unlikely(p->policy == SCHED_IDLE))
  3986. return 0;
  3987. /*
  3988. * Buddy candidates are cache hot:
  3989. */
  3990. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  3991. (&p->se == cfs_rq_of(&p->se)->next ||
  3992. &p->se == cfs_rq_of(&p->se)->last))
  3993. return 1;
  3994. if (sysctl_sched_migration_cost == -1)
  3995. return 1;
  3996. if (sysctl_sched_migration_cost == 0)
  3997. return 0;
  3998. delta = now - p->se.exec_start;
  3999. return delta < (s64)sysctl_sched_migration_cost;
  4000. }
  4001. #ifdef CONFIG_NUMA_BALANCING
  4002. /* Returns true if the destination node has incurred more faults */
  4003. static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
  4004. {
  4005. int src_nid, dst_nid;
  4006. if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
  4007. !(env->sd->flags & SD_NUMA)) {
  4008. return false;
  4009. }
  4010. src_nid = cpu_to_node(env->src_cpu);
  4011. dst_nid = cpu_to_node(env->dst_cpu);
  4012. if (src_nid == dst_nid)
  4013. return false;
  4014. /* Always encourage migration to the preferred node. */
  4015. if (dst_nid == p->numa_preferred_nid)
  4016. return true;
  4017. /* If both task and group weight improve, this move is a winner. */
  4018. if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
  4019. group_weight(p, dst_nid) > group_weight(p, src_nid))
  4020. return true;
  4021. return false;
  4022. }
  4023. static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
  4024. {
  4025. int src_nid, dst_nid;
  4026. if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
  4027. return false;
  4028. if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
  4029. return false;
  4030. src_nid = cpu_to_node(env->src_cpu);
  4031. dst_nid = cpu_to_node(env->dst_cpu);
  4032. if (src_nid == dst_nid)
  4033. return false;
  4034. /* Migrating away from the preferred node is always bad. */
  4035. if (src_nid == p->numa_preferred_nid)
  4036. return true;
  4037. /* If either task or group weight get worse, don't do it. */
  4038. if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
  4039. group_weight(p, dst_nid) < group_weight(p, src_nid))
  4040. return true;
  4041. return false;
  4042. }
  4043. #else
  4044. static inline bool migrate_improves_locality(struct task_struct *p,
  4045. struct lb_env *env)
  4046. {
  4047. return false;
  4048. }
  4049. static inline bool migrate_degrades_locality(struct task_struct *p,
  4050. struct lb_env *env)
  4051. {
  4052. return false;
  4053. }
  4054. #endif
  4055. /*
  4056. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  4057. */
  4058. static
  4059. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  4060. {
  4061. int tsk_cache_hot = 0;
  4062. /*
  4063. * We do not migrate tasks that are:
  4064. * 1) throttled_lb_pair, or
  4065. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  4066. * 3) running (obviously), or
  4067. * 4) are cache-hot on their current CPU.
  4068. */
  4069. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  4070. return 0;
  4071. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  4072. int cpu;
  4073. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  4074. env->flags |= LBF_SOME_PINNED;
  4075. /*
  4076. * Remember if this task can be migrated to any other cpu in
  4077. * our sched_group. We may want to revisit it if we couldn't
  4078. * meet load balance goals by pulling other tasks on src_cpu.
  4079. *
  4080. * Also avoid computing new_dst_cpu if we have already computed
  4081. * one in current iteration.
  4082. */
  4083. if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
  4084. return 0;
  4085. /* Prevent to re-select dst_cpu via env's cpus */
  4086. for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
  4087. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
  4088. env->flags |= LBF_DST_PINNED;
  4089. env->new_dst_cpu = cpu;
  4090. break;
  4091. }
  4092. }
  4093. return 0;
  4094. }
  4095. /* Record that we found atleast one task that could run on dst_cpu */
  4096. env->flags &= ~LBF_ALL_PINNED;
  4097. if (task_running(env->src_rq, p)) {
  4098. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  4099. return 0;
  4100. }
  4101. /*
  4102. * Aggressive migration if:
  4103. * 1) destination numa is preferred
  4104. * 2) task is cache cold, or
  4105. * 3) too many balance attempts have failed.
  4106. */
  4107. tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
  4108. if (!tsk_cache_hot)
  4109. tsk_cache_hot = migrate_degrades_locality(p, env);
  4110. if (migrate_improves_locality(p, env)) {
  4111. #ifdef CONFIG_SCHEDSTATS
  4112. if (tsk_cache_hot) {
  4113. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  4114. schedstat_inc(p, se.statistics.nr_forced_migrations);
  4115. }
  4116. #endif
  4117. return 1;
  4118. }
  4119. if (!tsk_cache_hot ||
  4120. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  4121. if (tsk_cache_hot) {
  4122. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  4123. schedstat_inc(p, se.statistics.nr_forced_migrations);
  4124. }
  4125. return 1;
  4126. }
  4127. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  4128. return 0;
  4129. }
  4130. /*
  4131. * move_one_task tries to move exactly one task from busiest to this_rq, as
  4132. * part of active balancing operations within "domain".
  4133. * Returns 1 if successful and 0 otherwise.
  4134. *
  4135. * Called with both runqueues locked.
  4136. */
  4137. static int move_one_task(struct lb_env *env)
  4138. {
  4139. struct task_struct *p, *n;
  4140. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  4141. if (!can_migrate_task(p, env))
  4142. continue;
  4143. move_task(p, env);
  4144. /*
  4145. * Right now, this is only the second place move_task()
  4146. * is called, so we can safely collect move_task()
  4147. * stats here rather than inside move_task().
  4148. */
  4149. schedstat_inc(env->sd, lb_gained[env->idle]);
  4150. return 1;
  4151. }
  4152. return 0;
  4153. }
  4154. static const unsigned int sched_nr_migrate_break = 32;
  4155. /*
  4156. * move_tasks tries to move up to imbalance weighted load from busiest to
  4157. * this_rq, as part of a balancing operation within domain "sd".
  4158. * Returns 1 if successful and 0 otherwise.
  4159. *
  4160. * Called with both runqueues locked.
  4161. */
  4162. static int move_tasks(struct lb_env *env)
  4163. {
  4164. struct list_head *tasks = &env->src_rq->cfs_tasks;
  4165. struct task_struct *p;
  4166. unsigned long load;
  4167. int pulled = 0;
  4168. if (env->imbalance <= 0)
  4169. return 0;
  4170. while (!list_empty(tasks)) {
  4171. p = list_first_entry(tasks, struct task_struct, se.group_node);
  4172. env->loop++;
  4173. /* We've more or less seen every task there is, call it quits */
  4174. if (env->loop > env->loop_max)
  4175. break;
  4176. /* take a breather every nr_migrate tasks */
  4177. if (env->loop > env->loop_break) {
  4178. env->loop_break += sched_nr_migrate_break;
  4179. env->flags |= LBF_NEED_BREAK;
  4180. break;
  4181. }
  4182. if (!can_migrate_task(p, env))
  4183. goto next;
  4184. load = task_h_load(p);
  4185. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  4186. goto next;
  4187. if ((load / 2) > env->imbalance)
  4188. goto next;
  4189. move_task(p, env);
  4190. pulled++;
  4191. env->imbalance -= load;
  4192. #ifdef CONFIG_PREEMPT
  4193. /*
  4194. * NEWIDLE balancing is a source of latency, so preemptible
  4195. * kernels will stop after the first task is pulled to minimize
  4196. * the critical section.
  4197. */
  4198. if (env->idle == CPU_NEWLY_IDLE)
  4199. break;
  4200. #endif
  4201. /*
  4202. * We only want to steal up to the prescribed amount of
  4203. * weighted load.
  4204. */
  4205. if (env->imbalance <= 0)
  4206. break;
  4207. continue;
  4208. next:
  4209. list_move_tail(&p->se.group_node, tasks);
  4210. }
  4211. /*
  4212. * Right now, this is one of only two places move_task() is called,
  4213. * so we can safely collect move_task() stats here rather than
  4214. * inside move_task().
  4215. */
  4216. schedstat_add(env->sd, lb_gained[env->idle], pulled);
  4217. return pulled;
  4218. }
  4219. #ifdef CONFIG_FAIR_GROUP_SCHED
  4220. /*
  4221. * update tg->load_weight by folding this cpu's load_avg
  4222. */
  4223. static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
  4224. {
  4225. struct sched_entity *se = tg->se[cpu];
  4226. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
  4227. /* throttled entities do not contribute to load */
  4228. if (throttled_hierarchy(cfs_rq))
  4229. return;
  4230. update_cfs_rq_blocked_load(cfs_rq, 1);
  4231. if (se) {
  4232. update_entity_load_avg(se, 1);
  4233. /*
  4234. * We pivot on our runnable average having decayed to zero for
  4235. * list removal. This generally implies that all our children
  4236. * have also been removed (modulo rounding error or bandwidth
  4237. * control); however, such cases are rare and we can fix these
  4238. * at enqueue.
  4239. *
  4240. * TODO: fix up out-of-order children on enqueue.
  4241. */
  4242. if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
  4243. list_del_leaf_cfs_rq(cfs_rq);
  4244. } else {
  4245. struct rq *rq = rq_of(cfs_rq);
  4246. update_rq_runnable_avg(rq, rq->nr_running);
  4247. }
  4248. }
  4249. static void update_blocked_averages(int cpu)
  4250. {
  4251. struct rq *rq = cpu_rq(cpu);
  4252. struct cfs_rq *cfs_rq;
  4253. unsigned long flags;
  4254. raw_spin_lock_irqsave(&rq->lock, flags);
  4255. update_rq_clock(rq);
  4256. /*
  4257. * Iterates the task_group tree in a bottom up fashion, see
  4258. * list_add_leaf_cfs_rq() for details.
  4259. */
  4260. for_each_leaf_cfs_rq(rq, cfs_rq) {
  4261. /*
  4262. * Note: We may want to consider periodically releasing
  4263. * rq->lock about these updates so that creating many task
  4264. * groups does not result in continually extending hold time.
  4265. */
  4266. __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
  4267. }
  4268. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4269. }
  4270. /*
  4271. * Compute the hierarchical load factor for cfs_rq and all its ascendants.
  4272. * This needs to be done in a top-down fashion because the load of a child
  4273. * group is a fraction of its parents load.
