core.c 188 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. */
  311. static void hrtick_clear(struct rq *rq)
  312. {
  313. if (hrtimer_active(&rq->hrtick_timer))
  314. hrtimer_cancel(&rq->hrtick_timer);
  315. }
  316. /*
  317. * High-resolution timer tick.
  318. * Runs from hardirq context with interrupts disabled.
  319. */
  320. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  321. {
  322. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  323. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  324. raw_spin_lock(&rq->lock);
  325. update_rq_clock(rq);
  326. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  327. raw_spin_unlock(&rq->lock);
  328. return HRTIMER_NORESTART;
  329. }
  330. #ifdef CONFIG_SMP
  331. static int __hrtick_restart(struct rq *rq)
  332. {
  333. struct hrtimer *timer = &rq->hrtick_timer;
  334. ktime_t time = hrtimer_get_softexpires(timer);
  335. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  336. }
  337. /*
  338. * called from hardirq (IPI) context
  339. */
  340. static void __hrtick_start(void *arg)
  341. {
  342. struct rq *rq = arg;
  343. raw_spin_lock(&rq->lock);
  344. __hrtick_restart(rq);
  345. rq->hrtick_csd_pending = 0;
  346. raw_spin_unlock(&rq->lock);
  347. }
  348. /*
  349. * Called to set the hrtick timer state.
  350. *
  351. * called with rq->lock held and irqs disabled
  352. */
  353. void hrtick_start(struct rq *rq, u64 delay)
  354. {
  355. struct hrtimer *timer = &rq->hrtick_timer;
  356. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  357. hrtimer_set_expires(timer, time);
  358. if (rq == this_rq()) {
  359. __hrtick_restart(rq);
  360. } else if (!rq->hrtick_csd_pending) {
  361. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  362. rq->hrtick_csd_pending = 1;
  363. }
  364. }
  365. static int
  366. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  367. {
  368. int cpu = (int)(long)hcpu;
  369. switch (action) {
  370. case CPU_UP_CANCELED:
  371. case CPU_UP_CANCELED_FROZEN:
  372. case CPU_DOWN_PREPARE:
  373. case CPU_DOWN_PREPARE_FROZEN:
  374. case CPU_DEAD:
  375. case CPU_DEAD_FROZEN:
  376. hrtick_clear(cpu_rq(cpu));
  377. return NOTIFY_OK;
  378. }
  379. return NOTIFY_DONE;
  380. }
  381. static __init void init_hrtick(void)
  382. {
  383. hotcpu_notifier(hotplug_hrtick, 0);
  384. }
  385. #else
  386. /*
  387. * Called to set the hrtick timer state.
  388. *
  389. * called with rq->lock held and irqs disabled
  390. */
  391. void hrtick_start(struct rq *rq, u64 delay)
  392. {
  393. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  394. HRTIMER_MODE_REL_PINNED, 0);
  395. }
  396. static inline void init_hrtick(void)
  397. {
  398. }
  399. #endif /* CONFIG_SMP */
  400. static void init_rq_hrtick(struct rq *rq)
  401. {
  402. #ifdef CONFIG_SMP
  403. rq->hrtick_csd_pending = 0;
  404. rq->hrtick_csd.flags = 0;
  405. rq->hrtick_csd.func = __hrtick_start;
  406. rq->hrtick_csd.info = rq;
  407. #endif
  408. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  409. rq->hrtick_timer.function = hrtick;
  410. }
  411. #else /* CONFIG_SCHED_HRTICK */
  412. static inline void hrtick_clear(struct rq *rq)
  413. {
  414. }
  415. static inline void init_rq_hrtick(struct rq *rq)
  416. {
  417. }
  418. static inline void init_hrtick(void)
  419. {
  420. }
  421. #endif /* CONFIG_SCHED_HRTICK */
  422. /*
  423. * resched_task - mark a task 'to be rescheduled now'.
  424. *
  425. * On UP this means the setting of the need_resched flag, on SMP it
  426. * might also involve a cross-CPU call to trigger the scheduler on
  427. * the target CPU.
  428. */
  429. void resched_task(struct task_struct *p)
  430. {
  431. int cpu;
  432. lockdep_assert_held(&task_rq(p)->lock);
  433. if (test_tsk_need_resched(p))
  434. return;
  435. set_tsk_need_resched(p);
  436. cpu = task_cpu(p);
  437. if (cpu == smp_processor_id()) {
  438. set_preempt_need_resched();
  439. return;
  440. }
  441. /* NEED_RESCHED must be visible before we test polling */
  442. smp_mb();
  443. if (!tsk_is_polling(p))
  444. smp_send_reschedule(cpu);
  445. }
  446. void resched_cpu(int cpu)
  447. {
  448. struct rq *rq = cpu_rq(cpu);
  449. unsigned long flags;
  450. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  451. return;
  452. resched_task(cpu_curr(cpu));
  453. raw_spin_unlock_irqrestore(&rq->lock, flags);
  454. }
  455. #ifdef CONFIG_SMP
  456. #ifdef CONFIG_NO_HZ_COMMON
  457. /*
  458. * In the semi idle case, use the nearest busy cpu for migrating timers
  459. * from an idle cpu. This is good for power-savings.
  460. *
  461. * We don't do similar optimization for completely idle system, as
  462. * selecting an idle cpu will add more delays to the timers than intended
  463. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  464. */
  465. int get_nohz_timer_target(void)
  466. {
  467. int cpu = smp_processor_id();
  468. int i;
  469. struct sched_domain *sd;
  470. rcu_read_lock();
  471. for_each_domain(cpu, sd) {
  472. for_each_cpu(i, sched_domain_span(sd)) {
  473. if (!idle_cpu(i)) {
  474. cpu = i;
  475. goto unlock;
  476. }
  477. }
  478. }
  479. unlock:
  480. rcu_read_unlock();
  481. return cpu;
  482. }
  483. /*
  484. * When add_timer_on() enqueues a timer into the timer wheel of an
  485. * idle CPU then this timer might expire before the next timer event
  486. * which is scheduled to wake up that CPU. In case of a completely
  487. * idle system the next event might even be infinite time into the
  488. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  489. * leaves the inner idle loop so the newly added timer is taken into
  490. * account when the CPU goes back to idle and evaluates the timer
  491. * wheel for the next timer event.
  492. */
  493. static void wake_up_idle_cpu(int cpu)
  494. {
  495. struct rq *rq = cpu_rq(cpu);
  496. if (cpu == smp_processor_id())
  497. return;
  498. /*
  499. * This is safe, as this function is called with the timer
  500. * wheel base lock of (cpu) held. When the CPU is on the way
  501. * to idle and has not yet set rq->curr to idle then it will
  502. * be serialized on the timer wheel base lock and take the new
  503. * timer into account automatically.
  504. */
  505. if (rq->curr != rq->idle)
  506. return;
  507. /*
  508. * We can set TIF_RESCHED on the idle task of the other CPU
  509. * lockless. The worst case is that the other CPU runs the
  510. * idle task through an additional NOOP schedule()
  511. */
  512. set_tsk_need_resched(rq->idle);
  513. /* NEED_RESCHED must be visible before we test polling */
  514. smp_mb();
  515. if (!tsk_is_polling(rq->idle))
  516. smp_send_reschedule(cpu);
  517. }
  518. static bool wake_up_full_nohz_cpu(int cpu)
  519. {
  520. if (tick_nohz_full_cpu(cpu)) {
  521. if (cpu != smp_processor_id() ||
  522. tick_nohz_tick_stopped())
  523. smp_send_reschedule(cpu);
  524. return true;
  525. }
  526. return false;
  527. }
  528. void wake_up_nohz_cpu(int cpu)
  529. {
  530. if (!wake_up_full_nohz_cpu(cpu))
  531. wake_up_idle_cpu(cpu);
  532. }
  533. static inline bool got_nohz_idle_kick(void)
  534. {
  535. int cpu = smp_processor_id();
  536. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  537. return false;
  538. if (idle_cpu(cpu) && !need_resched())
  539. return true;
  540. /*
  541. * We can't run Idle Load Balance on this CPU for this time so we
  542. * cancel it and clear NOHZ_BALANCE_KICK
  543. */
  544. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  545. return false;
  546. }
  547. #else /* CONFIG_NO_HZ_COMMON */
  548. static inline bool got_nohz_idle_kick(void)
  549. {
  550. return false;
  551. }
  552. #endif /* CONFIG_NO_HZ_COMMON */
  553. #ifdef CONFIG_NO_HZ_FULL
  554. bool sched_can_stop_tick(void)
  555. {
  556. struct rq *rq;
  557. rq = this_rq();
  558. /* Make sure rq->nr_running update is visible after the IPI */
  559. smp_rmb();
  560. /* More than one running task need preemption */
  561. if (rq->nr_running > 1)
  562. return false;
  563. return true;
  564. }
  565. #endif /* CONFIG_NO_HZ_FULL */
  566. void sched_avg_update(struct rq *rq)
  567. {
  568. s64 period = sched_avg_period();
  569. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  570. /*
  571. * Inline assembly required to prevent the compiler
  572. * optimising this loop into a divmod call.
  573. * See __iter_div_u64_rem() for another example of this.
  574. */
  575. asm("" : "+rm" (rq->age_stamp));
  576. rq->age_stamp += period;
  577. rq->rt_avg /= 2;
  578. }
  579. }
  580. #endif /* CONFIG_SMP */
  581. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  582. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  583. /*
  584. * Iterate task_group tree rooted at *from, calling @down when first entering a
  585. * node and @up when leaving it for the final time.
  586. *
  587. * Caller must hold rcu_lock or sufficient equivalent.
  588. */
  589. int walk_tg_tree_from(struct task_group *from,
  590. tg_visitor down, tg_visitor up, void *data)
  591. {
  592. struct task_group *parent, *child;
  593. int ret;
  594. parent = from;
  595. down:
  596. ret = (*down)(parent, data);
  597. if (ret)
  598. goto out;
  599. list_for_each_entry_rcu(child, &parent->children, siblings) {
  600. parent = child;
  601. goto down;
  602. up:
  603. continue;
  604. }
  605. ret = (*up)(parent, data);
  606. if (ret || parent == from)
  607. goto out;
  608. child = parent;
  609. parent = parent->parent;
  610. if (parent)
  611. goto up;
  612. out:
  613. return ret;
  614. }
  615. int tg_nop(struct task_group *tg, void *data)
  616. {
  617. return 0;
  618. }
  619. #endif
  620. static void set_load_weight(struct task_struct *p)
  621. {
  622. int prio = p->static_prio - MAX_RT_PRIO;
  623. struct load_weight *load = &p->se.load;
  624. /*
  625. * SCHED_IDLE tasks get minimal weight:
  626. */
  627. if (p->policy == SCHED_IDLE) {
  628. load->weight = scale_load(WEIGHT_IDLEPRIO);
  629. load->inv_weight = WMULT_IDLEPRIO;
  630. return;
  631. }
  632. load->weight = scale_load(prio_to_weight[prio]);
  633. load->inv_weight = prio_to_wmult[prio];
  634. }
  635. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  636. {
  637. update_rq_clock(rq);
  638. sched_info_queued(rq, p);
  639. p->sched_class->enqueue_task(rq, p, flags);
  640. }
  641. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  642. {
  643. update_rq_clock(rq);
  644. sched_info_dequeued(rq, p);
  645. p->sched_class->dequeue_task(rq, p, flags);
  646. }
  647. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  648. {
  649. if (task_contributes_to_load(p))
  650. rq->nr_uninterruptible--;
  651. enqueue_task(rq, p, flags);
  652. }
  653. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  654. {
  655. if (task_contributes_to_load(p))
  656. rq->nr_uninterruptible++;
  657. dequeue_task(rq, p, flags);
  658. }
  659. static void update_rq_clock_task(struct rq *rq, s64 delta)
  660. {
  661. /*
  662. * In theory, the compile should just see 0 here, and optimize out the call
  663. * to sched_rt_avg_update. But I don't trust it...
  664. */
  665. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  666. s64 steal = 0, irq_delta = 0;
  667. #endif
  668. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  669. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  670. /*
  671. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  672. * this case when a previous update_rq_clock() happened inside a
  673. * {soft,}irq region.
  674. *
  675. * When this happens, we stop ->clock_task and only update the
  676. * prev_irq_time stamp to account for the part that fit, so that a next
  677. * update will consume the rest. This ensures ->clock_task is
  678. * monotonic.
  679. *
  680. * It does however cause some slight miss-attribution of {soft,}irq
  681. * time, a more accurate solution would be to update the irq_time using
  682. * the current rq->clock timestamp, except that would require using
  683. * atomic ops.
  684. */
  685. if (irq_delta > delta)
  686. irq_delta = delta;
  687. rq->prev_irq_time += irq_delta;
  688. delta -= irq_delta;
  689. #endif
  690. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  691. if (static_key_false((&paravirt_steal_rq_enabled))) {
  692. u64 st;
  693. steal = paravirt_steal_clock(cpu_of(rq));
  694. steal -= rq->prev_steal_time_rq;
  695. if (unlikely(steal > delta))
  696. steal = delta;
  697. st = steal_ticks(steal);
  698. steal = st * TICK_NSEC;
  699. rq->prev_steal_time_rq += steal;
  700. delta -= steal;
  701. }
  702. #endif
  703. rq->clock_task += delta;
  704. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  705. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  706. sched_rt_avg_update(rq, irq_delta + steal);
  707. #endif
  708. }
  709. void sched_set_stop_task(int cpu, struct task_struct *stop)
  710. {
  711. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  712. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  713. if (stop) {
  714. /*
  715. * Make it appear like a SCHED_FIFO task, its something
  716. * userspace knows about and won't get confused about.
  717. *
  718. * Also, it will make PI more or less work without too
  719. * much confusion -- but then, stop work should not
  720. * rely on PI working anyway.
  721. */
  722. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  723. stop->sched_class = &stop_sched_class;
  724. }
  725. cpu_rq(cpu)->stop = stop;
  726. if (old_stop) {
  727. /*
  728. * Reset it back to a normal scheduling class so that
  729. * it can die in pieces.
  730. */
  731. old_stop->sched_class = &rt_sched_class;
  732. }
  733. }
  734. /*
  735. * __normal_prio - return the priority that is based on the static prio
  736. */
  737. static inline int __normal_prio(struct task_struct *p)
  738. {
  739. return p->static_prio;
  740. }
  741. /*
  742. * Calculate the expected normal priority: i.e. priority
  743. * without taking RT-inheritance into account. Might be
  744. * boosted by interactivity modifiers. Changes upon fork,
  745. * setprio syscalls, and whenever the interactivity
  746. * estimator recalculates.
  747. */
  748. static inline int normal_prio(struct task_struct *p)
  749. {
  750. int prio;
  751. if (task_has_dl_policy(p))
  752. prio = MAX_DL_PRIO-1;
  753. else if (task_has_rt_policy(p))
  754. prio = MAX_RT_PRIO-1 - p->rt_priority;
  755. else
  756. prio = __normal_prio(p);
  757. return prio;
  758. }
  759. /*
  760. * Calculate the current priority, i.e. the priority
  761. * taken into account by the scheduler. This value might
  762. * be boosted by RT tasks, or might be boosted by
  763. * interactivity modifiers. Will be RT if the task got
  764. * RT-boosted. If not then it returns p->normal_prio.
  765. */
  766. static int effective_prio(struct task_struct *p)
  767. {
  768. p->normal_prio = normal_prio(p);
  769. /*
  770. * If we are RT tasks or we were boosted to RT priority,
  771. * keep the priority unchanged. Otherwise, update priority
  772. * to the normal priority:
  773. */
  774. if (!rt_prio(p->prio))
  775. return p->normal_prio;
  776. return p->prio;
  777. }
  778. /**
  779. * task_curr - is this task currently executing on a CPU?
  780. * @p: the task in question.
  781. *
  782. * Return: 1 if the task is currently executing. 0 otherwise.
  783. */
  784. inline int task_curr(const struct task_struct *p)
  785. {
  786. return cpu_curr(task_cpu(p)) == p;
  787. }
  788. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  789. const struct sched_class *prev_class,
  790. int oldprio)
  791. {
  792. if (prev_class != p->sched_class) {
  793. if (prev_class->switched_from)
  794. prev_class->switched_from(rq, p);
  795. p->sched_class->switched_to(rq, p);
  796. } else if (oldprio != p->prio || dl_task(p))
  797. p->sched_class->prio_changed(rq, p, oldprio);
  798. }
  799. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  800. {
  801. const struct sched_class *class;
  802. if (p->sched_class == rq->curr->sched_class) {
  803. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  804. } else {
  805. for_each_class(class) {
  806. if (class == rq->curr->sched_class)
  807. break;
  808. if (class == p->sched_class) {
  809. resched_task(rq->curr);
  810. break;
  811. }
  812. }
  813. }
  814. /*
  815. * A queue event has occurred, and we're going to schedule. In
  816. * this case, we can save a useless back to back clock update.
  817. */
  818. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  819. rq->skip_clock_update = 1;
  820. }
  821. #ifdef CONFIG_SMP
  822. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  823. {
  824. #ifdef CONFIG_SCHED_DEBUG
  825. /*
  826. * We should never call set_task_cpu() on a blocked task,
  827. * ttwu() will sort out the placement.
  828. */
  829. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  830. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  831. #ifdef CONFIG_LOCKDEP
  832. /*
  833. * The caller should hold either p->pi_lock or rq->lock, when changing
  834. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  835. *
  836. * sched_move_task() holds both and thus holding either pins the cgroup,
  837. * see task_group().
  838. *
  839. * Furthermore, all task_rq users should acquire both locks, see
  840. * task_rq_lock().
  841. */
  842. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  843. lockdep_is_held(&task_rq(p)->lock)));
  844. #endif
  845. #endif
  846. trace_sched_migrate_task(p, new_cpu);
  847. if (task_cpu(p) != new_cpu) {
  848. if (p->sched_class->migrate_task_rq)
  849. p->sched_class->migrate_task_rq(p, new_cpu);
  850. p->se.nr_migrations++;
  851. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  852. }
  853. __set_task_cpu(p, new_cpu);
  854. }
  855. static void __migrate_swap_task(struct task_struct *p, int cpu)
  856. {
  857. if (p->on_rq) {
  858. struct rq *src_rq, *dst_rq;
  859. src_rq = task_rq(p);
  860. dst_rq = cpu_rq(cpu);
  861. deactivate_task(src_rq, p, 0);
  862. set_task_cpu(p, cpu);
  863. activate_task(dst_rq, p, 0);
  864. check_preempt_curr(dst_rq, p, 0);
  865. } else {
  866. /*
  867. * Task isn't running anymore; make it appear like we migrated
  868. * it before it went to sleep. This means on wakeup we make the
  869. * previous cpu our targer instead of where it really is.
  870. */
  871. p->wake_cpu = cpu;
  872. }
  873. }
  874. struct migration_swap_arg {
  875. struct task_struct *src_task, *dst_task;
  876. int src_cpu, dst_cpu;
  877. };
  878. static int migrate_swap_stop(void *data)
  879. {
  880. struct migration_swap_arg *arg = data;
  881. struct rq *src_rq, *dst_rq;
  882. int ret = -EAGAIN;
  883. src_rq = cpu_rq(arg->src_cpu);
  884. dst_rq = cpu_rq(arg->dst_cpu);
  885. double_raw_lock(&arg->src_task->pi_lock,
  886. &arg->dst_task->pi_lock);
  887. double_rq_lock(src_rq, dst_rq);
  888. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  889. goto unlock;
  890. if (task_cpu(arg->src_task) != arg->src_cpu)
  891. goto unlock;
  892. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  893. goto unlock;
  894. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  895. goto unlock;
  896. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  897. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  898. ret = 0;
  899. unlock:
  900. double_rq_unlock(src_rq, dst_rq);
  901. raw_spin_unlock(&arg->dst_task->pi_lock);
  902. raw_spin_unlock(&arg->src_task->pi_lock);
  903. return ret;
  904. }
  905. /*
  906. * Cross migrate two tasks
  907. */
  908. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  909. {
  910. struct migration_swap_arg arg;
  911. int ret = -EINVAL;
  912. arg = (struct migration_swap_arg){
  913. .src_task = cur,
  914. .src_cpu = task_cpu(cur),
  915. .dst_task = p,
  916. .dst_cpu = task_cpu(p),
  917. };
  918. if (arg.src_cpu == arg.dst_cpu)
  919. goto out;
  920. /*
  921. * These three tests are all lockless; this is OK since all of them
  922. * will be re-checked with proper locks held further down the line.
  923. */
  924. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  925. goto out;
  926. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  927. goto out;
  928. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  929. goto out;
  930. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  931. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  932. out:
  933. return ret;
  934. }
  935. struct migration_arg {
  936. struct task_struct *task;
  937. int dest_cpu;
  938. };
  939. static int migration_cpu_stop(void *data);
  940. /*
  941. * wait_task_inactive - wait for a thread to unschedule.
  942. *
  943. * If @match_state is nonzero, it's the @p->state value just checked and
  944. * not expected to change. If it changes, i.e. @p might have woken up,
  945. * then return zero. When we succeed in waiting for @p to be off its CPU,
  946. * we return a positive number (its total switch count). If a second call
  947. * a short while later returns the same number, the caller can be sure that
  948. * @p has remained unscheduled the whole time.
  949. *
  950. * The caller must ensure that the task *will* unschedule sometime soon,
  951. * else this function might spin for a *long* time. This function can't
  952. * be called with interrupts off, or it may introduce deadlock with
  953. * smp_call_function() if an IPI is sent by the same process we are
  954. * waiting to become inactive.
  955. */
  956. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  957. {
  958. unsigned long flags;
  959. int running, on_rq;
  960. unsigned long ncsw;
  961. struct rq *rq;
  962. for (;;) {
  963. /*
  964. * We do the initial early heuristics without holding
  965. * any task-queue locks at all. We'll only try to get
  966. * the runqueue lock when things look like they will
  967. * work out!
  968. */
  969. rq = task_rq(p);
  970. /*
  971. * If the task is actively running on another CPU
  972. * still, just relax and busy-wait without holding
  973. * any locks.
  974. *
  975. * NOTE! Since we don't hold any locks, it's not
  976. * even sure that "rq" stays as the right runqueue!
  977. * But we don't care, since "task_running()" will
  978. * return false if the runqueue has changed and p
  979. * is actually now running somewhere else!
  980. */
  981. while (task_running(rq, p)) {
  982. if (match_state && unlikely(p->state != match_state))
  983. return 0;
  984. cpu_relax();
  985. }
  986. /*
  987. * Ok, time to look more closely! We need the rq
  988. * lock now, to be *sure*. If we're wrong, we'll
  989. * just go back and repeat.
  990. */
  991. rq = task_rq_lock(p, &flags);
  992. trace_sched_wait_task(p);
  993. running = task_running(rq, p);
  994. on_rq = p->on_rq;
  995. ncsw = 0;
  996. if (!match_state || p->state == match_state)
  997. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  998. task_rq_unlock(rq, p, &flags);
  999. /*
  1000. * If it changed from the expected state, bail out now.
  1001. */
  1002. if (unlikely(!ncsw))
  1003. break;
  1004. /*
  1005. * Was it really running after all now that we
  1006. * checked with the proper locks actually held?
  1007. *
  1008. * Oops. Go back and try again..
  1009. */
  1010. if (unlikely(running)) {
  1011. cpu_relax();
  1012. continue;
  1013. }
  1014. /*
  1015. * It's not enough that it's not actively running,
  1016. * it must be off the runqueue _entirely_, and not
  1017. * preempted!
  1018. *
  1019. * So if it was still runnable (but just not actively
  1020. * running right now), it's preempted, and we should
  1021. * yield - it could be a while.
  1022. */
  1023. if (unlikely(on_rq)) {
  1024. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1025. set_current_state(TASK_UNINTERRUPTIBLE);
  1026. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1027. continue;
  1028. }
  1029. /*
  1030. * Ahh, all good. It wasn't running, and it wasn't
  1031. * runnable, which means that it will never become
  1032. * running in the future either. We're all done!
  1033. */
  1034. break;
  1035. }
  1036. return ncsw;
  1037. }
  1038. /***
  1039. * kick_process - kick a running thread to enter/exit the kernel
  1040. * @p: the to-be-kicked thread
  1041. *
  1042. * Cause a process which is running on another CPU to enter
  1043. * kernel-mode, without any delay. (to get signals handled.)
  1044. *
  1045. * NOTE: this function doesn't have to take the runqueue lock,
  1046. * because all it wants to ensure is that the remote task enters
  1047. * the kernel. If the IPI races and the task has been migrated
  1048. * to another CPU then no harm is done and the purpose has been
  1049. * achieved as well.
  1050. */
  1051. void kick_process(struct task_struct *p)
  1052. {
  1053. int cpu;
  1054. preempt_disable();
  1055. cpu = task_cpu(p);
  1056. if ((cpu != smp_processor_id()) && task_curr(p))
  1057. smp_send_reschedule(cpu);
  1058. preempt_enable();
  1059. }
  1060. EXPORT_SYMBOL_GPL(kick_process);
  1061. #endif /* CONFIG_SMP */
  1062. #ifdef CONFIG_SMP
  1063. /*
  1064. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1065. */
  1066. static int select_fallback_rq(int cpu, struct task_struct *p)
  1067. {
  1068. int nid = cpu_to_node(cpu);
  1069. const struct cpumask *nodemask = NULL;
  1070. enum { cpuset, possible, fail } state = cpuset;
  1071. int dest_cpu;
  1072. /*
  1073. * If the node that the cpu is on has been offlined, cpu_to_node()
  1074. * will return -1. There is no cpu on the node, and we should
  1075. * select the cpu on the other node.
  1076. */
  1077. if (nid != -1) {
  1078. nodemask = cpumask_of_node(nid);
  1079. /* Look for allowed, online CPU in same node. */
  1080. for_each_cpu(dest_cpu, nodemask) {
  1081. if (!cpu_online(dest_cpu))
  1082. continue;
  1083. if (!cpu_active(dest_cpu))
  1084. continue;
  1085. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1086. return dest_cpu;
  1087. }
  1088. }
  1089. for (;;) {
  1090. /* Any allowed, online CPU? */
  1091. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1092. if (!cpu_online(dest_cpu))
  1093. continue;
  1094. if (!cpu_active(dest_cpu))
  1095. continue;
  1096. goto out;
  1097. }
  1098. switch (state) {
  1099. case cpuset:
  1100. /* No more Mr. Nice Guy. */
  1101. cpuset_cpus_allowed_fallback(p);
  1102. state = possible;
  1103. break;
  1104. case possible:
  1105. do_set_cpus_allowed(p, cpu_possible_mask);
  1106. state = fail;
  1107. break;
  1108. case fail:
  1109. BUG();
  1110. break;
  1111. }
  1112. }
  1113. out:
  1114. if (state != cpuset) {
  1115. /*
  1116. * Don't tell them about moving exiting tasks or
  1117. * kernel threads (both mm NULL), since they never
  1118. * leave kernel.
  1119. */
  1120. if (p->mm && printk_ratelimit()) {
  1121. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1122. task_pid_nr(p), p->comm, cpu);
  1123. }
  1124. }
  1125. return dest_cpu;
  1126. }
  1127. /*
  1128. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1129. */
  1130. static inline
  1131. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1132. {
  1133. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1134. /*
  1135. * In order not to call set_task_cpu() on a blocking task we need
  1136. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1137. * cpu.
  1138. *
  1139. * Since this is common to all placement strategies, this lives here.
