namespace.c 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/acct.h> /* acct_auto_close_mnt */
  19. #include <linux/init.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_ns.h>
  24. #include <linux/magic.h>
  25. #include <linux/bootmem.h>
  26. #include "pnode.h"
  27. #include "internal.h"
  28. static unsigned int m_hash_mask __read_mostly;
  29. static unsigned int m_hash_shift __read_mostly;
  30. static unsigned int mp_hash_mask __read_mostly;
  31. static unsigned int mp_hash_shift __read_mostly;
  32. static __initdata unsigned long mhash_entries;
  33. static int __init set_mhash_entries(char *str)
  34. {
  35. if (!str)
  36. return 0;
  37. mhash_entries = simple_strtoul(str, &str, 0);
  38. return 1;
  39. }
  40. __setup("mhash_entries=", set_mhash_entries);
  41. static __initdata unsigned long mphash_entries;
  42. static int __init set_mphash_entries(char *str)
  43. {
  44. if (!str)
  45. return 0;
  46. mphash_entries = simple_strtoul(str, &str, 0);
  47. return 1;
  48. }
  49. __setup("mphash_entries=", set_mphash_entries);
  50. static int event;
  51. static DEFINE_IDA(mnt_id_ida);
  52. static DEFINE_IDA(mnt_group_ida);
  53. static DEFINE_SPINLOCK(mnt_id_lock);
  54. static int mnt_id_start = 0;
  55. static int mnt_group_start = 1;
  56. static struct list_head *mount_hashtable __read_mostly;
  57. static struct hlist_head *mountpoint_hashtable __read_mostly;
  58. static struct kmem_cache *mnt_cache __read_mostly;
  59. static DECLARE_RWSEM(namespace_sem);
  60. /* /sys/fs */
  61. struct kobject *fs_kobj;
  62. EXPORT_SYMBOL_GPL(fs_kobj);
  63. /*
  64. * vfsmount lock may be taken for read to prevent changes to the
  65. * vfsmount hash, ie. during mountpoint lookups or walking back
  66. * up the tree.
  67. *
  68. * It should be taken for write in all cases where the vfsmount
  69. * tree or hash is modified or when a vfsmount structure is modified.
  70. */
  71. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  72. static inline struct list_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  73. {
  74. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  75. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  76. tmp = tmp + (tmp >> m_hash_shift);
  77. return &mount_hashtable[tmp & m_hash_mask];
  78. }
  79. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  80. {
  81. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  82. tmp = tmp + (tmp >> mp_hash_shift);
  83. return &mountpoint_hashtable[tmp & mp_hash_mask];
  84. }
  85. /*
  86. * allocation is serialized by namespace_sem, but we need the spinlock to
  87. * serialize with freeing.
  88. */
  89. static int mnt_alloc_id(struct mount *mnt)
  90. {
  91. int res;
  92. retry:
  93. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  94. spin_lock(&mnt_id_lock);
  95. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  96. if (!res)
  97. mnt_id_start = mnt->mnt_id + 1;
  98. spin_unlock(&mnt_id_lock);
  99. if (res == -EAGAIN)
  100. goto retry;
  101. return res;
  102. }
  103. static void mnt_free_id(struct mount *mnt)
  104. {
  105. int id = mnt->mnt_id;
  106. spin_lock(&mnt_id_lock);
  107. ida_remove(&mnt_id_ida, id);
  108. if (mnt_id_start > id)
  109. mnt_id_start = id;
  110. spin_unlock(&mnt_id_lock);
  111. }
  112. /*
  113. * Allocate a new peer group ID
  114. *
  115. * mnt_group_ida is protected by namespace_sem
  116. */
  117. static int mnt_alloc_group_id(struct mount *mnt)
  118. {
  119. int res;
  120. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  121. return -ENOMEM;
  122. res = ida_get_new_above(&mnt_group_ida,
  123. mnt_group_start,
  124. &mnt->mnt_group_id);
  125. if (!res)
  126. mnt_group_start = mnt->mnt_group_id + 1;
  127. return res;
  128. }
  129. /*
  130. * Release a peer group ID
  131. */
  132. void mnt_release_group_id(struct mount *mnt)
  133. {
  134. int id = mnt->mnt_group_id;
  135. ida_remove(&mnt_group_ida, id);
  136. if (mnt_group_start > id)
  137. mnt_group_start = id;
  138. mnt->mnt_group_id = 0;
  139. }
  140. /*
  141. * vfsmount lock must be held for read
  142. */
  143. static inline void mnt_add_count(struct mount *mnt, int n)
  144. {
  145. #ifdef CONFIG_SMP
  146. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  147. #else
  148. preempt_disable();
  149. mnt->mnt_count += n;
  150. preempt_enable();
  151. #endif
  152. }
  153. /*
  154. * vfsmount lock must be held for write
  155. */
  156. unsigned int mnt_get_count(struct mount *mnt)
  157. {
  158. #ifdef CONFIG_SMP
  159. unsigned int count = 0;
  160. int cpu;
  161. for_each_possible_cpu(cpu) {
  162. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  163. }
  164. return count;
  165. #else
  166. return mnt->mnt_count;
  167. #endif
  168. }
  169. static struct mount *alloc_vfsmnt(const char *name)
  170. {
  171. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  172. if (mnt) {
  173. int err;
  174. err = mnt_alloc_id(mnt);
  175. if (err)
  176. goto out_free_cache;
  177. if (name) {
  178. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  179. if (!mnt->mnt_devname)
  180. goto out_free_id;
  181. }
  182. #ifdef CONFIG_SMP
  183. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  184. if (!mnt->mnt_pcp)
  185. goto out_free_devname;
  186. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  187. #else
  188. mnt->mnt_count = 1;
  189. mnt->mnt_writers = 0;
  190. #endif
  191. INIT_LIST_HEAD(&mnt->mnt_hash);
  192. INIT_LIST_HEAD(&mnt->mnt_child);
  193. INIT_LIST_HEAD(&mnt->mnt_mounts);
  194. INIT_LIST_HEAD(&mnt->mnt_list);
  195. INIT_LIST_HEAD(&mnt->mnt_expire);
  196. INIT_LIST_HEAD(&mnt->mnt_share);
  197. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  198. INIT_LIST_HEAD(&mnt->mnt_slave);
  199. #ifdef CONFIG_FSNOTIFY
  200. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  201. #endif
  202. }
  203. return mnt;
  204. #ifdef CONFIG_SMP
  205. out_free_devname:
  206. kfree(mnt->mnt_devname);
  207. #endif
  208. out_free_id:
  209. mnt_free_id(mnt);
  210. out_free_cache:
  211. kmem_cache_free(mnt_cache, mnt);
  212. return NULL;
  213. }
  214. /*
  215. * Most r/o checks on a fs are for operations that take
  216. * discrete amounts of time, like a write() or unlink().
  217. * We must keep track of when those operations start
  218. * (for permission checks) and when they end, so that
  219. * we can determine when writes are able to occur to
  220. * a filesystem.
  221. */
  222. /*
  223. * __mnt_is_readonly: check whether a mount is read-only
  224. * @mnt: the mount to check for its write status
  225. *
  226. * This shouldn't be used directly ouside of the VFS.
  227. * It does not guarantee that the filesystem will stay
  228. * r/w, just that it is right *now*. This can not and
  229. * should not be used in place of IS_RDONLY(inode).
  230. * mnt_want/drop_write() will _keep_ the filesystem
  231. * r/w.
  232. */
  233. int __mnt_is_readonly(struct vfsmount *mnt)
  234. {
  235. if (mnt->mnt_flags & MNT_READONLY)
  236. return 1;
  237. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  238. return 1;
  239. return 0;
  240. }
  241. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  242. static inline void mnt_inc_writers(struct mount *mnt)
  243. {
  244. #ifdef CONFIG_SMP
  245. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  246. #else
  247. mnt->mnt_writers++;
  248. #endif
  249. }
  250. static inline void mnt_dec_writers(struct mount *mnt)
  251. {
  252. #ifdef CONFIG_SMP
  253. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  254. #else
  255. mnt->mnt_writers--;
  256. #endif
  257. }
  258. static unsigned int mnt_get_writers(struct mount *mnt)
  259. {
  260. #ifdef CONFIG_SMP
  261. unsigned int count = 0;
  262. int cpu;
  263. for_each_possible_cpu(cpu) {
  264. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  265. }
  266. return count;
  267. #else
  268. return mnt->mnt_writers;
  269. #endif
  270. }
  271. static int mnt_is_readonly(struct vfsmount *mnt)
  272. {
  273. if (mnt->mnt_sb->s_readonly_remount)
  274. return 1;
  275. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  276. smp_rmb();
  277. return __mnt_is_readonly(mnt);
  278. }
  279. /*
  280. * Most r/o & frozen checks on a fs are for operations that take discrete
  281. * amounts of time, like a write() or unlink(). We must keep track of when
  282. * those operations start (for permission checks) and when they end, so that we
  283. * can determine when writes are able to occur to a filesystem.
  284. */
  285. /**
  286. * __mnt_want_write - get write access to a mount without freeze protection
  287. * @m: the mount on which to take a write
  288. *
  289. * This tells the low-level filesystem that a write is about to be performed to
  290. * it, and makes sure that writes are allowed (mnt it read-write) before
  291. * returning success. This operation does not protect against filesystem being
  292. * frozen. When the write operation is finished, __mnt_drop_write() must be
  293. * called. This is effectively a refcount.
  294. */
  295. int __mnt_want_write(struct vfsmount *m)
  296. {
  297. struct mount *mnt = real_mount(m);
  298. int ret = 0;
  299. preempt_disable();
  300. mnt_inc_writers(mnt);
  301. /*
  302. * The store to mnt_inc_writers must be visible before we pass
  303. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  304. * incremented count after it has set MNT_WRITE_HOLD.
  305. */
  306. smp_mb();
  307. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  308. cpu_relax();
  309. /*
  310. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  311. * be set to match its requirements. So we must not load that until
  312. * MNT_WRITE_HOLD is cleared.