  4274. */
  4275. static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
  4276. {
  4277. struct rq *rq = rq_of(cfs_rq);
  4278. struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
  4279. unsigned long now = jiffies;
  4280. unsigned long load;
  4281. if (cfs_rq->last_h_load_update == now)
  4282. return;
  4283. cfs_rq->h_load_next = NULL;
  4284. for_each_sched_entity(se) {
  4285. cfs_rq = cfs_rq_of(se);
  4286. cfs_rq->h_load_next = se;
  4287. if (cfs_rq->last_h_load_update == now)
  4288. break;
  4289. }
  4290. if (!se) {
  4291. cfs_rq->h_load = cfs_rq->runnable_load_avg;
  4292. cfs_rq->last_h_load_update = now;
  4293. }
  4294. while ((se = cfs_rq->h_load_next) != NULL) {
  4295. load = cfs_rq->h_load;
  4296. load = div64_ul(load * se->avg.load_avg_contrib,
  4297. cfs_rq->runnable_load_avg + 1);
  4298. cfs_rq = group_cfs_rq(se);
  4299. cfs_rq->h_load = load;
  4300. cfs_rq->last_h_load_update = now;
  4301. }
  4302. }
  4303. static unsigned long task_h_load(struct task_struct *p)
  4304. {
  4305. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  4306. update_cfs_rq_h_load(cfs_rq);
  4307. return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
  4308. cfs_rq->runnable_load_avg + 1);
  4309. }
  4310. #else
  4311. static inline void update_blocked_averages(int cpu)
  4312. {
  4313. }
  4314. static unsigned long task_h_load(struct task_struct *p)
  4315. {
  4316. return p->se.avg.load_avg_contrib;
  4317. }
  4318. #endif
  4319. /********** Helpers for find_busiest_group ************************/
  4320. /*
  4321. * sg_lb_stats - stats of a sched_group required for load_balancing
  4322. */
  4323. struct sg_lb_stats {
  4324. unsigned long avg_load; /*Avg load across the CPUs of the group */
  4325. unsigned long group_load; /* Total load over the CPUs of the group */
  4326. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  4327. unsigned long load_per_task;
  4328. unsigned long group_power;
  4329. unsigned int sum_nr_running; /* Nr tasks running in the group */
  4330. unsigned int group_capacity;
  4331. unsigned int idle_cpus;
  4332. unsigned int group_weight;
  4333. int group_imb; /* Is there an imbalance in the group ? */
  4334. int group_has_capacity; /* Is there extra capacity in the group? */
  4335. #ifdef CONFIG_NUMA_BALANCING
  4336. unsigned int nr_numa_running;
  4337. unsigned int nr_preferred_running;
  4338. #endif
  4339. };
  4340. /*
  4341. * sd_lb_stats - Structure to store the statistics of a sched_domain
  4342. * during load balancing.
  4343. */
  4344. struct sd_lb_stats {
  4345. struct sched_group *busiest; /* Busiest group in this sd */
  4346. struct sched_group *local; /* Local group in this sd */
  4347. unsigned long total_load; /* Total load of all groups in sd */
  4348. unsigned long total_pwr; /* Total power of all groups in sd */
  4349. unsigned long avg_load; /* Average load across all groups in sd */
  4350. struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
  4351. struct sg_lb_stats local_stat; /* Statistics of the local group */
  4352. };
  4353. static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
  4354. {
  4355. /*
  4356. * Skimp on the clearing to avoid duplicate work. We can avoid clearing
  4357. * local_stat because update_sg_lb_stats() does a full clear/assignment.
  4358. * We must however clear busiest_stat::avg_load because
  4359. * update_sd_pick_busiest() reads this before assignment.
  4360. */
  4361. *sds = (struct sd_lb_stats){
  4362. .busiest = NULL,
  4363. .local = NULL,
  4364. .total_load = 0UL,
  4365. .total_pwr = 0UL,
  4366. .busiest_stat = {
  4367. .avg_load = 0UL,
  4368. },
  4369. };
  4370. }
  4371. /**
  4372. * get_sd_load_idx - Obtain the load index for a given sched domain.
  4373. * @sd: The sched_domain whose load_idx is to be obtained.
  4374. * @idle: The idle status of the CPU for whose sd load_idx is obtained.
  4375. *
  4376. * Return: The load index.
  4377. */
  4378. static inline int get_sd_load_idx(struct sched_domain *sd,
  4379. enum cpu_idle_type idle)
  4380. {
  4381. int load_idx;
  4382. switch (idle) {
  4383. case CPU_NOT_IDLE:
  4384. load_idx = sd->busy_idx;
  4385. break;
  4386. case CPU_NEWLY_IDLE:
  4387. load_idx = sd->newidle_idx;
  4388. break;
  4389. default:
  4390. load_idx = sd->idle_idx;
  4391. break;
  4392. }
  4393. return load_idx;
  4394. }
  4395. static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  4396. {
  4397. return SCHED_POWER_SCALE;
  4398. }
  4399. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  4400. {
  4401. return default_scale_freq_power(sd, cpu);
  4402. }
  4403. static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  4404. {
  4405. unsigned long weight = sd->span_weight;
  4406. unsigned long smt_gain = sd->smt_gain;
  4407. smt_gain /= weight;
  4408. return smt_gain;
  4409. }
  4410. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  4411. {
  4412. return default_scale_smt_power(sd, cpu);
  4413. }
  4414. static unsigned long scale_rt_power(int cpu)
  4415. {
  4416. struct rq *rq = cpu_rq(cpu);
  4417. u64 total, available, age_stamp, avg;
  4418. /*
  4419. * Since we're reading these variables without serialization make sure
  4420. * we read them once before doing sanity checks on them.
  4421. */
  4422. age_stamp = ACCESS_ONCE(rq->age_stamp);
  4423. avg = ACCESS_ONCE(rq->rt_avg);
  4424. total = sched_avg_period() + (rq_clock(rq) - age_stamp);
  4425. if (unlikely(total < avg)) {
  4426. /* Ensures that power won't end up being negative */
  4427. available = 0;
  4428. } else {
  4429. available = total - avg;
  4430. }
  4431. if (unlikely((s64)total < SCHED_POWER_SCALE))
  4432. total = SCHED_POWER_SCALE;
  4433. total >>= SCHED_POWER_SHIFT;
  4434. return div_u64(available, total);
  4435. }
  4436. static void update_cpu_power(struct sched_domain *sd, int cpu)
  4437. {
  4438. unsigned long weight = sd->span_weight;
  4439. unsigned long power = SCHED_POWER_SCALE;
  4440. struct sched_group *sdg = sd->groups;
  4441. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  4442. if (sched_feat(ARCH_POWER))
  4443. power *= arch_scale_smt_power(sd, cpu);
  4444. else
  4445. power *= default_scale_smt_power(sd, cpu);
  4446. power >>= SCHED_POWER_SHIFT;
  4447. }
  4448. sdg->sgp->power_orig = power;
  4449. if (sched_feat(ARCH_POWER))
  4450. power *= arch_scale_freq_power(sd, cpu);
  4451. else
  4452. power *= default_scale_freq_power(sd, cpu);
  4453. power >>= SCHED_POWER_SHIFT;
  4454. power *= scale_rt_power(cpu);
  4455. power >>= SCHED_POWER_SHIFT;
  4456. if (!power)
  4457. power = 1;
  4458. cpu_rq(cpu)->cpu_power = power;
  4459. sdg->sgp->power = power;
  4460. }
  4461. void update_group_power(struct sched_domain *sd, int cpu)
  4462. {
  4463. struct sched_domain *child = sd->child;
  4464. struct sched_group *group, *sdg = sd->groups;
  4465. unsigned long power, power_orig;
  4466. unsigned long interval;
  4467. interval = msecs_to_jiffies(sd->balance_interval);
  4468. interval = clamp(interval, 1UL, max_load_balance_interval);
  4469. sdg->sgp->next_update = jiffies + interval;
  4470. if (!child) {
  4471. update_cpu_power(sd, cpu);
  4472. return;
  4473. }
  4474. power_orig = power = 0;
  4475. if (child->flags & SD_OVERLAP) {
  4476. /*
  4477. * SD_OVERLAP domains cannot assume that child groups
  4478. * span the current group.
  4479. */
  4480. for_each_cpu(cpu, sched_group_cpus(sdg)) {
  4481. struct sched_group_power *sgp;
  4482. struct rq *rq = cpu_rq(cpu);
  4483. /*
  4484. * build_sched_domains() -> init_sched_groups_power()
  4485. * gets here before we've attached the domains to the
  4486. * runqueues.
  4487. *
  4488. * Use power_of(), which is set irrespective of domains
  4489. * in update_cpu_power().
  4490. *
  4491. * This avoids power/power_orig from being 0 and
  4492. * causing divide-by-zero issues on boot.
  4493. *
  4494. * Runtime updates will correct power_orig.
  4495. */
  4496. if (unlikely(!rq->sd)) {
  4497. power_orig += power_of(cpu);
  4498. power += power_of(cpu);
  4499. continue;
  4500. }
  4501. sgp = rq->sd->groups->sgp;
  4502. power_orig += sgp->power_orig;
  4503. power += sgp->power;
  4504. }
  4505. } else {
  4506. /*
  4507. * !SD_OVERLAP domains can assume that child groups
  4508. * span the current group.
  4509. */
  4510. group = child->groups;
  4511. do {
  4512. power_orig += group->sgp->power_orig;
  4513. power += group->sgp->power;
  4514. group = group->next;
  4515. } while (group != child->groups);
  4516. }
  4517. sdg->sgp->power_orig = power_orig;
  4518. sdg->sgp->power = power;
  4519. }
  4520. /*
  4521. * Try and fix up capacity for tiny siblings, this is needed when
  4522. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  4523. * which on its own isn't powerful enough.
  4524. *
  4525. * See update_sd_pick_busiest() and check_asym_packing().
  4526. */
  4527. static inline int
  4528. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  4529. {
  4530. /*
  4531. * Only siblings can have significantly less than SCHED_POWER_SCALE
  4532. */
  4533. if (!(sd->flags & SD_SHARE_CPUPOWER))
  4534. return 0;
  4535. /*
  4536. * If ~90% of the cpu_power is still there, we're good.
  4537. */
  4538. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  4539. return 1;
  4540. return 0;
  4541. }
  4542. /*
  4543. * Group imbalance indicates (and tries to solve) the problem where balancing
  4544. * groups is inadequate due to tsk_cpus_allowed() constraints.