  1140. *
  1141. * [ this allows ->select_task() to simply return task_cpu(p) and
  1142. * not worry about this generic constraint ]
  1143. */
  1144. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1145. !cpu_online(cpu)))
  1146. cpu = select_fallback_rq(task_cpu(p), p);
  1147. return cpu;
  1148. }
  1149. static void update_avg(u64 *avg, u64 sample)
  1150. {
  1151. s64 diff = sample - *avg;
  1152. *avg += diff >> 3;
  1153. }
  1154. #endif
  1155. static void
  1156. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1157. {
  1158. #ifdef CONFIG_SCHEDSTATS
  1159. struct rq *rq = this_rq();
  1160. #ifdef CONFIG_SMP
  1161. int this_cpu = smp_processor_id();
  1162. if (cpu == this_cpu) {
  1163. schedstat_inc(rq, ttwu_local);
  1164. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1165. } else {
  1166. struct sched_domain *sd;
  1167. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1168. rcu_read_lock();
  1169. for_each_domain(this_cpu, sd) {
  1170. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1171. schedstat_inc(sd, ttwu_wake_remote);
  1172. break;
  1173. }
  1174. }
  1175. rcu_read_unlock();
  1176. }
  1177. if (wake_flags & WF_MIGRATED)
  1178. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1179. #endif /* CONFIG_SMP */
  1180. schedstat_inc(rq, ttwu_count);
  1181. schedstat_inc(p, se.statistics.nr_wakeups);
  1182. if (wake_flags & WF_SYNC)
  1183. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1184. #endif /* CONFIG_SCHEDSTATS */
  1185. }
  1186. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1187. {
  1188. activate_task(rq, p, en_flags);
  1189. p->on_rq = 1;
  1190. /* if a worker is waking up, notify workqueue */
  1191. if (p->flags & PF_WQ_WORKER)
  1192. wq_worker_waking_up(p, cpu_of(rq));
  1193. }
  1194. /*
  1195. * Mark the task runnable and perform wakeup-preemption.
  1196. */
  1197. static void
  1198. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1199. {
  1200. check_preempt_curr(rq, p, wake_flags);
  1201. trace_sched_wakeup(p, true);
  1202. p->state = TASK_RUNNING;
  1203. #ifdef CONFIG_SMP
  1204. if (p->sched_class->task_woken)
  1205. p->sched_class->task_woken(rq, p);
  1206. if (rq->idle_stamp) {
  1207. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1208. u64 max = 2*rq->max_idle_balance_cost;
  1209. update_avg(&rq->avg_idle, delta);
  1210. if (rq->avg_idle > max)
  1211. rq->avg_idle = max;
  1212. rq->idle_stamp = 0;
  1213. }
  1214. #endif
  1215. }
  1216. static void
  1217. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1218. {
  1219. #ifdef CONFIG_SMP
  1220. if (p->sched_contributes_to_load)
  1221. rq->nr_uninterruptible--;
  1222. #endif
  1223. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1224. ttwu_do_wakeup(rq, p, wake_flags);
  1225. }
  1226. /*
  1227. * Called in case the task @p isn't fully descheduled from its runqueue,
  1228. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1229. * since all we need to do is flip p->state to TASK_RUNNING, since
  1230. * the task is still ->on_rq.
  1231. */
  1232. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1233. {
  1234. struct rq *rq;
  1235. int ret = 0;
  1236. rq = __task_rq_lock(p);
  1237. if (p->on_rq) {
  1238. /* check_preempt_curr() may use rq clock */
  1239. update_rq_clock(rq);
  1240. ttwu_do_wakeup(rq, p, wake_flags);
  1241. ret = 1;
  1242. }
  1243. __task_rq_unlock(rq);
  1244. return ret;
  1245. }
  1246. #ifdef CONFIG_SMP
  1247. static void sched_ttwu_pending(void)
  1248. {
  1249. struct rq *rq = this_rq();
  1250. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1251. struct task_struct *p;
  1252. raw_spin_lock(&rq->lock);
  1253. while (llist) {
  1254. p = llist_entry(llist, struct task_struct, wake_entry);
  1255. llist = llist_next(llist);
  1256. ttwu_do_activate(rq, p, 0);
  1257. }
  1258. raw_spin_unlock(&rq->lock);
  1259. }
  1260. void scheduler_ipi(void)
  1261. {
  1262. /*
  1263. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1264. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1265. * this IPI.
  1266. */
  1267. preempt_fold_need_resched();
  1268. if (llist_empty(&this_rq()->wake_list)
  1269. && !tick_nohz_full_cpu(smp_processor_id())
  1270. && !got_nohz_idle_kick())
  1271. return;
  1272. /*
  1273. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1274. * traditionally all their work was done from the interrupt return
  1275. * path. Now that we actually do some work, we need to make sure
  1276. * we do call them.
  1277. *
  1278. * Some archs already do call them, luckily irq_enter/exit nest
  1279. * properly.
  1280. *
  1281. * Arguably we should visit all archs and update all handlers,
  1282. * however a fair share of IPIs are still resched only so this would
  1283. * somewhat pessimize the simple resched case.
  1284. */
  1285. irq_enter();
  1286. tick_nohz_full_check();
  1287. sched_ttwu_pending();
  1288. /*
  1289. * Check if someone kicked us for doing the nohz idle load balance.
  1290. */
  1291. if (unlikely(got_nohz_idle_kick())) {
  1292. this_rq()->idle_balance = 1;
  1293. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1294. }
  1295. irq_exit();
  1296. }
  1297. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1298. {
  1299. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1300. smp_send_reschedule(cpu);
  1301. }
  1302. bool cpus_share_cache(int this_cpu, int that_cpu)
  1303. {
  1304. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1305. }
  1306. #endif /* CONFIG_SMP */
  1307. static void ttwu_queue(struct task_struct *p, int cpu)
  1308. {
  1309. struct rq *rq = cpu_rq(cpu);
  1310. #if defined(CONFIG_SMP)
  1311. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1312. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1313. ttwu_queue_remote(p, cpu);
  1314. return;
  1315. }
  1316. #endif
  1317. raw_spin_lock(&rq->lock);
  1318. ttwu_do_activate(rq, p, 0);
  1319. raw_spin_unlock(&rq->lock);
  1320. }
  1321. /**
  1322. * try_to_wake_up - wake up a thread
  1323. * @p: the thread to be awakened
  1324. * @state: the mask of task states that can be woken
  1325. * @wake_flags: wake modifier flags (WF_*)
  1326. *
  1327. * Put it on the run-queue if it's not already there. The "current"
  1328. * thread is always on the run-queue (except when the actual
  1329. * re-schedule is in progress), and as such you're allowed to do
  1330. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1331. * runnable without the overhead of this.
  1332. *
  1333. * Return: %true if @p was woken up, %false if it was already running.
  1334. * or @state didn't match @p's state.
  1335. */
  1336. static int
  1337. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1338. {
  1339. unsigned long flags;
  1340. int cpu, success = 0;
  1341. /*
  1342. * If we are going to wake up a thread waiting for CONDITION we
  1343. * need to ensure that CONDITION=1 done by the caller can not be
  1344. * reordered with p->state check below. This pairs with mb() in
  1345. * set_current_state() the waiting thread does.
  1346. */
  1347. smp_mb__before_spinlock();
  1348. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1349. if (!(p->state & state))
  1350. goto out;
  1351. success = 1; /* we're going to change ->state */
  1352. cpu = task_cpu(p);
  1353. if (p->on_rq && ttwu_remote(p, wake_flags))
  1354. goto stat;
  1355. #ifdef CONFIG_SMP
  1356. /*
  1357. * If the owning (remote) cpu is still in the middle of schedule() with
  1358. * this task as prev, wait until its done referencing the task.
  1359. */
  1360. while (p->on_cpu)
  1361. cpu_relax();
  1362. /*
  1363. * Pairs with the smp_wmb() in finish_lock_switch().
  1364. */
  1365. smp_rmb();
  1366. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1367. p->state = TASK_WAKING;
  1368. if (p->sched_class->task_waking)
  1369. p->sched_class->task_waking(p);
  1370. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1371. if (task_cpu(p) != cpu) {
  1372. wake_flags |= WF_MIGRATED;
  1373. set_task_cpu(p, cpu);
  1374. }
  1375. #endif /* CONFIG_SMP */
  1376. ttwu_queue(p, cpu);
  1377. stat:
  1378. ttwu_stat(p, cpu, wake_flags);
  1379. out:
  1380. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1381. return success;
  1382. }
  1383. /**
  1384. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1385. * @p: the thread to be awakened
  1386. *
  1387. * Put @p on the run-queue if it's not already there. The caller must
  1388. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1389. * the current task.
  1390. */
  1391. static void try_to_wake_up_local(struct task_struct *p)
  1392. {
  1393. struct rq *rq = task_rq(p);
  1394. if (WARN_ON_ONCE(rq != this_rq()) ||
  1395. WARN_ON_ONCE(p == current))
  1396. return;
  1397. lockdep_assert_held(&rq->lock);
  1398. if (!raw_spin_trylock(&p->pi_lock)) {
  1399. raw_spin_unlock(&rq->lock);
  1400. raw_spin_lock(&p->pi_lock);
  1401. raw_spin_lock(&rq->lock);
  1402. }
  1403. if (!(p->state & TASK_NORMAL))
  1404. goto out;
  1405. if (!p->on_rq)
  1406. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1407. ttwu_do_wakeup(rq, p, 0);
  1408. ttwu_stat(p, smp_processor_id(), 0);
  1409. out:
  1410. raw_spin_unlock(&p->pi_lock);
  1411. }
  1412. /**
  1413. * wake_up_process - Wake up a specific process
  1414. * @p: The process to be woken up.
  1415. *
  1416. * Attempt to wake up the nominated process and move it to the set of runnable
  1417. * processes.
  1418. *
  1419. * Return: 1 if the process was woken up, 0 if it was already running.
  1420. *
  1421. * It may be assumed that this function implies a write memory barrier before
  1422. * changing the task state if and only if any tasks are woken up.
  1423. */
  1424. int wake_up_process(struct task_struct *p)
  1425. {
  1426. WARN_ON(task_is_stopped_or_traced(p));
  1427. return try_to_wake_up(p, TASK_NORMAL, 0);
  1428. }
  1429. EXPORT_SYMBOL(wake_up_process);
  1430. int wake_up_state(struct task_struct *p, unsigned int state)
  1431. {
  1432. return try_to_wake_up(p, state, 0);
  1433. }
  1434. /*
  1435. * Perform scheduler related setup for a newly forked process p.
  1436. * p is forked by current.
  1437. *
  1438. * __sched_fork() is basic setup used by init_idle() too:
  1439. */
  1440. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1441. {
  1442. p->on_rq = 0;
  1443. p->se.on_rq = 0;
  1444. p->se.exec_start = 0;
  1445. p->se.sum_exec_runtime = 0;
  1446. p->se.prev_sum_exec_runtime = 0;
  1447. p->se.nr_migrations = 0;
  1448. p->se.vruntime = 0;
  1449. INIT_LIST_HEAD(&p->se.group_node);
  1450. #ifdef CONFIG_SCHEDSTATS
  1451. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1452. #endif
  1453. RB_CLEAR_NODE(&p->dl.rb_node);
  1454. hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1455. p->dl.dl_runtime = p->dl.runtime = 0;
  1456. p->dl.dl_deadline = p->dl.deadline = 0;
  1457. p->dl.dl_period = 0;
  1458. p->dl.flags = 0;
  1459. INIT_LIST_HEAD(&p->rt.run_list);
  1460. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1461. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1462. #endif
  1463. #ifdef CONFIG_NUMA_BALANCING
  1464. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1465. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1466. p->mm->numa_scan_seq = 0;
  1467. }
  1468. if (clone_flags & CLONE_VM)
  1469. p->numa_preferred_nid = current->numa_preferred_nid;
  1470. else
  1471. p->numa_preferred_nid = -1;
  1472. p->node_stamp = 0ULL;
  1473. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1474. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1475. p->numa_work.next = &p->numa_work;
  1476. p->numa_faults = NULL;
  1477. p->numa_faults_buffer = NULL;
  1478. INIT_LIST_HEAD(&p->numa_entry);
  1479. p->numa_group = NULL;
  1480. #endif /* CONFIG_NUMA_BALANCING */
  1481. }
  1482. #ifdef CONFIG_NUMA_BALANCING
  1483. #ifdef CONFIG_SCHED_DEBUG
  1484. void set_numabalancing_state(bool enabled)
  1485. {
  1486. if (enabled)
  1487. sched_feat_set("NUMA");
  1488. else
  1489. sched_feat_set("NO_NUMA");
  1490. }
  1491. #else
  1492. __read_mostly bool numabalancing_enabled;
  1493. void set_numabalancing_state(bool enabled)
  1494. {
  1495. numabalancing_enabled = enabled;
  1496. }
  1497. #endif /* CONFIG_SCHED_DEBUG */
  1498. #ifdef CONFIG_PROC_SYSCTL
  1499. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1500. void __user *buffer, size_t *lenp, loff_t *ppos)
  1501. {
  1502. struct ctl_table t;
  1503. int err;
  1504. int state = numabalancing_enabled;
  1505. if (write && !capable(CAP_SYS_ADMIN))
  1506. return -EPERM;
  1507. t = *table;
  1508. t.data = &state;
  1509. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1510. if (err < 0)
  1511. return err;
  1512. if (write)
  1513. set_numabalancing_state(state);
  1514. return err;
  1515. }
  1516. #endif
  1517. #endif
  1518. /*
  1519. * fork()/clone()-time setup:
  1520. */
  1521. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1522. {
  1523. unsigned long flags;
  1524. int cpu = get_cpu();
  1525. __sched_fork(clone_flags, p);
  1526. /*
  1527. * We mark the process as running here. This guarantees that
  1528. * nobody will actually run it, and a signal or other external
  1529. * event cannot wake it up and insert it on the runqueue either.
  1530. */
  1531. p->state = TASK_RUNNING;
  1532. /*
  1533. * Make sure we do not leak PI boosting priority to the child.
  1534. */
  1535. p->prio = current->normal_prio;
  1536. /*
  1537. * Revert to default priority/policy on fork if requested.
  1538. */
  1539. if (unlikely(p->sched_reset_on_fork)) {
  1540. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1541. p->policy = SCHED_NORMAL;
  1542. p->static_prio = NICE_TO_PRIO(0);
  1543. p->rt_priority = 0;
  1544. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1545. p->static_prio = NICE_TO_PRIO(0);
  1546. p->prio = p->normal_prio = __normal_prio(p);
  1547. set_load_weight(p);
  1548. /*
  1549. * We don't need the reset flag anymore after the fork. It has
  1550. * fulfilled its duty:
  1551. */
  1552. p->sched_reset_on_fork = 0;
  1553. }
  1554. if (dl_prio(p->prio)) {
  1555. put_cpu();
  1556. return -EAGAIN;
  1557. } else if (rt_prio(p->prio)) {
  1558. p->sched_class = &rt_sched_class;
  1559. } else {
  1560. p->sched_class = &fair_sched_class;
  1561. }
  1562. if (p->sched_class->task_fork)
  1563. p->sched_class->task_fork(p);
  1564. /*
  1565. * The child is not yet in the pid-hash so no cgroup attach races,
  1566. * and the cgroup is pinned to this child due to cgroup_fork()
  1567. * is ran before sched_fork().
  1568. *
  1569. * Silence PROVE_RCU.
  1570. */
  1571. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1572. set_task_cpu(p, cpu);
  1573. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1574. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1575. if (likely(sched_info_on()))
  1576. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1577. #endif
  1578. #if defined(CONFIG_SMP)
  1579. p->on_cpu = 0;
  1580. #endif
  1581. init_task_preempt_count(p);
  1582. #ifdef CONFIG_SMP
  1583. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1584. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1585. #endif
  1586. put_cpu();
  1587. return 0;
  1588. }
  1589. unsigned long to_ratio(u64 period, u64 runtime)
  1590. {
  1591. if (runtime == RUNTIME_INF)
  1592. return 1ULL << 20;
  1593. /*
  1594. * Doing this here saves a lot of checks in all
  1595. * the calling paths, and returning zero seems
  1596. * safe for them anyway.
  1597. */
  1598. if (period == 0)
  1599. return 0;
  1600. return div64_u64(runtime << 20, period);
  1601. }
  1602. #ifdef CONFIG_SMP
  1603. inline struct dl_bw *dl_bw_of(int i)
  1604. {
  1605. return &cpu_rq(i)->rd->dl_bw;
  1606. }
  1607. static inline int dl_bw_cpus(int i)
  1608. {
  1609. struct root_domain *rd = cpu_rq(i)->rd;
  1610. int cpus = 0;
  1611. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1612. cpus++;
  1613. return cpus;
  1614. }
  1615. #else
  1616. inline struct dl_bw *dl_bw_of(int i)
  1617. {
  1618. return &cpu_rq(i)->dl.dl_bw;
  1619. }
  1620. static inline int dl_bw_cpus(int i)
  1621. {
  1622. return 1;
  1623. }
  1624. #endif
  1625. static inline
  1626. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  1627. {
  1628. dl_b->total_bw -= tsk_bw;
  1629. }
  1630. static inline
  1631. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  1632. {
  1633. dl_b->total_bw += tsk_bw;
  1634. }
  1635. static inline
  1636. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  1637. {
  1638. return dl_b->bw != -1 &&
  1639. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  1640. }
  1641. /*
  1642. * We must be sure that accepting a new task (or allowing changing the
  1643. * parameters of an existing one) is consistent with the bandwidth
  1644. * constraints. If yes, this function also accordingly updates the currently
  1645. * allocated bandwidth to reflect the new situation.
  1646. *
  1647. * This function is called while holding p's rq->lock.
  1648. */
  1649. static int dl_overflow(struct task_struct *p, int policy,
  1650. const struct sched_attr *attr)
  1651. {
  1652. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1653. u64 period = attr->sched_period ?: attr->sched_deadline;
  1654. u64 runtime = attr->sched_runtime;
  1655. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1656. int cpus, err = -1;
  1657. if (new_bw == p->dl.dl_bw)
  1658. return 0;
  1659. /*
  1660. * Either if a task, enters, leave, or stays -deadline but changes
  1661. * its parameters, we may need to update accordingly the total
  1662. * allocated bandwidth of the container.
  1663. */
  1664. raw_spin_lock(&dl_b->lock);
  1665. cpus = dl_bw_cpus(task_cpu(p));
  1666. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1667. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1668. __dl_add(dl_b, new_bw);
  1669. err = 0;
  1670. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1671. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1672. __dl_clear(dl_b, p->dl.dl_bw);
  1673. __dl_add(dl_b, new_bw);
  1674. err = 0;
  1675. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1676. __dl_clear(dl_b, p->dl.dl_bw);
  1677. err = 0;
  1678. }
  1679. raw_spin_unlock(&dl_b->lock);
  1680. return err;
  1681. }
  1682. extern void init_dl_bw(struct dl_bw *dl_b);
  1683. /*
  1684. * wake_up_new_task - wake up a newly created task for the first time.
  1685. *
  1686. * This function will do some initial scheduler statistics housekeeping
  1687. * that must be done for every newly created context, then puts the task
  1688. * on the runqueue and wakes it.
  1689. */
  1690. void wake_up_new_task(struct task_struct *p)
  1691. {
  1692. unsigned long flags;
  1693. struct rq *rq;
  1694. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1695. #ifdef CONFIG_SMP
  1696. /*
  1697. * Fork balancing, do it here and not earlier because:
  1698. * - cpus_allowed can change in the fork path
  1699. * - any previously selected cpu might disappear through hotplug
  1700. */
  1701. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1702. #endif
  1703. /* Initialize new task's runnable average */
  1704. init_task_runnable_average(p);
  1705. rq = __task_rq_lock(p);
  1706. activate_task(rq, p, 0);
  1707. p->on_rq = 1;
  1708. trace_sched_wakeup_new(p, true);
  1709. check_preempt_curr(rq, p, WF_FORK);
  1710. #ifdef CONFIG_SMP
  1711. if (p->sched_class->task_woken)
  1712. p->sched_class->task_woken(rq, p);
  1713. #endif
  1714. task_rq_unlock(rq, p, &flags);
  1715. }
  1716. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1717. /**
  1718. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1719. * @notifier: notifier struct to register
  1720. */
  1721. void preempt_notifier_register(struct preempt_notifier *notifier)
  1722. {
  1723. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1724. }
  1725. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1726. /**
  1727. * preempt_notifier_unregister - no longer interested in preemption notifications
  1728. * @notifier: notifier struct to unregister
  1729. *
  1730. * This is safe to call from within a preemption notifier.
  1731. */
  1732. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1733. {
  1734. hlist_del(&notifier->link);
  1735. }
  1736. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1737. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1738. {
  1739. struct preempt_notifier *notifier;
  1740. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1741. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1742. }
  1743. static void
  1744. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1745. struct task_struct *next)
  1746. {
  1747. struct preempt_notifier *notifier;
  1748. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1749. notifier->ops->sched_out(notifier, next);
  1750. }
  1751. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1752. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1753. {
  1754. }
  1755. static void
  1756. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1757. struct task_struct *next)
  1758. {
  1759. }
  1760. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1761. /**
  1762. * prepare_task_switch - prepare to switch tasks
  1763. * @rq: the runqueue preparing to switch
  1764. * @prev: the current task that is being switched out
  1765. * @next: the task we are going to switch to.
  1766. *
  1767. * This is called with the rq lock held and interrupts off. It must
  1768. * be paired with a subsequent finish_task_switch after the context
  1769. * switch.
  1770. *
  1771. * prepare_task_switch sets up locking and calls architecture specific
  1772. * hooks.
  1773. */
  1774. static inline void
  1775. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1776. struct task_struct *next)
  1777. {
  1778. trace_sched_switch(prev, next);
  1779. sched_info_switch(rq, prev, next);
  1780. perf_event_task_sched_out(prev, next);
  1781. fire_sched_out_preempt_notifiers(prev, next);
  1782. prepare_lock_switch(rq, next);
  1783. prepare_arch_switch(next);
  1784. }
  1785. /**
  1786. * finish_task_switch - clean up after a task-switch
  1787. * @rq: runqueue associated with task-switch
  1788. * @prev: the thread we just switched away from.
  1789. *
  1790. * finish_task_switch must be called after the context switch, paired
  1791. * with a prepare_task_switch call before the context switch.
  1792. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1793. * and do any other architecture-specific cleanup actions.
  1794. *
  1795. * Note that we may have delayed dropping an mm in context_switch(). If
  1796. * so, we finish that here outside of the runqueue lock. (Doing it
  1797. * with the lock held can cause deadlocks; see schedule() for
  1798. * details.)
  1799. */
  1800. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1801. __releases(rq->lock)
  1802. {
  1803. struct mm_struct *mm = rq->prev_mm;
  1804. long prev_state;
  1805. rq->prev_mm = NULL;
  1806. /*
  1807. * A task struct has one reference for the use as "current".
  1808. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1809. * schedule one last time. The schedule call will never return, and
  1810. * the scheduled task must drop that reference.
  1811. * The test for TASK_DEAD must occur while the runqueue locks are
  1812. * still held, otherwise prev could be scheduled on another cpu, die
  1813. * there before we look at prev->state, and then the reference would
  1814. * be dropped twice.
  1815. * Manfred Spraul <manfred@colorfullife.com>
  1816. */
  1817. prev_state = prev->state;
  1818. vtime_task_switch(prev);
  1819. finish_arch_switch(prev);
  1820. perf_event_task_sched_in(prev, current);
  1821. finish_lock_switch(rq, prev);
  1822. finish_arch_post_lock_switch();
  1823. fire_sched_in_preempt_notifiers(current);
  1824. if (mm)
  1825. mmdrop(mm);
  1826. if (unlikely(prev_state == TASK_DEAD)) {
  1827. task_numa_free(prev);
  1828. if (prev->sched_class->task_dead)
  1829. prev->sched_class->task_dead(prev);
  1830. /*
  1831. * Remove function-return probe instances associated with this
  1832. * task and put them back on the free list.
  1833. */
  1834. kprobe_flush_task(prev);
  1835. put_task_struct(prev);
  1836. }
  1837. tick_nohz_task_switch(current);
  1838. }
  1839. #ifdef CONFIG_SMP
  1840. /* assumes rq->lock is held */
  1841. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1842. {
  1843. if (prev->sched_class->pre_schedule)
  1844. prev->sched_class->pre_schedule(rq, prev);
  1845. }
  1846. /* rq->lock is NOT held, but preemption is disabled */
  1847. static inline void post_schedule(struct rq *rq)
  1848. {
  1849. if (rq->post_schedule) {
  1850. unsigned long flags;
  1851. raw_spin_lock_irqsave(&rq->lock, flags);
  1852. if (rq->curr->sched_class->post_schedule)
  1853. rq->curr->sched_class->post_schedule(rq);
  1854. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1855. rq->post_schedule = 0;
  1856. }
  1857. }
  1858. #else
  1859. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1860. {
  1861. }
  1862. static inline void post_schedule(struct rq *rq)
  1863. {
  1864. }
  1865. #endif
  1866. /**
  1867. * schedule_tail - first thing a freshly forked thread must call.
  1868. * @prev: the thread we just switched away from.
  1869. */
  1870. asmlinkage void schedule_tail(struct task_struct *prev)
  1871. __releases(rq->lock)
  1872. {
  1873. struct rq *rq = this_rq();
  1874. finish_task_switch(rq, prev);
  1875. /*
  1876. * FIXME: do we need to worry about rq being invalidated by the
  1877. * task_switch?
  1878. */
  1879. post_schedule(rq);
  1880. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1881. /* In this case, finish_task_switch does not reenable preemption */
  1882. preempt_enable();
  1883. #endif
  1884. if (current->set_child_tid)
  1885. put_user(task_pid_vnr(current), current->set_child_tid);
  1886. }
  1887. /*
  1888. * context_switch - switch to the new MM and the new
  1889. * thread's register state.
  1890. */
  1891. static inline void
  1892. context_switch(struct rq *rq, struct task_struct *prev,
  1893. struct task_struct *next)
  1894. {
  1895. struct mm_struct *mm, *oldmm;
  1896. prepare_task_switch(rq, prev, next);
  1897. mm = next->mm;
  1898. oldmm = prev->active_mm;
  1899. /*
  1900. * For paravirt, this is coupled with an exit in switch_to to
  1901. * combine the page table reload and the switch backend into
  1902. * one hypercall.
  1903. */
  1904. arch_start_context_switch(prev);
  1905. if (!mm) {
  1906. next->active_mm = oldmm;
  1907. atomic_inc(&oldmm->mm_count);
  1908. enter_lazy_tlb(oldmm, next);
  1909. } else
  1910. switch_mm(oldmm, mm, next);
  1911. if (!prev->mm) {
  1912. prev->active_mm = NULL;
  1913. rq->prev_mm = oldmm;
  1914. }
  1915. /*
  1916. * Since the runqueue lock will be released by the next
  1917. * task (which is an invalid locking op but in the case
  1918. * of the scheduler it's an obvious special-case), so we
  1919. * do an early lockdep release here:
  1920. */
  1921. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1922. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1923. #endif
  1924. context_tracking_task_switch(prev, next);
  1925. /* Here we just switch the register state and the stack. */
  1926. switch_to(prev, next, prev);
  1927. barrier();
  1928. /*
  1929. * this_rq must be evaluated again because prev may have moved
  1930. * CPUs since it called schedule(), thus the 'rq' on its stack
  1931. * frame will be invalid.
  1932. */
  1933. finish_task_switch(this_rq(), prev);
  1934. }
  1935. /*
  1936. * nr_running and nr_context_switches:
  1937. *
  1938. * externally visible scheduler statistics: current number of runnable
  1939. * threads, total number of context switches performed since bootup.