  313. */
  314. smp_rmb();
  315. if (mnt_is_readonly(m)) {
  316. mnt_dec_writers(mnt);
  317. ret = -EROFS;
  318. }
  319. preempt_enable();
  320. return ret;
  321. }
  322. /**
  323. * mnt_want_write - get write access to a mount
  324. * @m: the mount on which to take a write
  325. *
  326. * This tells the low-level filesystem that a write is about to be performed to
  327. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  328. * is not frozen) before returning success. When the write operation is
  329. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  330. */
  331. int mnt_want_write(struct vfsmount *m)
  332. {
  333. int ret;
  334. sb_start_write(m->mnt_sb);
  335. ret = __mnt_want_write(m);
  336. if (ret)
  337. sb_end_write(m->mnt_sb);
  338. return ret;
  339. }
  340. EXPORT_SYMBOL_GPL(mnt_want_write);
  341. /**
  342. * mnt_clone_write - get write access to a mount
  343. * @mnt: the mount on which to take a write
  344. *
  345. * This is effectively like mnt_want_write, except
  346. * it must only be used to take an extra write reference
  347. * on a mountpoint that we already know has a write reference
  348. * on it. This allows some optimisation.
  349. *
  350. * After finished, mnt_drop_write must be called as usual to
  351. * drop the reference.
  352. */
  353. int mnt_clone_write(struct vfsmount *mnt)
  354. {
  355. /* superblock may be r/o */
  356. if (__mnt_is_readonly(mnt))
  357. return -EROFS;
  358. preempt_disable();
  359. mnt_inc_writers(real_mount(mnt));
  360. preempt_enable();
  361. return 0;
  362. }
  363. EXPORT_SYMBOL_GPL(mnt_clone_write);
  364. /**
  365. * __mnt_want_write_file - get write access to a file's mount
  366. * @file: the file who's mount on which to take a write
  367. *
  368. * This is like __mnt_want_write, but it takes a file and can
  369. * do some optimisations if the file is open for write already
  370. */
  371. int __mnt_want_write_file(struct file *file)
  372. {
  373. struct inode *inode = file_inode(file);
  374. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  375. return __mnt_want_write(file->f_path.mnt);
  376. else
  377. return mnt_clone_write(file->f_path.mnt);
  378. }
  379. /**
  380. * mnt_want_write_file - get write access to a file's mount
  381. * @file: the file who's mount on which to take a write
  382. *
  383. * This is like mnt_want_write, but it takes a file and can
  384. * do some optimisations if the file is open for write already
  385. */
  386. int mnt_want_write_file(struct file *file)
  387. {
  388. int ret;
  389. sb_start_write(file->f_path.mnt->mnt_sb);
  390. ret = __mnt_want_write_file(file);
  391. if (ret)
  392. sb_end_write(file->f_path.mnt->mnt_sb);
  393. return ret;
  394. }
  395. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  396. /**
  397. * __mnt_drop_write - give up write access to a mount
  398. * @mnt: the mount on which to give up write access
  399. *
  400. * Tells the low-level filesystem that we are done
  401. * performing writes to it. Must be matched with
  402. * __mnt_want_write() call above.
  403. */
  404. void __mnt_drop_write(struct vfsmount *mnt)
  405. {
  406. preempt_disable();
  407. mnt_dec_writers(real_mount(mnt));
  408. preempt_enable();
  409. }
  410. /**
  411. * mnt_drop_write - give up write access to a mount
  412. * @mnt: the mount on which to give up write access
  413. *
  414. * Tells the low-level filesystem that we are done performing writes to it and
  415. * also allows filesystem to be frozen again. Must be matched with
  416. * mnt_want_write() call above.
  417. */
  418. void mnt_drop_write(struct vfsmount *mnt)
  419. {
  420. __mnt_drop_write(mnt);
  421. sb_end_write(mnt->mnt_sb);
  422. }
  423. EXPORT_SYMBOL_GPL(mnt_drop_write);
  424. void __mnt_drop_write_file(struct file *file)
  425. {
  426. __mnt_drop_write(file->f_path.mnt);
  427. }
  428. void mnt_drop_write_file(struct file *file)
  429. {
  430. mnt_drop_write(file->f_path.mnt);
  431. }
  432. EXPORT_SYMBOL(mnt_drop_write_file);
  433. static int mnt_make_readonly(struct mount *mnt)
  434. {
  435. int ret = 0;
  436. lock_mount_hash();
  437. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  438. /*
  439. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  440. * should be visible before we do.
  441. */
  442. smp_mb();
  443. /*
  444. * With writers on hold, if this value is zero, then there are
  445. * definitely no active writers (although held writers may subsequently
  446. * increment the count, they'll have to wait, and decrement it after
  447. * seeing MNT_READONLY).
  448. *
  449. * It is OK to have counter incremented on one CPU and decremented on
  450. * another: the sum will add up correctly. The danger would be when we
  451. * sum up each counter, if we read a counter before it is incremented,
  452. * but then read another CPU's count which it has been subsequently
  453. * decremented from -- we would see more decrements than we should.
  454. * MNT_WRITE_HOLD protects against this scenario, because
  455. * mnt_want_write first increments count, then smp_mb, then spins on
  456. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  457. * we're counting up here.
  458. */
  459. if (mnt_get_writers(mnt) > 0)
  460. ret = -EBUSY;
  461. else
  462. mnt->mnt.mnt_flags |= MNT_READONLY;
  463. /*
  464. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  465. * that become unheld will see MNT_READONLY.
  466. */
  467. smp_wmb();
  468. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  469. unlock_mount_hash();
  470. return ret;
  471. }
  472. static void __mnt_unmake_readonly(struct mount *mnt)
  473. {
  474. lock_mount_hash();
  475. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  476. unlock_mount_hash();
  477. }
  478. int sb_prepare_remount_readonly(struct super_block *sb)
  479. {
  480. struct mount *mnt;
  481. int err = 0;
  482. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  483. if (atomic_long_read(&sb->s_remove_count))
  484. return -EBUSY;
  485. lock_mount_hash();
  486. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  487. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  488. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  489. smp_mb();
  490. if (mnt_get_writers(mnt) > 0) {
  491. err = -EBUSY;
  492. break;
  493. }
  494. }
  495. }
  496. if (!err && atomic_long_read(&sb->s_remove_count))
  497. err = -EBUSY;
  498. if (!err) {
  499. sb->s_readonly_remount = 1;
  500. smp_wmb();
  501. }
  502. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  503. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  504. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  505. }
  506. unlock_mount_hash();
  507. return err;
  508. }
  509. static void free_vfsmnt(struct mount *mnt)
  510. {
  511. kfree(mnt->mnt_devname);
  512. mnt_free_id(mnt);
  513. #ifdef CONFIG_SMP
  514. free_percpu(mnt->mnt_pcp);
  515. #endif
  516. kmem_cache_free(mnt_cache, mnt);
  517. }
  518. /* call under rcu_read_lock */
  519. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  520. {
  521. struct mount *mnt;
  522. if (read_seqretry(&mount_lock, seq))
  523. return false;
  524. if (bastard == NULL)
  525. return true;
  526. mnt = real_mount(bastard);
  527. mnt_add_count(mnt, 1);
  528. if (likely(!read_seqretry(&mount_lock, seq)))
  529. return true;
  530. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  531. mnt_add_count(mnt, -1);
  532. return false;
  533. }
  534. rcu_read_unlock();
  535. mntput(bastard);
  536. rcu_read_lock();
  537. return false;
  538. }
  539. /*
  540. * find the first mount at @dentry on vfsmount @mnt.
  541. * call under rcu_read_lock()
  542. */
  543. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  544. {
  545. struct list_head *head = m_hash(mnt, dentry);
  546. struct mount *p;
  547. list_for_each_entry_rcu(p, head, mnt_hash)
  548. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  549. return p;
  550. return NULL;
  551. }
  552. /*
  553. * find the last mount at @dentry on vfsmount @mnt.
  554. * mount_lock must be held.
  555. */
  556. struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
  557. {
  558. struct list_head *head = m_hash(mnt, dentry);
  559. struct mount *p, *res = NULL;
  560. list_for_each_entry(p, head, mnt_hash)
  561. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  562. goto found;
  563. return res;
  564. found:
  565. res = p;
  566. list_for_each_entry_continue(p, head, mnt_hash) {
  567. if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
  568. break;
  569. res = p;
  570. }
  571. return res;
  572. }
  573. /*
  574. * lookup_mnt - Return the first child mount mounted at path
  575. *
  576. * "First" means first mounted chronologically. If you create the
  577. * following mounts:
  578. *
  579. * mount /dev/sda1 /mnt
  580. * mount /dev/sda2 /mnt
  581. * mount /dev/sda3 /mnt
  582. *
  583. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  584. * return successively the root dentry and vfsmount of /dev/sda1, then
  585. * /dev/sda2, then /dev/sda3, then NULL.
  586. *
  587. * lookup_mnt takes a reference to the found vfsmount.