  4545. *
  4546. * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
  4547. * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
  4548. * Something like:
  4549. *
  4550. * { 0 1 2 3 } { 4 5 6 7 }
  4551. * * * * *
  4552. *
  4553. * If we were to balance group-wise we'd place two tasks in the first group and
  4554. * two tasks in the second group. Clearly this is undesired as it will overload
  4555. * cpu 3 and leave one of the cpus in the second group unused.
  4556. *
  4557. * The current solution to this issue is detecting the skew in the first group
  4558. * by noticing the lower domain failed to reach balance and had difficulty
  4559. * moving tasks due to affinity constraints.
  4560. *
  4561. * When this is so detected; this group becomes a candidate for busiest; see
  4562. * update_sd_pick_busiest(). And calculate_imbalance() and
  4563. * find_busiest_group() avoid some of the usual balance conditions to allow it
  4564. * to create an effective group imbalance.
  4565. *
  4566. * This is a somewhat tricky proposition since the next run might not find the
  4567. * group imbalance and decide the groups need to be balanced again. A most
  4568. * subtle and fragile situation.
  4569. */
  4570. static inline int sg_imbalanced(struct sched_group *group)
  4571. {
  4572. return group->sgp->imbalance;
  4573. }
  4574. /*
  4575. * Compute the group capacity.
  4576. *
  4577. * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
  4578. * first dividing out the smt factor and computing the actual number of cores
  4579. * and limit power unit capacity with that.
  4580. */
  4581. static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
  4582. {
  4583. unsigned int capacity, smt, cpus;
  4584. unsigned int power, power_orig;
  4585. power = group->sgp->power;
  4586. power_orig = group->sgp->power_orig;
  4587. cpus = group->group_weight;
  4588. /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
  4589. smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
  4590. capacity = cpus / smt; /* cores */
  4591. capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
  4592. if (!capacity)
  4593. capacity = fix_small_capacity(env->sd, group);
  4594. return capacity;
  4595. }
  4596. /**
  4597. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  4598. * @env: The load balancing environment.
  4599. * @group: sched_group whose statistics are to be updated.
  4600. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  4601. * @local_group: Does group contain this_cpu.
  4602. * @sgs: variable to hold the statistics for this group.
  4603. */
  4604. static inline void update_sg_lb_stats(struct lb_env *env,
  4605. struct sched_group *group, int load_idx,
  4606. int local_group, struct sg_lb_stats *sgs)
  4607. {
  4608. unsigned long load;
  4609. int i;
  4610. memset(sgs, 0, sizeof(*sgs));
  4611. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  4612. struct rq *rq = cpu_rq(i);
  4613. /* Bias balancing toward cpus of our domain */
  4614. if (local_group)
  4615. load = target_load(i, load_idx);
  4616. else
  4617. load = source_load(i, load_idx);
  4618. sgs->group_load += load;
  4619. sgs->sum_nr_running += rq->nr_running;
  4620. #ifdef CONFIG_NUMA_BALANCING
  4621. sgs->nr_numa_running += rq->nr_numa_running;
  4622. sgs->nr_preferred_running += rq->nr_preferred_running;
  4623. #endif
  4624. sgs->sum_weighted_load += weighted_cpuload(i);
  4625. if (idle_cpu(i))
  4626. sgs->idle_cpus++;
  4627. }
  4628. /* Adjust by relative CPU power of the group */
  4629. sgs->group_power = group->sgp->power;
  4630. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
  4631. if (sgs->sum_nr_running)
  4632. sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  4633. sgs->group_weight = group->group_weight;
  4634. sgs->group_imb = sg_imbalanced(group);
  4635. sgs->group_capacity = sg_capacity(env, group);
  4636. if (sgs->group_capacity > sgs->sum_nr_running)
  4637. sgs->group_has_capacity = 1;
  4638. }
  4639. /**
  4640. * update_sd_pick_busiest - return 1 on busiest group
  4641. * @env: The load balancing environment.
  4642. * @sds: sched_domain statistics
  4643. * @sg: sched_group candidate to be checked for being the busiest
  4644. * @sgs: sched_group statistics
  4645. *
  4646. * Determine if @sg is a busier group than the previously selected
  4647. * busiest group.
  4648. *
  4649. * Return: %true if @sg is a busier group than the previously selected
  4650. * busiest group. %false otherwise.
  4651. */
  4652. static bool update_sd_pick_busiest(struct lb_env *env,
  4653. struct sd_lb_stats *sds,
  4654. struct sched_group *sg,
  4655. struct sg_lb_stats *sgs)
  4656. {
  4657. if (sgs->avg_load <= sds->busiest_stat.avg_load)
  4658. return false;
  4659. if (sgs->sum_nr_running > sgs->group_capacity)
  4660. return true;
  4661. if (sgs->group_imb)
  4662. return true;
  4663. /*
  4664. * ASYM_PACKING needs to move all the work to the lowest
  4665. * numbered CPUs in the group, therefore mark all groups
  4666. * higher than ourself as busy.
  4667. */
  4668. if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  4669. env->dst_cpu < group_first_cpu(sg)) {
  4670. if (!sds->busiest)
  4671. return true;
  4672. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  4673. return true;
  4674. }
  4675. return false;
  4676. }
  4677. #ifdef CONFIG_NUMA_BALANCING
  4678. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  4679. {
  4680. if (sgs->sum_nr_running > sgs->nr_numa_running)
  4681. return regular;
  4682. if (sgs->sum_nr_running > sgs->nr_preferred_running)
  4683. return remote;
  4684. return all;
  4685. }
  4686. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  4687. {
  4688. if (rq->nr_running > rq->nr_numa_running)
  4689. return regular;
  4690. if (rq->nr_running > rq->nr_preferred_running)
  4691. return remote;
  4692. return all;
  4693. }
  4694. #else
  4695. static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
  4696. {
  4697. return all;
  4698. }
  4699. static inline enum fbq_type fbq_classify_rq(struct rq *rq)
  4700. {
  4701. return regular;
  4702. }
  4703. #endif /* CONFIG_NUMA_BALANCING */
  4704. /**
  4705. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  4706. * @env: The load balancing environment.
  4707. * @sds: variable to hold the statistics for this sched_domain.
  4708. */
  4709. static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
  4710. {
  4711. struct sched_domain *child = env->sd->child;
  4712. struct sched_group *sg = env->sd->groups;
  4713. struct sg_lb_stats tmp_sgs;
  4714. int load_idx, prefer_sibling = 0;
  4715. if (child && child->flags & SD_PREFER_SIBLING)
  4716. prefer_sibling = 1;
  4717. load_idx = get_sd_load_idx(env->sd, env->idle);
  4718. do {
  4719. struct sg_lb_stats *sgs = &tmp_sgs;
  4720. int local_group;
  4721. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  4722. if (local_group) {
  4723. sds->local = sg;
  4724. sgs = &sds->local_stat;
  4725. if (env->idle != CPU_NEWLY_IDLE ||
  4726. time_after_eq(jiffies, sg->sgp->next_update))
  4727. update_group_power(env->sd, env->dst_cpu);
  4728. }
  4729. update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
  4730. if (local_group)
  4731. goto next_group;
  4732. /*
  4733. * In case the child domain prefers tasks go to siblings
  4734. * first, lower the sg capacity to one so that we'll try
  4735. * and move all the excess tasks away. We lower the capacity
  4736. * of a group only if the local group has the capacity to fit
  4737. * these excess tasks, i.e. nr_running < group_capacity. The
  4738. * extra check prevents the case where you always pull from the
  4739. * heaviest group when it is already under-utilized (possible
  4740. * with a large weight task outweighs the tasks on the system).
  4741. */
  4742. if (prefer_sibling && sds->local &&
  4743. sds->local_stat.group_has_capacity)
  4744. sgs->group_capacity = min(sgs->group_capacity, 1U);
  4745. if (update_sd_pick_busiest(env, sds, sg, sgs)) {
  4746. sds->busiest = sg;
  4747. sds->busiest_stat = *sgs;
  4748. }
  4749. next_group:
  4750. /* Now, start updating sd_lb_stats */
  4751. sds->total_load += sgs->group_load;
  4752. sds->total_pwr += sgs->group_power;
  4753. sg = sg->next;
  4754. } while (sg != env->sd->groups);
  4755. if (env->sd->flags & SD_NUMA)
  4756. env->fbq_type = fbq_classify_group(&sds->busiest_stat);
  4757. }
  4758. /**
  4759. * check_asym_packing - Check to see if the group is packed into the
  4760. * sched doman.
  4761. *
  4762. * This is primarily intended to used at the sibling level. Some
  4763. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  4764. * case of POWER7, it can move to lower SMT modes only when higher
  4765. * threads are idle. When in lower SMT modes, the threads will
  4766. * perform better since they share less core resources. Hence when we
  4767. * have idle threads, we want them to be the higher ones.
  4768. *
  4769. * This packing function is run on idle threads. It checks to see if
  4770. * the busiest CPU in this domain (core in the P7 case) has a higher
  4771. * CPU number than the packing function is being run on. Here we are
  4772. * assuming lower CPU number will be equivalent to lower a SMT thread
  4773. * number.
  4774. *
  4775. * Return: 1 when packing is required and a task should be moved to
  4776. * this CPU. The amount of the imbalance is returned in *imbalance.
  4777. *
  4778. * @env: The load balancing environment.
  4779. * @sds: Statistics of the sched_domain which is to be packed
  4780. */
  4781. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  4782. {
  4783. int busiest_cpu;
  4784. if (!(env->sd->flags & SD_ASYM_PACKING))
  4785. return 0;
  4786. if (!sds->busiest)
  4787. return 0;
  4788. busiest_cpu = group_first_cpu(sds->busiest);
  4789. if (env->dst_cpu > busiest_cpu)
  4790. return 0;
  4791. env->imbalance = DIV_ROUND_CLOSEST(
  4792. sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
  4793. SCHED_POWER_SCALE);
  4794. return 1;
  4795. }
  4796. /**
  4797. * fix_small_imbalance - Calculate the minor imbalance that exists
  4798. * amongst the groups of a sched_domain, during
  4799. * load balancing.
  4800. * @env: The load balancing environment.