  1940. */
  1941. unsigned long nr_running(void)
  1942. {
  1943. unsigned long i, sum = 0;
  1944. for_each_online_cpu(i)
  1945. sum += cpu_rq(i)->nr_running;
  1946. return sum;
  1947. }
  1948. unsigned long long nr_context_switches(void)
  1949. {
  1950. int i;
  1951. unsigned long long sum = 0;
  1952. for_each_possible_cpu(i)
  1953. sum += cpu_rq(i)->nr_switches;
  1954. return sum;
  1955. }
  1956. unsigned long nr_iowait(void)
  1957. {
  1958. unsigned long i, sum = 0;
  1959. for_each_possible_cpu(i)
  1960. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1961. return sum;
  1962. }
  1963. unsigned long nr_iowait_cpu(int cpu)
  1964. {
  1965. struct rq *this = cpu_rq(cpu);
  1966. return atomic_read(&this->nr_iowait);
  1967. }
  1968. #ifdef CONFIG_SMP
  1969. /*
  1970. * sched_exec - execve() is a valuable balancing opportunity, because at
  1971. * this point the task has the smallest effective memory and cache footprint.
  1972. */
  1973. void sched_exec(void)
  1974. {
  1975. struct task_struct *p = current;
  1976. unsigned long flags;
  1977. int dest_cpu;
  1978. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1979. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  1980. if (dest_cpu == smp_processor_id())
  1981. goto unlock;
  1982. if (likely(cpu_active(dest_cpu))) {
  1983. struct migration_arg arg = { p, dest_cpu };
  1984. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1985. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  1986. return;
  1987. }
  1988. unlock:
  1989. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1990. }
  1991. #endif
  1992. DEFINE_PER_CPU(struct kernel_stat, kstat);
  1993. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  1994. EXPORT_PER_CPU_SYMBOL(kstat);
  1995. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  1996. /*
  1997. * Return any ns on the sched_clock that have not yet been accounted in
  1998. * @p in case that task is currently running.
  1999. *
  2000. * Called with task_rq_lock() held on @rq.
  2001. */
  2002. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2003. {
  2004. u64 ns = 0;
  2005. if (task_current(rq, p)) {
  2006. update_rq_clock(rq);
  2007. ns = rq_clock_task(rq) - p->se.exec_start;
  2008. if ((s64)ns < 0)
  2009. ns = 0;
  2010. }
  2011. return ns;
  2012. }
  2013. unsigned long long task_delta_exec(struct task_struct *p)
  2014. {
  2015. unsigned long flags;
  2016. struct rq *rq;
  2017. u64 ns = 0;
  2018. rq = task_rq_lock(p, &flags);
  2019. ns = do_task_delta_exec(p, rq);
  2020. task_rq_unlock(rq, p, &flags);
  2021. return ns;
  2022. }
  2023. /*
  2024. * Return accounted runtime for the task.
  2025. * In case the task is currently running, return the runtime plus current's
  2026. * pending runtime that have not been accounted yet.
  2027. */
  2028. unsigned long long task_sched_runtime(struct task_struct *p)
  2029. {
  2030. unsigned long flags;
  2031. struct rq *rq;
  2032. u64 ns = 0;
  2033. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2034. /*
  2035. * 64-bit doesn't need locks to atomically read a 64bit value.
  2036. * So we have a optimization chance when the task's delta_exec is 0.
  2037. * Reading ->on_cpu is racy, but this is ok.
  2038. *
  2039. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2040. * If we race with it entering cpu, unaccounted time is 0. This is
  2041. * indistinguishable from the read occurring a few cycles earlier.
  2042. */
  2043. if (!p->on_cpu)
  2044. return p->se.sum_exec_runtime;
  2045. #endif
  2046. rq = task_rq_lock(p, &flags);
  2047. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2048. task_rq_unlock(rq, p, &flags);
  2049. return ns;
  2050. }
  2051. /*
  2052. * This function gets called by the timer code, with HZ frequency.
  2053. * We call it with interrupts disabled.
  2054. */
  2055. void scheduler_tick(void)
  2056. {
  2057. int cpu = smp_processor_id();
  2058. struct rq *rq = cpu_rq(cpu);
  2059. struct task_struct *curr = rq->curr;
  2060. sched_clock_tick();
  2061. raw_spin_lock(&rq->lock);
  2062. update_rq_clock(rq);
  2063. curr->sched_class->task_tick(rq, curr, 0);
  2064. update_cpu_load_active(rq);
  2065. raw_spin_unlock(&rq->lock);
  2066. perf_event_task_tick();
  2067. #ifdef CONFIG_SMP
  2068. rq->idle_balance = idle_cpu(cpu);
  2069. trigger_load_balance(rq);
  2070. #endif
  2071. rq_last_tick_reset(rq);
  2072. }
  2073. #ifdef CONFIG_NO_HZ_FULL
  2074. /**
  2075. * scheduler_tick_max_deferment
  2076. *
  2077. * Keep at least one tick per second when a single
  2078. * active task is running because the scheduler doesn't
  2079. * yet completely support full dynticks environment.
  2080. *
  2081. * This makes sure that uptime, CFS vruntime, load
  2082. * balancing, etc... continue to move forward, even
  2083. * with a very low granularity.
  2084. *
  2085. * Return: Maximum deferment in nanoseconds.
  2086. */
  2087. u64 scheduler_tick_max_deferment(void)
  2088. {
  2089. struct rq *rq = this_rq();
  2090. unsigned long next, now = ACCESS_ONCE(jiffies);
  2091. next = rq->last_sched_tick + HZ;
  2092. if (time_before_eq(next, now))
  2093. return 0;
  2094. return jiffies_to_nsecs(next - now);
  2095. }
  2096. #endif
  2097. notrace unsigned long get_parent_ip(unsigned long addr)
  2098. {
  2099. if (in_lock_functions(addr)) {
  2100. addr = CALLER_ADDR2;
  2101. if (in_lock_functions(addr))
  2102. addr = CALLER_ADDR3;
  2103. }
  2104. return addr;
  2105. }
  2106. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2107. defined(CONFIG_PREEMPT_TRACER))
  2108. void __kprobes preempt_count_add(int val)
  2109. {
  2110. #ifdef CONFIG_DEBUG_PREEMPT
  2111. /*
  2112. * Underflow?
  2113. */
  2114. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2115. return;
  2116. #endif
  2117. __preempt_count_add(val);
  2118. #ifdef CONFIG_DEBUG_PREEMPT
  2119. /*
  2120. * Spinlock count overflowing soon?
  2121. */
  2122. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2123. PREEMPT_MASK - 10);
  2124. #endif
  2125. if (preempt_count() == val)
  2126. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2127. }
  2128. EXPORT_SYMBOL(preempt_count_add);
  2129. void __kprobes preempt_count_sub(int val)
  2130. {
  2131. #ifdef CONFIG_DEBUG_PREEMPT
  2132. /*
  2133. * Underflow?
  2134. */
  2135. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2136. return;
  2137. /*
  2138. * Is the spinlock portion underflowing?
  2139. */
  2140. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2141. !(preempt_count() & PREEMPT_MASK)))
  2142. return;
  2143. #endif
  2144. if (preempt_count() == val)
  2145. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2146. __preempt_count_sub(val);
  2147. }
  2148. EXPORT_SYMBOL(preempt_count_sub);
  2149. #endif
  2150. /*
  2151. * Print scheduling while atomic bug:
  2152. */
  2153. static noinline void __schedule_bug(struct task_struct *prev)
  2154. {
  2155. if (oops_in_progress)
  2156. return;
  2157. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2158. prev->comm, prev->pid, preempt_count());
  2159. debug_show_held_locks(prev);
  2160. print_modules();
  2161. if (irqs_disabled())
  2162. print_irqtrace_events(prev);
  2163. dump_stack();
  2164. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2165. }
  2166. /*
  2167. * Various schedule()-time debugging checks and statistics:
  2168. */
  2169. static inline void schedule_debug(struct task_struct *prev)
  2170. {
  2171. /*
  2172. * Test if we are atomic. Since do_exit() needs to call into
  2173. * schedule() atomically, we ignore that path. Otherwise whine
  2174. * if we are scheduling when we should not.
  2175. */
  2176. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2177. __schedule_bug(prev);
  2178. rcu_sleep_check();
  2179. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2180. schedstat_inc(this_rq(), sched_count);
  2181. }
  2182. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2183. {
  2184. if (prev->on_rq || rq->skip_clock_update < 0)
  2185. update_rq_clock(rq);
  2186. prev->sched_class->put_prev_task(rq, prev);
  2187. }
  2188. /*
  2189. * Pick up the highest-prio task:
  2190. */
  2191. static inline struct task_struct *
  2192. pick_next_task(struct rq *rq)
  2193. {
  2194. const struct sched_class *class;
  2195. struct task_struct *p;
  2196. /*
  2197. * Optimization: we know that if all tasks are in
  2198. * the fair class we can call that function directly:
  2199. */
  2200. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2201. p = fair_sched_class.pick_next_task(rq);
  2202. if (likely(p))
  2203. return p;
  2204. }
  2205. for_each_class(class) {
  2206. p = class->pick_next_task(rq);
  2207. if (p)
  2208. return p;
  2209. }
  2210. BUG(); /* the idle class will always have a runnable task */
  2211. }
  2212. /*
  2213. * __schedule() is the main scheduler function.
  2214. *
  2215. * The main means of driving the scheduler and thus entering this function are:
  2216. *
  2217. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2218. *
  2219. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2220. * paths. For example, see arch/x86/entry_64.S.
  2221. *
  2222. * To drive preemption between tasks, the scheduler sets the flag in timer
  2223. * interrupt handler scheduler_tick().
  2224. *
  2225. * 3. Wakeups don't really cause entry into schedule(). They add a
  2226. * task to the run-queue and that's it.
  2227. *
  2228. * Now, if the new task added to the run-queue preempts the current
  2229. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2230. * called on the nearest possible occasion:
  2231. *
  2232. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2233. *
  2234. * - in syscall or exception context, at the next outmost
  2235. * preempt_enable(). (this might be as soon as the wake_up()'s
  2236. * spin_unlock()!)
  2237. *
  2238. * - in IRQ context, return from interrupt-handler to
  2239. * preemptible context
  2240. *
  2241. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2242. * then at the next:
  2243. *
  2244. * - cond_resched() call
  2245. * - explicit schedule() call
  2246. * - return from syscall or exception to user-space
  2247. * - return from interrupt-handler to user-space
  2248. */
  2249. static void __sched __schedule(void)
  2250. {
  2251. struct task_struct *prev, *next;
  2252. unsigned long *switch_count;
  2253. struct rq *rq;
  2254. int cpu;
  2255. need_resched:
  2256. preempt_disable();
  2257. cpu = smp_processor_id();
  2258. rq = cpu_rq(cpu);
  2259. rcu_note_context_switch(cpu);
  2260. prev = rq->curr;
  2261. schedule_debug(prev);
  2262. if (sched_feat(HRTICK))
  2263. hrtick_clear(rq);
  2264. /*
  2265. * Make sure that signal_pending_state()->signal_pending() below
  2266. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2267. * done by the caller to avoid the race with signal_wake_up().
  2268. */
  2269. smp_mb__before_spinlock();
  2270. raw_spin_lock_irq(&rq->lock);
  2271. switch_count = &prev->nivcsw;
  2272. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2273. if (unlikely(signal_pending_state(prev->state, prev))) {
  2274. prev->state = TASK_RUNNING;
  2275. } else {
  2276. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2277. prev->on_rq = 0;
  2278. /*
  2279. * If a worker went to sleep, notify and ask workqueue
  2280. * whether it wants to wake up a task to maintain
  2281. * concurrency.
  2282. */
  2283. if (prev->flags & PF_WQ_WORKER) {
  2284. struct task_struct *to_wakeup;
  2285. to_wakeup = wq_worker_sleeping(prev, cpu);
  2286. if (to_wakeup)
  2287. try_to_wake_up_local(to_wakeup);
  2288. }
  2289. }
  2290. switch_count = &prev->nvcsw;
  2291. }
  2292. pre_schedule(rq, prev);
  2293. if (unlikely(!rq->nr_running))
  2294. idle_balance(cpu, rq);
  2295. put_prev_task(rq, prev);
  2296. next = pick_next_task(rq);
  2297. clear_tsk_need_resched(prev);
  2298. clear_preempt_need_resched();
  2299. rq->skip_clock_update = 0;
  2300. if (likely(prev != next)) {
  2301. rq->nr_switches++;
  2302. rq->curr = next;
  2303. ++*switch_count;
  2304. context_switch(rq, prev, next); /* unlocks the rq */
  2305. /*
  2306. * The context switch have flipped the stack from under us
  2307. * and restored the local variables which were saved when
  2308. * this task called schedule() in the past. prev == current
  2309. * is still correct, but it can be moved to another cpu/rq.
  2310. */
  2311. cpu = smp_processor_id();
  2312. rq = cpu_rq(cpu);
  2313. } else
  2314. raw_spin_unlock_irq(&rq->lock);
  2315. post_schedule(rq);
  2316. sched_preempt_enable_no_resched();
  2317. if (need_resched())
  2318. goto need_resched;
  2319. }
  2320. static inline void sched_submit_work(struct task_struct *tsk)
  2321. {
  2322. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2323. return;
  2324. /*
  2325. * If we are going to sleep and we have plugged IO queued,
  2326. * make sure to submit it to avoid deadlocks.
  2327. */
  2328. if (blk_needs_flush_plug(tsk))
  2329. blk_schedule_flush_plug(tsk);
  2330. }
  2331. asmlinkage void __sched schedule(void)
  2332. {
  2333. struct task_struct *tsk = current;
  2334. sched_submit_work(tsk);
  2335. __schedule();
  2336. }
  2337. EXPORT_SYMBOL(schedule);
  2338. #ifdef CONFIG_CONTEXT_TRACKING
  2339. asmlinkage void __sched schedule_user(void)
  2340. {
  2341. /*
  2342. * If we come here after a random call to set_need_resched(),
  2343. * or we have been woken up remotely but the IPI has not yet arrived,
  2344. * we haven't yet exited the RCU idle mode. Do it here manually until
  2345. * we find a better solution.
  2346. */
  2347. user_exit();
  2348. schedule();
  2349. user_enter();
  2350. }
  2351. #endif
  2352. /**
  2353. * schedule_preempt_disabled - called with preemption disabled
  2354. *
  2355. * Returns with preemption disabled. Note: preempt_count must be 1
  2356. */
  2357. void __sched schedule_preempt_disabled(void)
  2358. {
  2359. sched_preempt_enable_no_resched();
  2360. schedule();
  2361. preempt_disable();
  2362. }
  2363. #ifdef CONFIG_PREEMPT
  2364. /*
  2365. * this is the entry point to schedule() from in-kernel preemption
  2366. * off of preempt_enable. Kernel preemptions off return from interrupt
  2367. * occur there and call schedule directly.
  2368. */
  2369. asmlinkage void __sched notrace preempt_schedule(void)
  2370. {
  2371. /*
  2372. * If there is a non-zero preempt_count or interrupts are disabled,
  2373. * we do not want to preempt the current task. Just return..
  2374. */
  2375. if (likely(!preemptible()))
  2376. return;
  2377. do {
  2378. __preempt_count_add(PREEMPT_ACTIVE);
  2379. __schedule();
  2380. __preempt_count_sub(PREEMPT_ACTIVE);
  2381. /*
  2382. * Check again in case we missed a preemption opportunity
  2383. * between schedule and now.
  2384. */
  2385. barrier();
  2386. } while (need_resched());
  2387. }
  2388. EXPORT_SYMBOL(preempt_schedule);
  2389. #endif /* CONFIG_PREEMPT */
  2390. /*
  2391. * this is the entry point to schedule() from kernel preemption
  2392. * off of irq context.
  2393. * Note, that this is called and return with irqs disabled. This will
  2394. * protect us against recursive calling from irq.
  2395. */
  2396. asmlinkage void __sched preempt_schedule_irq(void)
  2397. {
  2398. enum ctx_state prev_state;
  2399. /* Catch callers which need to be fixed */
  2400. BUG_ON(preempt_count() || !irqs_disabled());
  2401. prev_state = exception_enter();
  2402. do {
  2403. __preempt_count_add(PREEMPT_ACTIVE);
  2404. local_irq_enable();
  2405. __schedule();
  2406. local_irq_disable();
  2407. __preempt_count_sub(PREEMPT_ACTIVE);
  2408. /*
  2409. * Check again in case we missed a preemption opportunity
  2410. * between schedule and now.
  2411. */
  2412. barrier();
  2413. } while (need_resched());
  2414. exception_exit(prev_state);
  2415. }
  2416. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2417. void *key)
  2418. {
  2419. return try_to_wake_up(curr->private, mode, wake_flags);
  2420. }
  2421. EXPORT_SYMBOL(default_wake_function);
  2422. static long __sched
  2423. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2424. {
  2425. unsigned long flags;
  2426. wait_queue_t wait;
  2427. init_waitqueue_entry(&wait, current);
  2428. __set_current_state(state);
  2429. spin_lock_irqsave(&q->lock, flags);
  2430. __add_wait_queue(q, &wait);
  2431. spin_unlock(&q->lock);
  2432. timeout = schedule_timeout(timeout);
  2433. spin_lock_irq(&q->lock);
  2434. __remove_wait_queue(q, &wait);
  2435. spin_unlock_irqrestore(&q->lock, flags);
  2436. return timeout;
  2437. }
  2438. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2439. {
  2440. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2441. }
  2442. EXPORT_SYMBOL(interruptible_sleep_on);
  2443. long __sched
  2444. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2445. {
  2446. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2447. }
  2448. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2449. void __sched sleep_on(wait_queue_head_t *q)
  2450. {
  2451. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2452. }
  2453. EXPORT_SYMBOL(sleep_on);
  2454. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2455. {
  2456. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  2457. }
  2458. EXPORT_SYMBOL(sleep_on_timeout);
  2459. #ifdef CONFIG_RT_MUTEXES
  2460. /*
  2461. * rt_mutex_setprio - set the current priority of a task
  2462. * @p: task
  2463. * @prio: prio value (kernel-internal form)
  2464. *
  2465. * This function changes the 'effective' priority of a task. It does
  2466. * not touch ->normal_prio like __setscheduler().
  2467. *
  2468. * Used by the rt_mutex code to implement priority inheritance logic.
  2469. */
  2470. void rt_mutex_setprio(struct task_struct *p, int prio)
  2471. {
  2472. int oldprio, on_rq, running, enqueue_flag = 0;
  2473. struct rq *rq;
  2474. const struct sched_class *prev_class;
  2475. BUG_ON(prio > MAX_PRIO);
  2476. rq = __task_rq_lock(p);
  2477. /*
  2478. * Idle task boosting is a nono in general. There is one
  2479. * exception, when PREEMPT_RT and NOHZ is active:
  2480. *
  2481. * The idle task calls get_next_timer_interrupt() and holds
  2482. * the timer wheel base->lock on the CPU and another CPU wants
  2483. * to access the timer (probably to cancel it). We can safely
  2484. * ignore the boosting request, as the idle CPU runs this code
  2485. * with interrupts disabled and will complete the lock
  2486. * protected section without being interrupted. So there is no
  2487. * real need to boost.
  2488. */
  2489. if (unlikely(p == rq->idle)) {
  2490. WARN_ON(p != rq->curr);
  2491. WARN_ON(p->pi_blocked_on);
  2492. goto out_unlock;
  2493. }
  2494. trace_sched_pi_setprio(p, prio);
  2495. p->pi_top_task = rt_mutex_get_top_task(p);
  2496. oldprio = p->prio;
  2497. prev_class = p->sched_class;
  2498. on_rq = p->on_rq;
  2499. running = task_current(rq, p);
  2500. if (on_rq)
  2501. dequeue_task(rq, p, 0);
  2502. if (running)
  2503. p->sched_class->put_prev_task(rq, p);
  2504. /*
  2505. * Boosting condition are:
  2506. * 1. -rt task is running and holds mutex A
  2507. * --> -dl task blocks on mutex A
  2508. *
  2509. * 2. -dl task is running and holds mutex A
  2510. * --> -dl task blocks on mutex A and could preempt the
  2511. * running task
  2512. */
  2513. if (dl_prio(prio)) {
  2514. if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
  2515. dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
  2516. p->dl.dl_boosted = 1;
  2517. p->dl.dl_throttled = 0;
  2518. enqueue_flag = ENQUEUE_REPLENISH;
  2519. } else
  2520. p->dl.dl_boosted = 0;
  2521. p->sched_class = &dl_sched_class;
  2522. } else if (rt_prio(prio)) {
  2523. if (dl_prio(oldprio))
  2524. p->dl.dl_boosted = 0;
  2525. if (oldprio < prio)
  2526. enqueue_flag = ENQUEUE_HEAD;
  2527. p->sched_class = &rt_sched_class;
  2528. } else {
  2529. if (dl_prio(oldprio))
  2530. p->dl.dl_boosted = 0;
  2531. p->sched_class = &fair_sched_class;
  2532. }
  2533. p->prio = prio;
  2534. if (running)
  2535. p->sched_class->set_curr_task(rq);
  2536. if (on_rq)
  2537. enqueue_task(rq, p, enqueue_flag);
  2538. check_class_changed(rq, p, prev_class, oldprio);
  2539. out_unlock:
  2540. __task_rq_unlock(rq);
  2541. }
  2542. #endif
  2543. void set_user_nice(struct task_struct *p, long nice)
  2544. {
  2545. int old_prio, delta, on_rq;
  2546. unsigned long flags;
  2547. struct rq *rq;
  2548. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  2549. return;
  2550. /*
  2551. * We have to be careful, if called from sys_setpriority(),
  2552. * the task might be in the middle of scheduling on another CPU.
  2553. */
  2554. rq = task_rq_lock(p, &flags);
  2555. /*
  2556. * The RT priorities are set via sched_setscheduler(), but we still
  2557. * allow the 'normal' nice value to be set - but as expected
  2558. * it wont have any effect on scheduling until the task is
  2559. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2560. */
  2561. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2562. p->static_prio = NICE_TO_PRIO(nice);
  2563. goto out_unlock;
  2564. }
  2565. on_rq = p->on_rq;
  2566. if (on_rq)
  2567. dequeue_task(rq, p, 0);
  2568. p->static_prio = NICE_TO_PRIO(nice);
  2569. set_load_weight(p);
  2570. old_prio = p->prio;
  2571. p->prio = effective_prio(p);
  2572. delta = p->prio - old_prio;
  2573. if (on_rq) {
  2574. enqueue_task(rq, p, 0);
  2575. /*
  2576. * If the task increased its priority or is running and
  2577. * lowered its priority, then reschedule its CPU:
  2578. */
  2579. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2580. resched_task(rq->curr);
  2581. }
  2582. out_unlock:
  2583. task_rq_unlock(rq, p, &flags);
  2584. }
  2585. EXPORT_SYMBOL(set_user_nice);
  2586. /*
  2587. * can_nice - check if a task can reduce its nice value
  2588. * @p: task
  2589. * @nice: nice value
  2590. */
  2591. int can_nice(const struct task_struct *p, const int nice)
  2592. {
  2593. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2594. int nice_rlim = 20 - nice;
  2595. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2596. capable(CAP_SYS_NICE));
  2597. }
  2598. #ifdef __ARCH_WANT_SYS_NICE
  2599. /*
  2600. * sys_nice - change the priority of the current process.
  2601. * @increment: priority increment
  2602. *
  2603. * sys_setpriority is a more generic, but much slower function that
  2604. * does similar things.
  2605. */
  2606. SYSCALL_DEFINE1(nice, int, increment)
  2607. {
  2608. long nice, retval;
  2609. /*
  2610. * Setpriority might change our priority at the same moment.
  2611. * We don't have to worry. Conceptually one call occurs first
  2612. * and we have a single winner.
  2613. */
  2614. if (increment < -40)
  2615. increment = -40;
  2616. if (increment > 40)
  2617. increment = 40;
  2618. nice = TASK_NICE(current) + increment;
  2619. if (nice < -20)
  2620. nice = -20;
  2621. if (nice > 19)
  2622. nice = 19;
  2623. if (increment < 0 && !can_nice(current, nice))
  2624. return -EPERM;
  2625. retval = security_task_setnice(current, nice);
  2626. if (retval)
  2627. return retval;
  2628. set_user_nice(current, nice);
  2629. return 0;
  2630. }
  2631. #endif
  2632. /**
  2633. * task_prio - return the priority value of a given task.
  2634. * @p: the task in question.
  2635. *
  2636. * Return: The priority value as seen by users in /proc.
  2637. * RT tasks are offset by -200. Normal tasks are centered
  2638. * around 0, value goes from -16 to +15.
  2639. */
  2640. int task_prio(const struct task_struct *p)
  2641. {
  2642. return p->prio - MAX_RT_PRIO;
  2643. }
  2644. /**
  2645. * task_nice - return the nice value of a given task.
  2646. * @p: the task in question.
  2647. *
  2648. * Return: The nice value [ -20 ... 0 ... 19 ].
  2649. */
  2650. int task_nice(const struct task_struct *p)
  2651. {
  2652. return TASK_NICE(p);
  2653. }
  2654. EXPORT_SYMBOL(task_nice);
  2655. /**
  2656. * idle_cpu - is a given cpu idle currently?
  2657. * @cpu: the processor in question.
  2658. *
  2659. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2660. */
  2661. int idle_cpu(int cpu)
  2662. {
  2663. struct rq *rq = cpu_rq(cpu);
  2664. if (rq->curr != rq->idle)
  2665. return 0;
  2666. if (rq->nr_running)
  2667. return 0;
  2668. #ifdef CONFIG_SMP
  2669. if (!llist_empty(&rq->wake_list))
  2670. return 0;
  2671. #endif
  2672. return 1;
  2673. }
  2674. /**
  2675. * idle_task - return the idle task for a given cpu.
  2676. * @cpu: the processor in question.
  2677. *
  2678. * Return: The idle task for the cpu @cpu.
  2679. */
  2680. struct task_struct *idle_task(int cpu)
  2681. {
  2682. return cpu_rq(cpu)->idle;
  2683. }
  2684. /**
  2685. * find_process_by_pid - find a process with a matching PID value.
  2686. * @pid: the pid in question.
  2687. *
  2688. * The task of @pid, if found. %NULL otherwise.
  2689. */
  2690. static struct task_struct *find_process_by_pid(pid_t pid)
  2691. {
  2692. return pid ? find_task_by_vpid(pid) : current;
  2693. }
  2694. /*
  2695. * This function initializes the sched_dl_entity of a newly becoming
  2696. * SCHED_DEADLINE task.
  2697. *
  2698. * Only the static values are considered here, the actual runtime and the
  2699. * absolute deadline will be properly calculated when the task is enqueued
  2700. * for the first time with its new policy.
  2701. */
  2702. static void
  2703. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2704. {
  2705. struct sched_dl_entity *dl_se = &p->dl;
  2706. init_dl_task_timer(dl_se);
  2707. dl_se->dl_runtime = attr->sched_runtime;
  2708. dl_se->dl_deadline = attr->sched_deadline;
  2709. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2710. dl_se->flags = attr->sched_flags;
  2711. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2712. dl_se->dl_throttled = 0;
  2713. dl_se->dl_new = 1;
  2714. }
  2715. /* Actually do priority change: must hold pi & rq lock. */
  2716. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2717. const struct sched_attr *attr)
  2718. {
  2719. int policy = attr->sched_policy;
  2720. if (policy == -1) /* setparam */
  2721. policy = p->policy;
  2722. p->policy = policy;
  2723. if (dl_policy(policy))
  2724. __setparam_dl(p, attr);
  2725. else if (fair_policy(policy))
  2726. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2727. /*
  2728. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2729. * !rt_policy. Always setting this ensures that things like
  2730. * getparam()/getattr() don't report silly values for !rt tasks.
