clock.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. /*
  2. * sched_clock for unstable cpu clocks
  3. *
  4. * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  5. *
  6. * Updates and enhancements:
  7. * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8. *
  9. * Based on code by:
  10. * Ingo Molnar <mingo@redhat.com>
  11. * Guillaume Chazarain <guichaz@gmail.com>
  12. *
  13. *
  14. * What:
  15. *
  16. * cpu_clock(i) provides a fast (execution time) high resolution
  17. * clock with bounded drift between CPUs. The value of cpu_clock(i)
  18. * is monotonic for constant i. The timestamp returned is in nanoseconds.
  19. *
  20. * ######################### BIG FAT WARNING ##########################
  21. * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  22. * # go backwards !! #
  23. * ####################################################################
  24. *
  25. * There is no strict promise about the base, although it tends to start
  26. * at 0 on boot (but people really shouldn't rely on that).
  27. *
  28. * cpu_clock(i) -- can be used from any context, including NMI.
  29. * local_clock() -- is cpu_clock() on the current cpu.
  30. *
  31. * sched_clock_cpu(i)
  32. *
  33. * How:
  34. *
  35. * The implementation either uses sched_clock() when
  36. * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
  37. * sched_clock() is assumed to provide these properties (mostly it means
  38. * the architecture provides a globally synchronized highres time source).
  39. *
  40. * Otherwise it tries to create a semi stable clock from a mixture of other
  41. * clocks, including:
  42. *
  43. * - GTOD (clock monotomic)
  44. * - sched_clock()
  45. * - explicit idle events
  46. *
  47. * We use GTOD as base and use sched_clock() deltas to improve resolution. The
  48. * deltas are filtered to provide monotonicity and keeping it within an
  49. * expected window.
  50. *
  51. * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  52. * that is otherwise invisible (TSC gets stopped).
  53. *
  54. */
  55. #include <linux/spinlock.h>
  56. #include <linux/hardirq.h>
  57. #include <linux/export.h>
  58. #include <linux/percpu.h>
  59. #include <linux/ktime.h>
  60. #include <linux/sched.h>
  61. #include <linux/static_key.h>
  62. #include <linux/workqueue.h>
  63. /*
  64. * Scheduler clock - returns current time in nanosec units.
  65. * This is default implementation.
  66. * Architectures and sub-architectures can override this.
  67. */
  68. unsigned long long __attribute__((weak)) sched_clock(void)
  69. {
  70. return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  71. * (NSEC_PER_SEC / HZ);
  72. }
  73. EXPORT_SYMBOL_GPL(sched_clock);
  74. __read_mostly int sched_clock_running;
  75. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  76. static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
  77. static int __sched_clock_stable_early;
  78. int sched_clock_stable(void)
  79. {
  80. return static_key_false(&__sched_clock_stable);
  81. }
  82. static void __set_sched_clock_stable(void)
  83. {
  84. if (!sched_clock_stable())
  85. static_key_slow_inc(&__sched_clock_stable);
  86. }
  87. void set_sched_clock_stable(void)
  88. {
  89. __sched_clock_stable_early = 1;
  90. smp_mb(); /* matches sched_clock_init() */
  91. if (!sched_clock_running)
  92. return;
  93. __set_sched_clock_stable();
  94. }
  95. static void __clear_sched_clock_stable(struct work_struct *work)
  96. {
  97. /* XXX worry about clock continuity */
  98. if (sched_clock_stable())
  99. static_key_slow_dec(&__sched_clock_stable);
  100. }
  101. static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
  102. void clear_sched_clock_stable(void)
  103. {
  104. __sched_clock_stable_early = 0;
  105. smp_mb(); /* matches sched_clock_init() */
  106. if (!sched_clock_running)
  107. return;
  108. schedule_work(&sched_clock_work);
  109. }
  110. struct sched_clock_data {
  111. u64 tick_raw;
  112. u64 tick_gtod;
  113. u64 clock;
  114. };
  115. static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  116. static inline struct sched_clock_data *this_scd(void)
  117. {
  118. return &__get_cpu_var(sched_clock_data);
  119. }
  120. static inline struct sched_clock_data *cpu_sdc(int cpu)
  121. {
  122. return &per_cpu(sched_clock_data, cpu);
  123. }
  124. void sched_clock_init(void)
  125. {
  126. u64 ktime_now = ktime_to_ns(ktime_get());
  127. int cpu;
  128. for_each_possible_cpu(cpu) {
  129. struct sched_clock_data *scd = cpu_sdc(cpu);
  130. scd->tick_raw = 0;
  131. scd->tick_gtod = ktime_now;
  132. scd->clock = ktime_now;
  133. }
  134. sched_clock_running = 1;
  135. /*
  136. * Ensure that it is impossible to not do a static_key update.