  4801. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  4802. */
  4803. static inline
  4804. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  4805. {
  4806. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  4807. unsigned int imbn = 2;
  4808. unsigned long scaled_busy_load_per_task;
  4809. struct sg_lb_stats *local, *busiest;
  4810. local = &sds->local_stat;
  4811. busiest = &sds->busiest_stat;
  4812. if (!local->sum_nr_running)
  4813. local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
  4814. else if (busiest->load_per_task > local->load_per_task)
  4815. imbn = 1;
  4816. scaled_busy_load_per_task =
  4817. (busiest->load_per_task * SCHED_POWER_SCALE) /
  4818. busiest->group_power;
  4819. if (busiest->avg_load + scaled_busy_load_per_task >=
  4820. local->avg_load + (scaled_busy_load_per_task * imbn)) {
  4821. env->imbalance = busiest->load_per_task;
  4822. return;
  4823. }
  4824. /*
  4825. * OK, we don't have enough imbalance to justify moving tasks,
  4826. * however we may be able to increase total CPU power used by
  4827. * moving them.
  4828. */
  4829. pwr_now += busiest->group_power *
  4830. min(busiest->load_per_task, busiest->avg_load);
  4831. pwr_now += local->group_power *
  4832. min(local->load_per_task, local->avg_load);
  4833. pwr_now /= SCHED_POWER_SCALE;
  4834. /* Amount of load we'd subtract */
  4835. tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
  4836. busiest->group_power;
  4837. if (busiest->avg_load > tmp) {
  4838. pwr_move += busiest->group_power *
  4839. min(busiest->load_per_task,
  4840. busiest->avg_load - tmp);
  4841. }
  4842. /* Amount of load we'd add */
  4843. if (busiest->avg_load * busiest->group_power <
  4844. busiest->load_per_task * SCHED_POWER_SCALE) {
  4845. tmp = (busiest->avg_load * busiest->group_power) /
  4846. local->group_power;
  4847. } else {
  4848. tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
  4849. local->group_power;
  4850. }
  4851. pwr_move += local->group_power *
  4852. min(local->load_per_task, local->avg_load + tmp);
  4853. pwr_move /= SCHED_POWER_SCALE;
  4854. /* Move if we gain throughput */
  4855. if (pwr_move > pwr_now)
  4856. env->imbalance = busiest->load_per_task;
  4857. }
  4858. /**
  4859. * calculate_imbalance - Calculate the amount of imbalance present within the
  4860. * groups of a given sched_domain during load balance.
  4861. * @env: load balance environment
  4862. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  4863. */
  4864. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  4865. {
  4866. unsigned long max_pull, load_above_capacity = ~0UL;
  4867. struct sg_lb_stats *local, *busiest;
  4868. local = &sds->local_stat;
  4869. busiest = &sds->busiest_stat;
  4870. if (busiest->group_imb) {
  4871. /*
  4872. * In the group_imb case we cannot rely on group-wide averages
  4873. * to ensure cpu-load equilibrium, look at wider averages. XXX
  4874. */
  4875. busiest->load_per_task =
  4876. min(busiest->load_per_task, sds->avg_load);
  4877. }
  4878. /*
  4879. * In the presence of smp nice balancing, certain scenarios can have
  4880. * max load less than avg load(as we skip the groups at or below
  4881. * its cpu_power, while calculating max_load..)
  4882. */
  4883. if (busiest->avg_load <= sds->avg_load ||
  4884. local->avg_load >= sds->avg_load) {
  4885. env->imbalance = 0;
  4886. return fix_small_imbalance(env, sds);
  4887. }
  4888. if (!busiest->group_imb) {
  4889. /*
  4890. * Don't want to pull so many tasks that a group would go idle.
  4891. * Except of course for the group_imb case, since then we might
  4892. * have to drop below capacity to reach cpu-load equilibrium.
  4893. */
  4894. load_above_capacity =
  4895. (busiest->sum_nr_running - busiest->group_capacity);
  4896. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  4897. load_above_capacity /= busiest->group_power;
  4898. }
  4899. /*
  4900. * We're trying to get all the cpus to the average_load, so we don't
  4901. * want to push ourselves above the average load, nor do we wish to
  4902. * reduce the max loaded cpu below the average load. At the same time,
  4903. * we also don't want to reduce the group load below the group capacity
  4904. * (so that we can implement power-savings policies etc). Thus we look
  4905. * for the minimum possible imbalance.
  4906. */
  4907. max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
  4908. /* How much load to actually move to equalise the imbalance */
  4909. env->imbalance = min(
  4910. max_pull * busiest->group_power,
  4911. (sds->avg_load - local->avg_load) * local->group_power
  4912. ) / SCHED_POWER_SCALE;
  4913. /*
  4914. * if *imbalance is less than the average load per runnable task
  4915. * there is no guarantee that any tasks will be moved so we'll have
  4916. * a think about bumping its value to force at least one task to be
  4917. * moved
  4918. */
  4919. if (env->imbalance < busiest->load_per_task)
  4920. return fix_small_imbalance(env, sds);
  4921. }
  4922. /******* find_busiest_group() helpers end here *********************/
  4923. /**
  4924. * find_busiest_group - Returns the busiest group within the sched_domain
  4925. * if there is an imbalance. If there isn't an imbalance, and
  4926. * the user has opted for power-savings, it returns a group whose
  4927. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  4928. * such a group exists.
  4929. *
  4930. * Also calculates the amount of weighted load which should be moved
  4931. * to restore balance.
  4932. *
  4933. * @env: The load balancing environment.
  4934. *
  4935. * Return: - The busiest group if imbalance exists.
  4936. * - If no imbalance and user has opted for power-savings balance,
  4937. * return the least loaded group whose CPUs can be
  4938. * put to idle by rebalancing its tasks onto our group.
  4939. */
  4940. static struct sched_group *find_busiest_group(struct lb_env *env)
  4941. {
  4942. struct sg_lb_stats *local, *busiest;
  4943. struct sd_lb_stats sds;
  4944. init_sd_lb_stats(&sds);
  4945. /*
  4946. * Compute the various statistics relavent for load balancing at
  4947. * this level.
  4948. */
  4949. update_sd_lb_stats(env, &sds);
  4950. local = &sds.local_stat;
  4951. busiest = &sds.busiest_stat;
  4952. if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
  4953. check_asym_packing(env, &sds))
  4954. return sds.busiest;
  4955. /* There is no busy sibling group to pull tasks from */
  4956. if (!sds.busiest || busiest->sum_nr_running == 0)
  4957. goto out_balanced;
  4958. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  4959. /*
  4960. * If the busiest group is imbalanced the below checks don't
  4961. * work because they assume all things are equal, which typically
  4962. * isn't true due to cpus_allowed constraints and the like.
  4963. */
  4964. if (busiest->group_imb)
  4965. goto force_balance;
  4966. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  4967. if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
  4968. !busiest->group_has_capacity)
  4969. goto force_balance;
  4970. /*
  4971. * If the local group is more busy than the selected busiest group
  4972. * don't try and pull any tasks.
  4973. */
  4974. if (local->avg_load >= busiest->avg_load)
  4975. goto out_balanced;
  4976. /*
  4977. * Don't pull any tasks if this group is already above the domain
  4978. * average load.
  4979. */
  4980. if (local->avg_load >= sds.avg_load)
  4981. goto out_balanced;
  4982. if (env->idle == CPU_IDLE) {
  4983. /*
  4984. * This cpu is idle. If the busiest group load doesn't
  4985. * have more tasks than the number of available cpu's and
  4986. * there is no imbalance between this and busiest group
  4987. * wrt to idle cpu's, it is balanced.
  4988. */
  4989. if ((local->idle_cpus < busiest->idle_cpus) &&
  4990. busiest->sum_nr_running <= busiest->group_weight)
  4991. goto out_balanced;
  4992. } else {
  4993. /*
  4994. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  4995. * imbalance_pct to be conservative.
  4996. */
  4997. if (100 * busiest->avg_load <=
  4998. env->sd->imbalance_pct * local->avg_load)
  4999. goto out_balanced;
  5000. }
  5001. force_balance:
  5002. /* Looks like there is an imbalance. Compute it */
  5003. calculate_imbalance(env, &sds);
  5004. return sds.busiest;
  5005. out_balanced:
  5006. env->imbalance = 0;
  5007. return NULL;
  5008. }
  5009. /*
  5010. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  5011. */
  5012. static struct rq *find_busiest_queue(struct lb_env *env,
  5013. struct sched_group *group)
  5014. {
  5015. struct rq *busiest = NULL, *rq;
  5016. unsigned long busiest_load = 0, busiest_power = 1;
  5017. int i;
  5018. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  5019. unsigned long power, capacity, wl;
  5020. enum fbq_type rt;
  5021. rq = cpu_rq(i);
  5022. rt = fbq_classify_rq(rq);
  5023. /*
  5024. * We classify groups/runqueues into three groups:
  5025. * - regular: there are !numa tasks
  5026. * - remote: there are numa tasks that run on the 'wrong' node
  5027. * - all: there is no distinction
  5028. *
  5029. * In order to avoid migrating ideally placed numa tasks,
  5030. * ignore those when there's better options.
  5031. *
  5032. * If we ignore the actual busiest queue to migrate another
  5033. * task, the next balance pass can still reduce the busiest
  5034. * queue by moving tasks around inside the node.
  5035. *
  5036. * If we cannot move enough load due to this classification
  5037. * the next pass will adjust the group classification and
  5038. * allow migration of more tasks.
  5039. *
  5040. * Both cases only affect the total convergence complexity.
  5041. */
  5042. if (rt > env->fbq_type)
  5043. continue;
  5044. power = power_of(i);
  5045. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  5046. if (!capacity)
  5047. capacity = fix_small_capacity(env->sd, group);
  5048. wl = weighted_cpuload(i);
  5049. /*
  5050. * When comparing with imbalance, use weighted_cpuload()
  5051. * which is not scaled with the cpu power.
  5052. */
  5053. if (capacity && rq->nr_running == 1 && wl > env->imbalance)
  5054. continue;
  5055. /*
  5056. * For the load comparisons with the other cpu's, consider
  5057. * the weighted_cpuload() scaled with the cpu power, so that
  5058. * the load can be moved away from the cpu that is potentially
  5059. * running at a lower capacity.
  5060. *
  5061. * Thus we're looking for max(wl_i / power_i), crosswise
  5062. * multiplication to rid ourselves of the division works out
  5063. * to: wl_i * power_j > wl_j * power_i; where j is our
  5064. * previous maximum.
  5065. */
  5066. if (wl * busiest_power > busiest_load * power) {
  5067. busiest_load = wl;
  5068. busiest_power = power;
  5069. busiest = rq;
  5070. }
  5071. }
  5072. return busiest;
  5073. }
  5074. /*
  5075. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  5076. * so long as it is large enough.