  2731. */
  2732. p->rt_priority = attr->sched_priority;
  2733. p->normal_prio = normal_prio(p);
  2734. p->prio = rt_mutex_getprio(p);
  2735. if (dl_prio(p->prio))
  2736. p->sched_class = &dl_sched_class;
  2737. else if (rt_prio(p->prio))
  2738. p->sched_class = &rt_sched_class;
  2739. else
  2740. p->sched_class = &fair_sched_class;
  2741. set_load_weight(p);
  2742. }
  2743. static void
  2744. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2745. {
  2746. struct sched_dl_entity *dl_se = &p->dl;
  2747. attr->sched_priority = p->rt_priority;
  2748. attr->sched_runtime = dl_se->dl_runtime;
  2749. attr->sched_deadline = dl_se->dl_deadline;
  2750. attr->sched_period = dl_se->dl_period;
  2751. attr->sched_flags = dl_se->flags;
  2752. }
  2753. /*
  2754. * This function validates the new parameters of a -deadline task.
  2755. * We ask for the deadline not being zero, and greater or equal
  2756. * than the runtime, as well as the period of being zero or
  2757. * greater than deadline. Furthermore, we have to be sure that
  2758. * user parameters are above the internal resolution (1us); we
  2759. * check sched_runtime only since it is always the smaller one.
  2760. */
  2761. static bool
  2762. __checkparam_dl(const struct sched_attr *attr)
  2763. {
  2764. return attr && attr->sched_deadline != 0 &&
  2765. (attr->sched_period == 0 ||
  2766. (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
  2767. (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
  2768. attr->sched_runtime >= (2 << (DL_SCALE - 1));
  2769. }
  2770. /*
  2771. * check the target process has a UID that matches the current process's
  2772. */
  2773. static bool check_same_owner(struct task_struct *p)
  2774. {
  2775. const struct cred *cred = current_cred(), *pcred;
  2776. bool match;
  2777. rcu_read_lock();
  2778. pcred = __task_cred(p);
  2779. match = (uid_eq(cred->euid, pcred->euid) ||
  2780. uid_eq(cred->euid, pcred->uid));
  2781. rcu_read_unlock();
  2782. return match;
  2783. }
  2784. static int __sched_setscheduler(struct task_struct *p,
  2785. const struct sched_attr *attr,
  2786. bool user)
  2787. {
  2788. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2789. int policy = attr->sched_policy;
  2790. unsigned long flags;
  2791. const struct sched_class *prev_class;
  2792. struct rq *rq;
  2793. int reset_on_fork;
  2794. /* may grab non-irq protected spin_locks */
  2795. BUG_ON(in_interrupt());
  2796. recheck:
  2797. /* double check policy once rq lock held */
  2798. if (policy < 0) {
  2799. reset_on_fork = p->sched_reset_on_fork;
  2800. policy = oldpolicy = p->policy;
  2801. } else {
  2802. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2803. if (policy != SCHED_DEADLINE &&
  2804. policy != SCHED_FIFO && policy != SCHED_RR &&
  2805. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2806. policy != SCHED_IDLE)
  2807. return -EINVAL;
  2808. }
  2809. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2810. return -EINVAL;
  2811. /*
  2812. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2813. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2814. * SCHED_BATCH and SCHED_IDLE is 0.
  2815. */
  2816. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2817. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2818. return -EINVAL;
  2819. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2820. (rt_policy(policy) != (attr->sched_priority != 0)))
  2821. return -EINVAL;
  2822. /*
  2823. * Allow unprivileged RT tasks to decrease priority:
  2824. */
  2825. if (user && !capable(CAP_SYS_NICE)) {
  2826. if (fair_policy(policy)) {
  2827. if (attr->sched_nice < TASK_NICE(p) &&
  2828. !can_nice(p, attr->sched_nice))
  2829. return -EPERM;
  2830. }
  2831. if (rt_policy(policy)) {
  2832. unsigned long rlim_rtprio =
  2833. task_rlimit(p, RLIMIT_RTPRIO);
  2834. /* can't set/change the rt policy */
  2835. if (policy != p->policy && !rlim_rtprio)
  2836. return -EPERM;
  2837. /* can't increase priority */
  2838. if (attr->sched_priority > p->rt_priority &&
  2839. attr->sched_priority > rlim_rtprio)
  2840. return -EPERM;
  2841. }
  2842. /*
  2843. * Can't set/change SCHED_DEADLINE policy at all for now
  2844. * (safest behavior); in the future we would like to allow
  2845. * unprivileged DL tasks to increase their relative deadline
  2846. * or reduce their runtime (both ways reducing utilization)
  2847. */
  2848. if (dl_policy(policy))
  2849. return -EPERM;
  2850. /*
  2851. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2852. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2853. */
  2854. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2855. if (!can_nice(p, TASK_NICE(p)))
  2856. return -EPERM;
  2857. }
  2858. /* can't change other user's priorities */
  2859. if (!check_same_owner(p))
  2860. return -EPERM;
  2861. /* Normal users shall not reset the sched_reset_on_fork flag */
  2862. if (p->sched_reset_on_fork && !reset_on_fork)
  2863. return -EPERM;
  2864. }
  2865. if (user) {
  2866. retval = security_task_setscheduler(p);
  2867. if (retval)
  2868. return retval;
  2869. }
  2870. /*
  2871. * make sure no PI-waiters arrive (or leave) while we are
  2872. * changing the priority of the task:
  2873. *
  2874. * To be able to change p->policy safely, the appropriate
  2875. * runqueue lock must be held.
  2876. */
  2877. rq = task_rq_lock(p, &flags);
  2878. /*
  2879. * Changing the policy of the stop threads its a very bad idea
  2880. */
  2881. if (p == rq->stop) {
  2882. task_rq_unlock(rq, p, &flags);
  2883. return -EINVAL;
  2884. }
  2885. /*
  2886. * If not changing anything there's no need to proceed further:
  2887. */
  2888. if (unlikely(policy == p->policy)) {
  2889. if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
  2890. goto change;
  2891. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  2892. goto change;
  2893. if (dl_policy(policy))
  2894. goto change;
  2895. task_rq_unlock(rq, p, &flags);
  2896. return 0;
  2897. }
  2898. change:
  2899. if (user) {
  2900. #ifdef CONFIG_RT_GROUP_SCHED
  2901. /*
  2902. * Do not allow realtime tasks into groups that have no runtime
  2903. * assigned.
  2904. */
  2905. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2906. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2907. !task_group_is_autogroup(task_group(p))) {
  2908. task_rq_unlock(rq, p, &flags);
  2909. return -EPERM;
  2910. }
  2911. #endif
  2912. #ifdef CONFIG_SMP
  2913. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  2914. cpumask_t *span = rq->rd->span;
  2915. /*
  2916. * Don't allow tasks with an affinity mask smaller than
  2917. * the entire root_domain to become SCHED_DEADLINE. We
  2918. * will also fail if there's no bandwidth available.
  2919. */
  2920. if (!cpumask_subset(span, &p->cpus_allowed) ||
  2921. rq->rd->dl_bw.bw == 0) {
  2922. task_rq_unlock(rq, p, &flags);
  2923. return -EPERM;
  2924. }
  2925. }
  2926. #endif
  2927. }
  2928. /* recheck policy now with rq lock held */
  2929. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2930. policy = oldpolicy = -1;
  2931. task_rq_unlock(rq, p, &flags);
  2932. goto recheck;
  2933. }
  2934. /*
  2935. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  2936. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  2937. * is available.
  2938. */
  2939. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  2940. task_rq_unlock(rq, p, &flags);
  2941. return -EBUSY;
  2942. }
  2943. on_rq = p->on_rq;
  2944. running = task_current(rq, p);
  2945. if (on_rq)
  2946. dequeue_task(rq, p, 0);
  2947. if (running)
  2948. p->sched_class->put_prev_task(rq, p);
  2949. p->sched_reset_on_fork = reset_on_fork;
  2950. oldprio = p->prio;
  2951. prev_class = p->sched_class;
  2952. __setscheduler(rq, p, attr);
  2953. if (running)
  2954. p->sched_class->set_curr_task(rq);
  2955. if (on_rq)
  2956. enqueue_task(rq, p, 0);
  2957. check_class_changed(rq, p, prev_class, oldprio);
  2958. task_rq_unlock(rq, p, &flags);
  2959. rt_mutex_adjust_pi(p);
  2960. return 0;
  2961. }
  2962. static int _sched_setscheduler(struct task_struct *p, int policy,
  2963. const struct sched_param *param, bool check)
  2964. {
  2965. struct sched_attr attr = {
  2966. .sched_policy = policy,
  2967. .sched_priority = param->sched_priority,
  2968. .sched_nice = PRIO_TO_NICE(p->static_prio),
  2969. };
  2970. /*
  2971. * Fixup the legacy SCHED_RESET_ON_FORK hack
  2972. */
  2973. if (policy & SCHED_RESET_ON_FORK) {
  2974. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  2975. policy &= ~SCHED_RESET_ON_FORK;
  2976. attr.sched_policy = policy;
  2977. }
  2978. return __sched_setscheduler(p, &attr, check);
  2979. }
  2980. /**
  2981. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  2982. * @p: the task in question.
  2983. * @policy: new policy.
  2984. * @param: structure containing the new RT priority.
  2985. *
  2986. * Return: 0 on success. An error code otherwise.
  2987. *
  2988. * NOTE that the task may be already dead.
  2989. */
  2990. int sched_setscheduler(struct task_struct *p, int policy,
  2991. const struct sched_param *param)
  2992. {
  2993. return _sched_setscheduler(p, policy, param, true);
  2994. }
  2995. EXPORT_SYMBOL_GPL(sched_setscheduler);
  2996. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  2997. {
  2998. return __sched_setscheduler(p, attr, true);
  2999. }
  3000. EXPORT_SYMBOL_GPL(sched_setattr);
  3001. /**
  3002. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3003. * @p: the task in question.
  3004. * @policy: new policy.
  3005. * @param: structure containing the new RT priority.
  3006. *
  3007. * Just like sched_setscheduler, only don't bother checking if the
  3008. * current context has permission. For example, this is needed in
  3009. * stop_machine(): we create temporary high priority worker threads,
  3010. * but our caller might not have that capability.
  3011. *
  3012. * Return: 0 on success. An error code otherwise.
  3013. */
  3014. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3015. const struct sched_param *param)
  3016. {
  3017. return _sched_setscheduler(p, policy, param, false);
  3018. }
  3019. static int
  3020. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3021. {
  3022. struct sched_param lparam;
  3023. struct task_struct *p;
  3024. int retval;
  3025. if (!param || pid < 0)
  3026. return -EINVAL;
  3027. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3028. return -EFAULT;
  3029. rcu_read_lock();
  3030. retval = -ESRCH;
  3031. p = find_process_by_pid(pid);
  3032. if (p != NULL)
  3033. retval = sched_setscheduler(p, policy, &lparam);
  3034. rcu_read_unlock();
  3035. return retval;
  3036. }
  3037. /*
  3038. * Mimics kernel/events/core.c perf_copy_attr().
  3039. */
  3040. static int sched_copy_attr(struct sched_attr __user *uattr,
  3041. struct sched_attr *attr)
  3042. {
  3043. u32 size;
  3044. int ret;
  3045. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3046. return -EFAULT;
  3047. /*
  3048. * zero the full structure, so that a short copy will be nice.
  3049. */
  3050. memset(attr, 0, sizeof(*attr));
  3051. ret = get_user(size, &uattr->size);
  3052. if (ret)
  3053. return ret;
  3054. if (size > PAGE_SIZE) /* silly large */
  3055. goto err_size;
  3056. if (!size) /* abi compat */
  3057. size = SCHED_ATTR_SIZE_VER0;
  3058. if (size < SCHED_ATTR_SIZE_VER0)
  3059. goto err_size;
  3060. /*
  3061. * If we're handed a bigger struct than we know of,
  3062. * ensure all the unknown bits are 0 - i.e. new
  3063. * user-space does not rely on any kernel feature
  3064. * extensions we dont know about yet.
  3065. */
  3066. if (size > sizeof(*attr)) {
  3067. unsigned char __user *addr;
  3068. unsigned char __user *end;
  3069. unsigned char val;
  3070. addr = (void __user *)uattr + sizeof(*attr);
  3071. end = (void __user *)uattr + size;
  3072. for (; addr < end; addr++) {
  3073. ret = get_user(val, addr);
  3074. if (ret)
  3075. return ret;
  3076. if (val)
  3077. goto err_size;
  3078. }
  3079. size = sizeof(*attr);
  3080. }
  3081. ret = copy_from_user(attr, uattr, size);
  3082. if (ret)
  3083. return -EFAULT;
  3084. /*
  3085. * XXX: do we want to be lenient like existing syscalls; or do we want
  3086. * to be strict and return an error on out-of-bounds values?
  3087. */
  3088. attr->sched_nice = clamp(attr->sched_nice, -20, 19);
  3089. out:
  3090. return ret;
  3091. err_size:
  3092. put_user(sizeof(*attr), &uattr->size);
  3093. ret = -E2BIG;
  3094. goto out;
  3095. }
  3096. /**
  3097. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3098. * @pid: the pid in question.
  3099. * @policy: new policy.
  3100. * @param: structure containing the new RT priority.
  3101. *
  3102. * Return: 0 on success. An error code otherwise.
  3103. */
  3104. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3105. struct sched_param __user *, param)
  3106. {
  3107. /* negative values for policy are not valid */
  3108. if (policy < 0)
  3109. return -EINVAL;
  3110. return do_sched_setscheduler(pid, policy, param);
  3111. }
  3112. /**
  3113. * sys_sched_setparam - set/change the RT priority of a thread
  3114. * @pid: the pid in question.
  3115. * @param: structure containing the new RT priority.
  3116. *
  3117. * Return: 0 on success. An error code otherwise.
  3118. */
  3119. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3120. {
  3121. return do_sched_setscheduler(pid, -1, param);
  3122. }
  3123. /**
  3124. * sys_sched_setattr - same as above, but with extended sched_attr
  3125. * @pid: the pid in question.
  3126. * @uattr: structure containing the extended parameters.
  3127. */
  3128. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3129. unsigned int, flags)
  3130. {
  3131. struct sched_attr attr;
  3132. struct task_struct *p;
  3133. int retval;
  3134. if (!uattr || pid < 0 || flags)
  3135. return -EINVAL;
  3136. if (sched_copy_attr(uattr, &attr))
  3137. return -EFAULT;
  3138. rcu_read_lock();
  3139. retval = -ESRCH;
  3140. p = find_process_by_pid(pid);
  3141. if (p != NULL)
  3142. retval = sched_setattr(p, &attr);
  3143. rcu_read_unlock();
  3144. return retval;
  3145. }
  3146. /**
  3147. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3148. * @pid: the pid in question.
  3149. *
  3150. * Return: On success, the policy of the thread. Otherwise, a negative error
  3151. * code.
  3152. */
  3153. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3154. {
  3155. struct task_struct *p;
  3156. int retval;
  3157. if (pid < 0)
  3158. return -EINVAL;
  3159. retval = -ESRCH;
  3160. rcu_read_lock();
  3161. p = find_process_by_pid(pid);
  3162. if (p) {
  3163. retval = security_task_getscheduler(p);
  3164. if (!retval)
  3165. retval = p->policy
  3166. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3167. }
  3168. rcu_read_unlock();
  3169. return retval;
  3170. }
  3171. /**
  3172. * sys_sched_getparam - get the RT priority of a thread
  3173. * @pid: the pid in question.
  3174. * @param: structure containing the RT priority.
  3175. *
  3176. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3177. * code.
  3178. */
  3179. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3180. {
  3181. struct sched_param lp;
  3182. struct task_struct *p;
  3183. int retval;
  3184. if (!param || pid < 0)
  3185. return -EINVAL;
  3186. rcu_read_lock();
  3187. p = find_process_by_pid(pid);
  3188. retval = -ESRCH;
  3189. if (!p)
  3190. goto out_unlock;
  3191. retval = security_task_getscheduler(p);
  3192. if (retval)
  3193. goto out_unlock;
  3194. if (task_has_dl_policy(p)) {
  3195. retval = -EINVAL;
  3196. goto out_unlock;
  3197. }
  3198. lp.sched_priority = p->rt_priority;
  3199. rcu_read_unlock();
  3200. /*
  3201. * This one might sleep, we cannot do it with a spinlock held ...
  3202. */
  3203. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3204. return retval;
  3205. out_unlock:
  3206. rcu_read_unlock();
  3207. return retval;
  3208. }
  3209. static int sched_read_attr(struct sched_attr __user *uattr,
  3210. struct sched_attr *attr,
  3211. unsigned int usize)
  3212. {
  3213. int ret;
  3214. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3215. return -EFAULT;
  3216. /*
  3217. * If we're handed a smaller struct than we know of,
  3218. * ensure all the unknown bits are 0 - i.e. old
  3219. * user-space does not get uncomplete information.
  3220. */
  3221. if (usize < sizeof(*attr)) {
  3222. unsigned char *addr;
  3223. unsigned char *end;
  3224. addr = (void *)attr + usize;
  3225. end = (void *)attr + sizeof(*attr);
  3226. for (; addr < end; addr++) {
  3227. if (*addr)
  3228. goto err_size;
  3229. }
  3230. attr->size = usize;
  3231. }
  3232. ret = copy_to_user(uattr, attr, attr->size);
  3233. if (ret)
  3234. return -EFAULT;
  3235. out:
  3236. return ret;
  3237. err_size:
  3238. ret = -E2BIG;
  3239. goto out;
  3240. }
  3241. /**
  3242. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3243. * @pid: the pid in question.
  3244. * @uattr: structure containing the extended parameters.
  3245. * @size: sizeof(attr) for fwd/bwd comp.
  3246. */
  3247. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3248. unsigned int, size, unsigned int, flags)
  3249. {
  3250. struct sched_attr attr = {
  3251. .size = sizeof(struct sched_attr),
  3252. };
  3253. struct task_struct *p;
  3254. int retval;
  3255. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3256. size < SCHED_ATTR_SIZE_VER0 || flags)
  3257. return -EINVAL;
  3258. rcu_read_lock();
  3259. p = find_process_by_pid(pid);
  3260. retval = -ESRCH;
  3261. if (!p)
  3262. goto out_unlock;
  3263. retval = security_task_getscheduler(p);
  3264. if (retval)
  3265. goto out_unlock;
  3266. attr.sched_policy = p->policy;
  3267. if (p->sched_reset_on_fork)
  3268. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3269. if (task_has_dl_policy(p))
  3270. __getparam_dl(p, &attr);
  3271. else if (task_has_rt_policy(p))
  3272. attr.sched_priority = p->rt_priority;
  3273. else
  3274. attr.sched_nice = TASK_NICE(p);
  3275. rcu_read_unlock();
  3276. retval = sched_read_attr(uattr, &attr, size);
  3277. return retval;
  3278. out_unlock:
  3279. rcu_read_unlock();
  3280. return retval;
  3281. }
  3282. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3283. {
  3284. cpumask_var_t cpus_allowed, new_mask;
  3285. struct task_struct *p;
  3286. int retval;
  3287. rcu_read_lock();
  3288. p = find_process_by_pid(pid);
  3289. if (!p) {
  3290. rcu_read_unlock();
  3291. return -ESRCH;
  3292. }
  3293. /* Prevent p going away */
  3294. get_task_struct(p);
  3295. rcu_read_unlock();
  3296. if (p->flags & PF_NO_SETAFFINITY) {
  3297. retval = -EINVAL;
  3298. goto out_put_task;
  3299. }
  3300. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3301. retval = -ENOMEM;
  3302. goto out_put_task;
  3303. }
  3304. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3305. retval = -ENOMEM;
  3306. goto out_free_cpus_allowed;
  3307. }
  3308. retval = -EPERM;
  3309. if (!check_same_owner(p)) {
  3310. rcu_read_lock();
  3311. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3312. rcu_read_unlock();
  3313. goto out_unlock;
  3314. }
  3315. rcu_read_unlock();
  3316. }
  3317. retval = security_task_setscheduler(p);
  3318. if (retval)
  3319. goto out_unlock;
  3320. cpuset_cpus_allowed(p, cpus_allowed);
  3321. cpumask_and(new_mask, in_mask, cpus_allowed);
  3322. /*
  3323. * Since bandwidth control happens on root_domain basis,
  3324. * if admission test is enabled, we only admit -deadline
  3325. * tasks allowed to run on all the CPUs in the task's
  3326. * root_domain.
  3327. */
  3328. #ifdef CONFIG_SMP
  3329. if (task_has_dl_policy(p)) {
  3330. const struct cpumask *span = task_rq(p)->rd->span;
  3331. if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
  3332. retval = -EBUSY;
  3333. goto out_unlock;
  3334. }
  3335. }
  3336. #endif
  3337. again:
  3338. retval = set_cpus_allowed_ptr(p, new_mask);
  3339. if (!retval) {
  3340. cpuset_cpus_allowed(p, cpus_allowed);
  3341. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3342. /*
  3343. * We must have raced with a concurrent cpuset
  3344. * update. Just reset the cpus_allowed to the
  3345. * cpuset's cpus_allowed
  3346. */
  3347. cpumask_copy(new_mask, cpus_allowed);
  3348. goto again;
  3349. }
  3350. }
  3351. out_unlock:
  3352. free_cpumask_var(new_mask);
  3353. out_free_cpus_allowed:
  3354. free_cpumask_var(cpus_allowed);
  3355. out_put_task:
  3356. put_task_struct(p);
  3357. return retval;
  3358. }
  3359. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3360. struct cpumask *new_mask)
  3361. {
  3362. if (len < cpumask_size())
  3363. cpumask_clear(new_mask);
  3364. else if (len > cpumask_size())
  3365. len = cpumask_size();
  3366. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3367. }
  3368. /**
  3369. * sys_sched_setaffinity - set the cpu affinity of a process
  3370. * @pid: pid of the process
  3371. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3372. * @user_mask_ptr: user-space pointer to the new cpu mask
  3373. *
  3374. * Return: 0 on success. An error code otherwise.
  3375. */
  3376. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3377. unsigned long __user *, user_mask_ptr)
  3378. {
  3379. cpumask_var_t new_mask;
  3380. int retval;
  3381. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3382. return -ENOMEM;
  3383. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3384. if (retval == 0)
  3385. retval = sched_setaffinity(pid, new_mask);
  3386. free_cpumask_var(new_mask);
  3387. return retval;
  3388. }
  3389. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3390. {
  3391. struct task_struct *p;
  3392. unsigned long flags;
  3393. int retval;
  3394. rcu_read_lock();
  3395. retval = -ESRCH;
  3396. p = find_process_by_pid(pid);
  3397. if (!p)
  3398. goto out_unlock;
  3399. retval = security_task_getscheduler(p);
  3400. if (retval)
  3401. goto out_unlock;
  3402. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3403. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3404. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3405. out_unlock:
  3406. rcu_read_unlock();
  3407. return retval;
  3408. }
  3409. /**
  3410. * sys_sched_getaffinity - get the cpu affinity of a process
  3411. * @pid: pid of the process
  3412. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3413. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3414. *
  3415. * Return: 0 on success. An error code otherwise.
  3416. */
  3417. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3418. unsigned long __user *, user_mask_ptr)
  3419. {
  3420. int ret;
  3421. cpumask_var_t mask;
  3422. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3423. return -EINVAL;
  3424. if (len & (sizeof(unsigned long)-1))
  3425. return -EINVAL;
  3426. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3427. return -ENOMEM;
  3428. ret = sched_getaffinity(pid, mask);
  3429. if (ret == 0) {
  3430. size_t retlen = min_t(size_t, len, cpumask_size());
  3431. if (copy_to_user(user_mask_ptr, mask, retlen))
  3432. ret = -EFAULT;
  3433. else
  3434. ret = retlen;
  3435. }
  3436. free_cpumask_var(mask);
  3437. return ret;
  3438. }
  3439. /**
  3440. * sys_sched_yield - yield the current processor to other threads.
  3441. *
  3442. * This function yields the current CPU to other tasks. If there are no
  3443. * other threads running on this CPU then this function will return.
  3444. *
  3445. * Return: 0.
  3446. */
  3447. SYSCALL_DEFINE0(sched_yield)
  3448. {
  3449. struct rq *rq = this_rq_lock();
  3450. schedstat_inc(rq, yld_count);
  3451. current->sched_class->yield_task(rq);
  3452. /*
  3453. * Since we are going to call schedule() anyway, there's
  3454. * no need to preempt or enable interrupts:
  3455. */
  3456. __release(rq->lock);
  3457. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3458. do_raw_spin_unlock(&rq->lock);
  3459. sched_preempt_enable_no_resched();
  3460. schedule();
  3461. return 0;
  3462. }
  3463. static void __cond_resched(void)
  3464. {
  3465. __preempt_count_add(PREEMPT_ACTIVE);
  3466. __schedule();
  3467. __preempt_count_sub(PREEMPT_ACTIVE);
  3468. }
  3469. int __sched _cond_resched(void)
  3470. {
  3471. if (should_resched()) {
  3472. __cond_resched();
  3473. return 1;
  3474. }
  3475. return 0;
  3476. }
  3477. EXPORT_SYMBOL(_cond_resched);
  3478. /*
  3479. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3480. * call schedule, and on return reacquire the lock.
  3481. *
  3482. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3483. * operations here to prevent schedule() from being called twice (once via
  3484. * spin_unlock(), once by hand).
  3485. */
  3486. int __cond_resched_lock(spinlock_t *lock)
  3487. {
  3488. int resched = should_resched();
  3489. int ret = 0;
  3490. lockdep_assert_held(lock);
  3491. if (spin_needbreak(lock) || resched) {
  3492. spin_unlock(lock);
  3493. if (resched)
  3494. __cond_resched();
  3495. else
  3496. cpu_relax();
  3497. ret = 1;
  3498. spin_lock(lock);
  3499. }
  3500. return ret;
  3501. }
  3502. EXPORT_SYMBOL(__cond_resched_lock);
  3503. int __sched __cond_resched_softirq(void)
  3504. {
  3505. BUG_ON(!in_softirq());
  3506. if (should_resched()) {
  3507. local_bh_enable();
  3508. __cond_resched();
  3509. local_bh_disable();
  3510. return 1;
  3511. }
  3512. return 0;
  3513. }
  3514. EXPORT_SYMBOL(__cond_resched_softirq);
  3515. /**
  3516. * yield - yield the current processor to other threads.
  3517. *
  3518. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3519. *
  3520. * The scheduler is at all times free to pick the calling task as the most
  3521. * eligible task to run, if removing the yield() call from your code breaks
  3522. * it, its already broken.
  3523. *
  3524. * Typical broken usage is:
  3525. *
  3526. * while (!event)
  3527. * yield();
  3528. *
  3529. * where one assumes that yield() will let 'the other' process run that will
  3530. * make event true. If the current task is a SCHED_FIFO task that will never
  3531. * happen. Never use yield() as a progress guarantee!!
  3532. *
  3533. * If you want to use yield() to wait for something, use wait_event().
  3534. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3535. * If you still want to use yield(), do not!
  3536. */
  3537. void __sched yield(void)
  3538. {
  3539. set_current_state(TASK_RUNNING);
  3540. sys_sched_yield();
  3541. }
  3542. EXPORT_SYMBOL(yield);
  3543. /**
  3544. * yield_to - yield the current processor to another thread in
  3545. * your thread group, or accelerate that thread toward the
  3546. * processor it's on.
  3547. * @p: target task
  3548. * @preempt: whether task preemption is allowed or not
  3549. *
  3550. * It's the caller's job to ensure that the target task struct
  3551. * can't go away on us before we can do any checks.