  137. *
  138. * Either {set,clear}_sched_clock_stable() must see sched_clock_running
  139. * and do the update, or we must see their __sched_clock_stable_early
  140. * and do the update, or both.
  141. */
  142. smp_mb(); /* matches {set,clear}_sched_clock_stable() */
  143. if (__sched_clock_stable_early)
  144. __set_sched_clock_stable();
  145. else
  146. __clear_sched_clock_stable(NULL);
  147. }
  148. /*
  149. * min, max except they take wrapping into account
  150. */
  151. static inline u64 wrap_min(u64 x, u64 y)
  152. {
  153. return (s64)(x - y) < 0 ? x : y;
  154. }
  155. static inline u64 wrap_max(u64 x, u64 y)
  156. {
  157. return (s64)(x - y) > 0 ? x : y;
  158. }
  159. /*
  160. * update the percpu scd from the raw @now value
  161. *
  162. * - filter out backward motion
  163. * - use the GTOD tick value to create a window to filter crazy TSC values
  164. */
  165. static u64 sched_clock_local(struct sched_clock_data *scd)
  166. {
  167. u64 now, clock, old_clock, min_clock, max_clock;
  168. s64 delta;
  169. again:
  170. now = sched_clock();
  171. delta = now - scd->tick_raw;
  172. if (unlikely(delta < 0))
  173. delta = 0;
  174. old_clock = scd->clock;
  175. /*
  176. * scd->clock = clamp(scd->tick_gtod + delta,
  177. * max(scd->tick_gtod, scd->clock),
  178. * scd->tick_gtod + TICK_NSEC);
  179. */
  180. clock = scd->tick_gtod + delta;
  181. min_clock = wrap_max(scd->tick_gtod, old_clock);
  182. max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
  183. clock = wrap_max(clock, min_clock);
  184. clock = wrap_min(clock, max_clock);
  185. if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
  186. goto again;
  187. return clock;
  188. }
  189. static u64 sched_clock_remote(struct sched_clock_data *scd)
  190. {
  191. struct sched_clock_data *my_scd = this_scd();
  192. u64 this_clock, remote_clock;
  193. u64 *ptr, old_val, val;
  194. #if BITS_PER_LONG != 64
  195. again:
  196. /*
  197. * Careful here: The local and the remote clock values need to
  198. * be read out atomic as we need to compare the values and
  199. * then update either the local or the remote side. So the
  200. * cmpxchg64 below only protects one readout.
  201. *
  202. * We must reread via sched_clock_local() in the retry case on
  203. * 32bit as an NMI could use sched_clock_local() via the
  204. * tracer and hit between the readout of
  205. * the low32bit and the high 32bit portion.
  206. */
  207. this_clock = sched_clock_local(my_scd);
  208. /*
  209. * We must enforce atomic readout on 32bit, otherwise the
  210. * update on the remote cpu can hit inbetween the readout of
  211. * the low32bit and the high 32bit portion.
  212. */
  213. remote_clock = cmpxchg64(&scd->clock, 0, 0);
  214. #else
  215. /*
  216. * On 64bit the read of [my]scd->clock is atomic versus the
  217. * update, so we can avoid the above 32bit dance.