  588. */
  589. struct vfsmount *lookup_mnt(struct path *path)
  590. {
  591. struct mount *child_mnt;
  592. struct vfsmount *m;
  593. unsigned seq;
  594. rcu_read_lock();
  595. do {
  596. seq = read_seqbegin(&mount_lock);
  597. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  598. m = child_mnt ? &child_mnt->mnt : NULL;
  599. } while (!legitimize_mnt(m, seq));
  600. rcu_read_unlock();
  601. return m;
  602. }
  603. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  604. {
  605. struct hlist_head *chain = mp_hash(dentry);
  606. struct mountpoint *mp;
  607. int ret;
  608. hlist_for_each_entry(mp, chain, m_hash) {
  609. if (mp->m_dentry == dentry) {
  610. /* might be worth a WARN_ON() */
  611. if (d_unlinked(dentry))
  612. return ERR_PTR(-ENOENT);
  613. mp->m_count++;
  614. return mp;
  615. }
  616. }
  617. mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  618. if (!mp)
  619. return ERR_PTR(-ENOMEM);
  620. ret = d_set_mounted(dentry);
  621. if (ret) {
  622. kfree(mp);
  623. return ERR_PTR(ret);
  624. }
  625. mp->m_dentry = dentry;
  626. mp->m_count = 1;
  627. hlist_add_head(&mp->m_hash, chain);
  628. return mp;
  629. }
  630. static void put_mountpoint(struct mountpoint *mp)
  631. {
  632. if (!--mp->m_count) {
  633. struct dentry *dentry = mp->m_dentry;
  634. spin_lock(&dentry->d_lock);
  635. dentry->d_flags &= ~DCACHE_MOUNTED;
  636. spin_unlock(&dentry->d_lock);
  637. hlist_del(&mp->m_hash);
  638. kfree(mp);
  639. }
  640. }
  641. static inline int check_mnt(struct mount *mnt)
  642. {
  643. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  644. }
  645. /*
  646. * vfsmount lock must be held for write
  647. */
  648. static void touch_mnt_namespace(struct mnt_namespace *ns)
  649. {
  650. if (ns) {
  651. ns->event = ++event;
  652. wake_up_interruptible(&ns->poll);
  653. }
  654. }
  655. /*
  656. * vfsmount lock must be held for write
  657. */
  658. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  659. {
  660. if (ns && ns->event != event) {
  661. ns->event = event;
  662. wake_up_interruptible(&ns->poll);
  663. }
  664. }
  665. /*
  666. * vfsmount lock must be held for write
  667. */
  668. static void detach_mnt(struct mount *mnt, struct path *old_path)
  669. {
  670. old_path->dentry = mnt->mnt_mountpoint;
  671. old_path->mnt = &mnt->mnt_parent->mnt;
  672. mnt->mnt_parent = mnt;
  673. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  674. list_del_init(&mnt->mnt_child);
  675. list_del_init(&mnt->mnt_hash);
  676. put_mountpoint(mnt->mnt_mp);
  677. mnt->mnt_mp = NULL;
  678. }
  679. /*
  680. * vfsmount lock must be held for write
  681. */
  682. void mnt_set_mountpoint(struct mount *mnt,
  683. struct mountpoint *mp,
  684. struct mount *child_mnt)
  685. {
  686. mp->m_count++;
  687. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  688. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  689. child_mnt->mnt_parent = mnt;
  690. child_mnt->mnt_mp = mp;
  691. }
  692. /*
  693. * vfsmount lock must be held for write
  694. */
  695. static void attach_mnt(struct mount *mnt,
  696. struct mount *parent,
  697. struct mountpoint *mp)
  698. {
  699. mnt_set_mountpoint(parent, mp, mnt);
  700. list_add(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
  701. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  702. }
  703. /*
  704. * vfsmount lock must be held for write
  705. */
  706. static void commit_tree(struct mount *mnt, struct mount *shadows)
  707. {
  708. struct mount *parent = mnt->mnt_parent;
  709. struct mount *m;
  710. LIST_HEAD(head);
  711. struct mnt_namespace *n = parent->mnt_ns;
  712. BUG_ON(parent == mnt);
  713. list_add_tail(&head, &mnt->mnt_list);
  714. list_for_each_entry(m, &head, mnt_list)
  715. m->mnt_ns = n;
  716. list_splice(&head, n->list.prev);
  717. if (shadows)
  718. list_add(&mnt->mnt_hash, &shadows->mnt_hash);
  719. else
  720. list_add(&mnt->mnt_hash,
  721. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  722. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  723. touch_mnt_namespace(n);
  724. }
  725. static struct mount *next_mnt(struct mount *p, struct mount *root)
  726. {
  727. struct list_head *next = p->mnt_mounts.next;
  728. if (next == &p->mnt_mounts) {
  729. while (1) {
  730. if (p == root)
  731. return NULL;
  732. next = p->mnt_child.next;
  733. if (next != &p->mnt_parent->mnt_mounts)
  734. break;
  735. p = p->mnt_parent;
  736. }
  737. }
  738. return list_entry(next, struct mount, mnt_child);
  739. }
  740. static struct mount *skip_mnt_tree(struct mount *p)
  741. {
  742. struct list_head *prev = p->mnt_mounts.prev;
  743. while (prev != &p->mnt_mounts) {
  744. p = list_entry(prev, struct mount, mnt_child);
  745. prev = p->mnt_mounts.prev;
  746. }
  747. return p;
  748. }
  749. struct vfsmount *
  750. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  751. {
  752. struct mount *mnt;
  753. struct dentry *root;
  754. if (!type)
  755. return ERR_PTR(-ENODEV);
  756. mnt = alloc_vfsmnt(name);
  757. if (!mnt)
  758. return ERR_PTR(-ENOMEM);
  759. if (flags & MS_KERNMOUNT)
  760. mnt->mnt.mnt_flags = MNT_INTERNAL;
  761. root = mount_fs(type, flags, name, data);
  762. if (IS_ERR(root)) {
  763. free_vfsmnt(mnt);
  764. return ERR_CAST(root);
  765. }
  766. mnt->mnt.mnt_root = root;
  767. mnt->mnt.mnt_sb = root->d_sb;
  768. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  769. mnt->mnt_parent = mnt;
  770. lock_mount_hash();
  771. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  772. unlock_mount_hash();
  773. return &mnt->mnt;
  774. }
  775. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  776. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  777. int flag)
  778. {
  779. struct super_block *sb = old->mnt.mnt_sb;
  780. struct mount *mnt;
  781. int err;
  782. mnt = alloc_vfsmnt(old->mnt_devname);
  783. if (!mnt)
  784. return ERR_PTR(-ENOMEM);
  785. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  786. mnt->mnt_group_id = 0; /* not a peer of original */
  787. else
  788. mnt->mnt_group_id = old->mnt_group_id;
  789. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  790. err = mnt_alloc_group_id(mnt);
  791. if (err)
  792. goto out_free;
  793. }
  794. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  795. /* Don't allow unprivileged users to change mount flags */
  796. if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
  797. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  798. /* Don't allow unprivileged users to reveal what is under a mount */
  799. if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
  800. mnt->mnt.mnt_flags |= MNT_LOCKED;
  801. atomic_inc(&sb->s_active);
  802. mnt->mnt.mnt_sb = sb;
  803. mnt->mnt.mnt_root = dget(root);
  804. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  805. mnt->mnt_parent = mnt;
  806. lock_mount_hash();
  807. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  808. unlock_mount_hash();
  809. if ((flag & CL_SLAVE) ||
  810. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  811. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  812. mnt->mnt_master = old;
  813. CLEAR_MNT_SHARED(mnt);
  814. } else if (!(flag & CL_PRIVATE)) {
  815. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  816. list_add(&mnt->mnt_share, &old->mnt_share);
  817. if (IS_MNT_SLAVE(old))
  818. list_add(&mnt->mnt_slave, &old->mnt_slave);
  819. mnt->mnt_master = old->mnt_master;
  820. }
  821. if (flag & CL_MAKE_SHARED)
  822. set_mnt_shared(mnt);
  823. /* stick the duplicate mount on the same expiry list
  824. * as the original if that was on one */
  825. if (flag & CL_EXPIRE) {
  826. if (!list_empty(&old->mnt_expire))
  827. list_add(&mnt->mnt_expire, &old->mnt_expire);
  828. }
  829. return mnt;
  830. out_free:
  831. free_vfsmnt(mnt);
  832. return ERR_PTR(err);
  833. }
  834. static void delayed_free(struct rcu_head *head)
  835. {
  836. struct mount *mnt = container_of(head, struct mount, mnt_rcu);
  837. kfree(mnt->mnt_devname);
  838. #ifdef CONFIG_SMP
  839. free_percpu(mnt->mnt_pcp);
  840. #endif
  841. kmem_cache_free(mnt_cache, mnt);
  842. }
  843. static void mntput_no_expire(struct mount *mnt)
  844. {
  845. put_again:
  846. rcu_read_lock();
  847. mnt_add_count(mnt, -1);
  848. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  849. rcu_read_unlock();
  850. return;
  851. }
  852. lock_mount_hash();
  853. if (mnt_get_count(mnt)) {
  854. rcu_read_unlock();
  855. unlock_mount_hash();
  856. return;
  857. }
  858. if (unlikely(mnt->mnt_pinned)) {
  859. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  860. mnt->mnt_pinned = 0;
  861. rcu_read_unlock();
  862. unlock_mount_hash();
  863. acct_auto_close_mnt(&mnt->mnt);
  864. goto put_again;
  865. }
  866. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  867. rcu_read_unlock();
  868. unlock_mount_hash();
  869. return;
  870. }
  871. mnt->mnt.mnt_flags |= MNT_DOOMED;
  872. rcu_read_unlock();
  873. list_del(&mnt->mnt_instance);
  874. unlock_mount_hash();
  875. /*
  876. * This probably indicates that somebody messed
  877. * up a mnt_want/drop_write() pair. If this
  878. * happens, the filesystem was probably unable
  879. * to make r/w->r/o transitions.
  880. */
  881. /*
  882. * The locking used to deal with mnt_count decrement provides barriers,
  883. * so mnt_get_writers() below is safe.
  884. */
  885. WARN_ON(mnt_get_writers(mnt));
  886. fsnotify_vfsmount_delete(&mnt->mnt);
  887. dput(mnt->mnt.mnt_root);
  888. deactivate_super(mnt->mnt.mnt_sb);
  889. mnt_free_id(mnt);
  890. call_rcu(&mnt->mnt_rcu, delayed_free);
  891. }
  892. void mntput(struct vfsmount *mnt)
  893. {
  894. if (mnt) {
  895. struct mount *m = real_mount(mnt);
  896. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  897. if (unlikely(m->mnt_expiry_mark))
  898. m->mnt_expiry_mark = 0;
  899. mntput_no_expire(m);
  900. }
  901. }
  902. EXPORT_SYMBOL(mntput);
  903. struct vfsmount *mntget(struct vfsmount *mnt)
  904. {
  905. if (mnt)
  906. mnt_add_count(real_mount(mnt), 1);
  907. return mnt;
  908. }
  909. EXPORT_SYMBOL(mntget);
  910. void mnt_pin(struct vfsmount *mnt)
  911. {
  912. lock_mount_hash();
  913. real_mount(mnt)->mnt_pinned++;
  914. unlock_mount_hash();
  915. }
  916. EXPORT_SYMBOL(mnt_pin);
  917. void mnt_unpin(struct vfsmount *m)
  918. {
  919. struct mount *mnt = real_mount(m);
  920. lock_mount_hash();
  921. if (mnt->mnt_pinned) {
  922. mnt_add_count(mnt, 1);
  923. mnt->mnt_pinned--;
  924. }
  925. unlock_mount_hash();
  926. }
  927. EXPORT_SYMBOL(mnt_unpin);
  928. static inline void mangle(struct seq_file *m, const char *s)
  929. {
  930. seq_escape(m, s, " \t\n\\");
  931. }
  932. /*
  933. * Simple .show_options callback for filesystems which don't want to
  934. * implement more complex mount option showing.
  935. *
  936. * See also save_mount_options().
  937. */
  938. int generic_show_options(struct seq_file *m, struct dentry *root)
  939. {
  940. const char *options;
  941. rcu_read_lock();
  942. options = rcu_dereference(root->d_sb->s_options);
  943. if (options != NULL && options[0]) {
  944. seq_putc(m, ',');
  945. mangle(m, options);
  946. }
  947. rcu_read_unlock();
  948. return 0;
  949. }
  950. EXPORT_SYMBOL(generic_show_options);
  951. /*
  952. * If filesystem uses generic_show_options(), this function should be
  953. * called from the fill_super() callback.