  3552. *
  3553. * Return:
  3554. * true (>0) if we indeed boosted the target task.
  3555. * false (0) if we failed to boost the target.
  3556. * -ESRCH if there's no task to yield to.
  3557. */
  3558. bool __sched yield_to(struct task_struct *p, bool preempt)
  3559. {
  3560. struct task_struct *curr = current;
  3561. struct rq *rq, *p_rq;
  3562. unsigned long flags;
  3563. int yielded = 0;
  3564. local_irq_save(flags);
  3565. rq = this_rq();
  3566. again:
  3567. p_rq = task_rq(p);
  3568. /*
  3569. * If we're the only runnable task on the rq and target rq also
  3570. * has only one task, there's absolutely no point in yielding.
  3571. */
  3572. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3573. yielded = -ESRCH;
  3574. goto out_irq;
  3575. }
  3576. double_rq_lock(rq, p_rq);
  3577. if (task_rq(p) != p_rq) {
  3578. double_rq_unlock(rq, p_rq);
  3579. goto again;
  3580. }
  3581. if (!curr->sched_class->yield_to_task)
  3582. goto out_unlock;
  3583. if (curr->sched_class != p->sched_class)
  3584. goto out_unlock;
  3585. if (task_running(p_rq, p) || p->state)
  3586. goto out_unlock;
  3587. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3588. if (yielded) {
  3589. schedstat_inc(rq, yld_count);
  3590. /*
  3591. * Make p's CPU reschedule; pick_next_entity takes care of
  3592. * fairness.
  3593. */
  3594. if (preempt && rq != p_rq)
  3595. resched_task(p_rq->curr);
  3596. }
  3597. out_unlock:
  3598. double_rq_unlock(rq, p_rq);
  3599. out_irq:
  3600. local_irq_restore(flags);
  3601. if (yielded > 0)
  3602. schedule();
  3603. return yielded;
  3604. }
  3605. EXPORT_SYMBOL_GPL(yield_to);
  3606. /*
  3607. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3608. * that process accounting knows that this is a task in IO wait state.
  3609. */
  3610. void __sched io_schedule(void)
  3611. {
  3612. struct rq *rq = raw_rq();
  3613. delayacct_blkio_start();
  3614. atomic_inc(&rq->nr_iowait);
  3615. blk_flush_plug(current);
  3616. current->in_iowait = 1;
  3617. schedule();
  3618. current->in_iowait = 0;
  3619. atomic_dec(&rq->nr_iowait);
  3620. delayacct_blkio_end();
  3621. }
  3622. EXPORT_SYMBOL(io_schedule);
  3623. long __sched io_schedule_timeout(long timeout)
  3624. {
  3625. struct rq *rq = raw_rq();
  3626. long ret;
  3627. delayacct_blkio_start();
  3628. atomic_inc(&rq->nr_iowait);
  3629. blk_flush_plug(current);
  3630. current->in_iowait = 1;
  3631. ret = schedule_timeout(timeout);
  3632. current->in_iowait = 0;
  3633. atomic_dec(&rq->nr_iowait);
  3634. delayacct_blkio_end();
  3635. return ret;
  3636. }
  3637. /**
  3638. * sys_sched_get_priority_max - return maximum RT priority.
  3639. * @policy: scheduling class.
  3640. *
  3641. * Return: On success, this syscall returns the maximum
  3642. * rt_priority that can be used by a given scheduling class.
  3643. * On failure, a negative error code is returned.
  3644. */
  3645. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3646. {
  3647. int ret = -EINVAL;
  3648. switch (policy) {
  3649. case SCHED_FIFO:
  3650. case SCHED_RR:
  3651. ret = MAX_USER_RT_PRIO-1;
  3652. break;
  3653. case SCHED_DEADLINE:
  3654. case SCHED_NORMAL:
  3655. case SCHED_BATCH:
  3656. case SCHED_IDLE:
  3657. ret = 0;
  3658. break;
  3659. }
  3660. return ret;
  3661. }
  3662. /**
  3663. * sys_sched_get_priority_min - return minimum RT priority.
  3664. * @policy: scheduling class.
  3665. *
  3666. * Return: On success, this syscall returns the minimum
  3667. * rt_priority that can be used by a given scheduling class.
  3668. * On failure, a negative error code is returned.
  3669. */
  3670. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3671. {
  3672. int ret = -EINVAL;
  3673. switch (policy) {
  3674. case SCHED_FIFO:
  3675. case SCHED_RR:
  3676. ret = 1;
  3677. break;
  3678. case SCHED_DEADLINE:
  3679. case SCHED_NORMAL:
  3680. case SCHED_BATCH:
  3681. case SCHED_IDLE:
  3682. ret = 0;
  3683. }
  3684. return ret;
  3685. }
  3686. /**
  3687. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3688. * @pid: pid of the process.
  3689. * @interval: userspace pointer to the timeslice value.
  3690. *
  3691. * this syscall writes the default timeslice value of a given process
  3692. * into the user-space timespec buffer. A value of '0' means infinity.
  3693. *
  3694. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3695. * an error code.
  3696. */
  3697. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3698. struct timespec __user *, interval)
  3699. {
  3700. struct task_struct *p;
  3701. unsigned int time_slice;
  3702. unsigned long flags;
  3703. struct rq *rq;
  3704. int retval;
  3705. struct timespec t;
  3706. if (pid < 0)
  3707. return -EINVAL;
  3708. retval = -ESRCH;
  3709. rcu_read_lock();
  3710. p = find_process_by_pid(pid);
  3711. if (!p)
  3712. goto out_unlock;
  3713. retval = security_task_getscheduler(p);
  3714. if (retval)
  3715. goto out_unlock;
  3716. rq = task_rq_lock(p, &flags);
  3717. time_slice = 0;
  3718. if (p->sched_class->get_rr_interval)
  3719. time_slice = p->sched_class->get_rr_interval(rq, p);
  3720. task_rq_unlock(rq, p, &flags);
  3721. rcu_read_unlock();
  3722. jiffies_to_timespec(time_slice, &t);
  3723. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3724. return retval;
  3725. out_unlock:
  3726. rcu_read_unlock();
  3727. return retval;
  3728. }
  3729. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3730. void sched_show_task(struct task_struct *p)
  3731. {
  3732. unsigned long free = 0;
  3733. int ppid;
  3734. unsigned state;
  3735. state = p->state ? __ffs(p->state) + 1 : 0;
  3736. printk(KERN_INFO "%-15.15s %c", p->comm,
  3737. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3738. #if BITS_PER_LONG == 32
  3739. if (state == TASK_RUNNING)
  3740. printk(KERN_CONT " running ");
  3741. else
  3742. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3743. #else
  3744. if (state == TASK_RUNNING)
  3745. printk(KERN_CONT " running task ");
  3746. else
  3747. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3748. #endif
  3749. #ifdef CONFIG_DEBUG_STACK_USAGE
  3750. free = stack_not_used(p);
  3751. #endif
  3752. rcu_read_lock();
  3753. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3754. rcu_read_unlock();
  3755. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3756. task_pid_nr(p), ppid,
  3757. (unsigned long)task_thread_info(p)->flags);
  3758. print_worker_info(KERN_INFO, p);
  3759. show_stack(p, NULL);
  3760. }
  3761. void show_state_filter(unsigned long state_filter)
  3762. {
  3763. struct task_struct *g, *p;
  3764. #if BITS_PER_LONG == 32
  3765. printk(KERN_INFO
  3766. " task PC stack pid father\n");
  3767. #else
  3768. printk(KERN_INFO
  3769. " task PC stack pid father\n");
  3770. #endif
  3771. rcu_read_lock();
  3772. do_each_thread(g, p) {
  3773. /*
  3774. * reset the NMI-timeout, listing all files on a slow
  3775. * console might take a lot of time:
  3776. */
  3777. touch_nmi_watchdog();
  3778. if (!state_filter || (p->state & state_filter))
  3779. sched_show_task(p);
  3780. } while_each_thread(g, p);
  3781. touch_all_softlockup_watchdogs();
  3782. #ifdef CONFIG_SCHED_DEBUG
  3783. sysrq_sched_debug_show();
  3784. #endif
  3785. rcu_read_unlock();
  3786. /*
  3787. * Only show locks if all tasks are dumped:
  3788. */
  3789. if (!state_filter)
  3790. debug_show_all_locks();
  3791. }
  3792. void init_idle_bootup_task(struct task_struct *idle)
  3793. {
  3794. idle->sched_class = &idle_sched_class;
  3795. }
  3796. /**
  3797. * init_idle - set up an idle thread for a given CPU
  3798. * @idle: task in question
  3799. * @cpu: cpu the idle task belongs to
  3800. *
  3801. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3802. * flag, to make booting more robust.
  3803. */
  3804. void init_idle(struct task_struct *idle, int cpu)
  3805. {
  3806. struct rq *rq = cpu_rq(cpu);
  3807. unsigned long flags;
  3808. raw_spin_lock_irqsave(&rq->lock, flags);
  3809. __sched_fork(0, idle);
  3810. idle->state = TASK_RUNNING;
  3811. idle->se.exec_start = sched_clock();
  3812. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3813. /*
  3814. * We're having a chicken and egg problem, even though we are
  3815. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3816. * lockdep check in task_group() will fail.
  3817. *
  3818. * Similar case to sched_fork(). / Alternatively we could
  3819. * use task_rq_lock() here and obtain the other rq->lock.
  3820. *
  3821. * Silence PROVE_RCU
  3822. */
  3823. rcu_read_lock();
  3824. __set_task_cpu(idle, cpu);
  3825. rcu_read_unlock();
  3826. rq->curr = rq->idle = idle;
  3827. #if defined(CONFIG_SMP)
  3828. idle->on_cpu = 1;
  3829. #endif
  3830. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3831. /* Set the preempt count _outside_ the spinlocks! */
  3832. init_idle_preempt_count(idle, cpu);
  3833. /*
  3834. * The idle tasks have their own, simple scheduling class:
  3835. */
  3836. idle->sched_class = &idle_sched_class;
  3837. ftrace_graph_init_idle_task(idle, cpu);
  3838. vtime_init_idle(idle, cpu);
  3839. #if defined(CONFIG_SMP)
  3840. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3841. #endif
  3842. }
  3843. #ifdef CONFIG_SMP
  3844. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3845. {
  3846. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3847. p->sched_class->set_cpus_allowed(p, new_mask);
  3848. cpumask_copy(&p->cpus_allowed, new_mask);
  3849. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3850. }
  3851. /*
  3852. * This is how migration works:
  3853. *
  3854. * 1) we invoke migration_cpu_stop() on the target CPU using
  3855. * stop_one_cpu().
  3856. * 2) stopper starts to run (implicitly forcing the migrated thread
  3857. * off the CPU)
  3858. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3859. * 4) if it's in the wrong runqueue then the migration thread removes
  3860. * it and puts it into the right queue.
  3861. * 5) stopper completes and stop_one_cpu() returns and the migration
  3862. * is done.
  3863. */
  3864. /*
  3865. * Change a given task's CPU affinity. Migrate the thread to a
  3866. * proper CPU and schedule it away if the CPU it's executing on
  3867. * is removed from the allowed bitmask.
  3868. *
  3869. * NOTE: the caller must have a valid reference to the task, the
  3870. * task must not exit() & deallocate itself prematurely. The
  3871. * call is not atomic; no spinlocks may be held.
  3872. */
  3873. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3874. {
  3875. unsigned long flags;
  3876. struct rq *rq;
  3877. unsigned int dest_cpu;
  3878. int ret = 0;
  3879. rq = task_rq_lock(p, &flags);
  3880. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3881. goto out;
  3882. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3883. ret = -EINVAL;
  3884. goto out;
  3885. }
  3886. do_set_cpus_allowed(p, new_mask);
  3887. /* Can the task run on the task's current CPU? If so, we're done */
  3888. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3889. goto out;
  3890. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3891. if (p->on_rq) {
  3892. struct migration_arg arg = { p, dest_cpu };
  3893. /* Need help from migration thread: drop lock and wait. */
  3894. task_rq_unlock(rq, p, &flags);
  3895. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3896. tlb_migrate_finish(p->mm);
  3897. return 0;
  3898. }
  3899. out:
  3900. task_rq_unlock(rq, p, &flags);
  3901. return ret;
  3902. }
  3903. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3904. /*
  3905. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3906. * this because either it can't run here any more (set_cpus_allowed()
  3907. * away from this CPU, or CPU going down), or because we're
  3908. * attempting to rebalance this task on exec (sched_exec).
  3909. *
  3910. * So we race with normal scheduler movements, but that's OK, as long
  3911. * as the task is no longer on this CPU.
  3912. *
  3913. * Returns non-zero if task was successfully migrated.
  3914. */
  3915. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3916. {
  3917. struct rq *rq_dest, *rq_src;
  3918. int ret = 0;
  3919. if (unlikely(!cpu_active(dest_cpu)))
  3920. return ret;
  3921. rq_src = cpu_rq(src_cpu);
  3922. rq_dest = cpu_rq(dest_cpu);
  3923. raw_spin_lock(&p->pi_lock);
  3924. double_rq_lock(rq_src, rq_dest);
  3925. /* Already moved. */
  3926. if (task_cpu(p) != src_cpu)
  3927. goto done;
  3928. /* Affinity changed (again). */
  3929. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  3930. goto fail;
  3931. /*
  3932. * If we're not on a rq, the next wake-up will ensure we're
  3933. * placed properly.
  3934. */
  3935. if (p->on_rq) {
  3936. dequeue_task(rq_src, p, 0);
  3937. set_task_cpu(p, dest_cpu);
  3938. enqueue_task(rq_dest, p, 0);
  3939. check_preempt_curr(rq_dest, p, 0);
  3940. }
  3941. done:
  3942. ret = 1;
  3943. fail:
  3944. double_rq_unlock(rq_src, rq_dest);
  3945. raw_spin_unlock(&p->pi_lock);
  3946. return ret;
  3947. }
  3948. #ifdef CONFIG_NUMA_BALANCING
  3949. /* Migrate current task p to target_cpu */
  3950. int migrate_task_to(struct task_struct *p, int target_cpu)
  3951. {
  3952. struct migration_arg arg = { p, target_cpu };
  3953. int curr_cpu = task_cpu(p);
  3954. if (curr_cpu == target_cpu)
  3955. return 0;
  3956. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  3957. return -EINVAL;
  3958. /* TODO: This is not properly updating schedstats */
  3959. trace_sched_move_numa(p, curr_cpu, target_cpu);
  3960. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  3961. }
  3962. /*
  3963. * Requeue a task on a given node and accurately track the number of NUMA
  3964. * tasks on the runqueues
  3965. */
  3966. void sched_setnuma(struct task_struct *p, int nid)
  3967. {
  3968. struct rq *rq;
  3969. unsigned long flags;
  3970. bool on_rq, running;
  3971. rq = task_rq_lock(p, &flags);
  3972. on_rq = p->on_rq;
  3973. running = task_current(rq, p);
  3974. if (on_rq)
  3975. dequeue_task(rq, p, 0);
  3976. if (running)
  3977. p->sched_class->put_prev_task(rq, p);
  3978. p->numa_preferred_nid = nid;
  3979. if (running)
  3980. p->sched_class->set_curr_task(rq);
  3981. if (on_rq)
  3982. enqueue_task(rq, p, 0);
  3983. task_rq_unlock(rq, p, &flags);
  3984. }
  3985. #endif
  3986. /*
  3987. * migration_cpu_stop - this will be executed by a highprio stopper thread
  3988. * and performs thread migration by bumping thread off CPU then
  3989. * 'pushing' onto another runqueue.
  3990. */
  3991. static int migration_cpu_stop(void *data)
  3992. {
  3993. struct migration_arg *arg = data;
  3994. /*
  3995. * The original target cpu might have gone down and we might
  3996. * be on another cpu but it doesn't matter.
  3997. */
  3998. local_irq_disable();
  3999. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4000. local_irq_enable();
  4001. return 0;
  4002. }
  4003. #ifdef CONFIG_HOTPLUG_CPU
  4004. /*
  4005. * Ensures that the idle task is using init_mm right before its cpu goes
  4006. * offline.
  4007. */
  4008. void idle_task_exit(void)
  4009. {
  4010. struct mm_struct *mm = current->active_mm;
  4011. BUG_ON(cpu_online(smp_processor_id()));
  4012. if (mm != &init_mm)
  4013. switch_mm(mm, &init_mm, current);
  4014. mmdrop(mm);
  4015. }
  4016. /*
  4017. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4018. * we might have. Assumes we're called after migrate_tasks() so that the
  4019. * nr_active count is stable.
  4020. *
  4021. * Also see the comment "Global load-average calculations".
  4022. */
  4023. static void calc_load_migrate(struct rq *rq)
  4024. {
  4025. long delta = calc_load_fold_active(rq);
  4026. if (delta)
  4027. atomic_long_add(delta, &calc_load_tasks);
  4028. }
  4029. /*
  4030. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4031. * try_to_wake_up()->select_task_rq().
  4032. *
  4033. * Called with rq->lock held even though we'er in stop_machine() and
  4034. * there's no concurrency possible, we hold the required locks anyway
  4035. * because of lock validation efforts.
  4036. */
  4037. static void migrate_tasks(unsigned int dead_cpu)
  4038. {
  4039. struct rq *rq = cpu_rq(dead_cpu);
  4040. struct task_struct *next, *stop = rq->stop;
  4041. int dest_cpu;
  4042. /*
  4043. * Fudge the rq selection such that the below task selection loop
  4044. * doesn't get stuck on the currently eligible stop task.
  4045. *
  4046. * We're currently inside stop_machine() and the rq is either stuck
  4047. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4048. * either way we should never end up calling schedule() until we're
  4049. * done here.
  4050. */
  4051. rq->stop = NULL;
  4052. /*
  4053. * put_prev_task() and pick_next_task() sched
  4054. * class method both need to have an up-to-date
  4055. * value of rq->clock[_task]
  4056. */
  4057. update_rq_clock(rq);
  4058. for ( ; ; ) {
  4059. /*
  4060. * There's this thread running, bail when that's the only
  4061. * remaining thread.
  4062. */
  4063. if (rq->nr_running == 1)
  4064. break;
  4065. next = pick_next_task(rq);
  4066. BUG_ON(!next);
  4067. next->sched_class->put_prev_task(rq, next);
  4068. /* Find suitable destination for @next, with force if needed. */
  4069. dest_cpu = select_fallback_rq(dead_cpu, next);
  4070. raw_spin_unlock(&rq->lock);
  4071. __migrate_task(next, dead_cpu, dest_cpu);
  4072. raw_spin_lock(&rq->lock);
  4073. }
  4074. rq->stop = stop;
  4075. }
  4076. #endif /* CONFIG_HOTPLUG_CPU */
  4077. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4078. static struct ctl_table sd_ctl_dir[] = {
  4079. {
  4080. .procname = "sched_domain",
  4081. .mode = 0555,
  4082. },
  4083. {}
  4084. };
  4085. static struct ctl_table sd_ctl_root[] = {
  4086. {
  4087. .procname = "kernel",
  4088. .mode = 0555,
  4089. .child = sd_ctl_dir,
  4090. },
  4091. {}
  4092. };
  4093. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4094. {
  4095. struct ctl_table *entry =
  4096. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4097. return entry;
  4098. }
  4099. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4100. {
  4101. struct ctl_table *entry;
  4102. /*
  4103. * In the intermediate directories, both the child directory and
  4104. * procname are dynamically allocated and could fail but the mode
  4105. * will always be set. In the lowest directory the names are
  4106. * static strings and all have proc handlers.
  4107. */
  4108. for (entry = *tablep; entry->mode; entry++) {
  4109. if (entry->child)
  4110. sd_free_ctl_entry(&entry->child);
  4111. if (entry->proc_handler == NULL)
  4112. kfree(entry->procname);
  4113. }
  4114. kfree(*tablep);
  4115. *tablep = NULL;
  4116. }
  4117. static int min_load_idx = 0;
  4118. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4119. static void
  4120. set_table_entry(struct ctl_table *entry,
  4121. const char *procname, void *data, int maxlen,
  4122. umode_t mode, proc_handler *proc_handler,
  4123. bool load_idx)
  4124. {
  4125. entry->procname = procname;
  4126. entry->data = data;
  4127. entry->maxlen = maxlen;
  4128. entry->mode = mode;
  4129. entry->proc_handler = proc_handler;
  4130. if (load_idx) {
  4131. entry->extra1 = &min_load_idx;
  4132. entry->extra2 = &max_load_idx;
  4133. }
  4134. }
  4135. static struct ctl_table *
  4136. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4137. {
  4138. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4139. if (table == NULL)
  4140. return NULL;
  4141. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4142. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4143. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4144. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4145. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4146. sizeof(int), 0644, proc_dointvec_minmax, true);
  4147. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4148. sizeof(int), 0644, proc_dointvec_minmax, true);
  4149. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4150. sizeof(int), 0644, proc_dointvec_minmax, true);
  4151. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4152. sizeof(int), 0644, proc_dointvec_minmax, true);
  4153. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4154. sizeof(int), 0644, proc_dointvec_minmax, true);
  4155. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4156. sizeof(int), 0644, proc_dointvec_minmax, false);
  4157. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4158. sizeof(int), 0644, proc_dointvec_minmax, false);
  4159. set_table_entry(&table[9], "cache_nice_tries",
  4160. &sd->cache_nice_tries,
  4161. sizeof(int), 0644, proc_dointvec_minmax, false);
  4162. set_table_entry(&table[10], "flags", &sd->flags,
  4163. sizeof(int), 0644, proc_dointvec_minmax, false);
  4164. set_table_entry(&table[11], "name", sd->name,
  4165. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4166. /* &table[12] is terminator */
  4167. return table;
  4168. }
  4169. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4170. {
  4171. struct ctl_table *entry, *table;
  4172. struct sched_domain *sd;
  4173. int domain_num = 0, i;
  4174. char buf[32];
  4175. for_each_domain(cpu, sd)
  4176. domain_num++;
  4177. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4178. if (table == NULL)
  4179. return NULL;
  4180. i = 0;
  4181. for_each_domain(cpu, sd) {
  4182. snprintf(buf, 32, "domain%d", i);
  4183. entry->procname = kstrdup(buf, GFP_KERNEL);
  4184. entry->mode = 0555;
  4185. entry->child = sd_alloc_ctl_domain_table(sd);
  4186. entry++;
  4187. i++;
  4188. }
  4189. return table;
  4190. }
  4191. static struct ctl_table_header *sd_sysctl_header;
  4192. static void register_sched_domain_sysctl(void)
  4193. {
  4194. int i, cpu_num = num_possible_cpus();
  4195. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4196. char buf[32];
  4197. WARN_ON(sd_ctl_dir[0].child);
  4198. sd_ctl_dir[0].child = entry;
  4199. if (entry == NULL)
  4200. return;
  4201. for_each_possible_cpu(i) {
  4202. snprintf(buf, 32, "cpu%d", i);
  4203. entry->procname = kstrdup(buf, GFP_KERNEL);
  4204. entry->mode = 0555;
  4205. entry->child = sd_alloc_ctl_cpu_table(i);
  4206. entry++;
  4207. }
  4208. WARN_ON(sd_sysctl_header);
  4209. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4210. }
  4211. /* may be called multiple times per register */
  4212. static void unregister_sched_domain_sysctl(void)
  4213. {
  4214. if (sd_sysctl_header)
  4215. unregister_sysctl_table(sd_sysctl_header);
  4216. sd_sysctl_header = NULL;
  4217. if (sd_ctl_dir[0].child)
  4218. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4219. }
  4220. #else
  4221. static void register_sched_domain_sysctl(void)
  4222. {
  4223. }
  4224. static void unregister_sched_domain_sysctl(void)
  4225. {
  4226. }
  4227. #endif
  4228. static void set_rq_online(struct rq *rq)
  4229. {
  4230. if (!rq->online) {
  4231. const struct sched_class *class;
  4232. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4233. rq->online = 1;
  4234. for_each_class(class) {
  4235. if (class->rq_online)
  4236. class->rq_online(rq);
  4237. }
  4238. }
  4239. }
  4240. static void set_rq_offline(struct rq *rq)
  4241. {
  4242. if (rq->online) {
  4243. const struct sched_class *class;
  4244. for_each_class(class) {
  4245. if (class->rq_offline)
  4246. class->rq_offline(rq);
  4247. }
  4248. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4249. rq->online = 0;
  4250. }
  4251. }
  4252. /*
  4253. * migration_call - callback that gets triggered when a CPU is added.
  4254. * Here we can start up the necessary migration thread for the new CPU.
  4255. */
  4256. static int
  4257. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4258. {
  4259. int cpu = (long)hcpu;
  4260. unsigned long flags;
  4261. struct rq *rq = cpu_rq(cpu);
  4262. switch (action & ~CPU_TASKS_FROZEN) {
  4263. case CPU_UP_PREPARE:
  4264. rq->calc_load_update = calc_load_update;
  4265. break;
  4266. case CPU_ONLINE:
  4267. /* Update our root-domain */
  4268. raw_spin_lock_irqsave(&rq->lock, flags);
  4269. if (rq->rd) {
  4270. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4271. set_rq_online(rq);
  4272. }
  4273. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4274. break;
  4275. #ifdef CONFIG_HOTPLUG_CPU
  4276. case CPU_DYING:
  4277. sched_ttwu_pending();
  4278. /* Update our root-domain */
  4279. raw_spin_lock_irqsave(&rq->lock, flags);
  4280. if (rq->rd) {
  4281. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4282. set_rq_offline(rq);
  4283. }
  4284. migrate_tasks(cpu);
  4285. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4286. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4287. break;
  4288. case CPU_DEAD:
  4289. calc_load_migrate(rq);
  4290. break;
  4291. #endif
  4292. }
  4293. update_max_interval();
  4294. return NOTIFY_OK;
  4295. }
  4296. /*
  4297. * Register at high priority so that task migration (migrate_all_tasks)
  4298. * happens before everything else. This has to be lower priority than
  4299. * the notifier in the perf_event subsystem, though.
