cpuset.c 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. #include <linux/wait.h>
  61. /*
  62. * Tracks how many cpusets are currently defined in system.
  63. * When there is only one cpuset (the root cpuset) we can
  64. * short circuit some hooks.
  65. */
  66. int number_of_cpusets __read_mostly;
  67. /* See "Frequency meter" comments, below. */
  68. struct fmeter {
  69. int cnt; /* unprocessed events count */
  70. int val; /* most recent output value */
  71. time_t time; /* clock (secs) when val computed */
  72. spinlock_t lock; /* guards read or write of above */
  73. };
  74. struct cpuset {
  75. struct cgroup_subsys_state css;
  76. unsigned long flags; /* "unsigned long" so bitops work */
  77. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  78. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  79. /*
  80. * This is old Memory Nodes tasks took on.
  81. *
  82. * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
  83. * - A new cpuset's old_mems_allowed is initialized when some
  84. * task is moved into it.
  85. * - old_mems_allowed is used in cpuset_migrate_mm() when we change
  86. * cpuset.mems_allowed and have tasks' nodemask updated, and
  87. * then old_mems_allowed is updated to mems_allowed.
  88. */
  89. nodemask_t old_mems_allowed;
  90. struct fmeter fmeter; /* memory_pressure filter */
  91. /*
  92. * Tasks are being attached to this cpuset. Used to prevent
  93. * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
  94. */
  95. int attach_in_progress;
  96. /* partition number for rebuild_sched_domains() */
  97. int pn;
  98. /* for custom sched domain */
  99. int relax_domain_level;
  100. };
  101. static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
  102. {
  103. return css ? container_of(css, struct cpuset, css) : NULL;
  104. }
  105. /* Retrieve the cpuset for a task */
  106. static inline struct cpuset *task_cs(struct task_struct *task)
  107. {
  108. return css_cs(task_css(task, cpuset_subsys_id));
  109. }
  110. static inline struct cpuset *parent_cs(struct cpuset *cs)
  111. {
  112. return css_cs(css_parent(&cs->css));
  113. }
  114. #ifdef CONFIG_NUMA
  115. static inline bool task_has_mempolicy(struct task_struct *task)
  116. {
  117. return task->mempolicy;
  118. }
  119. #else
  120. static inline bool task_has_mempolicy(struct task_struct *task)
  121. {
  122. return false;
  123. }
  124. #endif
  125. /* bits in struct cpuset flags field */
  126. typedef enum {
  127. CS_ONLINE,
  128. CS_CPU_EXCLUSIVE,
  129. CS_MEM_EXCLUSIVE,
  130. CS_MEM_HARDWALL,
  131. CS_MEMORY_MIGRATE,
  132. CS_SCHED_LOAD_BALANCE,
  133. CS_SPREAD_PAGE,
  134. CS_SPREAD_SLAB,
  135. } cpuset_flagbits_t;
  136. /* convenient tests for these bits */
  137. static inline bool is_cpuset_online(const struct cpuset *cs)
  138. {
  139. return test_bit(CS_ONLINE, &cs->flags);
  140. }
  141. static inline int is_cpu_exclusive(const struct cpuset *cs)
  142. {
  143. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  144. }
  145. static inline int is_mem_exclusive(const struct cpuset *cs)
  146. {
  147. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  148. }
  149. static inline int is_mem_hardwall(const struct cpuset *cs)
  150. {
  151. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  152. }
  153. static inline int is_sched_load_balance(const struct cpuset *cs)
  154. {
  155. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  156. }
  157. static inline int is_memory_migrate(const struct cpuset *cs)
  158. {
  159. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  160. }
  161. static inline int is_spread_page(const struct cpuset *cs)
  162. {
  163. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  164. }
  165. static inline int is_spread_slab(const struct cpuset *cs)
  166. {
  167. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  168. }
  169. static struct cpuset top_cpuset = {
  170. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  171. (1 << CS_MEM_EXCLUSIVE)),
  172. };
  173. /**
  174. * cpuset_for_each_child - traverse online children of a cpuset
  175. * @child_cs: loop cursor pointing to the current child
  176. * @pos_css: used for iteration
  177. * @parent_cs: target cpuset to walk children of
  178. *
  179. * Walk @child_cs through the online children of @parent_cs. Must be used
  180. * with RCU read locked.
  181. */
  182. #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
  183. css_for_each_child((pos_css), &(parent_cs)->css) \
  184. if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
  185. /**
  186. * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
  187. * @des_cs: loop cursor pointing to the current descendant
  188. * @pos_css: used for iteration
  189. * @root_cs: target cpuset to walk ancestor of
  190. *
  191. * Walk @des_cs through the online descendants of @root_cs. Must be used
  192. * with RCU read locked. The caller may modify @pos_css by calling
  193. * css_rightmost_descendant() to skip subtree. @root_cs is included in the
  194. * iteration and the first node to be visited.
  195. */
  196. #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
  197. css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
  198. if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
  199. /*
  200. * There are two global mutexes guarding cpuset structures - cpuset_mutex
  201. * and callback_mutex. The latter may nest inside the former. We also
  202. * require taking task_lock() when dereferencing a task's cpuset pointer.
  203. * See "The task_lock() exception", at the end of this comment.
  204. *
  205. * A task must hold both mutexes to modify cpusets. If a task holds
  206. * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
  207. * is the only task able to also acquire callback_mutex and be able to
  208. * modify cpusets. It can perform various checks on the cpuset structure
  209. * first, knowing nothing will change. It can also allocate memory while
  210. * just holding cpuset_mutex. While it is performing these checks, various
  211. * callback routines can briefly acquire callback_mutex to query cpusets.
  212. * Once it is ready to make the changes, it takes callback_mutex, blocking
  213. * everyone else.
  214. *
  215. * Calls to the kernel memory allocator can not be made while holding
  216. * callback_mutex, as that would risk double tripping on callback_mutex
  217. * from one of the callbacks into the cpuset code from within
  218. * __alloc_pages().
  219. *
  220. * If a task is only holding callback_mutex, then it has read-only
  221. * access to cpusets.
  222. *
  223. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  224. * by other task, we use alloc_lock in the task_struct fields to protect
  225. * them.
  226. *
  227. * The cpuset_common_file_read() handlers only hold callback_mutex across
  228. * small pieces of code, such as when reading out possibly multi-word
  229. * cpumasks and nodemasks.
  230. *
  231. * Accessing a task's cpuset should be done in accordance with the
  232. * guidelines for accessing subsystem state in kernel/cgroup.c
  233. */
  234. static DEFINE_MUTEX(cpuset_mutex);
  235. static DEFINE_MUTEX(callback_mutex);
  236. /*
  237. * CPU / memory hotplug is handled asynchronously.
  238. */
  239. static void cpuset_hotplug_workfn(struct work_struct *work);
  240. static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
  241. static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
  242. /*
  243. * This is ugly, but preserves the userspace API for existing cpuset
  244. * users. If someone tries to mount the "cpuset" filesystem, we
  245. * silently switch it to mount "cgroup" instead
  246. */
  247. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  248. int flags, const char *unused_dev_name, void *data)
  249. {
  250. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  251. struct dentry *ret = ERR_PTR(-ENODEV);
  252. if (cgroup_fs) {
  253. char mountopts[] =
  254. "cpuset,noprefix,"
  255. "release_agent=/sbin/cpuset_release_agent";
  256. ret = cgroup_fs->mount(cgroup_fs, flags,
  257. unused_dev_name, mountopts);
  258. put_filesystem(cgroup_fs);
  259. }
  260. return ret;
  261. }
  262. static struct file_system_type cpuset_fs_type = {
  263. .name = "cpuset",
  264. .mount = cpuset_mount,
  265. };
  266. /*
  267. * Return in pmask the portion of a cpusets's cpus_allowed that
  268. * are online. If none are online, walk up the cpuset hierarchy
  269. * until we find one that does have some online cpus. The top
  270. * cpuset always has some cpus online.
  271. *
  272. * One way or another, we guarantee to return some non-empty subset
  273. * of cpu_online_mask.
  274. *
  275. * Call with callback_mutex held.
  276. */
  277. static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
  278. {
  279. while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  280. cs = parent_cs(cs);
  281. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  282. }
  283. /*
  284. * Return in *pmask the portion of a cpusets's mems_allowed that
  285. * are online, with memory. If none are online with memory, walk
  286. * up the cpuset hierarchy until we find one that does have some
  287. * online mems. The top cpuset always has some mems online.
  288. *
  289. * One way or another, we guarantee to return some non-empty subset
  290. * of node_states[N_MEMORY].
  291. *
  292. * Call with callback_mutex held.
  293. */
  294. static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
  295. {
  296. while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
  297. cs = parent_cs(cs);
  298. nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
  299. }
  300. /*
  301. * update task's spread flag if cpuset's page/slab spread flag is set
  302. *
  303. * Called with callback_mutex/cpuset_mutex held
  304. */
  305. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  306. struct task_struct *tsk)
  307. {
  308. if (is_spread_page(cs))
  309. tsk->flags |= PF_SPREAD_PAGE;
  310. else
  311. tsk->flags &= ~PF_SPREAD_PAGE;
  312. if (is_spread_slab(cs))
  313. tsk->flags |= PF_SPREAD_SLAB;
  314. else
  315. tsk->flags &= ~PF_SPREAD_SLAB;
  316. }
  317. /*
  318. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  319. *
  320. * One cpuset is a subset of another if all its allowed CPUs and
  321. * Memory Nodes are a subset of the other, and its exclusive flags
  322. * are only set if the other's are set. Call holding cpuset_mutex.
  323. */
  324. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  325. {
  326. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  327. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  328. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  329. is_mem_exclusive(p) <= is_mem_exclusive(q);
  330. }
  331. /**
  332. * alloc_trial_cpuset - allocate a trial cpuset
  333. * @cs: the cpuset that the trial cpuset duplicates
  334. */
  335. static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
  336. {
  337. struct cpuset *trial;
  338. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  339. if (!trial)
  340. return NULL;
  341. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  342. kfree(trial);
  343. return NULL;
  344. }
  345. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  346. return trial;
  347. }
  348. /**
  349. * free_trial_cpuset - free the trial cpuset
  350. * @trial: the trial cpuset to be freed
  351. */
  352. static void free_trial_cpuset(struct cpuset *trial)
  353. {
  354. free_cpumask_var(trial->cpus_allowed);
  355. kfree(trial);
  356. }
  357. /*
  358. * validate_change() - Used to validate that any proposed cpuset change
  359. * follows the structural rules for cpusets.