  954. *
  955. * The .remount_fs callback usually needs to be handled in a special
  956. * way, to make sure, that previous options are not overwritten if the
  957. * remount fails.
  958. *
  959. * Also note, that if the filesystem's .remount_fs function doesn't
  960. * reset all options to their default value, but changes only newly
  961. * given options, then the displayed options will not reflect reality
  962. * any more.
  963. */
  964. void save_mount_options(struct super_block *sb, char *options)
  965. {
  966. BUG_ON(sb->s_options);
  967. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  968. }
  969. EXPORT_SYMBOL(save_mount_options);
  970. void replace_mount_options(struct super_block *sb, char *options)
  971. {
  972. char *old = sb->s_options;
  973. rcu_assign_pointer(sb->s_options, options);
  974. if (old) {
  975. synchronize_rcu();
  976. kfree(old);
  977. }
  978. }
  979. EXPORT_SYMBOL(replace_mount_options);
  980. #ifdef CONFIG_PROC_FS
  981. /* iterator; we want it to have access to namespace_sem, thus here... */
  982. static void *m_start(struct seq_file *m, loff_t *pos)
  983. {
  984. struct proc_mounts *p = proc_mounts(m);
  985. down_read(&namespace_sem);
  986. return seq_list_start(&p->ns->list, *pos);
  987. }
  988. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  989. {
  990. struct proc_mounts *p = proc_mounts(m);
  991. return seq_list_next(v, &p->ns->list, pos);
  992. }
  993. static void m_stop(struct seq_file *m, void *v)
  994. {
  995. up_read(&namespace_sem);
  996. }
  997. static int m_show(struct seq_file *m, void *v)
  998. {
  999. struct proc_mounts *p = proc_mounts(m);
  1000. struct mount *r = list_entry(v, struct mount, mnt_list);
  1001. return p->show(m, &r->mnt);
  1002. }
  1003. const struct seq_operations mounts_op = {
  1004. .start = m_start,
  1005. .next = m_next,
  1006. .stop = m_stop,
  1007. .show = m_show,
  1008. };
  1009. #endif /* CONFIG_PROC_FS */
  1010. /**
  1011. * may_umount_tree - check if a mount tree is busy
  1012. * @mnt: root of mount tree
  1013. *
  1014. * This is called to check if a tree of mounts has any
  1015. * open files, pwds, chroots or sub mounts that are
  1016. * busy.
  1017. */
  1018. int may_umount_tree(struct vfsmount *m)
  1019. {
  1020. struct mount *mnt = real_mount(m);
  1021. int actual_refs = 0;
  1022. int minimum_refs = 0;
  1023. struct mount *p;
  1024. BUG_ON(!m);
  1025. /* write lock needed for mnt_get_count */
  1026. lock_mount_hash();
  1027. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1028. actual_refs += mnt_get_count(p);
  1029. minimum_refs += 2;
  1030. }
  1031. unlock_mount_hash();
  1032. if (actual_refs > minimum_refs)
  1033. return 0;
  1034. return 1;
  1035. }
  1036. EXPORT_SYMBOL(may_umount_tree);
  1037. /**
  1038. * may_umount - check if a mount point is busy
  1039. * @mnt: root of mount
  1040. *
  1041. * This is called to check if a mount point has any
  1042. * open files, pwds, chroots or sub mounts. If the
  1043. * mount has sub mounts this will return busy
  1044. * regardless of whether the sub mounts are busy.
  1045. *
  1046. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1047. * give false negatives. The main reason why it's here is that we need
  1048. * a non-destructive way to look for easily umountable filesystems.
  1049. */
  1050. int may_umount(struct vfsmount *mnt)
  1051. {
  1052. int ret = 1;
  1053. down_read(&namespace_sem);
  1054. lock_mount_hash();
  1055. if (propagate_mount_busy(real_mount(mnt), 2))
  1056. ret = 0;
  1057. unlock_mount_hash();
  1058. up_read(&namespace_sem);
  1059. return ret;
  1060. }
  1061. EXPORT_SYMBOL(may_umount);
  1062. static LIST_HEAD(unmounted); /* protected by namespace_sem */
  1063. static void namespace_unlock(void)
  1064. {
  1065. struct mount *mnt;
  1066. LIST_HEAD(head);
  1067. if (likely(list_empty(&unmounted))) {
  1068. up_write(&namespace_sem);
  1069. return;
  1070. }
  1071. list_splice_init(&unmounted, &head);
  1072. up_write(&namespace_sem);
  1073. synchronize_rcu();
  1074. while (!list_empty(&head)) {
  1075. mnt = list_first_entry(&head, struct mount, mnt_hash);
  1076. list_del_init(&mnt->mnt_hash);
  1077. if (mnt->mnt_ex_mountpoint.mnt)
  1078. path_put(&mnt->mnt_ex_mountpoint);
  1079. mntput(&mnt->mnt);
  1080. }
  1081. }
  1082. static inline void namespace_lock(void)
  1083. {
  1084. down_write(&namespace_sem);
  1085. }
  1086. /*
  1087. * mount_lock must be held
  1088. * namespace_sem must be held for write
  1089. * how = 0 => just this tree, don't propagate
  1090. * how = 1 => propagate; we know that nobody else has reference to any victims
  1091. * how = 2 => lazy umount
  1092. */
  1093. void umount_tree(struct mount *mnt, int how)
  1094. {
  1095. LIST_HEAD(tmp_list);
  1096. struct mount *p;
  1097. for (p = mnt; p; p = next_mnt(p, mnt))
  1098. list_move(&p->mnt_hash, &tmp_list);
  1099. if (how)
  1100. propagate_umount(&tmp_list);
  1101. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1102. list_del_init(&p->mnt_expire);
  1103. list_del_init(&p->mnt_list);
  1104. __touch_mnt_namespace(p->mnt_ns);
  1105. p->mnt_ns = NULL;
  1106. if (how < 2)
  1107. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1108. list_del_init(&p->mnt_child);
  1109. if (mnt_has_parent(p)) {
  1110. put_mountpoint(p->mnt_mp);
  1111. /* move the reference to mountpoint into ->mnt_ex_mountpoint */
  1112. p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
  1113. p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
  1114. p->mnt_mountpoint = p->mnt.mnt_root;
  1115. p->mnt_parent = p;
  1116. p->mnt_mp = NULL;
  1117. }
  1118. change_mnt_propagation(p, MS_PRIVATE);
  1119. }
  1120. list_splice(&tmp_list, &unmounted);
  1121. }
  1122. static void shrink_submounts(struct mount *mnt);
  1123. static int do_umount(struct mount *mnt, int flags)
  1124. {
  1125. struct super_block *sb = mnt->mnt.mnt_sb;
  1126. int retval;
  1127. retval = security_sb_umount(&mnt->mnt, flags);
  1128. if (retval)
  1129. return retval;
  1130. /*
  1131. * Allow userspace to request a mountpoint be expired rather than
  1132. * unmounting unconditionally. Unmount only happens if:
  1133. * (1) the mark is already set (the mark is cleared by mntput())
  1134. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1135. */
  1136. if (flags & MNT_EXPIRE) {
  1137. if (&mnt->mnt == current->fs->root.mnt ||
  1138. flags & (MNT_FORCE | MNT_DETACH))
  1139. return -EINVAL;
  1140. /*
  1141. * probably don't strictly need the lock here if we examined
  1142. * all race cases, but it's a slowpath.
  1143. */
  1144. lock_mount_hash();
  1145. if (mnt_get_count(mnt) != 2) {
  1146. unlock_mount_hash();
  1147. return -EBUSY;
  1148. }
  1149. unlock_mount_hash();
  1150. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1151. return -EAGAIN;
  1152. }
  1153. /*
  1154. * If we may have to abort operations to get out of this
  1155. * mount, and they will themselves hold resources we must
  1156. * allow the fs to do things. In the Unix tradition of
  1157. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1158. * might fail to complete on the first run through as other tasks
  1159. * must return, and the like. Thats for the mount program to worry
  1160. * about for the moment.
  1161. */
  1162. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1163. sb->s_op->umount_begin(sb);
  1164. }
  1165. /*
  1166. * No sense to grab the lock for this test, but test itself looks
  1167. * somewhat bogus. Suggestions for better replacement?
  1168. * Ho-hum... In principle, we might treat that as umount + switch
  1169. * to rootfs. GC would eventually take care of the old vfsmount.
  1170. * Actually it makes sense, especially if rootfs would contain a
  1171. * /reboot - static binary that would close all descriptors and
  1172. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1173. */
  1174. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1175. /*
  1176. * Special case for "unmounting" root ...
  1177. * we just try to remount it readonly.
  1178. */
  1179. down_write(&sb->s_umount);
  1180. if (!(sb->s_flags & MS_RDONLY))
  1181. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1182. up_write(&sb->s_umount);
  1183. return retval;
  1184. }
  1185. namespace_lock();
  1186. lock_mount_hash();
  1187. event++;
  1188. if (flags & MNT_DETACH) {
  1189. if (!list_empty(&mnt->mnt_list))
  1190. umount_tree(mnt, 2);
  1191. retval = 0;
  1192. } else {
  1193. shrink_submounts(mnt);
  1194. retval = -EBUSY;
  1195. if (!propagate_mount_busy(mnt, 2)) {
  1196. if (!list_empty(&mnt->mnt_list))
  1197. umount_tree(mnt, 1);
  1198. retval = 0;
  1199. }
  1200. }
  1201. unlock_mount_hash();
  1202. namespace_unlock();
  1203. return retval;
  1204. }
  1205. /*
  1206. * Is the caller allowed to modify his namespace?
  1207. */
  1208. static inline bool may_mount(void)
  1209. {
  1210. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1211. }
  1212. /*
  1213. * Now umount can handle mount points as well as block devices.
  1214. * This is important for filesystems which use unnamed block devices.