  4300. */
  4301. static struct notifier_block migration_notifier = {
  4302. .notifier_call = migration_call,
  4303. .priority = CPU_PRI_MIGRATION,
  4304. };
  4305. static int sched_cpu_active(struct notifier_block *nfb,
  4306. unsigned long action, void *hcpu)
  4307. {
  4308. switch (action & ~CPU_TASKS_FROZEN) {
  4309. case CPU_STARTING:
  4310. case CPU_DOWN_FAILED:
  4311. set_cpu_active((long)hcpu, true);
  4312. return NOTIFY_OK;
  4313. default:
  4314. return NOTIFY_DONE;
  4315. }
  4316. }
  4317. static int sched_cpu_inactive(struct notifier_block *nfb,
  4318. unsigned long action, void *hcpu)
  4319. {
  4320. unsigned long flags;
  4321. long cpu = (long)hcpu;
  4322. switch (action & ~CPU_TASKS_FROZEN) {
  4323. case CPU_DOWN_PREPARE:
  4324. set_cpu_active(cpu, false);
  4325. /* explicitly allow suspend */
  4326. if (!(action & CPU_TASKS_FROZEN)) {
  4327. struct dl_bw *dl_b = dl_bw_of(cpu);
  4328. bool overflow;
  4329. int cpus;
  4330. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4331. cpus = dl_bw_cpus(cpu);
  4332. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4333. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4334. if (overflow)
  4335. return notifier_from_errno(-EBUSY);
  4336. }
  4337. return NOTIFY_OK;
  4338. }
  4339. return NOTIFY_DONE;
  4340. }
  4341. static int __init migration_init(void)
  4342. {
  4343. void *cpu = (void *)(long)smp_processor_id();
  4344. int err;
  4345. /* Initialize migration for the boot CPU */
  4346. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4347. BUG_ON(err == NOTIFY_BAD);
  4348. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4349. register_cpu_notifier(&migration_notifier);
  4350. /* Register cpu active notifiers */
  4351. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4352. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4353. return 0;
  4354. }
  4355. early_initcall(migration_init);
  4356. #endif
  4357. #ifdef CONFIG_SMP
  4358. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4359. #ifdef CONFIG_SCHED_DEBUG
  4360. static __read_mostly int sched_debug_enabled;
  4361. static int __init sched_debug_setup(char *str)
  4362. {
  4363. sched_debug_enabled = 1;
  4364. return 0;
  4365. }
  4366. early_param("sched_debug", sched_debug_setup);
  4367. static inline bool sched_debug(void)
  4368. {
  4369. return sched_debug_enabled;
  4370. }
  4371. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4372. struct cpumask *groupmask)
  4373. {
  4374. struct sched_group *group = sd->groups;
  4375. char str[256];
  4376. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4377. cpumask_clear(groupmask);
  4378. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4379. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4380. printk("does not load-balance\n");
  4381. if (sd->parent)
  4382. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4383. " has parent");
  4384. return -1;
  4385. }
  4386. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4387. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4388. printk(KERN_ERR "ERROR: domain->span does not contain "
  4389. "CPU%d\n", cpu);
  4390. }
  4391. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4392. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4393. " CPU%d\n", cpu);
  4394. }
  4395. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4396. do {
  4397. if (!group) {
  4398. printk("\n");
  4399. printk(KERN_ERR "ERROR: group is NULL\n");
  4400. break;
  4401. }
  4402. /*
  4403. * Even though we initialize ->power to something semi-sane,
  4404. * we leave power_orig unset. This allows us to detect if
  4405. * domain iteration is still funny without causing /0 traps.
  4406. */
  4407. if (!group->sgp->power_orig) {
  4408. printk(KERN_CONT "\n");
  4409. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4410. "set\n");
  4411. break;
  4412. }
  4413. if (!cpumask_weight(sched_group_cpus(group))) {
  4414. printk(KERN_CONT "\n");
  4415. printk(KERN_ERR "ERROR: empty group\n");
  4416. break;
  4417. }
  4418. if (!(sd->flags & SD_OVERLAP) &&
  4419. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4420. printk(KERN_CONT "\n");
  4421. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4422. break;
  4423. }
  4424. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4425. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4426. printk(KERN_CONT " %s", str);
  4427. if (group->sgp->power != SCHED_POWER_SCALE) {
  4428. printk(KERN_CONT " (cpu_power = %d)",
  4429. group->sgp->power);
  4430. }
  4431. group = group->next;
  4432. } while (group != sd->groups);
  4433. printk(KERN_CONT "\n");
  4434. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4435. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4436. if (sd->parent &&
  4437. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4438. printk(KERN_ERR "ERROR: parent span is not a superset "
  4439. "of domain->span\n");
  4440. return 0;
  4441. }
  4442. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4443. {
  4444. int level = 0;
  4445. if (!sched_debug_enabled)
  4446. return;
  4447. if (!sd) {
  4448. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4449. return;
  4450. }
  4451. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4452. for (;;) {
  4453. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4454. break;
  4455. level++;
  4456. sd = sd->parent;
  4457. if (!sd)
  4458. break;
  4459. }
  4460. }
  4461. #else /* !CONFIG_SCHED_DEBUG */
  4462. # define sched_domain_debug(sd, cpu) do { } while (0)
  4463. static inline bool sched_debug(void)
  4464. {
  4465. return false;
  4466. }
  4467. #endif /* CONFIG_SCHED_DEBUG */
  4468. static int sd_degenerate(struct sched_domain *sd)
  4469. {
  4470. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4471. return 1;
  4472. /* Following flags need at least 2 groups */
  4473. if (sd->flags & (SD_LOAD_BALANCE |
  4474. SD_BALANCE_NEWIDLE |
  4475. SD_BALANCE_FORK |
  4476. SD_BALANCE_EXEC |
  4477. SD_SHARE_CPUPOWER |
  4478. SD_SHARE_PKG_RESOURCES)) {
  4479. if (sd->groups != sd->groups->next)
  4480. return 0;
  4481. }
  4482. /* Following flags don't use groups */
  4483. if (sd->flags & (SD_WAKE_AFFINE))
  4484. return 0;
  4485. return 1;
  4486. }
  4487. static int
  4488. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4489. {
  4490. unsigned long cflags = sd->flags, pflags = parent->flags;
  4491. if (sd_degenerate(parent))
  4492. return 1;
  4493. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4494. return 0;
  4495. /* Flags needing groups don't count if only 1 group in parent */
  4496. if (parent->groups == parent->groups->next) {
  4497. pflags &= ~(SD_LOAD_BALANCE |
  4498. SD_BALANCE_NEWIDLE |
  4499. SD_BALANCE_FORK |
  4500. SD_BALANCE_EXEC |
  4501. SD_SHARE_CPUPOWER |
  4502. SD_SHARE_PKG_RESOURCES |
  4503. SD_PREFER_SIBLING);
  4504. if (nr_node_ids == 1)
  4505. pflags &= ~SD_SERIALIZE;
  4506. }
  4507. if (~cflags & pflags)
  4508. return 0;
  4509. return 1;
  4510. }
  4511. static void free_rootdomain(struct rcu_head *rcu)
  4512. {
  4513. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4514. cpupri_cleanup(&rd->cpupri);
  4515. cpudl_cleanup(&rd->cpudl);
  4516. free_cpumask_var(rd->dlo_mask);
  4517. free_cpumask_var(rd->rto_mask);
  4518. free_cpumask_var(rd->online);
  4519. free_cpumask_var(rd->span);
  4520. kfree(rd);
  4521. }
  4522. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4523. {
  4524. struct root_domain *old_rd = NULL;
  4525. unsigned long flags;
  4526. raw_spin_lock_irqsave(&rq->lock, flags);
  4527. if (rq->rd) {
  4528. old_rd = rq->rd;
  4529. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4530. set_rq_offline(rq);
  4531. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4532. /*
  4533. * If we dont want to free the old_rd yet then
  4534. * set old_rd to NULL to skip the freeing later
  4535. * in this function:
  4536. */
  4537. if (!atomic_dec_and_test(&old_rd->refcount))
  4538. old_rd = NULL;
  4539. }
  4540. atomic_inc(&rd->refcount);
  4541. rq->rd = rd;
  4542. cpumask_set_cpu(rq->cpu, rd->span);
  4543. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4544. set_rq_online(rq);
  4545. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4546. if (old_rd)
  4547. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4548. }
  4549. static int init_rootdomain(struct root_domain *rd)
  4550. {
  4551. memset(rd, 0, sizeof(*rd));
  4552. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4553. goto out;
  4554. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4555. goto free_span;
  4556. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4557. goto free_online;
  4558. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4559. goto free_dlo_mask;
  4560. init_dl_bw(&rd->dl_bw);
  4561. if (cpudl_init(&rd->cpudl) != 0)
  4562. goto free_dlo_mask;
  4563. if (cpupri_init(&rd->cpupri) != 0)
  4564. goto free_rto_mask;
  4565. return 0;
  4566. free_rto_mask:
  4567. free_cpumask_var(rd->rto_mask);
  4568. free_dlo_mask:
  4569. free_cpumask_var(rd->dlo_mask);
  4570. free_online:
  4571. free_cpumask_var(rd->online);
  4572. free_span:
  4573. free_cpumask_var(rd->span);
  4574. out:
  4575. return -ENOMEM;
  4576. }
  4577. /*
  4578. * By default the system creates a single root-domain with all cpus as
  4579. * members (mimicking the global state we have today).
  4580. */
  4581. struct root_domain def_root_domain;
  4582. static void init_defrootdomain(void)
  4583. {
  4584. init_rootdomain(&def_root_domain);
  4585. atomic_set(&def_root_domain.refcount, 1);
  4586. }
  4587. static struct root_domain *alloc_rootdomain(void)
  4588. {
  4589. struct root_domain *rd;
  4590. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4591. if (!rd)
  4592. return NULL;
  4593. if (init_rootdomain(rd) != 0) {
  4594. kfree(rd);
  4595. return NULL;
  4596. }
  4597. return rd;
  4598. }
  4599. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4600. {
  4601. struct sched_group *tmp, *first;
  4602. if (!sg)
  4603. return;
  4604. first = sg;
  4605. do {
  4606. tmp = sg->next;
  4607. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4608. kfree(sg->sgp);
  4609. kfree(sg);
  4610. sg = tmp;
  4611. } while (sg != first);
  4612. }
  4613. static void free_sched_domain(struct rcu_head *rcu)
  4614. {
  4615. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4616. /*
  4617. * If its an overlapping domain it has private groups, iterate and
  4618. * nuke them all.
  4619. */
  4620. if (sd->flags & SD_OVERLAP) {
  4621. free_sched_groups(sd->groups, 1);
  4622. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4623. kfree(sd->groups->sgp);
  4624. kfree(sd->groups);
  4625. }
  4626. kfree(sd);
  4627. }
  4628. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4629. {
  4630. call_rcu(&sd->rcu, free_sched_domain);
  4631. }
  4632. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4633. {
  4634. for (; sd; sd = sd->parent)
  4635. destroy_sched_domain(sd, cpu);
  4636. }
  4637. /*
  4638. * Keep a special pointer to the highest sched_domain that has
  4639. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4640. * allows us to avoid some pointer chasing select_idle_sibling().
  4641. *
  4642. * Also keep a unique ID per domain (we use the first cpu number in
  4643. * the cpumask of the domain), this allows us to quickly tell if
  4644. * two cpus are in the same cache domain, see cpus_share_cache().
  4645. */
  4646. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4647. DEFINE_PER_CPU(int, sd_llc_size);
  4648. DEFINE_PER_CPU(int, sd_llc_id);
  4649. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4650. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4651. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4652. static void update_top_cache_domain(int cpu)
  4653. {
  4654. struct sched_domain *sd;
  4655. struct sched_domain *busy_sd = NULL;
  4656. int id = cpu;
  4657. int size = 1;
  4658. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4659. if (sd) {
  4660. id = cpumask_first(sched_domain_span(sd));
  4661. size = cpumask_weight(sched_domain_span(sd));
  4662. busy_sd = sd->parent; /* sd_busy */
  4663. }
  4664. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4665. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4666. per_cpu(sd_llc_size, cpu) = size;
  4667. per_cpu(sd_llc_id, cpu) = id;
  4668. sd = lowest_flag_domain(cpu, SD_NUMA);
  4669. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4670. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4671. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4672. }
  4673. /*
  4674. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4675. * hold the hotplug lock.
  4676. */
  4677. static void
  4678. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4679. {
  4680. struct rq *rq = cpu_rq(cpu);
  4681. struct sched_domain *tmp;
  4682. /* Remove the sched domains which do not contribute to scheduling. */
  4683. for (tmp = sd; tmp; ) {
  4684. struct sched_domain *parent = tmp->parent;
  4685. if (!parent)
  4686. break;
  4687. if (sd_parent_degenerate(tmp, parent)) {
  4688. tmp->parent = parent->parent;
  4689. if (parent->parent)
  4690. parent->parent->child = tmp;
  4691. /*
  4692. * Transfer SD_PREFER_SIBLING down in case of a
  4693. * degenerate parent; the spans match for this
  4694. * so the property transfers.
  4695. */
  4696. if (parent->flags & SD_PREFER_SIBLING)
  4697. tmp->flags |= SD_PREFER_SIBLING;
  4698. destroy_sched_domain(parent, cpu);
  4699. } else
  4700. tmp = tmp->parent;
  4701. }
  4702. if (sd && sd_degenerate(sd)) {
  4703. tmp = sd;
  4704. sd = sd->parent;
  4705. destroy_sched_domain(tmp, cpu);
  4706. if (sd)
  4707. sd->child = NULL;
  4708. }
  4709. sched_domain_debug(sd, cpu);
  4710. rq_attach_root(rq, rd);
  4711. tmp = rq->sd;
  4712. rcu_assign_pointer(rq->sd, sd);
  4713. destroy_sched_domains(tmp, cpu);
  4714. update_top_cache_domain(cpu);
  4715. }
  4716. /* cpus with isolated domains */
  4717. static cpumask_var_t cpu_isolated_map;
  4718. /* Setup the mask of cpus configured for isolated domains */
  4719. static int __init isolated_cpu_setup(char *str)
  4720. {
  4721. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4722. cpulist_parse(str, cpu_isolated_map);
  4723. return 1;
  4724. }
  4725. __setup("isolcpus=", isolated_cpu_setup);
  4726. static const struct cpumask *cpu_cpu_mask(int cpu)
  4727. {
  4728. return cpumask_of_node(cpu_to_node(cpu));
  4729. }
  4730. struct sd_data {
  4731. struct sched_domain **__percpu sd;
  4732. struct sched_group **__percpu sg;
  4733. struct sched_group_power **__percpu sgp;
  4734. };
  4735. struct s_data {
  4736. struct sched_domain ** __percpu sd;
  4737. struct root_domain *rd;
  4738. };
  4739. enum s_alloc {
  4740. sa_rootdomain,
  4741. sa_sd,
  4742. sa_sd_storage,
  4743. sa_none,
  4744. };
  4745. struct sched_domain_topology_level;
  4746. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4747. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4748. #define SDTL_OVERLAP 0x01
  4749. struct sched_domain_topology_level {
  4750. sched_domain_init_f init;
  4751. sched_domain_mask_f mask;
  4752. int flags;
  4753. int numa_level;
  4754. struct sd_data data;
  4755. };
  4756. /*
  4757. * Build an iteration mask that can exclude certain CPUs from the upwards
  4758. * domain traversal.
  4759. *
  4760. * Asymmetric node setups can result in situations where the domain tree is of
  4761. * unequal depth, make sure to skip domains that already cover the entire
  4762. * range.
  4763. *
  4764. * In that case build_sched_domains() will have terminated the iteration early
  4765. * and our sibling sd spans will be empty. Domains should always include the
  4766. * cpu they're built on, so check that.
  4767. *
  4768. */
  4769. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4770. {
  4771. const struct cpumask *span = sched_domain_span(sd);
  4772. struct sd_data *sdd = sd->private;
  4773. struct sched_domain *sibling;
  4774. int i;
  4775. for_each_cpu(i, span) {
  4776. sibling = *per_cpu_ptr(sdd->sd, i);
  4777. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4778. continue;
  4779. cpumask_set_cpu(i, sched_group_mask(sg));
  4780. }
  4781. }
  4782. /*
  4783. * Return the canonical balance cpu for this group, this is the first cpu
  4784. * of this group that's also in the iteration mask.
  4785. */
  4786. int group_balance_cpu(struct sched_group *sg)
  4787. {
  4788. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4789. }
  4790. static int
  4791. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4792. {
  4793. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4794. const struct cpumask *span = sched_domain_span(sd);
  4795. struct cpumask *covered = sched_domains_tmpmask;
  4796. struct sd_data *sdd = sd->private;
  4797. struct sched_domain *child;
  4798. int i;
  4799. cpumask_clear(covered);
  4800. for_each_cpu(i, span) {
  4801. struct cpumask *sg_span;
  4802. if (cpumask_test_cpu(i, covered))
  4803. continue;
  4804. child = *per_cpu_ptr(sdd->sd, i);
  4805. /* See the comment near build_group_mask(). */
  4806. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4807. continue;
  4808. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4809. GFP_KERNEL, cpu_to_node(cpu));
  4810. if (!sg)
  4811. goto fail;
  4812. sg_span = sched_group_cpus(sg);
  4813. if (child->child) {
  4814. child = child->child;
  4815. cpumask_copy(sg_span, sched_domain_span(child));
  4816. } else
  4817. cpumask_set_cpu(i, sg_span);
  4818. cpumask_or(covered, covered, sg_span);
  4819. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4820. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4821. build_group_mask(sd, sg);
  4822. /*
  4823. * Initialize sgp->power such that even if we mess up the
  4824. * domains and no possible iteration will get us here, we won't
  4825. * die on a /0 trap.
  4826. */
  4827. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4828. sg->sgp->power_orig = sg->sgp->power;
  4829. /*
  4830. * Make sure the first group of this domain contains the
  4831. * canonical balance cpu. Otherwise the sched_domain iteration
  4832. * breaks. See update_sg_lb_stats().
  4833. */
  4834. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4835. group_balance_cpu(sg) == cpu)
  4836. groups = sg;
  4837. if (!first)
  4838. first = sg;
  4839. if (last)
  4840. last->next = sg;
  4841. last = sg;
  4842. last->next = first;
  4843. }
  4844. sd->groups = groups;
  4845. return 0;
  4846. fail:
  4847. free_sched_groups(first, 0);
  4848. return -ENOMEM;
  4849. }
  4850. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4851. {
  4852. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4853. struct sched_domain *child = sd->child;
  4854. if (child)
  4855. cpu = cpumask_first(sched_domain_span(child));
  4856. if (sg) {
  4857. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4858. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4859. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4860. }
  4861. return cpu;
  4862. }
  4863. /*
  4864. * build_sched_groups will build a circular linked list of the groups
  4865. * covered by the given span, and will set each group's ->cpumask correctly,
  4866. * and ->cpu_power to 0.
  4867. *
  4868. * Assumes the sched_domain tree is fully constructed
  4869. */
  4870. static int
  4871. build_sched_groups(struct sched_domain *sd, int cpu)
  4872. {
  4873. struct sched_group *first = NULL, *last = NULL;
  4874. struct sd_data *sdd = sd->private;
  4875. const struct cpumask *span = sched_domain_span(sd);
  4876. struct cpumask *covered;
  4877. int i;
  4878. get_group(cpu, sdd, &sd->groups);
  4879. atomic_inc(&sd->groups->ref);
  4880. if (cpu != cpumask_first(span))
  4881. return 0;
  4882. lockdep_assert_held(&sched_domains_mutex);
  4883. covered = sched_domains_tmpmask;
  4884. cpumask_clear(covered);
  4885. for_each_cpu(i, span) {
  4886. struct sched_group *sg;
  4887. int group, j;
  4888. if (cpumask_test_cpu(i, covered))
  4889. continue;
  4890. group = get_group(i, sdd, &sg);
  4891. cpumask_clear(sched_group_cpus(sg));
  4892. sg->sgp->power = 0;
  4893. cpumask_setall(sched_group_mask(sg));
  4894. for_each_cpu(j, span) {
  4895. if (get_group(j, sdd, NULL) != group)
  4896. continue;
  4897. cpumask_set_cpu(j, covered);
  4898. cpumask_set_cpu(j, sched_group_cpus(sg));
  4899. }
  4900. if (!first)
  4901. first = sg;
  4902. if (last)
  4903. last->next = sg;
  4904. last = sg;
  4905. }
  4906. last->next = first;
  4907. return 0;
  4908. }
  4909. /*
  4910. * Initialize sched groups cpu_power.
  4911. *
  4912. * cpu_power indicates the capacity of sched group, which is used while
  4913. * distributing the load between different sched groups in a sched domain.
  4914. * Typically cpu_power for all the groups in a sched domain will be same unless
  4915. * there are asymmetries in the topology. If there are asymmetries, group
  4916. * having more cpu_power will pickup more load compared to the group having
  4917. * less cpu_power.
  4918. */
  4919. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4920. {
  4921. struct sched_group *sg = sd->groups;
  4922. WARN_ON(!sg);
  4923. do {
  4924. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4925. sg = sg->next;
  4926. } while (sg != sd->groups);
  4927. if (cpu != group_balance_cpu(sg))
  4928. return;
  4929. update_group_power(sd, cpu);
  4930. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4931. }
  4932. int __weak arch_sd_sibling_asym_packing(void)
  4933. {
  4934. return 0*SD_ASYM_PACKING;
  4935. }
  4936. /*
  4937. * Initializers for schedule domains
  4938. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4939. */
  4940. #ifdef CONFIG_SCHED_DEBUG
  4941. # define SD_INIT_NAME(sd, type) sd->name = #type
  4942. #else
  4943. # define SD_INIT_NAME(sd, type) do { } while (0)
  4944. #endif
  4945. #define SD_INIT_FUNC(type) \
  4946. static noinline struct sched_domain * \
  4947. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4948. { \
  4949. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4950. *sd = SD_##type##_INIT; \
  4951. SD_INIT_NAME(sd, type); \
  4952. sd->private = &tl->data; \
  4953. return sd; \
  4954. }
  4955. SD_INIT_FUNC(CPU)
  4956. #ifdef CONFIG_SCHED_SMT
  4957. SD_INIT_FUNC(SIBLING)
  4958. #endif
  4959. #ifdef CONFIG_SCHED_MC
  4960. SD_INIT_FUNC(MC)
  4961. #endif
  4962. #ifdef CONFIG_SCHED_BOOK
  4963. SD_INIT_FUNC(BOOK)
  4964. #endif
  4965. static int default_relax_domain_level = -1;
  4966. int sched_domain_level_max;
  4967. static int __init setup_relax_domain_level(char *str)
  4968. {
  4969. if (kstrtoint(str, 0, &default_relax_domain_level))
  4970. pr_warn("Unable to set relax_domain_level\n");
  4971. return 1;
  4972. }
  4973. __setup("relax_domain_level=", setup_relax_domain_level);
  4974. static void set_domain_attribute(struct sched_domain *sd,
  4975. struct sched_domain_attr *attr)
  4976. {
  4977. int request;
  4978. if (!attr || attr->relax_domain_level < 0) {
  4979. if (default_relax_domain_level < 0)
  4980. return;
  4981. else
  4982. request = default_relax_domain_level;
  4983. } else
  4984. request = attr->relax_domain_level;
  4985. if (request < sd->level) {
  4986. /* turn off idle balance on this domain */
  4987. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4988. } else {
  4989. /* turn on idle balance on this domain */
  4990. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4991. }
  4992. }
  4993. static void __sdt_free(const struct cpumask *cpu_map);
  4994. static int __sdt_alloc(const struct cpumask *cpu_map);
  4995. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  4996. const struct cpumask *cpu_map)
  4997. {
  4998. switch (what) {
  4999. case sa_rootdomain:
  5000. if (!atomic_read(&d->rd->refcount))
  5001. free_rootdomain(&d->rd->rcu); /* fall through */
  5002. case sa_sd:
  5003. free_percpu(d->sd); /* fall through */
  5004. case sa_sd_storage:
  5005. __sdt_free(cpu_map); /* fall through */
  5006. case sa_none:
  5007. break;
  5008. }
  5009. }
  5010. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5011. const struct cpumask *cpu_map)
  5012. {
  5013. memset(d, 0, sizeof(*d));
  5014. if (__sdt_alloc(cpu_map))
  5015. return sa_sd_storage;
  5016. d->sd = alloc_percpu(struct sched_domain *);
  5017. if (!d->sd)
  5018. return sa_sd_storage;
  5019. d->rd = alloc_rootdomain();
  5020. if (!d->rd)
  5021. return sa_sd;
  5022. return sa_rootdomain;
  5023. }
  5024. /*
  5025. * NULL the sd_data elements we've used to build the sched_domain and
  5026. * sched_group structure so that the subsequent __free_domain_allocs()
  5027. * will not free the data we're using.
  5028. */
  5029. static void claim_allocations(int cpu, struct sched_domain *sd)
  5030. {
  5031. struct sd_data *sdd = sd->private;
  5032. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5033. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5034. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5035. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5036. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5037. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5038. }
  5039. #ifdef CONFIG_SCHED_SMT
  5040. static const struct cpumask *cpu_smt_mask(int cpu)
  5041. {
  5042. return topology_thread_cpumask(cpu);
  5043. }
  5044. #endif
  5045. /*
  5046. * Topology list, bottom-up.
  5047. */
  5048. static struct sched_domain_topology_level default_topology[] = {
  5049. #ifdef CONFIG_SCHED_SMT
  5050. { sd_init_SIBLING, cpu_smt_mask, },
  5051. #endif
  5052. #ifdef CONFIG_SCHED_MC
  5053. { sd_init_MC, cpu_coregroup_mask, },
  5054. #endif
  5055. #ifdef CONFIG_SCHED_BOOK
  5056. { sd_init_BOOK, cpu_book_mask, },
  5057. #endif
  5058. { sd_init_CPU, cpu_cpu_mask, },
  5059. { NULL, },
  5060. };
  5061. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5062. #define for_each_sd_topology(tl) \
  5063. for (tl = sched_domain_topology; tl->init; tl++)
  5064. #ifdef CONFIG_NUMA
  5065. static int sched_domains_numa_levels;
  5066. static int *sched_domains_numa_distance;
  5067. static struct cpumask ***sched_domains_numa_masks;
  5068. static int sched_domains_curr_level;
  5069. static inline int sd_local_flags(int level)
  5070. {
  5071. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5072. return 0;
  5073. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5074. }
  5075. static struct sched_domain *
  5076. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5077. {
  5078. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5079. int level = tl->numa_level;
  5080. int sd_weight = cpumask_weight(
  5081. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5082. *sd = (struct sched_domain){
  5083. .min_interval = sd_weight,
  5084. .max_interval = 2*sd_weight,
  5085. .busy_factor = 32,
  5086. .imbalance_pct = 125,
  5087. .cache_nice_tries = 2,
  5088. .busy_idx = 3,
  5089. .idle_idx = 2,
  5090. .newidle_idx = 0,
  5091. .wake_idx = 0,
  5092. .forkexec_idx = 0,
  5093. .flags = 1*SD_LOAD_BALANCE
  5094. | 1*SD_BALANCE_NEWIDLE
  5095. | 0*SD_BALANCE_EXEC
  5096. | 0*SD_BALANCE_FORK
  5097. | 0*SD_BALANCE_WAKE
  5098. | 0*SD_WAKE_AFFINE
  5099. | 0*SD_SHARE_CPUPOWER
  5100. | 0*SD_SHARE_PKG_RESOURCES
  5101. | 1*SD_SERIALIZE
  5102. | 0*SD_PREFER_SIBLING
  5103. | 1*SD_NUMA
  5104. | sd_local_flags(level)
  5105. ,
  5106. .last_balance = jiffies,
  5107. .balance_interval = sd_weight,
  5108. };
  5109. SD_INIT_NAME(sd, NUMA);
  5110. sd->private = &tl->data;
  5111. /*
  5112. * Ugly hack to pass state to sd_numa_mask()...
  5113. */
  5114. sched_domains_curr_level = tl->numa_level;
  5115. return sd;
  5116. }
  5117. static const struct cpumask *sd_numa_mask(int cpu)
  5118. {
  5119. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5120. }
  5121. static void sched_numa_warn(const char *str)
  5122. {
  5123. static int done = false;
  5124. int i,j;
  5125. if (done)
  5126. return;
  5127. done = true;
  5128. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5129. for (i = 0; i < nr_node_ids; i++) {
  5130. printk(KERN_WARNING " ");
  5131. for (j = 0; j < nr_node_ids; j++)
  5132. printk(KERN_CONT "%02d ", node_distance(i,j));
  5133. printk(KERN_CONT "\n");
  5134. }
  5135. printk(KERN_WARNING "\n");
  5136. }
  5137. static bool find_numa_distance(int distance)
  5138. {
  5139. int i;
  5140. if (distance == node_distance(0, 0))
  5141. return true;
  5142. for (i = 0; i < sched_domains_numa_levels; i++) {
  5143. if (sched_domains_numa_distance[i] == distance)
  5144. return true;
  5145. }
  5146. return false;
  5147. }
  5148. static void sched_init_numa(void)
  5149. {
  5150. int next_distance, curr_distance = node_distance(0, 0);
  5151. struct sched_domain_topology_level *tl;
  5152. int level = 0;
  5153. int i, j, k;
  5154. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5155. if (!sched_domains_numa_distance)
  5156. return;
  5157. /*
  5158. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5159. * unique distances in the node_distance() table.