  218. */
  219. sched_clock_local(my_scd);
  220. again:
  221. this_clock = my_scd->clock;
  222. remote_clock = scd->clock;
  223. #endif
  224. /*
  225. * Use the opportunity that we have both locks
  226. * taken to couple the two clocks: we take the
  227. * larger time as the latest time for both
  228. * runqueues. (this creates monotonic movement)
  229. */
  230. if (likely((s64)(remote_clock - this_clock) < 0)) {
  231. ptr = &scd->clock;
  232. old_val = remote_clock;
  233. val = this_clock;
  234. } else {
  235. /*
  236. * Should be rare, but possible:
  237. */
  238. ptr = &my_scd->clock;
  239. old_val = this_clock;
  240. val = remote_clock;
  241. }
  242. if (cmpxchg64(ptr, old_val, val) != old_val)
  243. goto again;
  244. return val;
  245. }
  246. /*
  247. * Similar to cpu_clock(), but requires local IRQs to be disabled.
  248. *
  249. * See cpu_clock().
  250. */
  251. u64 sched_clock_cpu(int cpu)
  252. {
  253. struct sched_clock_data *scd;
  254. u64 clock;
  255. if (sched_clock_stable())
  256. return sched_clock();
  257. if (unlikely(!sched_clock_running))
  258. return 0ull;
  259. preempt_disable_notrace();
  260. scd = cpu_sdc(cpu);
  261. if (cpu != smp_processor_id())
  262. clock = sched_clock_remote(scd);
  263. else
  264. clock = sched_clock_local(scd);
  265. preempt_enable_notrace();
  266. return clock;
  267. }
  268. void sched_clock_tick(void)
  269. {
  270. struct sched_clock_data *scd;
  271. u64 now, now_gtod;
  272. if (sched_clock_stable())
  273. return;
  274. if (unlikely(!sched_clock_running))
  275. return;
  276. WARN_ON_ONCE(!irqs_disabled());
  277. scd = this_scd();
  278. now_gtod = ktime_to_ns(ktime_get());
  279. now = sched_clock();
  280. scd->tick_raw = now;
  281. scd->tick_gtod = now_gtod;
  282. sched_clock_local(scd);
  283. }
  284. /*
  285. * We are going deep-idle (irqs are disabled):
  286. */
  287. void sched_clock_idle_sleep_event(void)
  288. {
  289. sched_clock_cpu(smp_processor_id());
  290. }
  291. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  292. /*
  293. * We just idled delta nanoseconds (called with irqs disabled):
  294. */
  295. void sched_clock_idle_wakeup_event(u64 delta_ns)
  296. {
  297. if (timekeeping_suspended)
  298. return;
  299. sched_clock_tick();
  300. touch_softlockup_watchdog();
  301. }
  302. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  303. /*
  304. * As outlined at the top, provides a fast, high resolution, nanosecond
  305. * time source that is monotonic per cpu argument and has bounded drift
  306. * between cpus.
  307. *
  308. * ######################### BIG FAT WARNING ##########################
  309. * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  310. * # go backwards !! #
  311. * ####################################################################
  312. */
  313. u64 cpu_clock(int cpu)
  314. {
  315. if (!sched_clock_stable())
  316. return sched_clock_cpu(cpu);
  317. return sched_clock();
  318. }
  319. /*
  320. * Similar to cpu_clock() for the current cpu. Time will only be observed
  321. * to be monotonic if care is taken to only compare timestampt taken on the
  322. * same CPU.
  323. *
  324. * See cpu_clock().
  325. */
  326. u64 local_clock(void)
  327. {
  328. if (!sched_clock_stable())
  329. return sched_clock_cpu(raw_smp_processor_id());
  330. return sched_clock();
  331. }
  332. #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  333. void sched_clock_init(void)
  334. {
  335. sched_clock_running = 1;
  336. }
  337. u64 sched_clock_cpu(int cpu)
  338. {
  339. if (unlikely(!sched_clock_running))
  340. return 0;
  341. return sched_clock();
  342. }
  343. u64 cpu_clock(int cpu)
  344. {
  345. return sched_clock();
  346. }
  347. u64 local_clock(void)
  348. {
  349. return sched_clock();
  350. }
  351. #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  352. EXPORT_SYMBOL_GPL(cpu_clock);
  353. EXPORT_SYMBOL_GPL(local_clock);