  1215. *
  1216. * We now support a flag for forced unmount like the other 'big iron'
  1217. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1218. */
  1219. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1220. {
  1221. struct path path;
  1222. struct mount *mnt;
  1223. int retval;
  1224. int lookup_flags = 0;
  1225. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1226. return -EINVAL;
  1227. if (!may_mount())
  1228. return -EPERM;
  1229. if (!(flags & UMOUNT_NOFOLLOW))
  1230. lookup_flags |= LOOKUP_FOLLOW;
  1231. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1232. if (retval)
  1233. goto out;
  1234. mnt = real_mount(path.mnt);
  1235. retval = -EINVAL;
  1236. if (path.dentry != path.mnt->mnt_root)
  1237. goto dput_and_out;
  1238. if (!check_mnt(mnt))
  1239. goto dput_and_out;
  1240. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1241. goto dput_and_out;
  1242. retval = do_umount(mnt, flags);
  1243. dput_and_out:
  1244. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1245. dput(path.dentry);
  1246. mntput_no_expire(mnt);
  1247. out:
  1248. return retval;
  1249. }
  1250. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1251. /*
  1252. * The 2.0 compatible umount. No flags.
  1253. */
  1254. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1255. {
  1256. return sys_umount(name, 0);
  1257. }
  1258. #endif
  1259. static bool is_mnt_ns_file(struct dentry *dentry)
  1260. {
  1261. /* Is this a proxy for a mount namespace? */
  1262. struct inode *inode = dentry->d_inode;
  1263. struct proc_ns *ei;
  1264. if (!proc_ns_inode(inode))
  1265. return false;
  1266. ei = get_proc_ns(inode);
  1267. if (ei->ns_ops != &mntns_operations)
  1268. return false;
  1269. return true;
  1270. }
  1271. static bool mnt_ns_loop(struct dentry *dentry)
  1272. {
  1273. /* Could bind mounting the mount namespace inode cause a
  1274. * mount namespace loop?
  1275. */
  1276. struct mnt_namespace *mnt_ns;
  1277. if (!is_mnt_ns_file(dentry))
  1278. return false;
  1279. mnt_ns = get_proc_ns(dentry->d_inode)->ns;
  1280. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1281. }
  1282. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1283. int flag)
  1284. {
  1285. struct mount *res, *p, *q, *r, *parent;
  1286. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1287. return ERR_PTR(-EINVAL);
  1288. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1289. return ERR_PTR(-EINVAL);
  1290. res = q = clone_mnt(mnt, dentry, flag);
  1291. if (IS_ERR(q))
  1292. return q;
  1293. q->mnt.mnt_flags &= ~MNT_LOCKED;
  1294. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1295. p = mnt;
  1296. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1297. struct mount *s;
  1298. if (!is_subdir(r->mnt_mountpoint, dentry))
  1299. continue;
  1300. for (s = r; s; s = next_mnt(s, r)) {
  1301. if (!(flag & CL_COPY_UNBINDABLE) &&
  1302. IS_MNT_UNBINDABLE(s)) {
  1303. s = skip_mnt_tree(s);
  1304. continue;
  1305. }
  1306. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1307. is_mnt_ns_file(s->mnt.mnt_root)) {
  1308. s = skip_mnt_tree(s);
  1309. continue;
  1310. }
  1311. while (p != s->mnt_parent) {
  1312. p = p->mnt_parent;
  1313. q = q->mnt_parent;
  1314. }
  1315. p = s;
  1316. parent = q;
  1317. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1318. if (IS_ERR(q))
  1319. goto out;
  1320. lock_mount_hash();
  1321. list_add_tail(&q->mnt_list, &res->mnt_list);
  1322. attach_mnt(q, parent, p->mnt_mp);
  1323. unlock_mount_hash();
  1324. }
  1325. }
  1326. return res;
  1327. out:
  1328. if (res) {
  1329. lock_mount_hash();
  1330. umount_tree(res, 0);
  1331. unlock_mount_hash();
  1332. }
  1333. return q;
  1334. }
  1335. /* Caller should check returned pointer for errors */
  1336. struct vfsmount *collect_mounts(struct path *path)
  1337. {
  1338. struct mount *tree;
  1339. namespace_lock();
  1340. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1341. CL_COPY_ALL | CL_PRIVATE);
  1342. namespace_unlock();
  1343. if (IS_ERR(tree))
  1344. return ERR_CAST(tree);
  1345. return &tree->mnt;
  1346. }
  1347. void drop_collected_mounts(struct vfsmount *mnt)
  1348. {
  1349. namespace_lock();
  1350. lock_mount_hash();
  1351. umount_tree(real_mount(mnt), 0);
  1352. unlock_mount_hash();
  1353. namespace_unlock();
  1354. }
  1355. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1356. struct vfsmount *root)
  1357. {
  1358. struct mount *mnt;
  1359. int res = f(root, arg);
  1360. if (res)
  1361. return res;
  1362. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1363. res = f(&mnt->mnt, arg);
  1364. if (res)
  1365. return res;
  1366. }
  1367. return 0;
  1368. }
  1369. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1370. {
  1371. struct mount *p;
  1372. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1373. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1374. mnt_release_group_id(p);
  1375. }
  1376. }
  1377. static int invent_group_ids(struct mount *mnt, bool recurse)
  1378. {
  1379. struct mount *p;
  1380. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1381. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1382. int err = mnt_alloc_group_id(p);
  1383. if (err) {
  1384. cleanup_group_ids(mnt, p);
  1385. return err;
  1386. }
  1387. }
  1388. }
  1389. return 0;
  1390. }
  1391. /*
  1392. * @source_mnt : mount tree to be attached
  1393. * @nd : place the mount tree @source_mnt is attached
  1394. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1395. * store the parent mount and mountpoint dentry.
  1396. * (done when source_mnt is moved)
  1397. *
  1398. * NOTE: in the table below explains the semantics when a source mount
  1399. * of a given type is attached to a destination mount of a given type.
  1400. * ---------------------------------------------------------------------------
  1401. * | BIND MOUNT OPERATION |
  1402. * |**************************************************************************
  1403. * | source-->| shared | private | slave | unbindable |
  1404. * | dest | | | | |
  1405. * | | | | | | |
  1406. * | v | | | | |
  1407. * |**************************************************************************
  1408. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1409. * | | | | | |
  1410. * |non-shared| shared (+) | private | slave (*) | invalid |
  1411. * ***************************************************************************
  1412. * A bind operation clones the source mount and mounts the clone on the
  1413. * destination mount.
  1414. *
  1415. * (++) the cloned mount is propagated to all the mounts in the propagation
  1416. * tree of the destination mount and the cloned mount is added to
  1417. * the peer group of the source mount.
  1418. * (+) the cloned mount is created under the destination mount and is marked
  1419. * as shared. The cloned mount is added to the peer group of the source
  1420. * mount.
  1421. * (+++) the mount is propagated to all the mounts in the propagation tree
  1422. * of the destination mount and the cloned mount is made slave
  1423. * of the same master as that of the source mount. The cloned mount
  1424. * is marked as 'shared and slave'.
  1425. * (*) the cloned mount is made a slave of the same master as that of the
  1426. * source mount.
  1427. *
  1428. * ---------------------------------------------------------------------------
  1429. * | MOVE MOUNT OPERATION |
  1430. * |**************************************************************************
  1431. * | source-->| shared | private | slave | unbindable |
  1432. * | dest | | | | |
  1433. * | | | | | | |
  1434. * | v | | | | |
  1435. * |**************************************************************************
  1436. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1437. * | | | | | |
  1438. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1439. * ***************************************************************************
  1440. *
  1441. * (+) the mount is moved to the destination. And is then propagated to
  1442. * all the mounts in the propagation tree of the destination mount.
  1443. * (+*) the mount is moved to the destination.
  1444. * (+++) the mount is moved to the destination and is then propagated to
  1445. * all the mounts belonging to the destination mount's propagation tree.
  1446. * the mount is marked as 'shared and slave'.
  1447. * (*) the mount continues to be a slave at the new location.
  1448. *
  1449. * if the source mount is a tree, the operations explained above is
  1450. * applied to each mount in the tree.
  1451. * Must be called without spinlocks held, since this function can sleep
  1452. * in allocations.
  1453. */
  1454. static int attach_recursive_mnt(struct mount *source_mnt,
  1455. struct mount *dest_mnt,
  1456. struct mountpoint *dest_mp,
  1457. struct path *parent_path)
  1458. {
  1459. LIST_HEAD(tree_list);
  1460. struct mount *child, *p;
  1461. int err;
  1462. if (IS_MNT_SHARED(dest_mnt)) {
  1463. err = invent_group_ids(source_mnt, true);
  1464. if (err)
  1465. goto out;
  1466. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1467. if (err)
  1468. goto out_cleanup_ids;
  1469. lock_mount_hash();
  1470. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1471. set_mnt_shared(p);
  1472. } else {
  1473. lock_mount_hash();
  1474. }
  1475. if (parent_path) {
  1476. detach_mnt(source_mnt, parent_path);
  1477. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1478. touch_mnt_namespace(source_mnt->mnt_ns);
  1479. } else {
  1480. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1481. commit_tree(source_mnt, NULL);
  1482. }
  1483. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1484. struct mount *q;
  1485. list_del_init(&child->mnt_hash);
  1486. q = __lookup_mnt_last(&child->mnt_parent->mnt,
  1487. child->mnt_mountpoint);
  1488. commit_tree(child, q);
  1489. }
  1490. unlock_mount_hash();
  1491. return 0;
  1492. out_cleanup_ids:
  1493. cleanup_group_ids(source_mnt, NULL);
  1494. out:
  1495. return err;
  1496. }
  1497. static struct mountpoint *lock_mount(struct path *path)
  1498. {
  1499. struct vfsmount *mnt;
  1500. struct dentry *dentry = path->dentry;
  1501. retry:
  1502. mutex_lock(&dentry->d_inode->i_mutex);
  1503. if (unlikely(cant_mount(dentry))) {
  1504. mutex_unlock(&dentry->d_inode->i_mutex);
  1505. return ERR_PTR(-ENOENT);
  1506. }
  1507. namespace_lock();
  1508. mnt = lookup_mnt(path);
  1509. if (likely(!mnt)) {
  1510. struct mountpoint *mp = new_mountpoint(dentry);
  1511. if (IS_ERR(mp)) {
  1512. namespace_unlock();
  1513. mutex_unlock(&dentry->d_inode->i_mutex);
  1514. return mp;
  1515. }
  1516. return mp;
  1517. }
  1518. namespace_unlock();
  1519. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1520. path_put(path);
  1521. path->mnt = mnt;
  1522. dentry = path->dentry = dget(mnt->mnt_root);
  1523. goto retry;
  1524. }
  1525. static void unlock_mount(struct mountpoint *where)
  1526. {
  1527. struct dentry *dentry = where->m_dentry;
  1528. put_mountpoint(where);
  1529. namespace_unlock();
  1530. mutex_unlock(&dentry->d_inode->i_mutex);
  1531. }
  1532. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1533. {
  1534. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1535. return -EINVAL;
  1536. if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
  1537. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1538. return -ENOTDIR;
  1539. return attach_recursive_mnt(mnt, p, mp, NULL);
  1540. }
  1541. /*
  1542. * Sanity check the flags to change_mnt_propagation.