  5160. *
  5161. * Assumes node_distance(0,j) includes all distances in
  5162. * node_distance(i,j) in order to avoid cubic time.
  5163. */
  5164. next_distance = curr_distance;
  5165. for (i = 0; i < nr_node_ids; i++) {
  5166. for (j = 0; j < nr_node_ids; j++) {
  5167. for (k = 0; k < nr_node_ids; k++) {
  5168. int distance = node_distance(i, k);
  5169. if (distance > curr_distance &&
  5170. (distance < next_distance ||
  5171. next_distance == curr_distance))
  5172. next_distance = distance;
  5173. /*
  5174. * While not a strong assumption it would be nice to know
  5175. * about cases where if node A is connected to B, B is not
  5176. * equally connected to A.
  5177. */
  5178. if (sched_debug() && node_distance(k, i) != distance)
  5179. sched_numa_warn("Node-distance not symmetric");
  5180. if (sched_debug() && i && !find_numa_distance(distance))
  5181. sched_numa_warn("Node-0 not representative");
  5182. }
  5183. if (next_distance != curr_distance) {
  5184. sched_domains_numa_distance[level++] = next_distance;
  5185. sched_domains_numa_levels = level;
  5186. curr_distance = next_distance;
  5187. } else break;
  5188. }
  5189. /*
  5190. * In case of sched_debug() we verify the above assumption.
  5191. */
  5192. if (!sched_debug())
  5193. break;
  5194. }
  5195. /*
  5196. * 'level' contains the number of unique distances, excluding the
  5197. * identity distance node_distance(i,i).
  5198. *
  5199. * The sched_domains_numa_distance[] array includes the actual distance
  5200. * numbers.
  5201. */
  5202. /*
  5203. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5204. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5205. * the array will contain less then 'level' members. This could be
  5206. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5207. * in other functions.
  5208. *
  5209. * We reset it to 'level' at the end of this function.
  5210. */
  5211. sched_domains_numa_levels = 0;
  5212. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5213. if (!sched_domains_numa_masks)
  5214. return;
  5215. /*
  5216. * Now for each level, construct a mask per node which contains all
  5217. * cpus of nodes that are that many hops away from us.
  5218. */
  5219. for (i = 0; i < level; i++) {
  5220. sched_domains_numa_masks[i] =
  5221. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5222. if (!sched_domains_numa_masks[i])
  5223. return;
  5224. for (j = 0; j < nr_node_ids; j++) {
  5225. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5226. if (!mask)
  5227. return;
  5228. sched_domains_numa_masks[i][j] = mask;
  5229. for (k = 0; k < nr_node_ids; k++) {
  5230. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5231. continue;
  5232. cpumask_or(mask, mask, cpumask_of_node(k));
  5233. }
  5234. }
  5235. }
  5236. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5237. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5238. if (!tl)
  5239. return;
  5240. /*
  5241. * Copy the default topology bits..
  5242. */
  5243. for (i = 0; default_topology[i].init; i++)
  5244. tl[i] = default_topology[i];
  5245. /*
  5246. * .. and append 'j' levels of NUMA goodness.
  5247. */
  5248. for (j = 0; j < level; i++, j++) {
  5249. tl[i] = (struct sched_domain_topology_level){
  5250. .init = sd_numa_init,
  5251. .mask = sd_numa_mask,
  5252. .flags = SDTL_OVERLAP,
  5253. .numa_level = j,
  5254. };
  5255. }
  5256. sched_domain_topology = tl;
  5257. sched_domains_numa_levels = level;
  5258. }
  5259. static void sched_domains_numa_masks_set(int cpu)
  5260. {
  5261. int i, j;
  5262. int node = cpu_to_node(cpu);
  5263. for (i = 0; i < sched_domains_numa_levels; i++) {
  5264. for (j = 0; j < nr_node_ids; j++) {
  5265. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5266. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5267. }
  5268. }
  5269. }
  5270. static void sched_domains_numa_masks_clear(int cpu)
  5271. {
  5272. int i, j;
  5273. for (i = 0; i < sched_domains_numa_levels; i++) {
  5274. for (j = 0; j < nr_node_ids; j++)
  5275. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5276. }
  5277. }
  5278. /*
  5279. * Update sched_domains_numa_masks[level][node] array when new cpus
  5280. * are onlined.
  5281. */
  5282. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5283. unsigned long action,
  5284. void *hcpu)
  5285. {
  5286. int cpu = (long)hcpu;
  5287. switch (action & ~CPU_TASKS_FROZEN) {
  5288. case CPU_ONLINE:
  5289. sched_domains_numa_masks_set(cpu);
  5290. break;
  5291. case CPU_DEAD:
  5292. sched_domains_numa_masks_clear(cpu);
  5293. break;
  5294. default:
  5295. return NOTIFY_DONE;
  5296. }
  5297. return NOTIFY_OK;
  5298. }
  5299. #else
  5300. static inline void sched_init_numa(void)
  5301. {
  5302. }
  5303. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5304. unsigned long action,
  5305. void *hcpu)
  5306. {
  5307. return 0;
  5308. }
  5309. #endif /* CONFIG_NUMA */
  5310. static int __sdt_alloc(const struct cpumask *cpu_map)
  5311. {
  5312. struct sched_domain_topology_level *tl;
  5313. int j;
  5314. for_each_sd_topology(tl) {
  5315. struct sd_data *sdd = &tl->data;
  5316. sdd->sd = alloc_percpu(struct sched_domain *);
  5317. if (!sdd->sd)
  5318. return -ENOMEM;
  5319. sdd->sg = alloc_percpu(struct sched_group *);
  5320. if (!sdd->sg)
  5321. return -ENOMEM;
  5322. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5323. if (!sdd->sgp)
  5324. return -ENOMEM;
  5325. for_each_cpu(j, cpu_map) {
  5326. struct sched_domain *sd;
  5327. struct sched_group *sg;
  5328. struct sched_group_power *sgp;
  5329. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5330. GFP_KERNEL, cpu_to_node(j));
  5331. if (!sd)
  5332. return -ENOMEM;
  5333. *per_cpu_ptr(sdd->sd, j) = sd;
  5334. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5335. GFP_KERNEL, cpu_to_node(j));
  5336. if (!sg)
  5337. return -ENOMEM;
  5338. sg->next = sg;
  5339. *per_cpu_ptr(sdd->sg, j) = sg;
  5340. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5341. GFP_KERNEL, cpu_to_node(j));
  5342. if (!sgp)
  5343. return -ENOMEM;
  5344. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5345. }
  5346. }
  5347. return 0;
  5348. }
  5349. static void __sdt_free(const struct cpumask *cpu_map)
  5350. {
  5351. struct sched_domain_topology_level *tl;
  5352. int j;
  5353. for_each_sd_topology(tl) {
  5354. struct sd_data *sdd = &tl->data;
  5355. for_each_cpu(j, cpu_map) {
  5356. struct sched_domain *sd;
  5357. if (sdd->sd) {
  5358. sd = *per_cpu_ptr(sdd->sd, j);
  5359. if (sd && (sd->flags & SD_OVERLAP))
  5360. free_sched_groups(sd->groups, 0);
  5361. kfree(*per_cpu_ptr(sdd->sd, j));
  5362. }
  5363. if (sdd->sg)
  5364. kfree(*per_cpu_ptr(sdd->sg, j));
  5365. if (sdd->sgp)
  5366. kfree(*per_cpu_ptr(sdd->sgp, j));
  5367. }
  5368. free_percpu(sdd->sd);
  5369. sdd->sd = NULL;
  5370. free_percpu(sdd->sg);
  5371. sdd->sg = NULL;
  5372. free_percpu(sdd->sgp);
  5373. sdd->sgp = NULL;
  5374. }
  5375. }
  5376. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5377. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5378. struct sched_domain *child, int cpu)
  5379. {
  5380. struct sched_domain *sd = tl->init(tl, cpu);
  5381. if (!sd)
  5382. return child;
  5383. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5384. if (child) {
  5385. sd->level = child->level + 1;
  5386. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5387. child->parent = sd;
  5388. sd->child = child;
  5389. }
  5390. set_domain_attribute(sd, attr);
  5391. return sd;
  5392. }
  5393. /*
  5394. * Build sched domains for a given set of cpus and attach the sched domains
  5395. * to the individual cpus
  5396. */
  5397. static int build_sched_domains(const struct cpumask *cpu_map,
  5398. struct sched_domain_attr *attr)
  5399. {
  5400. enum s_alloc alloc_state;
  5401. struct sched_domain *sd;
  5402. struct s_data d;
  5403. int i, ret = -ENOMEM;
  5404. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5405. if (alloc_state != sa_rootdomain)
  5406. goto error;
  5407. /* Set up domains for cpus specified by the cpu_map. */
  5408. for_each_cpu(i, cpu_map) {
  5409. struct sched_domain_topology_level *tl;
  5410. sd = NULL;
  5411. for_each_sd_topology(tl) {
  5412. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5413. if (tl == sched_domain_topology)
  5414. *per_cpu_ptr(d.sd, i) = sd;
  5415. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5416. sd->flags |= SD_OVERLAP;
  5417. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5418. break;
  5419. }
  5420. }
  5421. /* Build the groups for the domains */
  5422. for_each_cpu(i, cpu_map) {
  5423. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5424. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5425. if (sd->flags & SD_OVERLAP) {
  5426. if (build_overlap_sched_groups(sd, i))
  5427. goto error;
  5428. } else {
  5429. if (build_sched_groups(sd, i))
  5430. goto error;
  5431. }
  5432. }
  5433. }
  5434. /* Calculate CPU power for physical packages and nodes */
  5435. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5436. if (!cpumask_test_cpu(i, cpu_map))
  5437. continue;
  5438. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5439. claim_allocations(i, sd);
  5440. init_sched_groups_power(i, sd);
  5441. }
  5442. }
  5443. /* Attach the domains */
  5444. rcu_read_lock();
  5445. for_each_cpu(i, cpu_map) {
  5446. sd = *per_cpu_ptr(d.sd, i);
  5447. cpu_attach_domain(sd, d.rd, i);
  5448. }
  5449. rcu_read_unlock();
  5450. ret = 0;
  5451. error:
  5452. __free_domain_allocs(&d, alloc_state, cpu_map);
  5453. return ret;
  5454. }
  5455. static cpumask_var_t *doms_cur; /* current sched domains */
  5456. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5457. static struct sched_domain_attr *dattr_cur;
  5458. /* attribues of custom domains in 'doms_cur' */
  5459. /*
  5460. * Special case: If a kmalloc of a doms_cur partition (array of
  5461. * cpumask) fails, then fallback to a single sched domain,
  5462. * as determined by the single cpumask fallback_doms.
  5463. */
  5464. static cpumask_var_t fallback_doms;
  5465. /*
  5466. * arch_update_cpu_topology lets virtualized architectures update the
  5467. * cpu core maps. It is supposed to return 1 if the topology changed
  5468. * or 0 if it stayed the same.
  5469. */
  5470. int __attribute__((weak)) arch_update_cpu_topology(void)
  5471. {
  5472. return 0;
  5473. }
  5474. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5475. {
  5476. int i;
  5477. cpumask_var_t *doms;
  5478. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5479. if (!doms)
  5480. return NULL;
  5481. for (i = 0; i < ndoms; i++) {
  5482. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5483. free_sched_domains(doms, i);
  5484. return NULL;
  5485. }
  5486. }
  5487. return doms;
  5488. }
  5489. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5490. {
  5491. unsigned int i;
  5492. for (i = 0; i < ndoms; i++)
  5493. free_cpumask_var(doms[i]);
  5494. kfree(doms);
  5495. }
  5496. /*
  5497. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5498. * For now this just excludes isolated cpus, but could be used to
  5499. * exclude other special cases in the future.
  5500. */
  5501. static int init_sched_domains(const struct cpumask *cpu_map)
  5502. {
  5503. int err;
  5504. arch_update_cpu_topology();
  5505. ndoms_cur = 1;
  5506. doms_cur = alloc_sched_domains(ndoms_cur);
  5507. if (!doms_cur)
  5508. doms_cur = &fallback_doms;
  5509. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5510. err = build_sched_domains(doms_cur[0], NULL);
  5511. register_sched_domain_sysctl();
  5512. return err;
  5513. }
  5514. /*
  5515. * Detach sched domains from a group of cpus specified in cpu_map
  5516. * These cpus will now be attached to the NULL domain
  5517. */
  5518. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5519. {
  5520. int i;
  5521. rcu_read_lock();
  5522. for_each_cpu(i, cpu_map)
  5523. cpu_attach_domain(NULL, &def_root_domain, i);
  5524. rcu_read_unlock();
  5525. }
  5526. /* handle null as "default" */
  5527. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5528. struct sched_domain_attr *new, int idx_new)
  5529. {
  5530. struct sched_domain_attr tmp;
  5531. /* fast path */
  5532. if (!new && !cur)
  5533. return 1;
  5534. tmp = SD_ATTR_INIT;
  5535. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5536. new ? (new + idx_new) : &tmp,
  5537. sizeof(struct sched_domain_attr));
  5538. }
  5539. /*
  5540. * Partition sched domains as specified by the 'ndoms_new'
  5541. * cpumasks in the array doms_new[] of cpumasks. This compares
  5542. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5543. * It destroys each deleted domain and builds each new domain.
  5544. *
  5545. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5546. * The masks don't intersect (don't overlap.) We should setup one
  5547. * sched domain for each mask. CPUs not in any of the cpumasks will
  5548. * not be load balanced. If the same cpumask appears both in the
  5549. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5550. * it as it is.
  5551. *
  5552. * The passed in 'doms_new' should be allocated using
  5553. * alloc_sched_domains. This routine takes ownership of it and will
  5554. * free_sched_domains it when done with it. If the caller failed the
  5555. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5556. * and partition_sched_domains() will fallback to the single partition
  5557. * 'fallback_doms', it also forces the domains to be rebuilt.
  5558. *
  5559. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5560. * ndoms_new == 0 is a special case for destroying existing domains,
  5561. * and it will not create the default domain.
  5562. *
  5563. * Call with hotplug lock held
  5564. */
  5565. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5566. struct sched_domain_attr *dattr_new)
  5567. {
  5568. int i, j, n;
  5569. int new_topology;
  5570. mutex_lock(&sched_domains_mutex);
  5571. /* always unregister in case we don't destroy any domains */
  5572. unregister_sched_domain_sysctl();
  5573. /* Let architecture update cpu core mappings. */
  5574. new_topology = arch_update_cpu_topology();
  5575. n = doms_new ? ndoms_new : 0;
  5576. /* Destroy deleted domains */
  5577. for (i = 0; i < ndoms_cur; i++) {
  5578. for (j = 0; j < n && !new_topology; j++) {
  5579. if (cpumask_equal(doms_cur[i], doms_new[j])
  5580. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5581. goto match1;
  5582. }
  5583. /* no match - a current sched domain not in new doms_new[] */
  5584. detach_destroy_domains(doms_cur[i]);
  5585. match1:
  5586. ;
  5587. }
  5588. n = ndoms_cur;
  5589. if (doms_new == NULL) {
  5590. n = 0;
  5591. doms_new = &fallback_doms;
  5592. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5593. WARN_ON_ONCE(dattr_new);
  5594. }
  5595. /* Build new domains */
  5596. for (i = 0; i < ndoms_new; i++) {
  5597. for (j = 0; j < n && !new_topology; j++) {
  5598. if (cpumask_equal(doms_new[i], doms_cur[j])
  5599. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5600. goto match2;
  5601. }
  5602. /* no match - add a new doms_new */
  5603. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5604. match2:
  5605. ;
  5606. }
  5607. /* Remember the new sched domains */
  5608. if (doms_cur != &fallback_doms)
  5609. free_sched_domains(doms_cur, ndoms_cur);
  5610. kfree(dattr_cur); /* kfree(NULL) is safe */
  5611. doms_cur = doms_new;
  5612. dattr_cur = dattr_new;
  5613. ndoms_cur = ndoms_new;
  5614. register_sched_domain_sysctl();
  5615. mutex_unlock(&sched_domains_mutex);
  5616. }
  5617. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5618. /*
  5619. * Update cpusets according to cpu_active mask. If cpusets are
  5620. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5621. * around partition_sched_domains().
  5622. *
  5623. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5624. * want to restore it back to its original state upon resume anyway.
  5625. */
  5626. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5627. void *hcpu)
  5628. {
  5629. switch (action) {
  5630. case CPU_ONLINE_FROZEN:
  5631. case CPU_DOWN_FAILED_FROZEN:
  5632. /*
  5633. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5634. * resume sequence. As long as this is not the last online
  5635. * operation in the resume sequence, just build a single sched
  5636. * domain, ignoring cpusets.
  5637. */
  5638. num_cpus_frozen--;
  5639. if (likely(num_cpus_frozen)) {
  5640. partition_sched_domains(1, NULL, NULL);
  5641. break;
  5642. }
  5643. /*
  5644. * This is the last CPU online operation. So fall through and
  5645. * restore the original sched domains by considering the
  5646. * cpuset configurations.
  5647. */
  5648. case CPU_ONLINE:
  5649. case CPU_DOWN_FAILED:
  5650. cpuset_update_active_cpus(true);
  5651. break;
  5652. default:
  5653. return NOTIFY_DONE;
  5654. }
  5655. return NOTIFY_OK;
  5656. }
  5657. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5658. void *hcpu)
  5659. {
  5660. switch (action) {
  5661. case CPU_DOWN_PREPARE:
  5662. cpuset_update_active_cpus(false);
  5663. break;
  5664. case CPU_DOWN_PREPARE_FROZEN:
  5665. num_cpus_frozen++;
  5666. partition_sched_domains(1, NULL, NULL);
  5667. break;
  5668. default:
  5669. return NOTIFY_DONE;
  5670. }
  5671. return NOTIFY_OK;
  5672. }
  5673. void __init sched_init_smp(void)
  5674. {
  5675. cpumask_var_t non_isolated_cpus;
  5676. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5677. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5678. sched_init_numa();
  5679. /*
  5680. * There's no userspace yet to cause hotplug operations; hence all the
  5681. * cpu masks are stable and all blatant races in the below code cannot
  5682. * happen.
  5683. */
  5684. mutex_lock(&sched_domains_mutex);
  5685. init_sched_domains(cpu_active_mask);
  5686. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5687. if (cpumask_empty(non_isolated_cpus))
  5688. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5689. mutex_unlock(&sched_domains_mutex);
  5690. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5691. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5692. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5693. init_hrtick();
  5694. /* Move init over to a non-isolated CPU */
  5695. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5696. BUG();
  5697. sched_init_granularity();
  5698. free_cpumask_var(non_isolated_cpus);
  5699. init_sched_rt_class();
  5700. init_sched_dl_class();
  5701. }
  5702. #else
  5703. void __init sched_init_smp(void)
  5704. {
  5705. sched_init_granularity();
  5706. }
  5707. #endif /* CONFIG_SMP */
  5708. const_debug unsigned int sysctl_timer_migration = 1;
  5709. int in_sched_functions(unsigned long addr)
  5710. {
  5711. return in_lock_functions(addr) ||
  5712. (addr >= (unsigned long)__sched_text_start
  5713. && addr < (unsigned long)__sched_text_end);
  5714. }
  5715. #ifdef CONFIG_CGROUP_SCHED
  5716. /*
  5717. * Default task group.
  5718. * Every task in system belongs to this group at bootup.
  5719. */
  5720. struct task_group root_task_group;
  5721. LIST_HEAD(task_groups);
  5722. #endif
  5723. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5724. void __init sched_init(void)
  5725. {
  5726. int i, j;
  5727. unsigned long alloc_size = 0, ptr;
  5728. #ifdef CONFIG_FAIR_GROUP_SCHED
  5729. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5730. #endif
  5731. #ifdef CONFIG_RT_GROUP_SCHED
  5732. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5733. #endif
  5734. #ifdef CONFIG_CPUMASK_OFFSTACK
  5735. alloc_size += num_possible_cpus() * cpumask_size();
  5736. #endif
  5737. if (alloc_size) {
  5738. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5739. #ifdef CONFIG_FAIR_GROUP_SCHED
  5740. root_task_group.se = (struct sched_entity **)ptr;
  5741. ptr += nr_cpu_ids * sizeof(void **);
  5742. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5743. ptr += nr_cpu_ids * sizeof(void **);
  5744. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5745. #ifdef CONFIG_RT_GROUP_SCHED
  5746. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5747. ptr += nr_cpu_ids * sizeof(void **);
  5748. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5749. ptr += nr_cpu_ids * sizeof(void **);
  5750. #endif /* CONFIG_RT_GROUP_SCHED */
  5751. #ifdef CONFIG_CPUMASK_OFFSTACK
  5752. for_each_possible_cpu(i) {
  5753. per_cpu(load_balance_mask, i) = (void *)ptr;
  5754. ptr += cpumask_size();
  5755. }
  5756. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5757. }
  5758. init_rt_bandwidth(&def_rt_bandwidth,
  5759. global_rt_period(), global_rt_runtime());
  5760. init_dl_bandwidth(&def_dl_bandwidth,
  5761. global_rt_period(), global_rt_runtime());
  5762. #ifdef CONFIG_SMP
  5763. init_defrootdomain();
  5764. #endif
  5765. #ifdef CONFIG_RT_GROUP_SCHED
  5766. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5767. global_rt_period(), global_rt_runtime());
  5768. #endif /* CONFIG_RT_GROUP_SCHED */
  5769. #ifdef CONFIG_CGROUP_SCHED
  5770. list_add(&root_task_group.list, &task_groups);
  5771. INIT_LIST_HEAD(&root_task_group.children);
  5772. INIT_LIST_HEAD(&root_task_group.siblings);
  5773. autogroup_init(&init_task);
  5774. #endif /* CONFIG_CGROUP_SCHED */
  5775. for_each_possible_cpu(i) {
  5776. struct rq *rq;
  5777. rq = cpu_rq(i);
  5778. raw_spin_lock_init(&rq->lock);
  5779. rq->nr_running = 0;
  5780. rq->calc_load_active = 0;
  5781. rq->calc_load_update = jiffies + LOAD_FREQ;
  5782. init_cfs_rq(&rq->cfs);
  5783. init_rt_rq(&rq->rt, rq);
  5784. init_dl_rq(&rq->dl, rq);
  5785. #ifdef CONFIG_FAIR_GROUP_SCHED
  5786. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5787. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5788. /*
  5789. * How much cpu bandwidth does root_task_group get?
  5790. *
  5791. * In case of task-groups formed thr' the cgroup filesystem, it
  5792. * gets 100% of the cpu resources in the system. This overall
  5793. * system cpu resource is divided among the tasks of
  5794. * root_task_group and its child task-groups in a fair manner,
  5795. * based on each entity's (task or task-group's) weight
  5796. * (se->load.weight).
  5797. *
  5798. * In other words, if root_task_group has 10 tasks of weight
  5799. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5800. * then A0's share of the cpu resource is:
  5801. *
  5802. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5803. *
  5804. * We achieve this by letting root_task_group's tasks sit
  5805. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5806. */
  5807. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5808. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5809. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5810. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5811. #ifdef CONFIG_RT_GROUP_SCHED
  5812. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5813. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5814. #endif
  5815. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5816. rq->cpu_load[j] = 0;
  5817. rq->last_load_update_tick = jiffies;
  5818. #ifdef CONFIG_SMP
  5819. rq->sd = NULL;
  5820. rq->rd = NULL;
  5821. rq->cpu_power = SCHED_POWER_SCALE;
  5822. rq->post_schedule = 0;
  5823. rq->active_balance = 0;
  5824. rq->next_balance = jiffies;
  5825. rq->push_cpu = 0;
  5826. rq->cpu = i;
  5827. rq->online = 0;
  5828. rq->idle_stamp = 0;
  5829. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5830. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5831. INIT_LIST_HEAD(&rq->cfs_tasks);
  5832. rq_attach_root(rq, &def_root_domain);
  5833. #ifdef CONFIG_NO_HZ_COMMON
  5834. rq->nohz_flags = 0;
  5835. #endif
  5836. #ifdef CONFIG_NO_HZ_FULL
  5837. rq->last_sched_tick = 0;
  5838. #endif
  5839. #endif
  5840. init_rq_hrtick(rq);
  5841. atomic_set(&rq->nr_iowait, 0);
  5842. }
  5843. set_load_weight(&init_task);
  5844. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5845. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5846. #endif
  5847. /*
  5848. * The boot idle thread does lazy MMU switching as well:
  5849. */
  5850. atomic_inc(&init_mm.mm_count);
  5851. enter_lazy_tlb(&init_mm, current);
  5852. /*
  5853. * Make us the idle thread. Technically, schedule() should not be
  5854. * called from this thread, however somewhere below it might be,
  5855. * but because we are the idle thread, we just pick up running again
  5856. * when this runqueue becomes "idle".
  5857. */
  5858. init_idle(current, smp_processor_id());
  5859. calc_load_update = jiffies + LOAD_FREQ;
  5860. /*
  5861. * During early bootup we pretend to be a normal task:
  5862. */
  5863. current->sched_class = &fair_sched_class;
  5864. #ifdef CONFIG_SMP
  5865. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5866. /* May be allocated at isolcpus cmdline parse time */
  5867. if (cpu_isolated_map == NULL)
  5868. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5869. idle_thread_set_boot_cpu();
  5870. #endif
  5871. init_sched_fair_class();
  5872. scheduler_running = 1;
  5873. }
  5874. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5875. static inline int preempt_count_equals(int preempt_offset)
  5876. {
  5877. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5878. return (nested == preempt_offset);
  5879. }
  5880. void __might_sleep(const char *file, int line, int preempt_offset)
  5881. {
  5882. static unsigned long prev_jiffy; /* ratelimiting */
  5883. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5884. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5885. system_state != SYSTEM_RUNNING || oops_in_progress)
  5886. return;
  5887. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5888. return;
  5889. prev_jiffy = jiffies;
  5890. printk(KERN_ERR
  5891. "BUG: sleeping function called from invalid context at %s:%d\n",
  5892. file, line);
  5893. printk(KERN_ERR
  5894. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5895. in_atomic(), irqs_disabled(),
  5896. current->pid, current->comm);
  5897. debug_show_held_locks(current);
  5898. if (irqs_disabled())
  5899. print_irqtrace_events(current);
  5900. dump_stack();
  5901. }
  5902. EXPORT_SYMBOL(__might_sleep);
  5903. #endif
  5904. #ifdef CONFIG_MAGIC_SYSRQ
  5905. static void normalize_task(struct rq *rq, struct task_struct *p)
  5906. {
  5907. const struct sched_class *prev_class = p->sched_class;
  5908. struct sched_attr attr = {
  5909. .sched_policy = SCHED_NORMAL,
  5910. };
  5911. int old_prio = p->prio;
  5912. int on_rq;
  5913. on_rq = p->on_rq;
  5914. if (on_rq)
  5915. dequeue_task(rq, p, 0);
  5916. __setscheduler(rq, p, &attr);
  5917. if (on_rq) {
  5918. enqueue_task(rq, p, 0);
  5919. resched_task(rq->curr);
  5920. }
  5921. check_class_changed(rq, p, prev_class, old_prio);
  5922. }
  5923. void normalize_rt_tasks(void)
  5924. {
  5925. struct task_struct *g, *p;
  5926. unsigned long flags;
  5927. struct rq *rq;
  5928. read_lock_irqsave(&tasklist_lock, flags);
  5929. do_each_thread(g, p) {
  5930. /*
  5931. * Only normalize user tasks:
  5932. */
  5933. if (!p->mm)
  5934. continue;
  5935. p->se.exec_start = 0;
  5936. #ifdef CONFIG_SCHEDSTATS
  5937. p->se.statistics.wait_start = 0;
  5938. p->se.statistics.sleep_start = 0;
  5939. p->se.statistics.block_start = 0;
  5940. #endif
  5941. if (!dl_task(p) && !rt_task(p)) {
  5942. /*
  5943. * Renice negative nice level userspace
  5944. * tasks back to 0:
  5945. */
  5946. if (TASK_NICE(p) < 0 && p->mm)
  5947. set_user_nice(p, 0);
  5948. continue;
  5949. }
  5950. raw_spin_lock(&p->pi_lock);
  5951. rq = __task_rq_lock(p);
  5952. normalize_task(rq, p);
  5953. __task_rq_unlock(rq);
  5954. raw_spin_unlock(&p->pi_lock);
  5955. } while_each_thread(g, p);
  5956. read_unlock_irqrestore(&tasklist_lock, flags);
  5957. }
  5958. #endif /* CONFIG_MAGIC_SYSRQ */
  5959. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5960. /*
  5961. * These functions are only useful for the IA64 MCA handling, or kdb.