  5077. */
  5078. #define MAX_PINNED_INTERVAL 512
  5079. /* Working cpumask for load_balance and load_balance_newidle. */
  5080. DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
  5081. static int need_active_balance(struct lb_env *env)
  5082. {
  5083. struct sched_domain *sd = env->sd;
  5084. if (env->idle == CPU_NEWLY_IDLE) {
  5085. /*
  5086. * ASYM_PACKING needs to force migrate tasks from busy but
  5087. * higher numbered CPUs in order to pack all tasks in the
  5088. * lowest numbered CPUs.
  5089. */
  5090. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  5091. return 1;
  5092. }
  5093. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  5094. }
  5095. static int active_load_balance_cpu_stop(void *data);
  5096. static int should_we_balance(struct lb_env *env)
  5097. {
  5098. struct sched_group *sg = env->sd->groups;
  5099. struct cpumask *sg_cpus, *sg_mask;
  5100. int cpu, balance_cpu = -1;
  5101. /*
  5102. * In the newly idle case, we will allow all the cpu's
  5103. * to do the newly idle load balance.
  5104. */
  5105. if (env->idle == CPU_NEWLY_IDLE)
  5106. return 1;
  5107. sg_cpus = sched_group_cpus(sg);
  5108. sg_mask = sched_group_mask(sg);
  5109. /* Try to find first idle cpu */
  5110. for_each_cpu_and(cpu, sg_cpus, env->cpus) {
  5111. if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
  5112. continue;
  5113. balance_cpu = cpu;
  5114. break;
  5115. }
  5116. if (balance_cpu == -1)
  5117. balance_cpu = group_balance_cpu(sg);
  5118. /*
  5119. * First idle cpu or the first cpu(busiest) in this sched group
  5120. * is eligible for doing load balancing at this and above domains.
  5121. */
  5122. return balance_cpu == env->dst_cpu;
  5123. }
  5124. /*
  5125. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  5126. * tasks if there is an imbalance.
  5127. */
  5128. static int load_balance(int this_cpu, struct rq *this_rq,
  5129. struct sched_domain *sd, enum cpu_idle_type idle,
  5130. int *continue_balancing)
  5131. {
  5132. int ld_moved, cur_ld_moved, active_balance = 0;
  5133. struct sched_domain *sd_parent = sd->parent;
  5134. struct sched_group *group;
  5135. struct rq *busiest;
  5136. unsigned long flags;
  5137. struct cpumask *cpus = __get_cpu_var(load_balance_mask);
  5138. struct lb_env env = {
  5139. .sd = sd,
  5140. .dst_cpu = this_cpu,
  5141. .dst_rq = this_rq,
  5142. .dst_grpmask = sched_group_cpus(sd->groups),
  5143. .idle = idle,
  5144. .loop_break = sched_nr_migrate_break,
  5145. .cpus = cpus,
  5146. .fbq_type = all,
  5147. };
  5148. /*
  5149. * For NEWLY_IDLE load_balancing, we don't need to consider
  5150. * other cpus in our group
  5151. */
  5152. if (idle == CPU_NEWLY_IDLE)
  5153. env.dst_grpmask = NULL;
  5154. cpumask_copy(cpus, cpu_active_mask);
  5155. schedstat_inc(sd, lb_count[idle]);
  5156. redo:
  5157. if (!should_we_balance(&env)) {
  5158. *continue_balancing = 0;
  5159. goto out_balanced;
  5160. }
  5161. group = find_busiest_group(&env);
  5162. if (!group) {
  5163. schedstat_inc(sd, lb_nobusyg[idle]);
  5164. goto out_balanced;
  5165. }
  5166. busiest = find_busiest_queue(&env, group);
  5167. if (!busiest) {
  5168. schedstat_inc(sd, lb_nobusyq[idle]);
  5169. goto out_balanced;
  5170. }
  5171. BUG_ON(busiest == env.dst_rq);
  5172. schedstat_add(sd, lb_imbalance[idle], env.imbalance);
  5173. ld_moved = 0;
  5174. if (busiest->nr_running > 1) {
  5175. /*
  5176. * Attempt to move tasks. If find_busiest_group has found
  5177. * an imbalance but busiest->nr_running <= 1, the group is
  5178. * still unbalanced. ld_moved simply stays zero, so it is
  5179. * correctly treated as an imbalance.
  5180. */
  5181. env.flags |= LBF_ALL_PINNED;
  5182. env.src_cpu = busiest->cpu;
  5183. env.src_rq = busiest;
  5184. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  5185. more_balance:
  5186. local_irq_save(flags);
  5187. double_rq_lock(env.dst_rq, busiest);
  5188. /*
  5189. * cur_ld_moved - load moved in current iteration
  5190. * ld_moved - cumulative load moved across iterations
  5191. */
  5192. cur_ld_moved = move_tasks(&env);
  5193. ld_moved += cur_ld_moved;
  5194. double_rq_unlock(env.dst_rq, busiest);
  5195. local_irq_restore(flags);
  5196. /*
  5197. * some other cpu did the load balance for us.
  5198. */
  5199. if (cur_ld_moved && env.dst_cpu != smp_processor_id())
  5200. resched_cpu(env.dst_cpu);
  5201. if (env.flags & LBF_NEED_BREAK) {
  5202. env.flags &= ~LBF_NEED_BREAK;
  5203. goto more_balance;
  5204. }
  5205. /*
  5206. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  5207. * us and move them to an alternate dst_cpu in our sched_group
  5208. * where they can run. The upper limit on how many times we
  5209. * iterate on same src_cpu is dependent on number of cpus in our
  5210. * sched_group.
  5211. *
  5212. * This changes load balance semantics a bit on who can move
  5213. * load to a given_cpu. In addition to the given_cpu itself
  5214. * (or a ilb_cpu acting on its behalf where given_cpu is
  5215. * nohz-idle), we now have balance_cpu in a position to move
  5216. * load to given_cpu. In rare situations, this may cause
  5217. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  5218. * _independently_ and at _same_ time to move some load to
  5219. * given_cpu) causing exceess load to be moved to given_cpu.
  5220. * This however should not happen so much in practice and
  5221. * moreover subsequent load balance cycles should correct the
  5222. * excess load moved.
  5223. */
  5224. if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
  5225. /* Prevent to re-select dst_cpu via env's cpus */
  5226. cpumask_clear_cpu(env.dst_cpu, env.cpus);
  5227. env.dst_rq = cpu_rq(env.new_dst_cpu);
  5228. env.dst_cpu = env.new_dst_cpu;
  5229. env.flags &= ~LBF_DST_PINNED;
  5230. env.loop = 0;
  5231. env.loop_break = sched_nr_migrate_break;
  5232. /*
  5233. * Go back to "more_balance" rather than "redo" since we
  5234. * need to continue with same src_cpu.
  5235. */
  5236. goto more_balance;
  5237. }
  5238. /*
  5239. * We failed to reach balance because of affinity.
  5240. */
  5241. if (sd_parent) {
  5242. int *group_imbalance = &sd_parent->groups->sgp->imbalance;
  5243. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
  5244. *group_imbalance = 1;
  5245. } else if (*group_imbalance)
  5246. *group_imbalance = 0;
  5247. }
  5248. /* All tasks on this runqueue were pinned by CPU affinity */
  5249. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  5250. cpumask_clear_cpu(cpu_of(busiest), cpus);
  5251. if (!cpumask_empty(cpus)) {
  5252. env.loop = 0;
  5253. env.loop_break = sched_nr_migrate_break;
  5254. goto redo;
  5255. }
  5256. goto out_balanced;
  5257. }
  5258. }
  5259. if (!ld_moved) {
  5260. schedstat_inc(sd, lb_failed[idle]);
  5261. /*
  5262. * Increment the failure counter only on periodic balance.
  5263. * We do not want newidle balance, which can be very
  5264. * frequent, pollute the failure counter causing
  5265. * excessive cache_hot migrations and active balances.
  5266. */
  5267. if (idle != CPU_NEWLY_IDLE)
  5268. sd->nr_balance_failed++;
  5269. if (need_active_balance(&env)) {
  5270. raw_spin_lock_irqsave(&busiest->lock, flags);
  5271. /* don't kick the active_load_balance_cpu_stop,
  5272. * if the curr task on busiest cpu can't be
  5273. * moved to this_cpu
  5274. */
  5275. if (!cpumask_test_cpu(this_cpu,
  5276. tsk_cpus_allowed(busiest->curr))) {
  5277. raw_spin_unlock_irqrestore(&busiest->lock,
  5278. flags);
  5279. env.flags |= LBF_ALL_PINNED;
  5280. goto out_one_pinned;
  5281. }
  5282. /*
  5283. * ->active_balance synchronizes accesses to
  5284. * ->active_balance_work. Once set, it's cleared
  5285. * only after active load balance is finished.
  5286. */
  5287. if (!busiest->active_balance) {
  5288. busiest->active_balance = 1;
  5289. busiest->push_cpu = this_cpu;
  5290. active_balance = 1;
  5291. }
  5292. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  5293. if (active_balance) {
  5294. stop_one_cpu_nowait(cpu_of(busiest),
  5295. active_load_balance_cpu_stop, busiest,
  5296. &busiest->active_balance_work);
  5297. }
  5298. /*
  5299. * We've kicked active balancing, reset the failure
  5300. * counter.
  5301. */
  5302. sd->nr_balance_failed = sd->cache_nice_tries+1;
  5303. }
  5304. } else
  5305. sd->nr_balance_failed = 0;
  5306. if (likely(!active_balance)) {
  5307. /* We were unbalanced, so reset the balancing interval */
  5308. sd->balance_interval = sd->min_interval;
  5309. } else {
  5310. /*
  5311. * If we've begun active balancing, start to back off. This
  5312. * case may not be covered by the all_pinned logic if there
  5313. * is only 1 task on the busy runqueue (because we don't call
  5314. * move_tasks).
  5315. */
  5316. if (sd->balance_interval < sd->max_interval)
  5317. sd->balance_interval *= 2;
  5318. }
  5319. goto out;
  5320. out_balanced:
  5321. schedstat_inc(sd, lb_balanced[idle]);
  5322. sd->nr_balance_failed = 0;
  5323. out_one_pinned:
  5324. /* tune up the balancing interval */
  5325. if (((env.flags & LBF_ALL_PINNED) &&
  5326. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  5327. (sd->balance_interval < sd->max_interval))
  5328. sd->balance_interval *= 2;
  5329. ld_moved = 0;
  5330. out:
  5331. return ld_moved;
  5332. }
  5333. /*
  5334. * idle_balance is called by schedule() if this_cpu is about to become
  5335. * idle. Attempts to pull tasks from other CPUs.