  360. *
  361. * If we replaced the flag and mask values of the current cpuset
  362. * (cur) with those values in the trial cpuset (trial), would
  363. * our various subset and exclusive rules still be valid? Presumes
  364. * cpuset_mutex held.
  365. *
  366. * 'cur' is the address of an actual, in-use cpuset. Operations
  367. * such as list traversal that depend on the actual address of the
  368. * cpuset in the list must use cur below, not trial.
  369. *
  370. * 'trial' is the address of bulk structure copy of cur, with
  371. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  372. * or flags changed to new, trial values.
  373. *
  374. * Return 0 if valid, -errno if not.
  375. */
  376. static int validate_change(struct cpuset *cur, struct cpuset *trial)
  377. {
  378. struct cgroup_subsys_state *css;
  379. struct cpuset *c, *par;
  380. int ret;
  381. rcu_read_lock();
  382. /* Each of our child cpusets must be a subset of us */
  383. ret = -EBUSY;
  384. cpuset_for_each_child(c, css, cur)
  385. if (!is_cpuset_subset(c, trial))
  386. goto out;
  387. /* Remaining checks don't apply to root cpuset */
  388. ret = 0;
  389. if (cur == &top_cpuset)
  390. goto out;
  391. par = parent_cs(cur);
  392. /* We must be a subset of our parent cpuset */
  393. ret = -EACCES;
  394. if (!is_cpuset_subset(trial, par))
  395. goto out;
  396. /*
  397. * If either I or some sibling (!= me) is exclusive, we can't
  398. * overlap
  399. */
  400. ret = -EINVAL;
  401. cpuset_for_each_child(c, css, par) {
  402. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  403. c != cur &&
  404. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  405. goto out;
  406. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  407. c != cur &&
  408. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  409. goto out;
  410. }
  411. /*
  412. * Cpusets with tasks - existing or newly being attached - can't
  413. * be changed to have empty cpus_allowed or mems_allowed.
  414. */
  415. ret = -ENOSPC;
  416. if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress)) {
  417. if (!cpumask_empty(cur->cpus_allowed) &&
  418. cpumask_empty(trial->cpus_allowed))
  419. goto out;
  420. if (!nodes_empty(cur->mems_allowed) &&
  421. nodes_empty(trial->mems_allowed))
  422. goto out;
  423. }
  424. ret = 0;
  425. out:
  426. rcu_read_unlock();
  427. return ret;
  428. }
  429. #ifdef CONFIG_SMP
  430. /*
  431. * Helper routine for generate_sched_domains().
  432. * Do cpusets a, b have overlapping cpus_allowed masks?
  433. */
  434. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  435. {
  436. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  437. }
  438. static void
  439. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  440. {
  441. if (dattr->relax_domain_level < c->relax_domain_level)
  442. dattr->relax_domain_level = c->relax_domain_level;
  443. return;
  444. }
  445. static void update_domain_attr_tree(struct sched_domain_attr *dattr,
  446. struct cpuset *root_cs)
  447. {
  448. struct cpuset *cp;
  449. struct cgroup_subsys_state *pos_css;
  450. rcu_read_lock();
  451. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  452. if (cp == root_cs)
  453. continue;
  454. /* skip the whole subtree if @cp doesn't have any CPU */
  455. if (cpumask_empty(cp->cpus_allowed)) {
  456. pos_css = css_rightmost_descendant(pos_css);
  457. continue;
  458. }
  459. if (is_sched_load_balance(cp))
  460. update_domain_attr(dattr, cp);
  461. }
  462. rcu_read_unlock();
  463. }
  464. /*
  465. * generate_sched_domains()
  466. *
  467. * This function builds a partial partition of the systems CPUs
  468. * A 'partial partition' is a set of non-overlapping subsets whose
  469. * union is a subset of that set.
  470. * The output of this function needs to be passed to kernel/sched/core.c
  471. * partition_sched_domains() routine, which will rebuild the scheduler's
  472. * load balancing domains (sched domains) as specified by that partial
  473. * partition.
  474. *
  475. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  476. * for a background explanation of this.
  477. *
  478. * Does not return errors, on the theory that the callers of this
  479. * routine would rather not worry about failures to rebuild sched
  480. * domains when operating in the severe memory shortage situations
  481. * that could cause allocation failures below.
  482. *
  483. * Must be called with cpuset_mutex held.
  484. *
  485. * The three key local variables below are:
  486. * q - a linked-list queue of cpuset pointers, used to implement a
  487. * top-down scan of all cpusets. This scan loads a pointer
  488. * to each cpuset marked is_sched_load_balance into the
  489. * array 'csa'. For our purposes, rebuilding the schedulers
  490. * sched domains, we can ignore !is_sched_load_balance cpusets.
  491. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  492. * that need to be load balanced, for convenient iterative
  493. * access by the subsequent code that finds the best partition,
  494. * i.e the set of domains (subsets) of CPUs such that the
  495. * cpus_allowed of every cpuset marked is_sched_load_balance
  496. * is a subset of one of these domains, while there are as
  497. * many such domains as possible, each as small as possible.
  498. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  499. * the kernel/sched/core.c routine partition_sched_domains() in a
  500. * convenient format, that can be easily compared to the prior
  501. * value to determine what partition elements (sched domains)
  502. * were changed (added or removed.)
  503. *
  504. * Finding the best partition (set of domains):
  505. * The triple nested loops below over i, j, k scan over the
  506. * load balanced cpusets (using the array of cpuset pointers in
  507. * csa[]) looking for pairs of cpusets that have overlapping
  508. * cpus_allowed, but which don't have the same 'pn' partition
  509. * number and gives them in the same partition number. It keeps
  510. * looping on the 'restart' label until it can no longer find
  511. * any such pairs.
  512. *
  513. * The union of the cpus_allowed masks from the set of
  514. * all cpusets having the same 'pn' value then form the one
  515. * element of the partition (one sched domain) to be passed to
  516. * partition_sched_domains().
  517. */
  518. static int generate_sched_domains(cpumask_var_t **domains,
  519. struct sched_domain_attr **attributes)
  520. {
  521. struct cpuset *cp; /* scans q */
  522. struct cpuset **csa; /* array of all cpuset ptrs */
  523. int csn; /* how many cpuset ptrs in csa so far */
  524. int i, j, k; /* indices for partition finding loops */
  525. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  526. struct sched_domain_attr *dattr; /* attributes for custom domains */
  527. int ndoms = 0; /* number of sched domains in result */
  528. int nslot; /* next empty doms[] struct cpumask slot */
  529. struct cgroup_subsys_state *pos_css;
  530. doms = NULL;
  531. dattr = NULL;
  532. csa = NULL;
  533. /* Special case for the 99% of systems with one, full, sched domain */
  534. if (is_sched_load_balance(&top_cpuset)) {
  535. ndoms = 1;
  536. doms = alloc_sched_domains(ndoms);
  537. if (!doms)
  538. goto done;
  539. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  540. if (dattr) {
  541. *dattr = SD_ATTR_INIT;
  542. update_domain_attr_tree(dattr, &top_cpuset);
  543. }
  544. cpumask_copy(doms[0], top_cpuset.cpus_allowed);
  545. goto done;
  546. }
  547. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  548. if (!csa)
  549. goto done;
  550. csn = 0;
  551. rcu_read_lock();
  552. cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
  553. if (cp == &top_cpuset)
  554. continue;
  555. /*
  556. * Continue traversing beyond @cp iff @cp has some CPUs and
  557. * isn't load balancing. The former is obvious. The
  558. * latter: All child cpusets contain a subset of the
  559. * parent's cpus, so just skip them, and then we call
  560. * update_domain_attr_tree() to calc relax_domain_level of
  561. * the corresponding sched domain.
  562. */
  563. if (!cpumask_empty(cp->cpus_allowed) &&
  564. !is_sched_load_balance(cp))
  565. continue;
  566. if (is_sched_load_balance(cp))
  567. csa[csn++] = cp;
  568. /* skip @cp's subtree */
  569. pos_css = css_rightmost_descendant(pos_css);
  570. }
  571. rcu_read_unlock();
  572. for (i = 0; i < csn; i++)
  573. csa[i]->pn = i;
  574. ndoms = csn;
  575. restart:
  576. /* Find the best partition (set of sched domains) */
  577. for (i = 0; i < csn; i++) {
  578. struct cpuset *a = csa[i];
  579. int apn = a->pn;
  580. for (j = 0; j < csn; j++) {
  581. struct cpuset *b = csa[j];
  582. int bpn = b->pn;
  583. if (apn != bpn && cpusets_overlap(a, b)) {
  584. for (k = 0; k < csn; k++) {
  585. struct cpuset *c = csa[k];
  586. if (c->pn == bpn)
  587. c->pn = apn;
  588. }
  589. ndoms--; /* one less element */
  590. goto restart;
  591. }
  592. }
  593. }
  594. /*
  595. * Now we know how many domains to create.
  596. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  597. */
  598. doms = alloc_sched_domains(ndoms);
  599. if (!doms)
  600. goto done;
  601. /*
  602. * The rest of the code, including the scheduler, can deal with
  603. * dattr==NULL case. No need to abort if alloc fails.
  604. */
  605. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  606. for (nslot = 0, i = 0; i < csn; i++) {
  607. struct cpuset *a = csa[i];
  608. struct cpumask *dp;
  609. int apn = a->pn;
  610. if (apn < 0) {
  611. /* Skip completed partitions */
  612. continue;
  613. }
  614. dp = doms[nslot];
  615. if (nslot == ndoms) {
  616. static int warnings = 10;
  617. if (warnings) {
  618. printk(KERN_WARNING
  619. "rebuild_sched_domains confused:"
  620. " nslot %d, ndoms %d, csn %d, i %d,"
  621. " apn %d\n",
  622. nslot, ndoms, csn, i, apn);
  623. warnings--;
  624. }
  625. continue;
  626. }
  627. cpumask_clear(dp);
  628. if (dattr)
  629. *(dattr + nslot) = SD_ATTR_INIT;
  630. for (j = i; j < csn; j++) {
  631. struct cpuset *b = csa[j];
  632. if (apn == b->pn) {
  633. cpumask_or(dp, dp, b->cpus_allowed);
  634. if (dattr)
  635. update_domain_attr_tree(dattr + nslot, b);
  636. /* Done with this partition */
  637. b->pn = -1;
  638. }
  639. }
  640. nslot++;
  641. }
  642. BUG_ON(nslot != ndoms);
  643. done:
  644. kfree(csa);
  645. /*
  646. * Fallback to the default domain if kmalloc() failed.