  1543. */
  1544. static int flags_to_propagation_type(int flags)
  1545. {
  1546. int type = flags & ~(MS_REC | MS_SILENT);
  1547. /* Fail if any non-propagation flags are set */
  1548. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1549. return 0;
  1550. /* Only one propagation flag should be set */
  1551. if (!is_power_of_2(type))
  1552. return 0;
  1553. return type;
  1554. }
  1555. /*
  1556. * recursively change the type of the mountpoint.
  1557. */
  1558. static int do_change_type(struct path *path, int flag)
  1559. {
  1560. struct mount *m;
  1561. struct mount *mnt = real_mount(path->mnt);
  1562. int recurse = flag & MS_REC;
  1563. int type;
  1564. int err = 0;
  1565. if (path->dentry != path->mnt->mnt_root)
  1566. return -EINVAL;
  1567. type = flags_to_propagation_type(flag);
  1568. if (!type)
  1569. return -EINVAL;
  1570. namespace_lock();
  1571. if (type == MS_SHARED) {
  1572. err = invent_group_ids(mnt, recurse);
  1573. if (err)
  1574. goto out_unlock;
  1575. }
  1576. lock_mount_hash();
  1577. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1578. change_mnt_propagation(m, type);
  1579. unlock_mount_hash();
  1580. out_unlock:
  1581. namespace_unlock();
  1582. return err;
  1583. }
  1584. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1585. {
  1586. struct mount *child;
  1587. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1588. if (!is_subdir(child->mnt_mountpoint, dentry))
  1589. continue;
  1590. if (child->mnt.mnt_flags & MNT_LOCKED)
  1591. return true;
  1592. }
  1593. return false;
  1594. }
  1595. /*
  1596. * do loopback mount.
  1597. */
  1598. static int do_loopback(struct path *path, const char *old_name,
  1599. int recurse)
  1600. {
  1601. struct path old_path;
  1602. struct mount *mnt = NULL, *old, *parent;
  1603. struct mountpoint *mp;
  1604. int err;
  1605. if (!old_name || !*old_name)
  1606. return -EINVAL;
  1607. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1608. if (err)
  1609. return err;
  1610. err = -EINVAL;
  1611. if (mnt_ns_loop(old_path.dentry))
  1612. goto out;
  1613. mp = lock_mount(path);
  1614. err = PTR_ERR(mp);
  1615. if (IS_ERR(mp))
  1616. goto out;
  1617. old = real_mount(old_path.mnt);
  1618. parent = real_mount(path->mnt);
  1619. err = -EINVAL;
  1620. if (IS_MNT_UNBINDABLE(old))
  1621. goto out2;
  1622. if (!check_mnt(parent) || !check_mnt(old))
  1623. goto out2;
  1624. if (!recurse && has_locked_children(old, old_path.dentry))
  1625. goto out2;
  1626. if (recurse)
  1627. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1628. else
  1629. mnt = clone_mnt(old, old_path.dentry, 0);
  1630. if (IS_ERR(mnt)) {
  1631. err = PTR_ERR(mnt);
  1632. goto out2;
  1633. }
  1634. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1635. err = graft_tree(mnt, parent, mp);
  1636. if (err) {
  1637. lock_mount_hash();
  1638. umount_tree(mnt, 0);
  1639. unlock_mount_hash();
  1640. }
  1641. out2:
  1642. unlock_mount(mp);
  1643. out:
  1644. path_put(&old_path);
  1645. return err;
  1646. }
  1647. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1648. {
  1649. int error = 0;
  1650. int readonly_request = 0;
  1651. if (ms_flags & MS_RDONLY)
  1652. readonly_request = 1;
  1653. if (readonly_request == __mnt_is_readonly(mnt))
  1654. return 0;
  1655. if (mnt->mnt_flags & MNT_LOCK_READONLY)
  1656. return -EPERM;
  1657. if (readonly_request)
  1658. error = mnt_make_readonly(real_mount(mnt));
  1659. else
  1660. __mnt_unmake_readonly(real_mount(mnt));
  1661. return error;
  1662. }
  1663. /*
  1664. * change filesystem flags. dir should be a physical root of filesystem.
  1665. * If you've mounted a non-root directory somewhere and want to do remount
  1666. * on it - tough luck.
  1667. */
  1668. static int do_remount(struct path *path, int flags, int mnt_flags,
  1669. void *data)
  1670. {
  1671. int err;
  1672. struct super_block *sb = path->mnt->mnt_sb;
  1673. struct mount *mnt = real_mount(path->mnt);
  1674. if (!check_mnt(mnt))
  1675. return -EINVAL;
  1676. if (path->dentry != path->mnt->mnt_root)
  1677. return -EINVAL;
  1678. err = security_sb_remount(sb, data);
  1679. if (err)
  1680. return err;
  1681. down_write(&sb->s_umount);
  1682. if (flags & MS_BIND)
  1683. err = change_mount_flags(path->mnt, flags);
  1684. else if (!capable(CAP_SYS_ADMIN))
  1685. err = -EPERM;
  1686. else
  1687. err = do_remount_sb(sb, flags, data, 0);
  1688. if (!err) {
  1689. lock_mount_hash();
  1690. mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
  1691. mnt->mnt.mnt_flags = mnt_flags;
  1692. touch_mnt_namespace(mnt->mnt_ns);
  1693. unlock_mount_hash();
  1694. }
  1695. up_write(&sb->s_umount);
  1696. return err;
  1697. }
  1698. static inline int tree_contains_unbindable(struct mount *mnt)
  1699. {
  1700. struct mount *p;
  1701. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1702. if (IS_MNT_UNBINDABLE(p))
  1703. return 1;
  1704. }
  1705. return 0;
  1706. }
  1707. static int do_move_mount(struct path *path, const char *old_name)
  1708. {
  1709. struct path old_path, parent_path;
  1710. struct mount *p;
  1711. struct mount *old;
  1712. struct mountpoint *mp;
  1713. int err;
  1714. if (!old_name || !*old_name)
  1715. return -EINVAL;
  1716. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1717. if (err)
  1718. return err;
  1719. mp = lock_mount(path);
  1720. err = PTR_ERR(mp);
  1721. if (IS_ERR(mp))
  1722. goto out;
  1723. old = real_mount(old_path.mnt);
  1724. p = real_mount(path->mnt);
  1725. err = -EINVAL;
  1726. if (!check_mnt(p) || !check_mnt(old))
  1727. goto out1;
  1728. if (old->mnt.mnt_flags & MNT_LOCKED)
  1729. goto out1;
  1730. err = -EINVAL;
  1731. if (old_path.dentry != old_path.mnt->mnt_root)
  1732. goto out1;
  1733. if (!mnt_has_parent(old))
  1734. goto out1;
  1735. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1736. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1737. goto out1;
  1738. /*
  1739. * Don't move a mount residing in a shared parent.
  1740. */
  1741. if (IS_MNT_SHARED(old->mnt_parent))
  1742. goto out1;
  1743. /*
  1744. * Don't move a mount tree containing unbindable mounts to a destination
  1745. * mount which is shared.
  1746. */
  1747. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1748. goto out1;
  1749. err = -ELOOP;
  1750. for (; mnt_has_parent(p); p = p->mnt_parent)
  1751. if (p == old)
  1752. goto out1;
  1753. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  1754. if (err)
  1755. goto out1;
  1756. /* if the mount is moved, it should no longer be expire
  1757. * automatically */
  1758. list_del_init(&old->mnt_expire);
  1759. out1:
  1760. unlock_mount(mp);
  1761. out:
  1762. if (!err)
  1763. path_put(&parent_path);
  1764. path_put(&old_path);
  1765. return err;
  1766. }
  1767. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1768. {
  1769. int err;
  1770. const char *subtype = strchr(fstype, '.');
  1771. if (subtype) {
  1772. subtype++;
  1773. err = -EINVAL;
  1774. if (!subtype[0])
  1775. goto err;
  1776. } else
  1777. subtype = "";
  1778. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1779. err = -ENOMEM;
  1780. if (!mnt->mnt_sb->s_subtype)
  1781. goto err;
  1782. return mnt;
  1783. err:
  1784. mntput(mnt);
  1785. return ERR_PTR(err);
  1786. }
  1787. /*
  1788. * add a mount into a namespace's mount tree
  1789. */
  1790. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1791. {
  1792. struct mountpoint *mp;
  1793. struct mount *parent;
  1794. int err;
  1795. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL | MNT_DOOMED | MNT_SYNC_UMOUNT);
  1796. mp = lock_mount(path);
  1797. if (IS_ERR(mp))
  1798. return PTR_ERR(mp);
  1799. parent = real_mount(path->mnt);
  1800. err = -EINVAL;
  1801. if (unlikely(!check_mnt(parent))) {
  1802. /* that's acceptable only for automounts done in private ns */
  1803. if (!(mnt_flags & MNT_SHRINKABLE))
  1804. goto unlock;
  1805. /* ... and for those we'd better have mountpoint still alive */
  1806. if (!parent->mnt_ns)
  1807. goto unlock;
  1808. }
  1809. /* Refuse the same filesystem on the same mount point */
  1810. err = -EBUSY;
  1811. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1812. path->mnt->mnt_root == path->dentry)
  1813. goto unlock;
  1814. err = -EINVAL;
  1815. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1816. goto unlock;
  1817. newmnt->mnt.mnt_flags = mnt_flags;
  1818. err = graft_tree(newmnt, parent, mp);
  1819. unlock:
  1820. unlock_mount(mp);
  1821. return err;
  1822. }
  1823. /*
  1824. * create a new mount for userspace and request it to be added into the
  1825. * namespace's tree
  1826. */
  1827. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1828. int mnt_flags, const char *name, void *data)
  1829. {
  1830. struct file_system_type *type;
  1831. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  1832. struct vfsmount *mnt;
  1833. int err;
  1834. if (!fstype)
  1835. return -EINVAL;
  1836. type = get_fs_type(fstype);
  1837. if (!type)
  1838. return -ENODEV;
  1839. if (user_ns != &init_user_ns) {
  1840. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  1841. put_filesystem(type);
  1842. return -EPERM;
  1843. }
  1844. /* Only in special cases allow devices from mounts
  1845. * created outside the initial user namespace.