  5962. *
  5963. * They can only be called when the whole system has been
  5964. * stopped - every CPU needs to be quiescent, and no scheduling
  5965. * activity can take place. Using them for anything else would
  5966. * be a serious bug, and as a result, they aren't even visible
  5967. * under any other configuration.
  5968. */
  5969. /**
  5970. * curr_task - return the current task for a given cpu.
  5971. * @cpu: the processor in question.
  5972. *
  5973. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5974. *
  5975. * Return: The current task for @cpu.
  5976. */
  5977. struct task_struct *curr_task(int cpu)
  5978. {
  5979. return cpu_curr(cpu);
  5980. }
  5981. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  5982. #ifdef CONFIG_IA64
  5983. /**
  5984. * set_curr_task - set the current task for a given cpu.
  5985. * @cpu: the processor in question.
  5986. * @p: the task pointer to set.
  5987. *
  5988. * Description: This function must only be used when non-maskable interrupts
  5989. * are serviced on a separate stack. It allows the architecture to switch the
  5990. * notion of the current task on a cpu in a non-blocking manner. This function
  5991. * must be called with all CPU's synchronized, and interrupts disabled, the
  5992. * and caller must save the original value of the current task (see
  5993. * curr_task() above) and restore that value before reenabling interrupts and
  5994. * re-starting the system.
  5995. *
  5996. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5997. */
  5998. void set_curr_task(int cpu, struct task_struct *p)
  5999. {
  6000. cpu_curr(cpu) = p;
  6001. }
  6002. #endif
  6003. #ifdef CONFIG_CGROUP_SCHED
  6004. /* task_group_lock serializes the addition/removal of task groups */
  6005. static DEFINE_SPINLOCK(task_group_lock);
  6006. static void free_sched_group(struct task_group *tg)
  6007. {
  6008. free_fair_sched_group(tg);
  6009. free_rt_sched_group(tg);
  6010. autogroup_free(tg);
  6011. kfree(tg);
  6012. }
  6013. /* allocate runqueue etc for a new task group */
  6014. struct task_group *sched_create_group(struct task_group *parent)
  6015. {
  6016. struct task_group *tg;
  6017. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6018. if (!tg)
  6019. return ERR_PTR(-ENOMEM);
  6020. if (!alloc_fair_sched_group(tg, parent))
  6021. goto err;
  6022. if (!alloc_rt_sched_group(tg, parent))
  6023. goto err;
  6024. return tg;
  6025. err:
  6026. free_sched_group(tg);
  6027. return ERR_PTR(-ENOMEM);
  6028. }
  6029. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6030. {
  6031. unsigned long flags;
  6032. spin_lock_irqsave(&task_group_lock, flags);
  6033. list_add_rcu(&tg->list, &task_groups);
  6034. WARN_ON(!parent); /* root should already exist */
  6035. tg->parent = parent;
  6036. INIT_LIST_HEAD(&tg->children);
  6037. list_add_rcu(&tg->siblings, &parent->children);
  6038. spin_unlock_irqrestore(&task_group_lock, flags);
  6039. }
  6040. /* rcu callback to free various structures associated with a task group */
  6041. static void free_sched_group_rcu(struct rcu_head *rhp)
  6042. {
  6043. /* now it should be safe to free those cfs_rqs */
  6044. free_sched_group(container_of(rhp, struct task_group, rcu));
  6045. }
  6046. /* Destroy runqueue etc associated with a task group */
  6047. void sched_destroy_group(struct task_group *tg)
  6048. {
  6049. /* wait for possible concurrent references to cfs_rqs complete */
  6050. call_rcu(&tg->rcu, free_sched_group_rcu);
  6051. }
  6052. void sched_offline_group(struct task_group *tg)
  6053. {
  6054. unsigned long flags;
  6055. int i;
  6056. /* end participation in shares distribution */
  6057. for_each_possible_cpu(i)
  6058. unregister_fair_sched_group(tg, i);
  6059. spin_lock_irqsave(&task_group_lock, flags);
  6060. list_del_rcu(&tg->list);
  6061. list_del_rcu(&tg->siblings);
  6062. spin_unlock_irqrestore(&task_group_lock, flags);
  6063. }
  6064. /* change task's runqueue when it moves between groups.
  6065. * The caller of this function should have put the task in its new group
  6066. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6067. * reflect its new group.
  6068. */
  6069. void sched_move_task(struct task_struct *tsk)
  6070. {
  6071. struct task_group *tg;
  6072. int on_rq, running;
  6073. unsigned long flags;
  6074. struct rq *rq;
  6075. rq = task_rq_lock(tsk, &flags);
  6076. running = task_current(rq, tsk);
  6077. on_rq = tsk->on_rq;
  6078. if (on_rq)
  6079. dequeue_task(rq, tsk, 0);
  6080. if (unlikely(running))
  6081. tsk->sched_class->put_prev_task(rq, tsk);
  6082. tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
  6083. lockdep_is_held(&tsk->sighand->siglock)),
  6084. struct task_group, css);
  6085. tg = autogroup_task_group(tsk, tg);
  6086. tsk->sched_task_group = tg;
  6087. #ifdef CONFIG_FAIR_GROUP_SCHED
  6088. if (tsk->sched_class->task_move_group)
  6089. tsk->sched_class->task_move_group(tsk, on_rq);
  6090. else
  6091. #endif
  6092. set_task_rq(tsk, task_cpu(tsk));
  6093. if (unlikely(running))
  6094. tsk->sched_class->set_curr_task(rq);
  6095. if (on_rq)
  6096. enqueue_task(rq, tsk, 0);
  6097. task_rq_unlock(rq, tsk, &flags);
  6098. }
  6099. #endif /* CONFIG_CGROUP_SCHED */
  6100. #ifdef CONFIG_RT_GROUP_SCHED
  6101. /*
  6102. * Ensure that the real time constraints are schedulable.
  6103. */
  6104. static DEFINE_MUTEX(rt_constraints_mutex);
  6105. /* Must be called with tasklist_lock held */
  6106. static inline int tg_has_rt_tasks(struct task_group *tg)
  6107. {
  6108. struct task_struct *g, *p;
  6109. do_each_thread(g, p) {
  6110. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6111. return 1;
  6112. } while_each_thread(g, p);
  6113. return 0;
  6114. }
  6115. struct rt_schedulable_data {
  6116. struct task_group *tg;
  6117. u64 rt_period;
  6118. u64 rt_runtime;
  6119. };
  6120. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6121. {
  6122. struct rt_schedulable_data *d = data;
  6123. struct task_group *child;
  6124. unsigned long total, sum = 0;
  6125. u64 period, runtime;
  6126. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6127. runtime = tg->rt_bandwidth.rt_runtime;
  6128. if (tg == d->tg) {
  6129. period = d->rt_period;
  6130. runtime = d->rt_runtime;
  6131. }
  6132. /*
  6133. * Cannot have more runtime than the period.
  6134. */
  6135. if (runtime > period && runtime != RUNTIME_INF)
  6136. return -EINVAL;
  6137. /*
  6138. * Ensure we don't starve existing RT tasks.
  6139. */
  6140. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6141. return -EBUSY;
  6142. total = to_ratio(period, runtime);
  6143. /*
  6144. * Nobody can have more than the global setting allows.
  6145. */
  6146. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6147. return -EINVAL;
  6148. /*
  6149. * The sum of our children's runtime should not exceed our own.
  6150. */
  6151. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6152. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6153. runtime = child->rt_bandwidth.rt_runtime;
  6154. if (child == d->tg) {
  6155. period = d->rt_period;
  6156. runtime = d->rt_runtime;
  6157. }
  6158. sum += to_ratio(period, runtime);
  6159. }
  6160. if (sum > total)
  6161. return -EINVAL;
  6162. return 0;
  6163. }
  6164. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6165. {
  6166. int ret;
  6167. struct rt_schedulable_data data = {
  6168. .tg = tg,
  6169. .rt_period = period,
  6170. .rt_runtime = runtime,
  6171. };
  6172. rcu_read_lock();
  6173. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6174. rcu_read_unlock();
  6175. return ret;
  6176. }
  6177. static int tg_set_rt_bandwidth(struct task_group *tg,
  6178. u64 rt_period, u64 rt_runtime)
  6179. {
  6180. int i, err = 0;
  6181. mutex_lock(&rt_constraints_mutex);
  6182. read_lock(&tasklist_lock);
  6183. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6184. if (err)
  6185. goto unlock;
  6186. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6187. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6188. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6189. for_each_possible_cpu(i) {
  6190. struct rt_rq *rt_rq = tg->rt_rq[i];
  6191. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6192. rt_rq->rt_runtime = rt_runtime;
  6193. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6194. }
  6195. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6196. unlock:
  6197. read_unlock(&tasklist_lock);
  6198. mutex_unlock(&rt_constraints_mutex);
  6199. return err;
  6200. }
  6201. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6202. {
  6203. u64 rt_runtime, rt_period;
  6204. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6205. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6206. if (rt_runtime_us < 0)
  6207. rt_runtime = RUNTIME_INF;
  6208. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6209. }
  6210. static long sched_group_rt_runtime(struct task_group *tg)
  6211. {
  6212. u64 rt_runtime_us;
  6213. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6214. return -1;
  6215. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6216. do_div(rt_runtime_us, NSEC_PER_USEC);
  6217. return rt_runtime_us;
  6218. }
  6219. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6220. {
  6221. u64 rt_runtime, rt_period;
  6222. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6223. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6224. if (rt_period == 0)
  6225. return -EINVAL;
  6226. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6227. }
  6228. static long sched_group_rt_period(struct task_group *tg)
  6229. {
  6230. u64 rt_period_us;
  6231. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6232. do_div(rt_period_us, NSEC_PER_USEC);
  6233. return rt_period_us;
  6234. }
  6235. #endif /* CONFIG_RT_GROUP_SCHED */
  6236. #ifdef CONFIG_RT_GROUP_SCHED
  6237. static int sched_rt_global_constraints(void)
  6238. {
  6239. int ret = 0;
  6240. mutex_lock(&rt_constraints_mutex);
  6241. read_lock(&tasklist_lock);
  6242. ret = __rt_schedulable(NULL, 0, 0);
  6243. read_unlock(&tasklist_lock);
  6244. mutex_unlock(&rt_constraints_mutex);
  6245. return ret;
  6246. }
  6247. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6248. {
  6249. /* Don't accept realtime tasks when there is no way for them to run */
  6250. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6251. return 0;
  6252. return 1;
  6253. }
  6254. #else /* !CONFIG_RT_GROUP_SCHED */
  6255. static int sched_rt_global_constraints(void)
  6256. {
  6257. unsigned long flags;
  6258. int i, ret = 0;
  6259. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6260. for_each_possible_cpu(i) {
  6261. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6262. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6263. rt_rq->rt_runtime = global_rt_runtime();
  6264. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6265. }
  6266. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6267. return ret;
  6268. }
  6269. #endif /* CONFIG_RT_GROUP_SCHED */
  6270. static int sched_dl_global_constraints(void)
  6271. {
  6272. u64 runtime = global_rt_runtime();
  6273. u64 period = global_rt_period();
  6274. u64 new_bw = to_ratio(period, runtime);
  6275. int cpu, ret = 0;
  6276. unsigned long flags;
  6277. /*
  6278. * Here we want to check the bandwidth not being set to some
  6279. * value smaller than the currently allocated bandwidth in
  6280. * any of the root_domains.
  6281. *
  6282. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6283. * cycling on root_domains... Discussion on different/better
  6284. * solutions is welcome!
  6285. */
  6286. for_each_possible_cpu(cpu) {
  6287. struct dl_bw *dl_b = dl_bw_of(cpu);
  6288. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6289. if (new_bw < dl_b->total_bw)
  6290. ret = -EBUSY;
  6291. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6292. if (ret)
  6293. break;
  6294. }
  6295. return ret;
  6296. }
  6297. static void sched_dl_do_global(void)
  6298. {
  6299. u64 new_bw = -1;
  6300. int cpu;
  6301. unsigned long flags;
  6302. def_dl_bandwidth.dl_period = global_rt_period();
  6303. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6304. if (global_rt_runtime() != RUNTIME_INF)
  6305. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6306. /*
  6307. * FIXME: As above...
  6308. */
  6309. for_each_possible_cpu(cpu) {
  6310. struct dl_bw *dl_b = dl_bw_of(cpu);
  6311. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6312. dl_b->bw = new_bw;
  6313. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6314. }
  6315. }
  6316. static int sched_rt_global_validate(void)
  6317. {
  6318. if (sysctl_sched_rt_period <= 0)
  6319. return -EINVAL;
  6320. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6321. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6322. return -EINVAL;
  6323. return 0;
  6324. }
  6325. static void sched_rt_do_global(void)
  6326. {
  6327. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6328. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6329. }
  6330. int sched_rt_handler(struct ctl_table *table, int write,
  6331. void __user *buffer, size_t *lenp,
  6332. loff_t *ppos)
  6333. {
  6334. int old_period, old_runtime;
  6335. static DEFINE_MUTEX(mutex);
  6336. int ret;
  6337. mutex_lock(&mutex);
  6338. old_period = sysctl_sched_rt_period;
  6339. old_runtime = sysctl_sched_rt_runtime;
  6340. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6341. if (!ret && write) {
  6342. ret = sched_rt_global_validate();
  6343. if (ret)
  6344. goto undo;
  6345. ret = sched_rt_global_constraints();
  6346. if (ret)
  6347. goto undo;
  6348. ret = sched_dl_global_constraints();
  6349. if (ret)
  6350. goto undo;
  6351. sched_rt_do_global();
  6352. sched_dl_do_global();
  6353. }
  6354. if (0) {
  6355. undo:
  6356. sysctl_sched_rt_period = old_period;
  6357. sysctl_sched_rt_runtime = old_runtime;
  6358. }
  6359. mutex_unlock(&mutex);
  6360. return ret;
  6361. }
  6362. int sched_rr_handler(struct ctl_table *table, int write,
  6363. void __user *buffer, size_t *lenp,
  6364. loff_t *ppos)
  6365. {
  6366. int ret;
  6367. static DEFINE_MUTEX(mutex);
  6368. mutex_lock(&mutex);
  6369. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6370. /* make sure that internally we keep jiffies */
  6371. /* also, writing zero resets timeslice to default */
  6372. if (!ret && write) {
  6373. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6374. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6375. }
  6376. mutex_unlock(&mutex);
  6377. return ret;
  6378. }
  6379. #ifdef CONFIG_CGROUP_SCHED
  6380. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6381. {
  6382. return css ? container_of(css, struct task_group, css) : NULL;
  6383. }
  6384. static struct cgroup_subsys_state *
  6385. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6386. {
  6387. struct task_group *parent = css_tg(parent_css);
  6388. struct task_group *tg;
  6389. if (!parent) {
  6390. /* This is early initialization for the top cgroup */
  6391. return &root_task_group.css;
  6392. }
  6393. tg = sched_create_group(parent);
  6394. if (IS_ERR(tg))
  6395. return ERR_PTR(-ENOMEM);
  6396. return &tg->css;
  6397. }
  6398. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6399. {
  6400. struct task_group *tg = css_tg(css);
  6401. struct task_group *parent = css_tg(css_parent(css));
  6402. if (parent)
  6403. sched_online_group(tg, parent);
  6404. return 0;
  6405. }
  6406. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6407. {
  6408. struct task_group *tg = css_tg(css);
  6409. sched_destroy_group(tg);
  6410. }
  6411. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6412. {
  6413. struct task_group *tg = css_tg(css);
  6414. sched_offline_group(tg);
  6415. }
  6416. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6417. struct cgroup_taskset *tset)
  6418. {
  6419. struct task_struct *task;
  6420. cgroup_taskset_for_each(task, css, tset) {
  6421. #ifdef CONFIG_RT_GROUP_SCHED
  6422. if (!sched_rt_can_attach(css_tg(css), task))
  6423. return -EINVAL;
  6424. #else
  6425. /* We don't support RT-tasks being in separate groups */
  6426. if (task->sched_class != &fair_sched_class)
  6427. return -EINVAL;
  6428. #endif
  6429. }
  6430. return 0;
  6431. }
  6432. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6433. struct cgroup_taskset *tset)
  6434. {
  6435. struct task_struct *task;
  6436. cgroup_taskset_for_each(task, css, tset)
  6437. sched_move_task(task);
  6438. }
  6439. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6440. struct cgroup_subsys_state *old_css,
  6441. struct task_struct *task)
  6442. {
  6443. /*
  6444. * cgroup_exit() is called in the copy_process() failure path.
  6445. * Ignore this case since the task hasn't ran yet, this avoids
  6446. * trying to poke a half freed task state from generic code.
  6447. */
  6448. if (!(task->flags & PF_EXITING))
  6449. return;
  6450. sched_move_task(task);
  6451. }
  6452. #ifdef CONFIG_FAIR_GROUP_SCHED
  6453. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6454. struct cftype *cftype, u64 shareval)
  6455. {
  6456. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6457. }
  6458. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6459. struct cftype *cft)
  6460. {
  6461. struct task_group *tg = css_tg(css);
  6462. return (u64) scale_load_down(tg->shares);
  6463. }
  6464. #ifdef CONFIG_CFS_BANDWIDTH
  6465. static DEFINE_MUTEX(cfs_constraints_mutex);
  6466. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6467. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6468. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6469. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6470. {
  6471. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6472. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6473. if (tg == &root_task_group)
  6474. return -EINVAL;
  6475. /*
  6476. * Ensure we have at some amount of bandwidth every period. This is
  6477. * to prevent reaching a state of large arrears when throttled via
  6478. * entity_tick() resulting in prolonged exit starvation.
  6479. */
  6480. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6481. return -EINVAL;
  6482. /*
  6483. * Likewise, bound things on the otherside by preventing insane quota
  6484. * periods. This also allows us to normalize in computing quota
  6485. * feasibility.
  6486. */
  6487. if (period > max_cfs_quota_period)
  6488. return -EINVAL;
  6489. mutex_lock(&cfs_constraints_mutex);
  6490. ret = __cfs_schedulable(tg, period, quota);
  6491. if (ret)
  6492. goto out_unlock;
  6493. runtime_enabled = quota != RUNTIME_INF;
  6494. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6495. /*
  6496. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6497. * before making related changes, and on->off must occur afterwards
  6498. */
  6499. if (runtime_enabled && !runtime_was_enabled)
  6500. cfs_bandwidth_usage_inc();
  6501. raw_spin_lock_irq(&cfs_b->lock);
  6502. cfs_b->period = ns_to_ktime(period);
  6503. cfs_b->quota = quota;
  6504. __refill_cfs_bandwidth_runtime(cfs_b);
  6505. /* restart the period timer (if active) to handle new period expiry */
  6506. if (runtime_enabled && cfs_b->timer_active) {
  6507. /* force a reprogram */
  6508. cfs_b->timer_active = 0;
  6509. __start_cfs_bandwidth(cfs_b);
  6510. }
  6511. raw_spin_unlock_irq(&cfs_b->lock);
  6512. for_each_possible_cpu(i) {
  6513. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6514. struct rq *rq = cfs_rq->rq;
  6515. raw_spin_lock_irq(&rq->lock);
  6516. cfs_rq->runtime_enabled = runtime_enabled;
  6517. cfs_rq->runtime_remaining = 0;
  6518. if (cfs_rq->throttled)
  6519. unthrottle_cfs_rq(cfs_rq);
  6520. raw_spin_unlock_irq(&rq->lock);
  6521. }
  6522. if (runtime_was_enabled && !runtime_enabled)
  6523. cfs_bandwidth_usage_dec();
  6524. out_unlock:
  6525. mutex_unlock(&cfs_constraints_mutex);
  6526. return ret;
  6527. }
  6528. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6529. {
  6530. u64 quota, period;
  6531. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6532. if (cfs_quota_us < 0)
  6533. quota = RUNTIME_INF;
  6534. else
  6535. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6536. return tg_set_cfs_bandwidth(tg, period, quota);
  6537. }
  6538. long tg_get_cfs_quota(struct task_group *tg)
  6539. {
  6540. u64 quota_us;
  6541. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6542. return -1;
  6543. quota_us = tg->cfs_bandwidth.quota;
  6544. do_div(quota_us, NSEC_PER_USEC);
  6545. return quota_us;
  6546. }
  6547. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6548. {
  6549. u64 quota, period;
  6550. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6551. quota = tg->cfs_bandwidth.quota;
  6552. return tg_set_cfs_bandwidth(tg, period, quota);
  6553. }
  6554. long tg_get_cfs_period(struct task_group *tg)
  6555. {
  6556. u64 cfs_period_us;
  6557. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6558. do_div(cfs_period_us, NSEC_PER_USEC);
  6559. return cfs_period_us;
  6560. }
  6561. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6562. struct cftype *cft)
  6563. {
  6564. return tg_get_cfs_quota(css_tg(css));
  6565. }
  6566. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6567. struct cftype *cftype, s64 cfs_quota_us)
  6568. {
  6569. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6570. }
  6571. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6572. struct cftype *cft)
  6573. {
  6574. return tg_get_cfs_period(css_tg(css));
  6575. }
  6576. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6577. struct cftype *cftype, u64 cfs_period_us)
  6578. {
  6579. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6580. }
  6581. struct cfs_schedulable_data {
  6582. struct task_group *tg;
  6583. u64 period, quota;
  6584. };
  6585. /*
  6586. * normalize group quota/period to be quota/max_period
  6587. * note: units are usecs
  6588. */
  6589. static u64 normalize_cfs_quota(struct task_group *tg,
  6590. struct cfs_schedulable_data *d)
  6591. {
  6592. u64 quota, period;
  6593. if (tg == d->tg) {
  6594. period = d->period;
  6595. quota = d->quota;
  6596. } else {
  6597. period = tg_get_cfs_period(tg);
  6598. quota = tg_get_cfs_quota(tg);
  6599. }
  6600. /* note: these should typically be equivalent */
  6601. if (quota == RUNTIME_INF || quota == -1)
  6602. return RUNTIME_INF;
  6603. return to_ratio(period, quota);
  6604. }
  6605. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6606. {
  6607. struct cfs_schedulable_data *d = data;
  6608. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6609. s64 quota = 0, parent_quota = -1;
  6610. if (!tg->parent) {
  6611. quota = RUNTIME_INF;
  6612. } else {
  6613. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6614. quota = normalize_cfs_quota(tg, d);
  6615. parent_quota = parent_b->hierarchal_quota;
  6616. /*
  6617. * ensure max(child_quota) <= parent_quota, inherit when no
  6618. * limit is set
  6619. */
  6620. if (quota == RUNTIME_INF)
  6621. quota = parent_quota;
  6622. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6623. return -EINVAL;
  6624. }
  6625. cfs_b->hierarchal_quota = quota;
  6626. return 0;
  6627. }
  6628. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6629. {
  6630. int ret;
  6631. struct cfs_schedulable_data data = {
  6632. .tg = tg,
  6633. .period = period,
  6634. .quota = quota,
  6635. };
  6636. if (quota != RUNTIME_INF) {
  6637. do_div(data.period, NSEC_PER_USEC);
  6638. do_div(data.quota, NSEC_PER_USEC);
  6639. }
  6640. rcu_read_lock();
  6641. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6642. rcu_read_unlock();
  6643. return ret;
  6644. }
  6645. static int cpu_stats_show(struct seq_file *sf, void *v)
  6646. {
  6647. struct task_group *tg = css_tg(seq_css(sf));
  6648. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6649. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  6650. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  6651. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  6652. return 0;
  6653. }
  6654. #endif /* CONFIG_CFS_BANDWIDTH */
  6655. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6656. #ifdef CONFIG_RT_GROUP_SCHED
  6657. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6658. struct cftype *cft, s64 val)
  6659. {
  6660. return sched_group_set_rt_runtime(css_tg(css), val);
  6661. }
  6662. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6663. struct cftype *cft)
  6664. {
  6665. return sched_group_rt_runtime(css_tg(css));
  6666. }
  6667. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6668. struct cftype *cftype, u64 rt_period_us)
  6669. {
  6670. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6671. }
  6672. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6673. struct cftype *cft)
  6674. {
  6675. return sched_group_rt_period(css_tg(css));
  6676. }
  6677. #endif /* CONFIG_RT_GROUP_SCHED */
  6678. static struct cftype cpu_files[] = {
  6679. #ifdef CONFIG_FAIR_GROUP_SCHED
  6680. {
  6681. .name = "shares",
  6682. .read_u64 = cpu_shares_read_u64,
  6683. .write_u64 = cpu_shares_write_u64,
  6684. },
  6685. #endif
  6686. #ifdef CONFIG_CFS_BANDWIDTH
  6687. {
  6688. .name = "cfs_quota_us",
  6689. .read_s64 = cpu_cfs_quota_read_s64,
  6690. .write_s64 = cpu_cfs_quota_write_s64,
  6691. },
  6692. {
  6693. .name = "cfs_period_us",
  6694. .read_u64 = cpu_cfs_period_read_u64,
  6695. .write_u64 = cpu_cfs_period_write_u64,
  6696. },
  6697. {
  6698. .name = "stat",
  6699. .seq_show = cpu_stats_show,
  6700. },
  6701. #endif
  6702. #ifdef CONFIG_RT_GROUP_SCHED
  6703. {
  6704. .name = "rt_runtime_us",
  6705. .read_s64 = cpu_rt_runtime_read,
  6706. .write_s64 = cpu_rt_runtime_write,
  6707. },
  6708. {
  6709. .name = "rt_period_us",
  6710. .read_u64 = cpu_rt_period_read_uint,
  6711. .write_u64 = cpu_rt_period_write_uint,
  6712. },
  6713. #endif
  6714. { } /* terminate */
  6715. };
  6716. struct cgroup_subsys cpu_cgroup_subsys = {
  6717. .name = "cpu",
  6718. .css_alloc = cpu_cgroup_css_alloc,
  6719. .css_free = cpu_cgroup_css_free,
  6720. .css_online = cpu_cgroup_css_online,
  6721. .css_offline = cpu_cgroup_css_offline,
  6722. .can_attach = cpu_cgroup_can_attach,
  6723. .attach = cpu_cgroup_attach,
  6724. .exit = cpu_cgroup_exit,
  6725. .subsys_id = cpu_cgroup_subsys_id,
  6726. .base_cftypes = cpu_files,
  6727. .early_init = 1,
  6728. };
  6729. #endif /* CONFIG_CGROUP_SCHED */
  6730. void dump_cpu_task(int cpu)
  6731. {
  6732. pr_info("Task dump for CPU %d:\n", cpu);
  6733. sched_show_task(cpu_curr(cpu));
  6734. }