  647. * See comments in partition_sched_domains().
  648. */
  649. if (doms == NULL)
  650. ndoms = 1;
  651. *domains = doms;
  652. *attributes = dattr;
  653. return ndoms;
  654. }
  655. /*
  656. * Rebuild scheduler domains.
  657. *
  658. * If the flag 'sched_load_balance' of any cpuset with non-empty
  659. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  660. * which has that flag enabled, or if any cpuset with a non-empty
  661. * 'cpus' is removed, then call this routine to rebuild the
  662. * scheduler's dynamic sched domains.
  663. *
  664. * Call with cpuset_mutex held. Takes get_online_cpus().
  665. */
  666. static void rebuild_sched_domains_locked(void)
  667. {
  668. struct sched_domain_attr *attr;
  669. cpumask_var_t *doms;
  670. int ndoms;
  671. lockdep_assert_held(&cpuset_mutex);
  672. get_online_cpus();
  673. /*
  674. * We have raced with CPU hotplug. Don't do anything to avoid
  675. * passing doms with offlined cpu to partition_sched_domains().
  676. * Anyways, hotplug work item will rebuild sched domains.
  677. */
  678. if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
  679. goto out;
  680. /* Generate domain masks and attrs */
  681. ndoms = generate_sched_domains(&doms, &attr);
  682. /* Have scheduler rebuild the domains */
  683. partition_sched_domains(ndoms, doms, attr);
  684. out:
  685. put_online_cpus();
  686. }
  687. #else /* !CONFIG_SMP */
  688. static void rebuild_sched_domains_locked(void)
  689. {
  690. }
  691. #endif /* CONFIG_SMP */
  692. void rebuild_sched_domains(void)
  693. {
  694. mutex_lock(&cpuset_mutex);
  695. rebuild_sched_domains_locked();
  696. mutex_unlock(&cpuset_mutex);
  697. }
  698. /*
  699. * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
  700. * @cs: the cpuset in interest
  701. *
  702. * A cpuset's effective cpumask is the cpumask of the nearest ancestor
  703. * with non-empty cpus. We use effective cpumask whenever:
  704. * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
  705. * if the cpuset they reside in has no cpus)
  706. * - we want to retrieve task_cs(tsk)'s cpus_allowed.
  707. *
  708. * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
  709. * exception. See comments there.
  710. */
  711. static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
  712. {
  713. while (cpumask_empty(cs->cpus_allowed))
  714. cs = parent_cs(cs);
  715. return cs;
  716. }
  717. /*
  718. * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
  719. * @cs: the cpuset in interest
  720. *
  721. * A cpuset's effective nodemask is the nodemask of the nearest ancestor
  722. * with non-empty memss. We use effective nodemask whenever:
  723. * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
  724. * if the cpuset they reside in has no mems)
  725. * - we want to retrieve task_cs(tsk)'s mems_allowed.
  726. *
  727. * Called with cpuset_mutex held.
  728. */
  729. static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
  730. {
  731. while (nodes_empty(cs->mems_allowed))
  732. cs = parent_cs(cs);
  733. return cs;
  734. }
  735. /**
  736. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  737. * @tsk: task to test
  738. * @data: cpuset to @tsk belongs to
  739. *
  740. * Called by css_scan_tasks() for each task in a cgroup whose cpus_allowed
  741. * mask needs to be changed.
  742. *
  743. * We don't need to re-check for the cgroup/cpuset membership, since we're
  744. * holding cpuset_mutex at this point.
  745. */
  746. static void cpuset_change_cpumask(struct task_struct *tsk, void *data)
  747. {
  748. struct cpuset *cs = data;
  749. struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
  750. set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
  751. }
  752. /**
  753. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  754. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  755. * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
  756. *
  757. * Called with cpuset_mutex held
  758. *
  759. * The css_scan_tasks() function will scan all the tasks in a cgroup,
  760. * calling callback functions for each.
  761. *
  762. * No return value. It's guaranteed that css_scan_tasks() always returns 0
  763. * if @heap != NULL.
  764. */
  765. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  766. {
  767. css_scan_tasks(&cs->css, NULL, cpuset_change_cpumask, cs, heap);
  768. }
  769. /*
  770. * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
  771. * @root_cs: the root cpuset of the hierarchy
  772. * @update_root: update root cpuset or not?
  773. * @heap: the heap used by css_scan_tasks()
  774. *
  775. * This will update cpumasks of tasks in @root_cs and all other empty cpusets
  776. * which take on cpumask of @root_cs.
  777. *
  778. * Called with cpuset_mutex held
  779. */
  780. static void update_tasks_cpumask_hier(struct cpuset *root_cs,
  781. bool update_root, struct ptr_heap *heap)
  782. {
  783. struct cpuset *cp;
  784. struct cgroup_subsys_state *pos_css;
  785. rcu_read_lock();
  786. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  787. if (cp == root_cs) {
  788. if (!update_root)
  789. continue;
  790. } else {
  791. /* skip the whole subtree if @cp have some CPU */
  792. if (!cpumask_empty(cp->cpus_allowed)) {
  793. pos_css = css_rightmost_descendant(pos_css);
  794. continue;
  795. }
  796. }
  797. if (!css_tryget(&cp->css))
  798. continue;
  799. rcu_read_unlock();
  800. update_tasks_cpumask(cp, heap);
  801. rcu_read_lock();
  802. css_put(&cp->css);
  803. }
  804. rcu_read_unlock();
  805. }
  806. /**
  807. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  808. * @cs: the cpuset to consider
  809. * @buf: buffer of cpu numbers written to this cpuset
  810. */
  811. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  812. const char *buf)
  813. {
  814. struct ptr_heap heap;
  815. int retval;
  816. int is_load_balanced;
  817. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  818. if (cs == &top_cpuset)
  819. return -EACCES;
  820. /*
  821. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  822. * Since cpulist_parse() fails on an empty mask, we special case
  823. * that parsing. The validate_change() call ensures that cpusets
  824. * with tasks have cpus.
  825. */
  826. if (!*buf) {
  827. cpumask_clear(trialcs->cpus_allowed);
  828. } else {
  829. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  830. if (retval < 0)
  831. return retval;
  832. if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
  833. return -EINVAL;
  834. }
  835. /* Nothing to do if the cpus didn't change */
  836. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  837. return 0;
  838. retval = validate_change(cs, trialcs);
  839. if (retval < 0)
  840. return retval;
  841. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  842. if (retval)
  843. return retval;
  844. is_load_balanced = is_sched_load_balance(trialcs);
  845. mutex_lock(&callback_mutex);
  846. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  847. mutex_unlock(&callback_mutex);
  848. update_tasks_cpumask_hier(cs, true, &heap);
  849. heap_free(&heap);
  850. if (is_load_balanced)
  851. rebuild_sched_domains_locked();
  852. return 0;
  853. }
  854. /*
  855. * cpuset_migrate_mm
  856. *
  857. * Migrate memory region from one set of nodes to another.
  858. *
  859. * Temporarilly set tasks mems_allowed to target nodes of migration,
  860. * so that the migration code can allocate pages on these nodes.
  861. *
  862. * While the mm_struct we are migrating is typically from some
  863. * other task, the task_struct mems_allowed that we are hacking
  864. * is for our current task, which must allocate new pages for that
  865. * migrating memory region.
  866. */
  867. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  868. const nodemask_t *to)
  869. {
  870. struct task_struct *tsk = current;
  871. struct cpuset *mems_cs;
  872. tsk->mems_allowed = *to;
  873. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  874. rcu_read_lock();
  875. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  876. guarantee_online_mems(mems_cs, &tsk->mems_allowed);
  877. rcu_read_unlock();
  878. }
  879. /*
  880. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  881. * @tsk: the task to change
  882. * @newmems: new nodes that the task will be set
  883. *
  884. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  885. * we structure updates as setting all new allowed nodes, then clearing newly
  886. * disallowed ones.
  887. */
  888. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  889. nodemask_t *newmems)
  890. {
  891. bool need_loop;
  892. /*
  893. * Allow tasks that have access to memory reserves because they have
  894. * been OOM killed to get memory anywhere.
  895. */
  896. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  897. return;
  898. if (current->flags & PF_EXITING) /* Let dying task have memory */
  899. return;
  900. task_lock(tsk);
  901. /*
  902. * Determine if a loop is necessary if another thread is doing
  903. * get_mems_allowed(). If at least one node remains unchanged and
  904. * tsk does not have a mempolicy, then an empty nodemask will not be
  905. * possible when mems_allowed is larger than a word.
  906. */
  907. need_loop = task_has_mempolicy(tsk) ||
  908. !nodes_intersects(*newmems, tsk->mems_allowed);
  909. if (need_loop) {
  910. local_irq_disable();
  911. write_seqcount_begin(&tsk->mems_allowed_seq);
  912. }
  913. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  914. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  915. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  916. tsk->mems_allowed = *newmems;
  917. if (need_loop) {
  918. write_seqcount_end(&tsk->mems_allowed_seq);
  919. local_irq_enable();
  920. }
  921. task_unlock(tsk);
  922. }
  923. struct cpuset_change_nodemask_arg {
  924. struct cpuset *cs;
  925. nodemask_t *newmems;
  926. };
  927. /*
  928. * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
  929. * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
  930. * memory_migrate flag is set. Called with cpuset_mutex held.
  931. */
  932. static void cpuset_change_nodemask(struct task_struct *p, void *data)
  933. {
  934. struct cpuset_change_nodemask_arg *arg = data;
  935. struct cpuset *cs = arg->cs;
  936. struct mm_struct *mm;
  937. int migrate;
  938. cpuset_change_task_nodemask(p, arg->newmems);
  939. mm = get_task_mm(p);
  940. if (!mm)
  941. return;
  942. migrate = is_memory_migrate(cs);
  943. mpol_rebind_mm(mm, &cs->mems_allowed);
  944. if (migrate)
  945. cpuset_migrate_mm(mm, &cs->old_mems_allowed, arg->newmems);
  946. mmput(mm);
  947. }
  948. static void *cpuset_being_rebound;
  949. /**
  950. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  951. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  952. * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
  953. *
  954. * Called with cpuset_mutex held. No return value. It's guaranteed that
  955. * css_scan_tasks() always returns 0 if @heap != NULL.