  1846. */
  1847. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1848. flags |= MS_NODEV;
  1849. mnt_flags |= MNT_NODEV;
  1850. }
  1851. }
  1852. mnt = vfs_kern_mount(type, flags, name, data);
  1853. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1854. !mnt->mnt_sb->s_subtype)
  1855. mnt = fs_set_subtype(mnt, fstype);
  1856. put_filesystem(type);
  1857. if (IS_ERR(mnt))
  1858. return PTR_ERR(mnt);
  1859. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1860. if (err)
  1861. mntput(mnt);
  1862. return err;
  1863. }
  1864. int finish_automount(struct vfsmount *m, struct path *path)
  1865. {
  1866. struct mount *mnt = real_mount(m);
  1867. int err;
  1868. /* The new mount record should have at least 2 refs to prevent it being
  1869. * expired before we get a chance to add it
  1870. */
  1871. BUG_ON(mnt_get_count(mnt) < 2);
  1872. if (m->mnt_sb == path->mnt->mnt_sb &&
  1873. m->mnt_root == path->dentry) {
  1874. err = -ELOOP;
  1875. goto fail;
  1876. }
  1877. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1878. if (!err)
  1879. return 0;
  1880. fail:
  1881. /* remove m from any expiration list it may be on */
  1882. if (!list_empty(&mnt->mnt_expire)) {
  1883. namespace_lock();
  1884. list_del_init(&mnt->mnt_expire);
  1885. namespace_unlock();
  1886. }
  1887. mntput(m);
  1888. mntput(m);
  1889. return err;
  1890. }
  1891. /**
  1892. * mnt_set_expiry - Put a mount on an expiration list
  1893. * @mnt: The mount to list.
  1894. * @expiry_list: The list to add the mount to.
  1895. */
  1896. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1897. {
  1898. namespace_lock();
  1899. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1900. namespace_unlock();
  1901. }
  1902. EXPORT_SYMBOL(mnt_set_expiry);
  1903. /*
  1904. * process a list of expirable mountpoints with the intent of discarding any
  1905. * mountpoints that aren't in use and haven't been touched since last we came
  1906. * here
  1907. */
  1908. void mark_mounts_for_expiry(struct list_head *mounts)
  1909. {
  1910. struct mount *mnt, *next;
  1911. LIST_HEAD(graveyard);
  1912. if (list_empty(mounts))
  1913. return;
  1914. namespace_lock();
  1915. lock_mount_hash();
  1916. /* extract from the expiration list every vfsmount that matches the
  1917. * following criteria:
  1918. * - only referenced by its parent vfsmount
  1919. * - still marked for expiry (marked on the last call here; marks are
  1920. * cleared by mntput())
  1921. */
  1922. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1923. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1924. propagate_mount_busy(mnt, 1))
  1925. continue;
  1926. list_move(&mnt->mnt_expire, &graveyard);
  1927. }
  1928. while (!list_empty(&graveyard)) {
  1929. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1930. touch_mnt_namespace(mnt->mnt_ns);
  1931. umount_tree(mnt, 1);
  1932. }
  1933. unlock_mount_hash();
  1934. namespace_unlock();
  1935. }
  1936. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1937. /*
  1938. * Ripoff of 'select_parent()'
  1939. *
  1940. * search the list of submounts for a given mountpoint, and move any
  1941. * shrinkable submounts to the 'graveyard' list.
  1942. */
  1943. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1944. {
  1945. struct mount *this_parent = parent;
  1946. struct list_head *next;
  1947. int found = 0;
  1948. repeat:
  1949. next = this_parent->mnt_mounts.next;
  1950. resume:
  1951. while (next != &this_parent->mnt_mounts) {
  1952. struct list_head *tmp = next;
  1953. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1954. next = tmp->next;
  1955. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1956. continue;
  1957. /*
  1958. * Descend a level if the d_mounts list is non-empty.
  1959. */
  1960. if (!list_empty(&mnt->mnt_mounts)) {
  1961. this_parent = mnt;
  1962. goto repeat;
  1963. }
  1964. if (!propagate_mount_busy(mnt, 1)) {
  1965. list_move_tail(&mnt->mnt_expire, graveyard);
  1966. found++;
  1967. }
  1968. }
  1969. /*
  1970. * All done at this level ... ascend and resume the search
  1971. */
  1972. if (this_parent != parent) {
  1973. next = this_parent->mnt_child.next;
  1974. this_parent = this_parent->mnt_parent;
  1975. goto resume;
  1976. }
  1977. return found;
  1978. }
  1979. /*
  1980. * process a list of expirable mountpoints with the intent of discarding any
  1981. * submounts of a specific parent mountpoint
  1982. *
  1983. * mount_lock must be held for write
  1984. */
  1985. static void shrink_submounts(struct mount *mnt)
  1986. {
  1987. LIST_HEAD(graveyard);
  1988. struct mount *m;
  1989. /* extract submounts of 'mountpoint' from the expiration list */
  1990. while (select_submounts(mnt, &graveyard)) {
  1991. while (!list_empty(&graveyard)) {
  1992. m = list_first_entry(&graveyard, struct mount,
  1993. mnt_expire);
  1994. touch_mnt_namespace(m->mnt_ns);
  1995. umount_tree(m, 1);
  1996. }
  1997. }
  1998. }
  1999. /*
  2000. * Some copy_from_user() implementations do not return the exact number of
  2001. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2002. * Note that this function differs from copy_from_user() in that it will oops
  2003. * on bad values of `to', rather than returning a short copy.
  2004. */
  2005. static long exact_copy_from_user(void *to, const void __user * from,
  2006. unsigned long n)
  2007. {
  2008. char *t = to;
  2009. const char __user *f = from;
  2010. char c;
  2011. if (!access_ok(VERIFY_READ, from, n))
  2012. return n;
  2013. while (n) {
  2014. if (__get_user(c, f)) {
  2015. memset(t, 0, n);
  2016. break;
  2017. }
  2018. *t++ = c;
  2019. f++;
  2020. n--;
  2021. }
  2022. return n;
  2023. }
  2024. int copy_mount_options(const void __user * data, unsigned long *where)
  2025. {
  2026. int i;
  2027. unsigned long page;
  2028. unsigned long size;
  2029. *where = 0;
  2030. if (!data)
  2031. return 0;
  2032. if (!(page = __get_free_page(GFP_KERNEL)))
  2033. return -ENOMEM;
  2034. /* We only care that *some* data at the address the user
  2035. * gave us is valid. Just in case, we'll zero
  2036. * the remainder of the page.
  2037. */
  2038. /* copy_from_user cannot cross TASK_SIZE ! */
  2039. size = TASK_SIZE - (unsigned long)data;
  2040. if (size > PAGE_SIZE)
  2041. size = PAGE_SIZE;
  2042. i = size - exact_copy_from_user((void *)page, data, size);
  2043. if (!i) {
  2044. free_page(page);
  2045. return -EFAULT;
  2046. }
  2047. if (i != PAGE_SIZE)
  2048. memset((char *)page + i, 0, PAGE_SIZE - i);
  2049. *where = page;
  2050. return 0;
  2051. }
  2052. int copy_mount_string(const void __user *data, char **where)
  2053. {
  2054. char *tmp;
  2055. if (!data) {
  2056. *where = NULL;
  2057. return 0;
  2058. }
  2059. tmp = strndup_user(data, PAGE_SIZE);
  2060. if (IS_ERR(tmp))
  2061. return PTR_ERR(tmp);
  2062. *where = tmp;
  2063. return 0;
  2064. }
  2065. /*
  2066. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2067. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2068. *
  2069. * data is a (void *) that can point to any structure up to
  2070. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2071. * information (or be NULL).
  2072. *
  2073. * Pre-0.97 versions of mount() didn't have a flags word.
  2074. * When the flags word was introduced its top half was required
  2075. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2076. * Therefore, if this magic number is present, it carries no information
  2077. * and must be discarded.
  2078. */
  2079. long do_mount(const char *dev_name, const char *dir_name,
  2080. const char *type_page, unsigned long flags, void *data_page)
  2081. {
  2082. struct path path;
  2083. int retval = 0;
  2084. int mnt_flags = 0;
  2085. /* Discard magic */
  2086. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2087. flags &= ~MS_MGC_MSK;
  2088. /* Basic sanity checks */
  2089. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  2090. return -EINVAL;
  2091. if (data_page)
  2092. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2093. /* ... and get the mountpoint */
  2094. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2095. if (retval)
  2096. return retval;
  2097. retval = security_sb_mount(dev_name, &path,
  2098. type_page, flags, data_page);
  2099. if (!retval && !may_mount())
  2100. retval = -EPERM;
  2101. if (retval)
  2102. goto dput_out;
  2103. /* Default to relatime unless overriden */
  2104. if (!(flags & MS_NOATIME))
  2105. mnt_flags |= MNT_RELATIME;
  2106. /* Separate the per-mountpoint flags */
  2107. if (flags & MS_NOSUID)
  2108. mnt_flags |= MNT_NOSUID;
  2109. if (flags & MS_NODEV)
  2110. mnt_flags |= MNT_NODEV;
  2111. if (flags & MS_NOEXEC)
  2112. mnt_flags |= MNT_NOEXEC;
  2113. if (flags & MS_NOATIME)
  2114. mnt_flags |= MNT_NOATIME;
  2115. if (flags & MS_NODIRATIME)
  2116. mnt_flags |= MNT_NODIRATIME;
  2117. if (flags & MS_STRICTATIME)
  2118. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2119. if (flags & MS_RDONLY)
  2120. mnt_flags |= MNT_READONLY;
  2121. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2122. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2123. MS_STRICTATIME);
  2124. if (flags & MS_REMOUNT)
  2125. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2126. data_page);
  2127. else if (flags & MS_BIND)
  2128. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2129. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2130. retval = do_change_type(&path, flags);
  2131. else if (flags & MS_MOVE)
  2132. retval = do_move_mount(&path, dev_name);
  2133. else
  2134. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2135. dev_name, data_page);
  2136. dput_out:
  2137. path_put(&path);
  2138. return retval;
  2139. }
  2140. static void free_mnt_ns(struct mnt_namespace *ns)
  2141. {
  2142. proc_free_inum(ns->proc_inum);
  2143. put_user_ns(ns->user_ns);
  2144. kfree(ns);
  2145. }
  2146. /*
  2147. * Assign a sequence number so we can detect when we attempt to bind
  2148. * mount a reference to an older mount namespace into the current
  2149. * mount namespace, preventing reference counting loops. A 64bit
  2150. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2151. * is effectively never, so we can ignore the possibility.