  5336. */
  5337. void idle_balance(int this_cpu, struct rq *this_rq)
  5338. {
  5339. struct sched_domain *sd;
  5340. int pulled_task = 0;
  5341. unsigned long next_balance = jiffies + HZ;
  5342. u64 curr_cost = 0;
  5343. this_rq->idle_stamp = rq_clock(this_rq);
  5344. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  5345. return;
  5346. /*
  5347. * Drop the rq->lock, but keep IRQ/preempt disabled.
  5348. */
  5349. raw_spin_unlock(&this_rq->lock);
  5350. update_blocked_averages(this_cpu);
  5351. rcu_read_lock();
  5352. for_each_domain(this_cpu, sd) {
  5353. unsigned long interval;
  5354. int continue_balancing = 1;
  5355. u64 t0, domain_cost;
  5356. if (!(sd->flags & SD_LOAD_BALANCE))
  5357. continue;
  5358. if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
  5359. break;
  5360. if (sd->flags & SD_BALANCE_NEWIDLE) {
  5361. t0 = sched_clock_cpu(this_cpu);
  5362. /* If we've pulled tasks over stop searching: */
  5363. pulled_task = load_balance(this_cpu, this_rq,
  5364. sd, CPU_NEWLY_IDLE,
  5365. &continue_balancing);
  5366. domain_cost = sched_clock_cpu(this_cpu) - t0;
  5367. if (domain_cost > sd->max_newidle_lb_cost)
  5368. sd->max_newidle_lb_cost = domain_cost;
  5369. curr_cost += domain_cost;
  5370. }
  5371. interval = msecs_to_jiffies(sd->balance_interval);
  5372. if (time_after(next_balance, sd->last_balance + interval))
  5373. next_balance = sd->last_balance + interval;
  5374. if (pulled_task) {
  5375. this_rq->idle_stamp = 0;
  5376. break;
  5377. }
  5378. }
  5379. rcu_read_unlock();
  5380. raw_spin_lock(&this_rq->lock);
  5381. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  5382. /*
  5383. * We are going idle. next_balance may be set based on
  5384. * a busy processor. So reset next_balance.
  5385. */
  5386. this_rq->next_balance = next_balance;
  5387. }
  5388. if (curr_cost > this_rq->max_idle_balance_cost)
  5389. this_rq->max_idle_balance_cost = curr_cost;
  5390. }
  5391. /*
  5392. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  5393. * running tasks off the busiest CPU onto idle CPUs. It requires at
  5394. * least 1 task to be running on each physical CPU where possible, and
  5395. * avoids physical / logical imbalances.
  5396. */
  5397. static int active_load_balance_cpu_stop(void *data)
  5398. {
  5399. struct rq *busiest_rq = data;
  5400. int busiest_cpu = cpu_of(busiest_rq);
  5401. int target_cpu = busiest_rq->push_cpu;
  5402. struct rq *target_rq = cpu_rq(target_cpu);
  5403. struct sched_domain *sd;
  5404. raw_spin_lock_irq(&busiest_rq->lock);
  5405. /* make sure the requested cpu hasn't gone down in the meantime */
  5406. if (unlikely(busiest_cpu != smp_processor_id() ||
  5407. !busiest_rq->active_balance))
  5408. goto out_unlock;
  5409. /* Is there any task to move? */
  5410. if (busiest_rq->nr_running <= 1)
  5411. goto out_unlock;
  5412. /*
  5413. * This condition is "impossible", if it occurs
  5414. * we need to fix it. Originally reported by
  5415. * Bjorn Helgaas on a 128-cpu setup.
  5416. */
  5417. BUG_ON(busiest_rq == target_rq);
  5418. /* move a task from busiest_rq to target_rq */
  5419. double_lock_balance(busiest_rq, target_rq);
  5420. /* Search for an sd spanning us and the target CPU. */
  5421. rcu_read_lock();
  5422. for_each_domain(target_cpu, sd) {
  5423. if ((sd->flags & SD_LOAD_BALANCE) &&
  5424. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  5425. break;
  5426. }
  5427. if (likely(sd)) {
  5428. struct lb_env env = {
  5429. .sd = sd,
  5430. .dst_cpu = target_cpu,
  5431. .dst_rq = target_rq,
  5432. .src_cpu = busiest_rq->cpu,
  5433. .src_rq = busiest_rq,
  5434. .idle = CPU_IDLE,
  5435. };
  5436. schedstat_inc(sd, alb_count);
  5437. if (move_one_task(&env))
  5438. schedstat_inc(sd, alb_pushed);
  5439. else
  5440. schedstat_inc(sd, alb_failed);
  5441. }
  5442. rcu_read_unlock();
  5443. double_unlock_balance(busiest_rq, target_rq);
  5444. out_unlock:
  5445. busiest_rq->active_balance = 0;
  5446. raw_spin_unlock_irq(&busiest_rq->lock);
  5447. return 0;
  5448. }
  5449. #ifdef CONFIG_NO_HZ_COMMON
  5450. /*
  5451. * idle load balancing details
  5452. * - When one of the busy CPUs notice that there may be an idle rebalancing
  5453. * needed, they will kick the idle load balancer, which then does idle
  5454. * load balancing for all the idle CPUs.
  5455. */
  5456. static struct {
  5457. cpumask_var_t idle_cpus_mask;
  5458. atomic_t nr_cpus;
  5459. unsigned long next_balance; /* in jiffy units */
  5460. } nohz ____cacheline_aligned;
  5461. static inline int find_new_ilb(void)
  5462. {
  5463. int ilb = cpumask_first(nohz.idle_cpus_mask);
  5464. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  5465. return ilb;
  5466. return nr_cpu_ids;
  5467. }
  5468. /*
  5469. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  5470. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  5471. * CPU (if there is one).
  5472. */
  5473. static void nohz_balancer_kick(void)
  5474. {
  5475. int ilb_cpu;
  5476. nohz.next_balance++;
  5477. ilb_cpu = find_new_ilb();
  5478. if (ilb_cpu >= nr_cpu_ids)
  5479. return;
  5480. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  5481. return;
  5482. /*
  5483. * Use smp_send_reschedule() instead of resched_cpu().
  5484. * This way we generate a sched IPI on the target cpu which
  5485. * is idle. And the softirq performing nohz idle load balance
  5486. * will be run before returning from the IPI.
  5487. */
  5488. smp_send_reschedule(ilb_cpu);
  5489. return;
  5490. }
  5491. static inline void nohz_balance_exit_idle(int cpu)
  5492. {
  5493. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  5494. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  5495. atomic_dec(&nohz.nr_cpus);
  5496. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  5497. }
  5498. }
  5499. static inline void set_cpu_sd_state_busy(void)
  5500. {
  5501. struct sched_domain *sd;
  5502. int cpu = smp_processor_id();
  5503. rcu_read_lock();
  5504. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  5505. if (!sd || !sd->nohz_idle)
  5506. goto unlock;
  5507. sd->nohz_idle = 0;
  5508. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  5509. unlock:
  5510. rcu_read_unlock();
  5511. }
  5512. void set_cpu_sd_state_idle(void)
  5513. {
  5514. struct sched_domain *sd;
  5515. int cpu = smp_processor_id();
  5516. rcu_read_lock();
  5517. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  5518. if (!sd || sd->nohz_idle)
  5519. goto unlock;
  5520. sd->nohz_idle = 1;
  5521. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  5522. unlock:
  5523. rcu_read_unlock();
  5524. }
  5525. /*
  5526. * This routine will record that the cpu is going idle with tick stopped.
  5527. * This info will be used in performing idle load balancing in the future.
  5528. */
  5529. void nohz_balance_enter_idle(int cpu)
  5530. {
  5531. /*
  5532. * If this cpu is going down, then nothing needs to be done.
  5533. */
  5534. if (!cpu_active(cpu))
  5535. return;
  5536. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  5537. return;
  5538. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  5539. atomic_inc(&nohz.nr_cpus);
  5540. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  5541. }
  5542. static int sched_ilb_notifier(struct notifier_block *nfb,
  5543. unsigned long action, void *hcpu)
  5544. {
  5545. switch (action & ~CPU_TASKS_FROZEN) {
  5546. case CPU_DYING:
  5547. nohz_balance_exit_idle(smp_processor_id());
  5548. return NOTIFY_OK;
  5549. default:
  5550. return NOTIFY_DONE;
  5551. }
  5552. }
  5553. #endif
  5554. static DEFINE_SPINLOCK(balancing);
  5555. /*
  5556. * Scale the max load_balance interval with the number of CPUs in the system.
  5557. * This trades load-balance latency on larger machines for less cross talk.
  5558. */
  5559. void update_max_interval(void)
  5560. {
  5561. max_load_balance_interval = HZ*num_online_cpus()/10;
  5562. }
  5563. /*
  5564. * It checks each scheduling domain to see if it is due to be balanced,
  5565. * and initiates a balancing operation if so.
  5566. *
  5567. * Balancing parameters are set up in init_sched_domains.
  5568. */
  5569. static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
  5570. {
  5571. int continue_balancing = 1;
  5572. int cpu = rq->cpu;
  5573. unsigned long interval;
  5574. struct sched_domain *sd;
  5575. /* Earliest time when we have to do rebalance again */
  5576. unsigned long next_balance = jiffies + 60*HZ;
  5577. int update_next_balance = 0;
  5578. int need_serialize, need_decay = 0;
  5579. u64 max_cost = 0;
  5580. update_blocked_averages(cpu);
  5581. rcu_read_lock();
  5582. for_each_domain(cpu, sd) {
  5583. /*
  5584. * Decay the newidle max times here because this is a regular
  5585. * visit to all the domains. Decay ~1% per second.
  5586. */
  5587. if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
  5588. sd->max_newidle_lb_cost =
  5589. (sd->max_newidle_lb_cost * 253) / 256;
  5590. sd->next_decay_max_lb_cost = jiffies + HZ;
  5591. need_decay = 1;
  5592. }
  5593. max_cost += sd->max_newidle_lb_cost;
  5594. if (!(sd->flags & SD_LOAD_BALANCE))
  5595. continue;
  5596. /*
  5597. * Stop the load balance at this level. There is another
  5598. * CPU in our sched group which is doing load balancing more
  5599. * actively.