  956. */
  957. static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
  958. {
  959. static nodemask_t newmems; /* protected by cpuset_mutex */
  960. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  961. struct cpuset_change_nodemask_arg arg = { .cs = cs,
  962. .newmems = &newmems };
  963. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  964. guarantee_online_mems(mems_cs, &newmems);
  965. /*
  966. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  967. * take while holding tasklist_lock. Forks can happen - the
  968. * mpol_dup() cpuset_being_rebound check will catch such forks,
  969. * and rebind their vma mempolicies too. Because we still hold
  970. * the global cpuset_mutex, we know that no other rebind effort
  971. * will be contending for the global variable cpuset_being_rebound.
  972. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  973. * is idempotent. Also migrate pages in each mm to new nodes.
  974. */
  975. css_scan_tasks(&cs->css, NULL, cpuset_change_nodemask, &arg, heap);
  976. /*
  977. * All the tasks' nodemasks have been updated, update
  978. * cs->old_mems_allowed.
  979. */
  980. cs->old_mems_allowed = newmems;
  981. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  982. cpuset_being_rebound = NULL;
  983. }
  984. /*
  985. * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
  986. * @cs: the root cpuset of the hierarchy
  987. * @update_root: update the root cpuset or not?
  988. * @heap: the heap used by css_scan_tasks()
  989. *
  990. * This will update nodemasks of tasks in @root_cs and all other empty cpusets
  991. * which take on nodemask of @root_cs.
  992. *
  993. * Called with cpuset_mutex held
  994. */
  995. static void update_tasks_nodemask_hier(struct cpuset *root_cs,
  996. bool update_root, struct ptr_heap *heap)
  997. {
  998. struct cpuset *cp;
  999. struct cgroup_subsys_state *pos_css;
  1000. rcu_read_lock();
  1001. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  1002. if (cp == root_cs) {
  1003. if (!update_root)
  1004. continue;
  1005. } else {
  1006. /* skip the whole subtree if @cp have some CPU */
  1007. if (!nodes_empty(cp->mems_allowed)) {
  1008. pos_css = css_rightmost_descendant(pos_css);
  1009. continue;
  1010. }
  1011. }
  1012. if (!css_tryget(&cp->css))
  1013. continue;
  1014. rcu_read_unlock();
  1015. update_tasks_nodemask(cp, heap);
  1016. rcu_read_lock();
  1017. css_put(&cp->css);
  1018. }
  1019. rcu_read_unlock();
  1020. }
  1021. /*
  1022. * Handle user request to change the 'mems' memory placement
  1023. * of a cpuset. Needs to validate the request, update the
  1024. * cpusets mems_allowed, and for each task in the cpuset,
  1025. * update mems_allowed and rebind task's mempolicy and any vma
  1026. * mempolicies and if the cpuset is marked 'memory_migrate',
  1027. * migrate the tasks pages to the new memory.
  1028. *
  1029. * Call with cpuset_mutex held. May take callback_mutex during call.
  1030. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  1031. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  1032. * their mempolicies to the cpusets new mems_allowed.
  1033. */
  1034. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  1035. const char *buf)
  1036. {
  1037. int retval;
  1038. struct ptr_heap heap;
  1039. /*
  1040. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  1041. * it's read-only
  1042. */
  1043. if (cs == &top_cpuset) {
  1044. retval = -EACCES;
  1045. goto done;
  1046. }
  1047. /*
  1048. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  1049. * Since nodelist_parse() fails on an empty mask, we special case
  1050. * that parsing. The validate_change() call ensures that cpusets
  1051. * with tasks have memory.
  1052. */
  1053. if (!*buf) {
  1054. nodes_clear(trialcs->mems_allowed);
  1055. } else {
  1056. retval = nodelist_parse(buf, trialcs->mems_allowed);
  1057. if (retval < 0)
  1058. goto done;
  1059. if (!nodes_subset(trialcs->mems_allowed,
  1060. node_states[N_MEMORY])) {
  1061. retval = -EINVAL;
  1062. goto done;
  1063. }
  1064. }
  1065. if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
  1066. retval = 0; /* Too easy - nothing to do */
  1067. goto done;
  1068. }
  1069. retval = validate_change(cs, trialcs);
  1070. if (retval < 0)
  1071. goto done;
  1072. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1073. if (retval < 0)
  1074. goto done;
  1075. mutex_lock(&callback_mutex);
  1076. cs->mems_allowed = trialcs->mems_allowed;
  1077. mutex_unlock(&callback_mutex);
  1078. update_tasks_nodemask_hier(cs, true, &heap);
  1079. heap_free(&heap);
  1080. done:
  1081. return retval;
  1082. }
  1083. int current_cpuset_is_being_rebound(void)
  1084. {
  1085. return task_cs(current) == cpuset_being_rebound;
  1086. }
  1087. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1088. {
  1089. #ifdef CONFIG_SMP
  1090. if (val < -1 || val >= sched_domain_level_max)
  1091. return -EINVAL;
  1092. #endif
  1093. if (val != cs->relax_domain_level) {
  1094. cs->relax_domain_level = val;
  1095. if (!cpumask_empty(cs->cpus_allowed) &&
  1096. is_sched_load_balance(cs))
  1097. rebuild_sched_domains_locked();
  1098. }
  1099. return 0;
  1100. }
  1101. /**
  1102. * cpuset_change_flag - make a task's spread flags the same as its cpuset's
  1103. * @tsk: task to be updated
  1104. * @data: cpuset to @tsk belongs to
  1105. *
  1106. * Called by css_scan_tasks() for each task in a cgroup.
  1107. *
  1108. * We don't need to re-check for the cgroup/cpuset membership, since we're
  1109. * holding cpuset_mutex at this point.
  1110. */
  1111. static void cpuset_change_flag(struct task_struct *tsk, void *data)
  1112. {
  1113. struct cpuset *cs = data;
  1114. cpuset_update_task_spread_flag(cs, tsk);
  1115. }
  1116. /**
  1117. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1118. * @cs: the cpuset in which each task's spread flags needs to be changed
  1119. * @heap: if NULL, defer allocating heap memory to css_scan_tasks()
  1120. *
  1121. * Called with cpuset_mutex held
  1122. *
  1123. * The css_scan_tasks() function will scan all the tasks in a cgroup,
  1124. * calling callback functions for each.
  1125. *
  1126. * No return value. It's guaranteed that css_scan_tasks() always returns 0
  1127. * if @heap != NULL.
  1128. */
  1129. static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
  1130. {
  1131. css_scan_tasks(&cs->css, NULL, cpuset_change_flag, cs, heap);
  1132. }
  1133. /*
  1134. * update_flag - read a 0 or a 1 in a file and update associated flag
  1135. * bit: the bit to update (see cpuset_flagbits_t)
  1136. * cs: the cpuset to update
  1137. * turning_on: whether the flag is being set or cleared
  1138. *
  1139. * Call with cpuset_mutex held.
  1140. */
  1141. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1142. int turning_on)
  1143. {
  1144. struct cpuset *trialcs;
  1145. int balance_flag_changed;
  1146. int spread_flag_changed;
  1147. struct ptr_heap heap;
  1148. int err;
  1149. trialcs = alloc_trial_cpuset(cs);
  1150. if (!trialcs)
  1151. return -ENOMEM;
  1152. if (turning_on)
  1153. set_bit(bit, &trialcs->flags);
  1154. else
  1155. clear_bit(bit, &trialcs->flags);
  1156. err = validate_change(cs, trialcs);
  1157. if (err < 0)
  1158. goto out;
  1159. err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1160. if (err < 0)
  1161. goto out;
  1162. balance_flag_changed = (is_sched_load_balance(cs) !=
  1163. is_sched_load_balance(trialcs));
  1164. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1165. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1166. mutex_lock(&callback_mutex);
  1167. cs->flags = trialcs->flags;
  1168. mutex_unlock(&callback_mutex);
  1169. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1170. rebuild_sched_domains_locked();
  1171. if (spread_flag_changed)
  1172. update_tasks_flags(cs, &heap);
  1173. heap_free(&heap);
  1174. out:
  1175. free_trial_cpuset(trialcs);
  1176. return err;
  1177. }
  1178. /*
  1179. * Frequency meter - How fast is some event occurring?
  1180. *
  1181. * These routines manage a digitally filtered, constant time based,
  1182. * event frequency meter. There are four routines:
  1183. * fmeter_init() - initialize a frequency meter.
  1184. * fmeter_markevent() - called each time the event happens.
  1185. * fmeter_getrate() - returns the recent rate of such events.
  1186. * fmeter_update() - internal routine used to update fmeter.
  1187. *
  1188. * A common data structure is passed to each of these routines,
  1189. * which is used to keep track of the state required to manage the
  1190. * frequency meter and its digital filter.
  1191. *
  1192. * The filter works on the number of events marked per unit time.
  1193. * The filter is single-pole low-pass recursive (IIR). The time unit
  1194. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1195. * simulate 3 decimal digits of precision (multiplied by 1000).
  1196. *
  1197. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1198. * has a half-life of 10 seconds, meaning that if the events quit
  1199. * happening, then the rate returned from the fmeter_getrate()
  1200. * will be cut in half each 10 seconds, until it converges to zero.
  1201. *
  1202. * It is not worth doing a real infinitely recursive filter. If more
  1203. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1204. * just compute FM_MAXTICKS ticks worth, by which point the level
  1205. * will be stable.
  1206. *
  1207. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1208. * arithmetic overflow in the fmeter_update() routine.
  1209. *
  1210. * Given the simple 32 bit integer arithmetic used, this meter works
  1211. * best for reporting rates between one per millisecond (msec) and
  1212. * one per 32 (approx) seconds. At constant rates faster than one
  1213. * per msec it maxes out at values just under 1,000,000. At constant
  1214. * rates between one per msec, and one per second it will stabilize
  1215. * to a value N*1000, where N is the rate of events per second.
  1216. * At constant rates between one per second and one per 32 seconds,
  1217. * it will be choppy, moving up on the seconds that have an event,
  1218. * and then decaying until the next event. At rates slower than
  1219. * about one in 32 seconds, it decays all the way back to zero between
  1220. * each event.
  1221. */
  1222. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1223. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1224. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1225. #define FM_SCALE 1000 /* faux fixed point scale */
  1226. /* Initialize a frequency meter */
  1227. static void fmeter_init(struct fmeter *fmp)
  1228. {
  1229. fmp->cnt = 0;
  1230. fmp->val = 0;
  1231. fmp->time = 0;
  1232. spin_lock_init(&fmp->lock);
  1233. }
  1234. /* Internal meter update - process cnt events and update value */
  1235. static void fmeter_update(struct fmeter *fmp)
  1236. {
  1237. time_t now = get_seconds();
  1238. time_t ticks = now - fmp->time;
  1239. if (ticks == 0)
  1240. return;
  1241. ticks = min(FM_MAXTICKS, ticks);
  1242. while (ticks-- > 0)
  1243. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1244. fmp->time = now;
  1245. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1246. fmp->cnt = 0;
  1247. }
  1248. /* Process any previous ticks, then bump cnt by one (times scale). */
  1249. static void fmeter_markevent(struct fmeter *fmp)
  1250. {
  1251. spin_lock(&fmp->lock);
  1252. fmeter_update(fmp);
  1253. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1254. spin_unlock(&fmp->lock);
  1255. }
  1256. /* Process any previous ticks, then return current value. */
  1257. static int fmeter_getrate(struct fmeter *fmp)
  1258. {
  1259. int val;
  1260. spin_lock(&fmp->lock);
  1261. fmeter_update(fmp);
  1262. val = fmp->val;
  1263. spin_unlock(&fmp->lock);
  1264. return val;
  1265. }
  1266. /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
  1267. static int cpuset_can_attach(struct cgroup_subsys_state *css,
  1268. struct cgroup_taskset *tset)
  1269. {
  1270. struct cpuset *cs = css_cs(css);
  1271. struct task_struct *task;
  1272. int ret;
  1273. mutex_lock(&cpuset_mutex);
  1274. /*
  1275. * We allow to move tasks into an empty cpuset if sane_behavior
  1276. * flag is set.
  1277. */
  1278. ret = -ENOSPC;
  1279. if (!cgroup_sane_behavior(css->cgroup) &&
  1280. (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
  1281. goto out_unlock;
  1282. cgroup_taskset_for_each(task, css, tset) {
  1283. /*
  1284. * Kthreads which disallow setaffinity shouldn't be moved
  1285. * to a new cpuset; we don't want to change their cpu
  1286. * affinity and isolating such threads by their set of
  1287. * allowed nodes is unnecessary. Thus, cpusets are not
  1288. * applicable for such threads. This prevents checking for
  1289. * success of set_cpus_allowed_ptr() on all attached tasks
  1290. * before cpus_allowed may be changed.
  1291. */
  1292. ret = -EINVAL;
  1293. if (task->flags & PF_NO_SETAFFINITY)
  1294. goto out_unlock;
  1295. ret = security_task_setscheduler(task);
  1296. if (ret)
  1297. goto out_unlock;
  1298. }
  1299. /*
  1300. * Mark attach is in progress. This makes validate_change() fail
  1301. * changes which zero cpus/mems_allowed.
  1302. */
  1303. cs->attach_in_progress++;
  1304. ret = 0;
  1305. out_unlock:
  1306. mutex_unlock(&cpuset_mutex);
  1307. return ret;
  1308. }
  1309. static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
  1310. struct cgroup_taskset *tset)
  1311. {
  1312. mutex_lock(&cpuset_mutex);
  1313. css_cs(css)->attach_in_progress--;
  1314. mutex_unlock(&cpuset_mutex);
  1315. }
  1316. /*
  1317. * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
  1318. * but we can't allocate it dynamically there. Define it global and
  1319. * allocate from cpuset_init().
  1320. */
  1321. static cpumask_var_t cpus_attach;
  1322. static void cpuset_attach(struct cgroup_subsys_state *css,
  1323. struct cgroup_taskset *tset)
  1324. {
  1325. /* static buf protected by cpuset_mutex */
  1326. static nodemask_t cpuset_attach_nodemask_to;
  1327. struct mm_struct *mm;
  1328. struct task_struct *task;
  1329. struct task_struct *leader = cgroup_taskset_first(tset);
  1330. struct cgroup_subsys_state *oldcss = cgroup_taskset_cur_css(tset,
  1331. cpuset_subsys_id);
  1332. struct cpuset *cs = css_cs(css);
  1333. struct cpuset *oldcs = css_cs(oldcss);
  1334. struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
  1335. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  1336. mutex_lock(&cpuset_mutex);
  1337. /* prepare for attach */
  1338. if (cs == &top_cpuset)
  1339. cpumask_copy(cpus_attach, cpu_possible_mask);
  1340. else
  1341. guarantee_online_cpus(cpus_cs, cpus_attach);
  1342. guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
  1343. cgroup_taskset_for_each(task, css, tset) {
  1344. /*
  1345. * can_attach beforehand should guarantee that this doesn't
  1346. * fail. TODO: have a better way to handle failure here
  1347. */
  1348. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1349. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1350. cpuset_update_task_spread_flag(cs, task);
  1351. }
  1352. /*
  1353. * Change mm, possibly for multiple threads in a threadgroup. This is
  1354. * expensive and may sleep.
  1355. */
  1356. cpuset_attach_nodemask_to = cs->mems_allowed;
  1357. mm = get_task_mm(leader);
  1358. if (mm) {
  1359. struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
  1360. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1361. /*
  1362. * old_mems_allowed is the same with mems_allowed here, except
  1363. * if this task is being moved automatically due to hotplug.
  1364. * In that case @mems_allowed has been updated and is empty,
  1365. * so @old_mems_allowed is the right nodesets that we migrate
  1366. * mm from.
  1367. */
  1368. if (is_memory_migrate(cs)) {
  1369. cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
  1370. &cpuset_attach_nodemask_to);
  1371. }
  1372. mmput(mm);
  1373. }
  1374. cs->old_mems_allowed = cpuset_attach_nodemask_to;
  1375. cs->attach_in_progress--;
  1376. if (!cs->attach_in_progress)
  1377. wake_up(&cpuset_attach_wq);
  1378. mutex_unlock(&cpuset_mutex);
  1379. }
  1380. /* The various types of files and directories in a cpuset file system */
  1381. typedef enum {
  1382. FILE_MEMORY_MIGRATE,
  1383. FILE_CPULIST,
  1384. FILE_MEMLIST,
  1385. FILE_CPU_EXCLUSIVE,
  1386. FILE_MEM_EXCLUSIVE,
  1387. FILE_MEM_HARDWALL,
  1388. FILE_SCHED_LOAD_BALANCE,
  1389. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1390. FILE_MEMORY_PRESSURE_ENABLED,
  1391. FILE_MEMORY_PRESSURE,
  1392. FILE_SPREAD_PAGE,
  1393. FILE_SPREAD_SLAB,
  1394. } cpuset_filetype_t;
  1395. static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
  1396. u64 val)
  1397. {
  1398. struct cpuset *cs = css_cs(css);
  1399. cpuset_filetype_t type = cft->private;
  1400. int retval = 0;
  1401. mutex_lock(&cpuset_mutex);
  1402. if (!is_cpuset_online(cs)) {
  1403. retval = -ENODEV;
  1404. goto out_unlock;
  1405. }
  1406. switch (type) {
  1407. case FILE_CPU_EXCLUSIVE:
  1408. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1409. break;
  1410. case FILE_MEM_EXCLUSIVE:
  1411. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1412. break;
  1413. case FILE_MEM_HARDWALL:
  1414. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1415. break;
  1416. case FILE_SCHED_LOAD_BALANCE:
  1417. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1418. break;
  1419. case FILE_MEMORY_MIGRATE:
  1420. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1421. break;
  1422. case FILE_MEMORY_PRESSURE_ENABLED:
  1423. cpuset_memory_pressure_enabled = !!val;
  1424. break;
  1425. case FILE_MEMORY_PRESSURE:
  1426. retval = -EACCES;
  1427. break;
  1428. case FILE_SPREAD_PAGE:
  1429. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1430. break;
  1431. case FILE_SPREAD_SLAB:
  1432. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1433. break;
  1434. default:
  1435. retval = -EINVAL;
  1436. break;
  1437. }
  1438. out_unlock:
  1439. mutex_unlock(&cpuset_mutex);
  1440. return retval;
  1441. }
  1442. static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
  1443. s64 val)
  1444. {
  1445. struct cpuset *cs = css_cs(css);
  1446. cpuset_filetype_t type = cft->private;
  1447. int retval = -ENODEV;
  1448. mutex_lock(&cpuset_mutex);
  1449. if (!is_cpuset_online(cs))
  1450. goto out_unlock;
  1451. switch (type) {
  1452. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1453. retval = update_relax_domain_level(cs, val);
  1454. break;
  1455. default:
  1456. retval = -EINVAL;
  1457. break;
  1458. }
  1459. out_unlock:
  1460. mutex_unlock(&cpuset_mutex);
  1461. return retval;
  1462. }
  1463. /*
  1464. * Common handling for a write to a "cpus" or "mems" file.
  1465. */
  1466. static int cpuset_write_resmask(struct cgroup_subsys_state *css,
  1467. struct cftype *cft, const char *buf)
  1468. {
  1469. struct cpuset *cs = css_cs(css);
  1470. struct cpuset *trialcs;
  1471. int retval = -ENODEV;
  1472. /*
  1473. * CPU or memory hotunplug may leave @cs w/o any execution
  1474. * resources, in which case the hotplug code asynchronously updates
  1475. * configuration and transfers all tasks to the nearest ancestor
  1476. * which can execute.
  1477. *
  1478. * As writes to "cpus" or "mems" may restore @cs's execution
  1479. * resources, wait for the previously scheduled operations before
  1480. * proceeding, so that we don't end up keep removing tasks added
  1481. * after execution capability is restored.
  1482. */
  1483. flush_work(&cpuset_hotplug_work);
  1484. mutex_lock(&cpuset_mutex);
  1485. if (!is_cpuset_online(cs))
  1486. goto out_unlock;
  1487. trialcs = alloc_trial_cpuset(cs);
  1488. if (!trialcs) {
  1489. retval = -ENOMEM;
  1490. goto out_unlock;
  1491. }
  1492. switch (cft->private) {
  1493. case FILE_CPULIST:
  1494. retval = update_cpumask(cs, trialcs, buf);
  1495. break;
  1496. case FILE_MEMLIST:
  1497. retval = update_nodemask(cs, trialcs, buf);
  1498. break;
  1499. default:
  1500. retval = -EINVAL;
  1501. break;
  1502. }
  1503. free_trial_cpuset(trialcs);
  1504. out_unlock:
  1505. mutex_unlock(&cpuset_mutex);
  1506. return retval;
  1507. }
  1508. /*
  1509. * These ascii lists should be read in a single call, by using a user
  1510. * buffer large enough to hold the entire map. If read in smaller
  1511. * chunks, there is no guarantee of atomicity. Since the display format
  1512. * used, list of ranges of sequential numbers, is variable length,
  1513. * and since these maps can change value dynamically, one could read
  1514. * gibberish by doing partial reads while a list was changing.