  5600. */
  5601. if (!continue_balancing) {
  5602. if (need_decay)
  5603. continue;
  5604. break;
  5605. }
  5606. interval = sd->balance_interval;
  5607. if (idle != CPU_IDLE)
  5608. interval *= sd->busy_factor;
  5609. /* scale ms to jiffies */
  5610. interval = msecs_to_jiffies(interval);
  5611. interval = clamp(interval, 1UL, max_load_balance_interval);
  5612. need_serialize = sd->flags & SD_SERIALIZE;
  5613. if (need_serialize) {
  5614. if (!spin_trylock(&balancing))
  5615. goto out;
  5616. }
  5617. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  5618. if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
  5619. /*
  5620. * The LBF_DST_PINNED logic could have changed
  5621. * env->dst_cpu, so we can't know our idle
  5622. * state even if we migrated tasks. Update it.
  5623. */
  5624. idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
  5625. }
  5626. sd->last_balance = jiffies;
  5627. }
  5628. if (need_serialize)
  5629. spin_unlock(&balancing);
  5630. out:
  5631. if (time_after(next_balance, sd->last_balance + interval)) {
  5632. next_balance = sd->last_balance + interval;
  5633. update_next_balance = 1;
  5634. }
  5635. }
  5636. if (need_decay) {
  5637. /*
  5638. * Ensure the rq-wide value also decays but keep it at a
  5639. * reasonable floor to avoid funnies with rq->avg_idle.
  5640. */
  5641. rq->max_idle_balance_cost =
  5642. max((u64)sysctl_sched_migration_cost, max_cost);
  5643. }
  5644. rcu_read_unlock();
  5645. /*
  5646. * next_balance will be updated only when there is a need.
  5647. * When the cpu is attached to null domain for ex, it will not be
  5648. * updated.
  5649. */
  5650. if (likely(update_next_balance))
  5651. rq->next_balance = next_balance;
  5652. }
  5653. #ifdef CONFIG_NO_HZ_COMMON
  5654. /*
  5655. * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
  5656. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  5657. */
  5658. static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
  5659. {
  5660. int this_cpu = this_rq->cpu;
  5661. struct rq *rq;
  5662. int balance_cpu;
  5663. if (idle != CPU_IDLE ||
  5664. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  5665. goto end;
  5666. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  5667. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  5668. continue;
  5669. /*
  5670. * If this cpu gets work to do, stop the load balancing
  5671. * work being done for other cpus. Next load
  5672. * balancing owner will pick it up.
  5673. */
  5674. if (need_resched())
  5675. break;
  5676. rq = cpu_rq(balance_cpu);
  5677. raw_spin_lock_irq(&rq->lock);
  5678. update_rq_clock(rq);
  5679. update_idle_cpu_load(rq);
  5680. raw_spin_unlock_irq(&rq->lock);
  5681. rebalance_domains(rq, CPU_IDLE);
  5682. if (time_after(this_rq->next_balance, rq->next_balance))
  5683. this_rq->next_balance = rq->next_balance;
  5684. }
  5685. nohz.next_balance = this_rq->next_balance;
  5686. end:
  5687. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  5688. }
  5689. /*
  5690. * Current heuristic for kicking the idle load balancer in the presence
  5691. * of an idle cpu is the system.
  5692. * - This rq has more than one task.
  5693. * - At any scheduler domain level, this cpu's scheduler group has multiple
  5694. * busy cpu's exceeding the group's power.
  5695. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  5696. * domain span are idle.
  5697. */
  5698. static inline int nohz_kick_needed(struct rq *rq)
  5699. {
  5700. unsigned long now = jiffies;
  5701. struct sched_domain *sd;
  5702. struct sched_group_power *sgp;
  5703. int nr_busy, cpu = rq->cpu;
  5704. if (unlikely(rq->idle_balance))
  5705. return 0;
  5706. /*
  5707. * We may be recently in ticked or tickless idle mode. At the first
  5708. * busy tick after returning from idle, we will update the busy stats.
  5709. */
  5710. set_cpu_sd_state_busy();
  5711. nohz_balance_exit_idle(cpu);
  5712. /*
  5713. * None are in tickless mode and hence no need for NOHZ idle load
  5714. * balancing.
  5715. */
  5716. if (likely(!atomic_read(&nohz.nr_cpus)))
  5717. return 0;
  5718. if (time_before(now, nohz.next_balance))
  5719. return 0;
  5720. if (rq->nr_running >= 2)
  5721. goto need_kick;
  5722. rcu_read_lock();
  5723. sd = rcu_dereference(per_cpu(sd_busy, cpu));
  5724. if (sd) {
  5725. sgp = sd->groups->sgp;
  5726. nr_busy = atomic_read(&sgp->nr_busy_cpus);
  5727. if (nr_busy > 1)
  5728. goto need_kick_unlock;
  5729. }
  5730. sd = rcu_dereference(per_cpu(sd_asym, cpu));
  5731. if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
  5732. sched_domain_span(sd)) < cpu))
  5733. goto need_kick_unlock;
  5734. rcu_read_unlock();
  5735. return 0;
  5736. need_kick_unlock:
  5737. rcu_read_unlock();
  5738. need_kick:
  5739. return 1;
  5740. }
  5741. #else
  5742. static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
  5743. #endif
  5744. /*
  5745. * run_rebalance_domains is triggered when needed from the scheduler tick.
  5746. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  5747. */
  5748. static void run_rebalance_domains(struct softirq_action *h)
  5749. {
  5750. struct rq *this_rq = this_rq();
  5751. enum cpu_idle_type idle = this_rq->idle_balance ?
  5752. CPU_IDLE : CPU_NOT_IDLE;
  5753. rebalance_domains(this_rq, idle);
  5754. /*
  5755. * If this cpu has a pending nohz_balance_kick, then do the
  5756. * balancing on behalf of the other idle cpus whose ticks are
  5757. * stopped.
  5758. */
  5759. nohz_idle_balance(this_rq, idle);
  5760. }
  5761. static inline int on_null_domain(struct rq *rq)
  5762. {
  5763. return !rcu_dereference_sched(rq->sd);
  5764. }
  5765. /*
  5766. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  5767. */
  5768. void trigger_load_balance(struct rq *rq)
  5769. {
  5770. /* Don't need to rebalance while attached to NULL domain */
  5771. if (unlikely(on_null_domain(rq)))
  5772. return;
  5773. if (time_after_eq(jiffies, rq->next_balance))
  5774. raise_softirq(SCHED_SOFTIRQ);
  5775. #ifdef CONFIG_NO_HZ_COMMON
  5776. if (nohz_kick_needed(rq))
  5777. nohz_balancer_kick();
  5778. #endif
  5779. }
  5780. static void rq_online_fair(struct rq *rq)
  5781. {
  5782. update_sysctl();
  5783. }
  5784. static void rq_offline_fair(struct rq *rq)
  5785. {
  5786. update_sysctl();
  5787. /* Ensure any throttled groups are reachable by pick_next_task */
  5788. unthrottle_offline_cfs_rqs(rq);
  5789. }
  5790. #endif /* CONFIG_SMP */
  5791. /*
  5792. * scheduler tick hitting a task of our scheduling class:
  5793. */
  5794. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  5795. {
  5796. struct cfs_rq *cfs_rq;
  5797. struct sched_entity *se = &curr->se;
  5798. for_each_sched_entity(se) {
  5799. cfs_rq = cfs_rq_of(se);
  5800. entity_tick(cfs_rq, se, queued);
  5801. }
  5802. if (numabalancing_enabled)
  5803. task_tick_numa(rq, curr);
  5804. update_rq_runnable_avg(rq, 1);
  5805. }
  5806. /*
  5807. * called on fork with the child task as argument from the parent's context
  5808. * - child not yet on the tasklist
  5809. * - preemption disabled
  5810. */
  5811. static void task_fork_fair(struct task_struct *p)
  5812. {
  5813. struct cfs_rq *cfs_rq;
  5814. struct sched_entity *se = &p->se, *curr;
  5815. int this_cpu = smp_processor_id();
  5816. struct rq *rq = this_rq();
  5817. unsigned long flags;
  5818. raw_spin_lock_irqsave(&rq->lock, flags);
  5819. update_rq_clock(rq);
  5820. cfs_rq = task_cfs_rq(current);
  5821. curr = cfs_rq->curr;
  5822. /*
  5823. * Not only the cpu but also the task_group of the parent might have
  5824. * been changed after parent->se.parent,cfs_rq were copied to
  5825. * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
  5826. * of child point to valid ones.
  5827. */
  5828. rcu_read_lock();
  5829. __set_task_cpu(p, this_cpu);
  5830. rcu_read_unlock();
  5831. update_curr(cfs_rq);
  5832. if (curr)
  5833. se->vruntime = curr->vruntime;
  5834. place_entity(cfs_rq, se, 1);
  5835. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  5836. /*
  5837. * Upon rescheduling, sched_class::put_prev_task() will place
  5838. * 'current' within the tree based on its new key value.
  5839. */
  5840. swap(curr->vruntime, se->vruntime);
  5841. resched_task(rq->curr);
  5842. }
  5843. se->vruntime -= cfs_rq->min_vruntime;
  5844. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5845. }
  5846. /*
  5847. * Priority of the task has changed. Check to see if we preempt
  5848. * the current task.
  5849. */
  5850. static void
  5851. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  5852. {
  5853. if (!p->se.on_rq)
  5854. return;
  5855. /*
  5856. * Reschedule if we are currently running on this runqueue and
  5857. * our priority decreased, or if we are not currently running on
  5858. * this runqueue and our priority is higher than the current's
  5859. */
  5860. if (rq->curr == p) {
  5861. if (p->prio > oldprio)
  5862. resched_task(rq->curr);
  5863. } else
  5864. check_preempt_curr(rq, p, 0);
  5865. }
  5866. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  5867. {
  5868. struct sched_entity *se = &p->se;
  5869. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  5870. /*
  5871. * Ensure the task's vruntime is normalized, so that when it's
  5872. * switched back to the fair class the enqueue_entity(.flags=0) will
  5873. * do the right thing.
  5874. *
  5875. * If it's on_rq, then the dequeue_entity(.flags=0) will already
  5876. * have normalized the vruntime, if it's !on_rq, then only when
  5877. * the task is sleeping will it still have non-normalized vruntime.
  5878. */
  5879. if (!p->on_rq && p->state != TASK_RUNNING) {
  5880. /*
  5881. * Fix up our vruntime so that the current sleep doesn't
  5882. * cause 'unlimited' sleep bonus.