  1515. */
  1516. static int cpuset_common_seq_show(struct seq_file *sf, void *v)
  1517. {
  1518. struct cpuset *cs = css_cs(seq_css(sf));
  1519. cpuset_filetype_t type = seq_cft(sf)->private;
  1520. ssize_t count;
  1521. char *buf, *s;
  1522. int ret = 0;
  1523. count = seq_get_buf(sf, &buf);
  1524. s = buf;
  1525. mutex_lock(&callback_mutex);
  1526. switch (type) {
  1527. case FILE_CPULIST:
  1528. s += cpulist_scnprintf(s, count, cs->cpus_allowed);
  1529. break;
  1530. case FILE_MEMLIST:
  1531. s += nodelist_scnprintf(s, count, cs->mems_allowed);
  1532. break;
  1533. default:
  1534. ret = -EINVAL;
  1535. goto out_unlock;
  1536. }
  1537. if (s < buf + count - 1) {
  1538. *s++ = '\n';
  1539. seq_commit(sf, s - buf);
  1540. } else {
  1541. seq_commit(sf, -1);
  1542. }
  1543. out_unlock:
  1544. mutex_unlock(&callback_mutex);
  1545. return ret;
  1546. }
  1547. static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
  1548. {
  1549. struct cpuset *cs = css_cs(css);
  1550. cpuset_filetype_t type = cft->private;
  1551. switch (type) {
  1552. case FILE_CPU_EXCLUSIVE:
  1553. return is_cpu_exclusive(cs);
  1554. case FILE_MEM_EXCLUSIVE:
  1555. return is_mem_exclusive(cs);
  1556. case FILE_MEM_HARDWALL:
  1557. return is_mem_hardwall(cs);
  1558. case FILE_SCHED_LOAD_BALANCE:
  1559. return is_sched_load_balance(cs);
  1560. case FILE_MEMORY_MIGRATE:
  1561. return is_memory_migrate(cs);
  1562. case FILE_MEMORY_PRESSURE_ENABLED:
  1563. return cpuset_memory_pressure_enabled;
  1564. case FILE_MEMORY_PRESSURE:
  1565. return fmeter_getrate(&cs->fmeter);
  1566. case FILE_SPREAD_PAGE:
  1567. return is_spread_page(cs);
  1568. case FILE_SPREAD_SLAB:
  1569. return is_spread_slab(cs);
  1570. default:
  1571. BUG();
  1572. }
  1573. /* Unreachable but makes gcc happy */
  1574. return 0;
  1575. }
  1576. static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
  1577. {
  1578. struct cpuset *cs = css_cs(css);
  1579. cpuset_filetype_t type = cft->private;
  1580. switch (type) {
  1581. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1582. return cs->relax_domain_level;
  1583. default:
  1584. BUG();
  1585. }
  1586. /* Unrechable but makes gcc happy */
  1587. return 0;
  1588. }
  1589. /*
  1590. * for the common functions, 'private' gives the type of file
  1591. */
  1592. static struct cftype files[] = {
  1593. {
  1594. .name = "cpus",
  1595. .seq_show = cpuset_common_seq_show,
  1596. .write_string = cpuset_write_resmask,
  1597. .max_write_len = (100U + 6 * NR_CPUS),
  1598. .private = FILE_CPULIST,
  1599. },
  1600. {
  1601. .name = "mems",
  1602. .seq_show = cpuset_common_seq_show,
  1603. .write_string = cpuset_write_resmask,
  1604. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1605. .private = FILE_MEMLIST,
  1606. },
  1607. {
  1608. .name = "cpu_exclusive",
  1609. .read_u64 = cpuset_read_u64,
  1610. .write_u64 = cpuset_write_u64,
  1611. .private = FILE_CPU_EXCLUSIVE,
  1612. },
  1613. {
  1614. .name = "mem_exclusive",
  1615. .read_u64 = cpuset_read_u64,
  1616. .write_u64 = cpuset_write_u64,
  1617. .private = FILE_MEM_EXCLUSIVE,
  1618. },
  1619. {
  1620. .name = "mem_hardwall",
  1621. .read_u64 = cpuset_read_u64,
  1622. .write_u64 = cpuset_write_u64,
  1623. .private = FILE_MEM_HARDWALL,
  1624. },
  1625. {
  1626. .name = "sched_load_balance",
  1627. .read_u64 = cpuset_read_u64,
  1628. .write_u64 = cpuset_write_u64,
  1629. .private = FILE_SCHED_LOAD_BALANCE,
  1630. },
  1631. {
  1632. .name = "sched_relax_domain_level",
  1633. .read_s64 = cpuset_read_s64,
  1634. .write_s64 = cpuset_write_s64,
  1635. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1636. },
  1637. {
  1638. .name = "memory_migrate",
  1639. .read_u64 = cpuset_read_u64,
  1640. .write_u64 = cpuset_write_u64,
  1641. .private = FILE_MEMORY_MIGRATE,
  1642. },
  1643. {
  1644. .name = "memory_pressure",
  1645. .read_u64 = cpuset_read_u64,
  1646. .write_u64 = cpuset_write_u64,
  1647. .private = FILE_MEMORY_PRESSURE,
  1648. .mode = S_IRUGO,
  1649. },
  1650. {
  1651. .name = "memory_spread_page",
  1652. .read_u64 = cpuset_read_u64,
  1653. .write_u64 = cpuset_write_u64,
  1654. .private = FILE_SPREAD_PAGE,
  1655. },
  1656. {
  1657. .name = "memory_spread_slab",
  1658. .read_u64 = cpuset_read_u64,
  1659. .write_u64 = cpuset_write_u64,
  1660. .private = FILE_SPREAD_SLAB,
  1661. },
  1662. {
  1663. .name = "memory_pressure_enabled",
  1664. .flags = CFTYPE_ONLY_ON_ROOT,
  1665. .read_u64 = cpuset_read_u64,
  1666. .write_u64 = cpuset_write_u64,
  1667. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1668. },
  1669. { } /* terminate */
  1670. };
  1671. /*
  1672. * cpuset_css_alloc - allocate a cpuset css
  1673. * cgrp: control group that the new cpuset will be part of
  1674. */
  1675. static struct cgroup_subsys_state *
  1676. cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
  1677. {
  1678. struct cpuset *cs;
  1679. if (!parent_css)
  1680. return &top_cpuset.css;
  1681. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1682. if (!cs)
  1683. return ERR_PTR(-ENOMEM);
  1684. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1685. kfree(cs);
  1686. return ERR_PTR(-ENOMEM);
  1687. }
  1688. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1689. cpumask_clear(cs->cpus_allowed);
  1690. nodes_clear(cs->mems_allowed);
  1691. fmeter_init(&cs->fmeter);
  1692. cs->relax_domain_level = -1;
  1693. return &cs->css;
  1694. }
  1695. static int cpuset_css_online(struct cgroup_subsys_state *css)
  1696. {
  1697. struct cpuset *cs = css_cs(css);
  1698. struct cpuset *parent = parent_cs(cs);
  1699. struct cpuset *tmp_cs;
  1700. struct cgroup_subsys_state *pos_css;
  1701. if (!parent)
  1702. return 0;
  1703. mutex_lock(&cpuset_mutex);
  1704. set_bit(CS_ONLINE, &cs->flags);
  1705. if (is_spread_page(parent))
  1706. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1707. if (is_spread_slab(parent))
  1708. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1709. number_of_cpusets++;
  1710. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
  1711. goto out_unlock;
  1712. /*
  1713. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1714. * set. This flag handling is implemented in cgroup core for
  1715. * histrical reasons - the flag may be specified during mount.
  1716. *
  1717. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1718. * refuse to clone the configuration - thereby refusing the task to
  1719. * be entered, and as a result refusing the sys_unshare() or
  1720. * clone() which initiated it. If this becomes a problem for some
  1721. * users who wish to allow that scenario, then this could be
  1722. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1723. * (and likewise for mems) to the new cgroup.
  1724. */
  1725. rcu_read_lock();
  1726. cpuset_for_each_child(tmp_cs, pos_css, parent) {
  1727. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1728. rcu_read_unlock();
  1729. goto out_unlock;
  1730. }
  1731. }
  1732. rcu_read_unlock();
  1733. mutex_lock(&callback_mutex);
  1734. cs->mems_allowed = parent->mems_allowed;
  1735. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1736. mutex_unlock(&callback_mutex);
  1737. out_unlock:
  1738. mutex_unlock(&cpuset_mutex);
  1739. return 0;
  1740. }
  1741. /*
  1742. * If the cpuset being removed has its flag 'sched_load_balance'
  1743. * enabled, then simulate turning sched_load_balance off, which
  1744. * will call rebuild_sched_domains_locked().
  1745. */
  1746. static void cpuset_css_offline(struct cgroup_subsys_state *css)
  1747. {
  1748. struct cpuset *cs = css_cs(css);
  1749. mutex_lock(&cpuset_mutex);
  1750. if (is_sched_load_balance(cs))
  1751. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1752. number_of_cpusets--;
  1753. clear_bit(CS_ONLINE, &cs->flags);
  1754. mutex_unlock(&cpuset_mutex);
  1755. }
  1756. static void cpuset_css_free(struct cgroup_subsys_state *css)
  1757. {
  1758. struct cpuset *cs = css_cs(css);
  1759. free_cpumask_var(cs->cpus_allowed);
  1760. kfree(cs);
  1761. }
  1762. struct cgroup_subsys cpuset_subsys = {
  1763. .name = "cpuset",
  1764. .css_alloc = cpuset_css_alloc,
  1765. .css_online = cpuset_css_online,
  1766. .css_offline = cpuset_css_offline,
  1767. .css_free = cpuset_css_free,
  1768. .can_attach = cpuset_can_attach,
  1769. .cancel_attach = cpuset_cancel_attach,
  1770. .attach = cpuset_attach,
  1771. .subsys_id = cpuset_subsys_id,
  1772. .base_cftypes = files,
  1773. .early_init = 1,
  1774. };
  1775. /**
  1776. * cpuset_init - initialize cpusets at system boot
  1777. *
  1778. * Description: Initialize top_cpuset and the cpuset internal file system,
  1779. **/
  1780. int __init cpuset_init(void)
  1781. {
  1782. int err = 0;
  1783. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1784. BUG();
  1785. cpumask_setall(top_cpuset.cpus_allowed);
  1786. nodes_setall(top_cpuset.mems_allowed);
  1787. fmeter_init(&top_cpuset.fmeter);
  1788. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1789. top_cpuset.relax_domain_level = -1;
  1790. err = register_filesystem(&cpuset_fs_type);
  1791. if (err < 0)
  1792. return err;
  1793. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1794. BUG();
  1795. number_of_cpusets = 1;
  1796. return 0;
  1797. }
  1798. /*
  1799. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1800. * or memory nodes, we need to walk over the cpuset hierarchy,
  1801. * removing that CPU or node from all cpusets. If this removes the
  1802. * last CPU or node from a cpuset, then move the tasks in the empty
  1803. * cpuset to its next-highest non-empty parent.
  1804. */
  1805. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1806. {
  1807. struct cpuset *parent;
  1808. /*
  1809. * Find its next-highest non-empty parent, (top cpuset
  1810. * has online cpus, so can't be empty).
  1811. */
  1812. parent = parent_cs(cs);
  1813. while (cpumask_empty(parent->cpus_allowed) ||
  1814. nodes_empty(parent->mems_allowed))
  1815. parent = parent_cs(parent);
  1816. if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
  1817. rcu_read_lock();
  1818. printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
  1819. cgroup_name(cs->css.cgroup));
  1820. rcu_read_unlock();
  1821. }
  1822. }
  1823. /**
  1824. * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
  1825. * @cs: cpuset in interest
  1826. *
  1827. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1828. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1829. * all its tasks are moved to the nearest ancestor with both resources.
  1830. */
  1831. static void cpuset_hotplug_update_tasks(struct cpuset *cs)
  1832. {
  1833. static cpumask_t off_cpus;
  1834. static nodemask_t off_mems;
  1835. bool is_empty;
  1836. bool sane = cgroup_sane_behavior(cs->css.cgroup);
  1837. retry:
  1838. wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
  1839. mutex_lock(&cpuset_mutex);
  1840. /*
  1841. * We have raced with task attaching. We wait until attaching
  1842. * is finished, so we won't attach a task to an empty cpuset.
  1843. */
  1844. if (cs->attach_in_progress) {
  1845. mutex_unlock(&cpuset_mutex);
  1846. goto retry;
  1847. }
  1848. cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
  1849. nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
  1850. mutex_lock(&callback_mutex);
  1851. cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
  1852. mutex_unlock(&callback_mutex);
  1853. /*
  1854. * If sane_behavior flag is set, we need to update tasks' cpumask
  1855. * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
  1856. * call update_tasks_cpumask() if the cpuset becomes empty, as
  1857. * the tasks in it will be migrated to an ancestor.
  1858. */
  1859. if ((sane && cpumask_empty(cs->cpus_allowed)) ||
  1860. (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
  1861. update_tasks_cpumask(cs, NULL);
  1862. mutex_lock(&callback_mutex);
  1863. nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
  1864. mutex_unlock(&callback_mutex);
  1865. /*
  1866. * If sane_behavior flag is set, we need to update tasks' nodemask
  1867. * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
  1868. * call update_tasks_nodemask() if the cpuset becomes empty, as
  1869. * the tasks in it will be migratd to an ancestor.
  1870. */
  1871. if ((sane && nodes_empty(cs->mems_allowed)) ||
  1872. (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
  1873. update_tasks_nodemask(cs, NULL);
  1874. is_empty = cpumask_empty(cs->cpus_allowed) ||
  1875. nodes_empty(cs->mems_allowed);
  1876. mutex_unlock(&cpuset_mutex);
  1877. /*
  1878. * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
  1879. *
  1880. * Otherwise move tasks to the nearest ancestor with execution
  1881. * resources. This is full cgroup operation which will
  1882. * also call back into cpuset. Should be done outside any lock.
  1883. */
  1884. if (!sane && is_empty)
  1885. remove_tasks_in_empty_cpuset(cs);
  1886. }
  1887. /**
  1888. * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
  1889. *
  1890. * This function is called after either CPU or memory configuration has
  1891. * changed and updates cpuset accordingly. The top_cpuset is always
  1892. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1893. * order to make cpusets transparent (of no affect) on systems that are
  1894. * actively using CPU hotplug but making no active use of cpusets.
  1895. *
  1896. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1897. * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
  1898. * all descendants.
  1899. *
  1900. * Note that CPU offlining during suspend is ignored. We don't modify
  1901. * cpusets across suspend/resume cycles at all.
  1902. */
  1903. static void cpuset_hotplug_workfn(struct work_struct *work)
  1904. {
  1905. static cpumask_t new_cpus;
  1906. static nodemask_t new_mems;
  1907. bool cpus_updated, mems_updated;
  1908. mutex_lock(&cpuset_mutex);
  1909. /* fetch the available cpus/mems and find out which changed how */
  1910. cpumask_copy(&new_cpus, cpu_active_mask);
  1911. new_mems = node_states[N_MEMORY];
  1912. cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
  1913. mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
  1914. /* synchronize cpus_allowed to cpu_active_mask */
  1915. if (cpus_updated) {
  1916. mutex_lock(&callback_mutex);
  1917. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1918. mutex_unlock(&callback_mutex);
  1919. /* we don't mess with cpumasks of tasks in top_cpuset */
  1920. }
  1921. /* synchronize mems_allowed to N_MEMORY */
  1922. if (mems_updated) {
  1923. mutex_lock(&callback_mutex);
  1924. top_cpuset.mems_allowed = new_mems;
  1925. mutex_unlock(&callback_mutex);
  1926. update_tasks_nodemask(&top_cpuset, NULL);
  1927. }
  1928. mutex_unlock(&cpuset_mutex);
  1929. /* if cpus or mems changed, we need to propagate to descendants */
  1930. if (cpus_updated || mems_updated) {
  1931. struct cpuset *cs;
  1932. struct cgroup_subsys_state *pos_css;
  1933. rcu_read_lock();
  1934. cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
  1935. if (cs == &top_cpuset || !css_tryget(&cs->css))
  1936. continue;
  1937. rcu_read_unlock();
  1938. cpuset_hotplug_update_tasks(cs);
  1939. rcu_read_lock();
  1940. css_put(&cs->css);
  1941. }
  1942. rcu_read_unlock();
  1943. }
  1944. /* rebuild sched domains if cpus_allowed has changed */
  1945. if (cpus_updated)
  1946. rebuild_sched_domains();
  1947. }
  1948. void cpuset_update_active_cpus(bool cpu_online)
  1949. {
  1950. /*
  1951. * We're inside cpu hotplug critical region which usually nests
  1952. * inside cgroup synchronization. Bounce actual hotplug processing
  1953. * to a work item to avoid reverse locking order.
  1954. *
  1955. * We still need to do partition_sched_domains() synchronously;
  1956. * otherwise, the scheduler will get confused and put tasks to the
  1957. * dead CPU. Fall back to the default single domain.
  1958. * cpuset_hotplug_workfn() will rebuild it as necessary.
  1959. */
  1960. partition_sched_domains(1, NULL, NULL);
  1961. schedule_work(&cpuset_hotplug_work);
  1962. }
  1963. /*
  1964. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  1965. * Call this routine anytime after node_states[N_MEMORY] changes.
  1966. * See cpuset_update_active_cpus() for CPU hotplug handling.
  1967. */
  1968. static int cpuset_track_online_nodes(struct notifier_block *self,
  1969. unsigned long action, void *arg)
  1970. {
  1971. schedule_work(&cpuset_hotplug_work);
  1972. return NOTIFY_OK;
  1973. }
  1974. static struct notifier_block cpuset_track_online_nodes_nb = {
  1975. .notifier_call = cpuset_track_online_nodes,
  1976. .priority = 10, /* ??! */
  1977. };
  1978. /**
  1979. * cpuset_init_smp - initialize cpus_allowed
  1980. *
  1981. * Description: Finish top cpuset after cpu, node maps are initialized
  1982. */
  1983. void __init cpuset_init_smp(void)
  1984. {
  1985. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  1986. top_cpuset.mems_allowed = node_states[N_MEMORY];
  1987. top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
  1988. register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
  1989. }
  1990. /**
  1991. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1992. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1993. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  1994. *
  1995. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  1996. * attached to the specified @tsk. Guaranteed to return some non-empty
  1997. * subset of cpu_online_mask, even if this means going outside the
  1998. * tasks cpuset.
  1999. **/
  2000. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  2001. {
  2002. struct cpuset *cpus_cs;
  2003. mutex_lock(&callback_mutex);
  2004. task_lock(tsk);
  2005. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  2006. guarantee_online_cpus(cpus_cs, pmask);
  2007. task_unlock(tsk);
  2008. mutex_unlock(&callback_mutex);
  2009. }
  2010. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  2011. {
  2012. struct cpuset *cpus_cs;
  2013. rcu_read_lock();
  2014. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  2015. do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
  2016. rcu_read_unlock();
  2017. /*
  2018. * We own tsk->cpus_allowed, nobody can change it under us.
  2019. *
  2020. * But we used cs && cs->cpus_allowed lockless and thus can
  2021. * race with cgroup_attach_task() or update_cpumask() and get
  2022. * the wrong tsk->cpus_allowed. However, both cases imply the
  2023. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  2024. * which takes task_rq_lock().
  2025. *
  2026. * If we are called after it dropped the lock we must see all
  2027. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  2028. * set any mask even if it is not right from task_cs() pov,
  2029. * the pending set_cpus_allowed_ptr() will fix things.
  2030. *
  2031. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  2032. * if required.
  2033. */
  2034. }
  2035. void cpuset_init_current_mems_allowed(void)
  2036. {
  2037. nodes_setall(current->mems_allowed);
  2038. }
  2039. /**
  2040. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  2041. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  2042. *
  2043. * Description: Returns the nodemask_t mems_allowed of the cpuset
  2044. * attached to the specified @tsk. Guaranteed to return some non-empty
  2045. * subset of node_states[N_MEMORY], even if this means going outside the
  2046. * tasks cpuset.
  2047. **/
  2048. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  2049. {
  2050. struct cpuset *mems_cs;
  2051. nodemask_t mask;
  2052. mutex_lock(&callback_mutex);
  2053. task_lock(tsk);
  2054. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  2055. guarantee_online_mems(mems_cs, &mask);
  2056. task_unlock(tsk);
  2057. mutex_unlock(&callback_mutex);
  2058. return mask;
  2059. }
  2060. /**
  2061. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  2062. * @nodemask: the nodemask to be checked
  2063. *
  2064. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  2065. */
  2066. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  2067. {
  2068. return nodes_intersects(*nodemask, current->mems_allowed);
  2069. }
  2070. /*
  2071. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  2072. * mem_hardwall ancestor to the specified cpuset. Call holding
  2073. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  2074. * (an unusual configuration), then returns the root cpuset.