  5883. */
  5884. place_entity(cfs_rq, se, 0);
  5885. se->vruntime -= cfs_rq->min_vruntime;
  5886. }
  5887. #ifdef CONFIG_SMP
  5888. /*
  5889. * Remove our load from contribution when we leave sched_fair
  5890. * and ensure we don't carry in an old decay_count if we
  5891. * switch back.
  5892. */
  5893. if (se->avg.decay_count) {
  5894. __synchronize_entity_decay(se);
  5895. subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
  5896. }
  5897. #endif
  5898. }
  5899. /*
  5900. * We switched to the sched_fair class.
  5901. */
  5902. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  5903. {
  5904. if (!p->se.on_rq)
  5905. return;
  5906. /*
  5907. * We were most likely switched from sched_rt, so
  5908. * kick off the schedule if running, otherwise just see
  5909. * if we can still preempt the current task.
  5910. */
  5911. if (rq->curr == p)
  5912. resched_task(rq->curr);
  5913. else
  5914. check_preempt_curr(rq, p, 0);
  5915. }
  5916. /* Account for a task changing its policy or group.
  5917. *
  5918. * This routine is mostly called to set cfs_rq->curr field when a task
  5919. * migrates between groups/classes.
  5920. */
  5921. static void set_curr_task_fair(struct rq *rq)
  5922. {
  5923. struct sched_entity *se = &rq->curr->se;
  5924. for_each_sched_entity(se) {
  5925. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  5926. set_next_entity(cfs_rq, se);
  5927. /* ensure bandwidth has been allocated on our new cfs_rq */
  5928. account_cfs_rq_runtime(cfs_rq, 0);
  5929. }
  5930. }
  5931. void init_cfs_rq(struct cfs_rq *cfs_rq)
  5932. {
  5933. cfs_rq->tasks_timeline = RB_ROOT;
  5934. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5935. #ifndef CONFIG_64BIT
  5936. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  5937. #endif
  5938. #ifdef CONFIG_SMP
  5939. atomic64_set(&cfs_rq->decay_counter, 1);
  5940. atomic_long_set(&cfs_rq->removed_load, 0);
  5941. #endif
  5942. }
  5943. #ifdef CONFIG_FAIR_GROUP_SCHED
  5944. static void task_move_group_fair(struct task_struct *p, int on_rq)
  5945. {
  5946. struct cfs_rq *cfs_rq;
  5947. /*
  5948. * If the task was not on the rq at the time of this cgroup movement
  5949. * it must have been asleep, sleeping tasks keep their ->vruntime
  5950. * absolute on their old rq until wakeup (needed for the fair sleeper
  5951. * bonus in place_entity()).
  5952. *
  5953. * If it was on the rq, we've just 'preempted' it, which does convert
  5954. * ->vruntime to a relative base.
  5955. *
  5956. * Make sure both cases convert their relative position when migrating
  5957. * to another cgroup's rq. This does somewhat interfere with the
  5958. * fair sleeper stuff for the first placement, but who cares.
  5959. */
  5960. /*
  5961. * When !on_rq, vruntime of the task has usually NOT been normalized.
  5962. * But there are some cases where it has already been normalized:
  5963. *
  5964. * - Moving a forked child which is waiting for being woken up by
  5965. * wake_up_new_task().
  5966. * - Moving a task which has been woken up by try_to_wake_up() and
  5967. * waiting for actually being woken up by sched_ttwu_pending().
  5968. *
  5969. * To prevent boost or penalty in the new cfs_rq caused by delta
  5970. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  5971. */
  5972. if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
  5973. on_rq = 1;
  5974. if (!on_rq)
  5975. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  5976. set_task_rq(p, task_cpu(p));
  5977. if (!on_rq) {
  5978. cfs_rq = cfs_rq_of(&p->se);
  5979. p->se.vruntime += cfs_rq->min_vruntime;
  5980. #ifdef CONFIG_SMP
  5981. /*
  5982. * migrate_task_rq_fair() will have removed our previous
  5983. * contribution, but we must synchronize for ongoing future
  5984. * decay.
  5985. */
  5986. p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  5987. cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
  5988. #endif
  5989. }
  5990. }
  5991. void free_fair_sched_group(struct task_group *tg)
  5992. {
  5993. int i;
  5994. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  5995. for_each_possible_cpu(i) {
  5996. if (tg->cfs_rq)
  5997. kfree(tg->cfs_rq[i]);
  5998. if (tg->se)
  5999. kfree(tg->se[i]);
  6000. }
  6001. kfree(tg->cfs_rq);
  6002. kfree(tg->se);
  6003. }
  6004. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6005. {
  6006. struct cfs_rq *cfs_rq;
  6007. struct sched_entity *se;
  6008. int i;
  6009. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6010. if (!tg->cfs_rq)
  6011. goto err;
  6012. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6013. if (!tg->se)
  6014. goto err;
  6015. tg->shares = NICE_0_LOAD;
  6016. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  6017. for_each_possible_cpu(i) {
  6018. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6019. GFP_KERNEL, cpu_to_node(i));
  6020. if (!cfs_rq)
  6021. goto err;
  6022. se = kzalloc_node(sizeof(struct sched_entity),
  6023. GFP_KERNEL, cpu_to_node(i));
  6024. if (!se)
  6025. goto err_free_rq;
  6026. init_cfs_rq(cfs_rq);
  6027. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  6028. }
  6029. return 1;
  6030. err_free_rq:
  6031. kfree(cfs_rq);
  6032. err:
  6033. return 0;
  6034. }
  6035. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6036. {
  6037. struct rq *rq = cpu_rq(cpu);
  6038. unsigned long flags;
  6039. /*
  6040. * Only empty task groups can be destroyed; so we can speculatively
  6041. * check on_list without danger of it being re-added.
  6042. */
  6043. if (!tg->cfs_rq[cpu]->on_list)
  6044. return;
  6045. raw_spin_lock_irqsave(&rq->lock, flags);
  6046. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  6047. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6048. }
  6049. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6050. struct sched_entity *se, int cpu,
  6051. struct sched_entity *parent)
  6052. {
  6053. struct rq *rq = cpu_rq(cpu);
  6054. cfs_rq->tg = tg;
  6055. cfs_rq->rq = rq;
  6056. init_cfs_rq_runtime(cfs_rq);
  6057. tg->cfs_rq[cpu] = cfs_rq;
  6058. tg->se[cpu] = se;
  6059. /* se could be NULL for root_task_group */
  6060. if (!se)
  6061. return;
  6062. if (!parent)
  6063. se->cfs_rq = &rq->cfs;
  6064. else
  6065. se->cfs_rq = parent->my_q;
  6066. se->my_q = cfs_rq;
  6067. /* guarantee group entities always have weight */
  6068. update_load_set(&se->load, NICE_0_LOAD);
  6069. se->parent = parent;
  6070. }
  6071. static DEFINE_MUTEX(shares_mutex);
  6072. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6073. {
  6074. int i;
  6075. unsigned long flags;
  6076. /*
  6077. * We can't change the weight of the root cgroup.
  6078. */
  6079. if (!tg->se[0])
  6080. return -EINVAL;
  6081. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  6082. mutex_lock(&shares_mutex);
  6083. if (tg->shares == shares)
  6084. goto done;
  6085. tg->shares = shares;
  6086. for_each_possible_cpu(i) {
  6087. struct rq *rq = cpu_rq(i);
  6088. struct sched_entity *se;
  6089. se = tg->se[i];
  6090. /* Propagate contribution to hierarchy */
  6091. raw_spin_lock_irqsave(&rq->lock, flags);
  6092. /* Possible calls to update_curr() need rq clock */
  6093. update_rq_clock(rq);
  6094. for_each_sched_entity(se)
  6095. update_cfs_shares(group_cfs_rq(se));
  6096. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6097. }
  6098. done:
  6099. mutex_unlock(&shares_mutex);
  6100. return 0;
  6101. }
  6102. #else /* CONFIG_FAIR_GROUP_SCHED */
  6103. void free_fair_sched_group(struct task_group *tg) { }
  6104. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6105. {
  6106. return 1;
  6107. }
  6108. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  6109. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6110. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  6111. {
  6112. struct sched_entity *se = &task->se;
  6113. unsigned int rr_interval = 0;
  6114. /*
  6115. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  6116. * idle runqueue:
  6117. */
  6118. if (rq->cfs.load.weight)
  6119. rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  6120. return rr_interval;
  6121. }
  6122. /*
  6123. * All the scheduling class methods:
  6124. */
  6125. const struct sched_class fair_sched_class = {
  6126. .next = &idle_sched_class,
  6127. .enqueue_task = enqueue_task_fair,
  6128. .dequeue_task = dequeue_task_fair,
  6129. .yield_task = yield_task_fair,
  6130. .yield_to_task = yield_to_task_fair,
  6131. .check_preempt_curr = check_preempt_wakeup,
  6132. .pick_next_task = pick_next_task_fair,
  6133. .put_prev_task = put_prev_task_fair,
  6134. #ifdef CONFIG_SMP
  6135. .select_task_rq = select_task_rq_fair,
  6136. .migrate_task_rq = migrate_task_rq_fair,
  6137. .rq_online = rq_online_fair,
  6138. .rq_offline = rq_offline_fair,
  6139. .task_waking = task_waking_fair,
  6140. #endif
  6141. .set_curr_task = set_curr_task_fair,
  6142. .task_tick = task_tick_fair,
  6143. .task_fork = task_fork_fair,
  6144. .prio_changed = prio_changed_fair,
  6145. .switched_from = switched_from_fair,
  6146. .switched_to = switched_to_fair,
  6147. .get_rr_interval = get_rr_interval_fair,
  6148. #ifdef CONFIG_FAIR_GROUP_SCHED
  6149. .task_move_group = task_move_group_fair,
  6150. #endif
  6151. };
  6152. #ifdef CONFIG_SCHED_DEBUG
  6153. void print_cfs_stats(struct seq_file *m, int cpu)
  6154. {
  6155. struct cfs_rq *cfs_rq;
  6156. rcu_read_lock();
  6157. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  6158. print_cfs_rq(m, cpu, cfs_rq);
  6159. rcu_read_unlock();
  6160. }
  6161. #endif
  6162. __init void init_sched_fair_class(void)
  6163. {
  6164. #ifdef CONFIG_SMP
  6165. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6166. #ifdef CONFIG_NO_HZ_COMMON
  6167. nohz.next_balance = jiffies;
  6168. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6169. cpu_notifier(sched_ilb_notifier, 0);
  6170. #endif
  6171. #endif /* SMP */
  6172. }