  2075. */
  2076. static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
  2077. {
  2078. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
  2079. cs = parent_cs(cs);
  2080. return cs;
  2081. }
  2082. /**
  2083. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  2084. * @node: is this an allowed node?
  2085. * @gfp_mask: memory allocation flags
  2086. *
  2087. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2088. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2089. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  2090. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  2091. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  2092. * flag, yes.
  2093. * Otherwise, no.
  2094. *
  2095. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  2096. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  2097. * might sleep, and might allow a node from an enclosing cpuset.
  2098. *
  2099. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  2100. * cpusets, and never sleeps.
  2101. *
  2102. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2103. * by forcibly using a zonelist starting at a specified node, and by
  2104. * (in get_page_from_freelist()) refusing to consider the zones for
  2105. * any node on the zonelist except the first. By the time any such
  2106. * calls get to this routine, we should just shut up and say 'yes'.
  2107. *
  2108. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2109. * and do not allow allocations outside the current tasks cpuset
  2110. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2111. * GFP_KERNEL allocations are not so marked, so can escape to the
  2112. * nearest enclosing hardwalled ancestor cpuset.
  2113. *
  2114. * Scanning up parent cpusets requires callback_mutex. The
  2115. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2116. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2117. * current tasks mems_allowed came up empty on the first pass over
  2118. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2119. * cpuset are short of memory, might require taking the callback_mutex
  2120. * mutex.
  2121. *
  2122. * The first call here from mm/page_alloc:get_page_from_freelist()
  2123. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2124. * so no allocation on a node outside the cpuset is allowed (unless
  2125. * in interrupt, of course).
  2126. *
  2127. * The second pass through get_page_from_freelist() doesn't even call
  2128. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2129. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2130. * in alloc_flags. That logic and the checks below have the combined
  2131. * affect that:
  2132. * in_interrupt - any node ok (current task context irrelevant)
  2133. * GFP_ATOMIC - any node ok
  2134. * TIF_MEMDIE - any node ok
  2135. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2136. * GFP_USER - only nodes in current tasks mems allowed ok.
  2137. *
  2138. * Rule:
  2139. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  2140. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  2141. * the code that might scan up ancestor cpusets and sleep.
  2142. */
  2143. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  2144. {
  2145. struct cpuset *cs; /* current cpuset ancestors */
  2146. int allowed; /* is allocation in zone z allowed? */
  2147. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2148. return 1;
  2149. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2150. if (node_isset(node, current->mems_allowed))
  2151. return 1;
  2152. /*
  2153. * Allow tasks that have access to memory reserves because they have
  2154. * been OOM killed to get memory anywhere.
  2155. */
  2156. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2157. return 1;
  2158. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2159. return 0;
  2160. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2161. return 1;
  2162. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2163. mutex_lock(&callback_mutex);
  2164. task_lock(current);
  2165. cs = nearest_hardwall_ancestor(task_cs(current));
  2166. allowed = node_isset(node, cs->mems_allowed);
  2167. task_unlock(current);
  2168. mutex_unlock(&callback_mutex);
  2169. return allowed;
  2170. }
  2171. /*
  2172. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2173. * @node: is this an allowed node?
  2174. * @gfp_mask: memory allocation flags
  2175. *
  2176. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2177. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2178. * yes. If the task has been OOM killed and has access to memory reserves as
  2179. * specified by the TIF_MEMDIE flag, yes.
  2180. * Otherwise, no.
  2181. *
  2182. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2183. * by forcibly using a zonelist starting at a specified node, and by
  2184. * (in get_page_from_freelist()) refusing to consider the zones for
  2185. * any node on the zonelist except the first. By the time any such
  2186. * calls get to this routine, we should just shut up and say 'yes'.
  2187. *
  2188. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2189. * this variant requires that the node be in the current task's
  2190. * mems_allowed or that we're in interrupt. It does not scan up the
  2191. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2192. * It never sleeps.
  2193. */
  2194. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2195. {
  2196. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2197. return 1;
  2198. if (node_isset(node, current->mems_allowed))
  2199. return 1;
  2200. /*
  2201. * Allow tasks that have access to memory reserves because they have
  2202. * been OOM killed to get memory anywhere.
  2203. */
  2204. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2205. return 1;
  2206. return 0;
  2207. }
  2208. /**
  2209. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2210. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2211. *
  2212. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2213. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2214. * and if the memory allocation used cpuset_mem_spread_node()
  2215. * to determine on which node to start looking, as it will for
  2216. * certain page cache or slab cache pages such as used for file
  2217. * system buffers and inode caches, then instead of starting on the
  2218. * local node to look for a free page, rather spread the starting
  2219. * node around the tasks mems_allowed nodes.
  2220. *
  2221. * We don't have to worry about the returned node being offline
  2222. * because "it can't happen", and even if it did, it would be ok.
  2223. *
  2224. * The routines calling guarantee_online_mems() are careful to
  2225. * only set nodes in task->mems_allowed that are online. So it
  2226. * should not be possible for the following code to return an
  2227. * offline node. But if it did, that would be ok, as this routine
  2228. * is not returning the node where the allocation must be, only
  2229. * the node where the search should start. The zonelist passed to
  2230. * __alloc_pages() will include all nodes. If the slab allocator
  2231. * is passed an offline node, it will fall back to the local node.
  2232. * See kmem_cache_alloc_node().
  2233. */
  2234. static int cpuset_spread_node(int *rotor)
  2235. {
  2236. int node;
  2237. node = next_node(*rotor, current->mems_allowed);
  2238. if (node == MAX_NUMNODES)
  2239. node = first_node(current->mems_allowed);
  2240. *rotor = node;
  2241. return node;
  2242. }
  2243. int cpuset_mem_spread_node(void)
  2244. {
  2245. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2246. current->cpuset_mem_spread_rotor =
  2247. node_random(&current->mems_allowed);
  2248. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2249. }
  2250. int cpuset_slab_spread_node(void)
  2251. {
  2252. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2253. current->cpuset_slab_spread_rotor =
  2254. node_random(&current->mems_allowed);
  2255. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2256. }
  2257. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2258. /**
  2259. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2260. * @tsk1: pointer to task_struct of some task.
  2261. * @tsk2: pointer to task_struct of some other task.
  2262. *
  2263. * Description: Return true if @tsk1's mems_allowed intersects the
  2264. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2265. * one of the task's memory usage might impact the memory available
  2266. * to the other.
  2267. **/
  2268. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2269. const struct task_struct *tsk2)
  2270. {
  2271. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2272. }
  2273. #define CPUSET_NODELIST_LEN (256)
  2274. /**
  2275. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2276. * @task: pointer to task_struct of some task.
  2277. *
  2278. * Description: Prints @task's name, cpuset name, and cached copy of its
  2279. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2280. * dereferencing task_cs(task).
  2281. */
  2282. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2283. {
  2284. /* Statically allocated to prevent using excess stack. */
  2285. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  2286. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  2287. struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
  2288. rcu_read_lock();
  2289. spin_lock(&cpuset_buffer_lock);
  2290. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2291. tsk->mems_allowed);
  2292. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2293. tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
  2294. spin_unlock(&cpuset_buffer_lock);
  2295. rcu_read_unlock();
  2296. }
  2297. /*
  2298. * Collection of memory_pressure is suppressed unless
  2299. * this flag is enabled by writing "1" to the special
  2300. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2301. */
  2302. int cpuset_memory_pressure_enabled __read_mostly;
  2303. /**
  2304. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2305. *
  2306. * Keep a running average of the rate of synchronous (direct)
  2307. * page reclaim efforts initiated by tasks in each cpuset.
  2308. *
  2309. * This represents the rate at which some task in the cpuset
  2310. * ran low on memory on all nodes it was allowed to use, and
  2311. * had to enter the kernels page reclaim code in an effort to
  2312. * create more free memory by tossing clean pages or swapping
  2313. * or writing dirty pages.
  2314. *
  2315. * Display to user space in the per-cpuset read-only file
  2316. * "memory_pressure". Value displayed is an integer
  2317. * representing the recent rate of entry into the synchronous
  2318. * (direct) page reclaim by any task attached to the cpuset.
  2319. **/
  2320. void __cpuset_memory_pressure_bump(void)
  2321. {
  2322. task_lock(current);
  2323. fmeter_markevent(&task_cs(current)->fmeter);
  2324. task_unlock(current);
  2325. }
  2326. #ifdef CONFIG_PROC_PID_CPUSET
  2327. /*
  2328. * proc_cpuset_show()
  2329. * - Print tasks cpuset path into seq_file.
  2330. * - Used for /proc/<pid>/cpuset.
  2331. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2332. * doesn't really matter if tsk->cpuset changes after we read it,
  2333. * and we take cpuset_mutex, keeping cpuset_attach() from changing it
  2334. * anyway.
  2335. */
  2336. int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2337. {
  2338. struct pid *pid;
  2339. struct task_struct *tsk;
  2340. char *buf;
  2341. struct cgroup_subsys_state *css;
  2342. int retval;
  2343. retval = -ENOMEM;
  2344. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2345. if (!buf)
  2346. goto out;
  2347. retval = -ESRCH;
  2348. pid = m->private;
  2349. tsk = get_pid_task(pid, PIDTYPE_PID);
  2350. if (!tsk)
  2351. goto out_free;
  2352. rcu_read_lock();
  2353. css = task_css(tsk, cpuset_subsys_id);
  2354. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2355. rcu_read_unlock();
  2356. if (retval < 0)
  2357. goto out_put_task;
  2358. seq_puts(m, buf);
  2359. seq_putc(m, '\n');
  2360. out_put_task:
  2361. put_task_struct(tsk);
  2362. out_free:
  2363. kfree(buf);
  2364. out:
  2365. return retval;
  2366. }
  2367. #endif /* CONFIG_PROC_PID_CPUSET */
  2368. /* Display task mems_allowed in /proc/<pid>/status file. */
  2369. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2370. {
  2371. seq_printf(m, "Mems_allowed:\t");
  2372. seq_nodemask(m, &task->mems_allowed);
  2373. seq_printf(m, "\n");
  2374. seq_printf(m, "Mems_allowed_list:\t");
  2375. seq_nodemask_list(m, &task->mems_allowed);
  2376. seq_printf(m, "\n");
  2377. }