  2152. */
  2153. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2154. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2155. {
  2156. struct mnt_namespace *new_ns;
  2157. int ret;
  2158. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2159. if (!new_ns)
  2160. return ERR_PTR(-ENOMEM);
  2161. ret = proc_alloc_inum(&new_ns->proc_inum);
  2162. if (ret) {
  2163. kfree(new_ns);
  2164. return ERR_PTR(ret);
  2165. }
  2166. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2167. atomic_set(&new_ns->count, 1);
  2168. new_ns->root = NULL;
  2169. INIT_LIST_HEAD(&new_ns->list);
  2170. init_waitqueue_head(&new_ns->poll);
  2171. new_ns->event = 0;
  2172. new_ns->user_ns = get_user_ns(user_ns);
  2173. return new_ns;
  2174. }
  2175. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2176. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2177. {
  2178. struct mnt_namespace *new_ns;
  2179. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2180. struct mount *p, *q;
  2181. struct mount *old;
  2182. struct mount *new;
  2183. int copy_flags;
  2184. BUG_ON(!ns);
  2185. if (likely(!(flags & CLONE_NEWNS))) {
  2186. get_mnt_ns(ns);
  2187. return ns;
  2188. }
  2189. old = ns->root;
  2190. new_ns = alloc_mnt_ns(user_ns);
  2191. if (IS_ERR(new_ns))
  2192. return new_ns;
  2193. namespace_lock();
  2194. /* First pass: copy the tree topology */
  2195. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2196. if (user_ns != ns->user_ns)
  2197. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2198. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2199. if (IS_ERR(new)) {
  2200. namespace_unlock();
  2201. free_mnt_ns(new_ns);
  2202. return ERR_CAST(new);
  2203. }
  2204. new_ns->root = new;
  2205. list_add_tail(&new_ns->list, &new->mnt_list);
  2206. /*
  2207. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2208. * as belonging to new namespace. We have already acquired a private
  2209. * fs_struct, so tsk->fs->lock is not needed.
  2210. */
  2211. p = old;
  2212. q = new;
  2213. while (p) {
  2214. q->mnt_ns = new_ns;
  2215. if (new_fs) {
  2216. if (&p->mnt == new_fs->root.mnt) {
  2217. new_fs->root.mnt = mntget(&q->mnt);
  2218. rootmnt = &p->mnt;
  2219. }
  2220. if (&p->mnt == new_fs->pwd.mnt) {
  2221. new_fs->pwd.mnt = mntget(&q->mnt);
  2222. pwdmnt = &p->mnt;
  2223. }
  2224. }
  2225. p = next_mnt(p, old);
  2226. q = next_mnt(q, new);
  2227. if (!q)
  2228. break;
  2229. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2230. p = next_mnt(p, old);
  2231. }
  2232. namespace_unlock();
  2233. if (rootmnt)
  2234. mntput(rootmnt);
  2235. if (pwdmnt)
  2236. mntput(pwdmnt);
  2237. return new_ns;
  2238. }
  2239. /**
  2240. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2241. * @mnt: pointer to the new root filesystem mountpoint
  2242. */
  2243. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2244. {
  2245. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2246. if (!IS_ERR(new_ns)) {
  2247. struct mount *mnt = real_mount(m);
  2248. mnt->mnt_ns = new_ns;
  2249. new_ns->root = mnt;
  2250. list_add(&mnt->mnt_list, &new_ns->list);
  2251. } else {
  2252. mntput(m);
  2253. }
  2254. return new_ns;
  2255. }
  2256. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2257. {
  2258. struct mnt_namespace *ns;
  2259. struct super_block *s;
  2260. struct path path;
  2261. int err;
  2262. ns = create_mnt_ns(mnt);
  2263. if (IS_ERR(ns))
  2264. return ERR_CAST(ns);
  2265. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2266. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2267. put_mnt_ns(ns);
  2268. if (err)
  2269. return ERR_PTR(err);
  2270. /* trade a vfsmount reference for active sb one */
  2271. s = path.mnt->mnt_sb;
  2272. atomic_inc(&s->s_active);
  2273. mntput(path.mnt);
  2274. /* lock the sucker */
  2275. down_write(&s->s_umount);
  2276. /* ... and return the root of (sub)tree on it */
  2277. return path.dentry;
  2278. }
  2279. EXPORT_SYMBOL(mount_subtree);
  2280. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2281. char __user *, type, unsigned long, flags, void __user *, data)
  2282. {
  2283. int ret;
  2284. char *kernel_type;
  2285. struct filename *kernel_dir;
  2286. char *kernel_dev;
  2287. unsigned long data_page;
  2288. ret = copy_mount_string(type, &kernel_type);
  2289. if (ret < 0)
  2290. goto out_type;
  2291. kernel_dir = getname(dir_name);
  2292. if (IS_ERR(kernel_dir)) {
  2293. ret = PTR_ERR(kernel_dir);
  2294. goto out_dir;
  2295. }
  2296. ret = copy_mount_string(dev_name, &kernel_dev);
  2297. if (ret < 0)
  2298. goto out_dev;
  2299. ret = copy_mount_options(data, &data_page);
  2300. if (ret < 0)
  2301. goto out_data;
  2302. ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
  2303. (void *) data_page);
  2304. free_page(data_page);
  2305. out_data:
  2306. kfree(kernel_dev);
  2307. out_dev:
  2308. putname(kernel_dir);
  2309. out_dir:
  2310. kfree(kernel_type);
  2311. out_type:
  2312. return ret;
  2313. }
  2314. /*
  2315. * Return true if path is reachable from root
  2316. *
  2317. * namespace_sem or mount_lock is held
  2318. */
  2319. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2320. const struct path *root)
  2321. {
  2322. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2323. dentry = mnt->mnt_mountpoint;
  2324. mnt = mnt->mnt_parent;
  2325. }
  2326. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2327. }
  2328. int path_is_under(struct path *path1, struct path *path2)
  2329. {
  2330. int res;
  2331. read_seqlock_excl(&mount_lock);
  2332. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2333. read_sequnlock_excl(&mount_lock);
  2334. return res;
  2335. }
  2336. EXPORT_SYMBOL(path_is_under);
  2337. /*
  2338. * pivot_root Semantics:
  2339. * Moves the root file system of the current process to the directory put_old,
  2340. * makes new_root as the new root file system of the current process, and sets
  2341. * root/cwd of all processes which had them on the current root to new_root.
  2342. *
  2343. * Restrictions:
  2344. * The new_root and put_old must be directories, and must not be on the
  2345. * same file system as the current process root. The put_old must be
  2346. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2347. * pointed to by put_old must yield the same directory as new_root. No other
  2348. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2349. *
  2350. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2351. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2352. * in this situation.
  2353. *
  2354. * Notes:
  2355. * - we don't move root/cwd if they are not at the root (reason: if something
  2356. * cared enough to change them, it's probably wrong to force them elsewhere)
  2357. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2358. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2359. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2360. * first.
  2361. */
  2362. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2363. const char __user *, put_old)
  2364. {
  2365. struct path new, old, parent_path, root_parent, root;
  2366. struct mount *new_mnt, *root_mnt, *old_mnt;
  2367. struct mountpoint *old_mp, *root_mp;
  2368. int error;
  2369. if (!may_mount())
  2370. return -EPERM;
  2371. error = user_path_dir(new_root, &new);
  2372. if (error)
  2373. goto out0;
  2374. error = user_path_dir(put_old, &old);
  2375. if (error)
  2376. goto out1;
  2377. error = security_sb_pivotroot(&old, &new);
  2378. if (error)
  2379. goto out2;
  2380. get_fs_root(current->fs, &root);
  2381. old_mp = lock_mount(&old);
  2382. error = PTR_ERR(old_mp);
  2383. if (IS_ERR(old_mp))
  2384. goto out3;
  2385. error = -EINVAL;
  2386. new_mnt = real_mount(new.mnt);
  2387. root_mnt = real_mount(root.mnt);
  2388. old_mnt = real_mount(old.mnt);
  2389. if (IS_MNT_SHARED(old_mnt) ||
  2390. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2391. IS_MNT_SHARED(root_mnt->mnt_parent))
  2392. goto out4;
  2393. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2394. goto out4;
  2395. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2396. goto out4;
  2397. error = -ENOENT;
  2398. if (d_unlinked(new.dentry))
  2399. goto out4;
  2400. error = -EBUSY;
  2401. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2402. goto out4; /* loop, on the same file system */
  2403. error = -EINVAL;
  2404. if (root.mnt->mnt_root != root.dentry)
  2405. goto out4; /* not a mountpoint */
  2406. if (!mnt_has_parent(root_mnt))
  2407. goto out4; /* not attached */
  2408. root_mp = root_mnt->mnt_mp;
  2409. if (new.mnt->mnt_root != new.dentry)
  2410. goto out4; /* not a mountpoint */
  2411. if (!mnt_has_parent(new_mnt))
  2412. goto out4; /* not attached */
  2413. /* make sure we can reach put_old from new_root */
  2414. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2415. goto out4;
  2416. root_mp->m_count++; /* pin it so it won't go away */
  2417. lock_mount_hash();
  2418. detach_mnt(new_mnt, &parent_path);
  2419. detach_mnt(root_mnt, &root_parent);
  2420. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2421. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2422. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2423. }
  2424. /* mount old root on put_old */
  2425. attach_mnt(root_mnt, old_mnt, old_mp);
  2426. /* mount new_root on / */
  2427. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2428. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2429. unlock_mount_hash();
  2430. chroot_fs_refs(&root, &new);
  2431. put_mountpoint(root_mp);
  2432. error = 0;
  2433. out4:
  2434. unlock_mount(old_mp);
  2435. if (!error) {
  2436. path_put(&root_parent);
  2437. path_put(&parent_path);
  2438. }
  2439. out3:
  2440. path_put(&root);
  2441. out2:
  2442. path_put(&old);
  2443. out1:
  2444. path_put(&new);
  2445. out0:
  2446. return error;
  2447. }
  2448. static void __init init_mount_tree(void)
  2449. {
  2450. struct vfsmount *mnt;
  2451. struct mnt_namespace *ns;
  2452. struct path root;
  2453. struct file_system_type *type;
  2454. type = get_fs_type("rootfs");
  2455. if (!type)
  2456. panic("Can't find rootfs type");
  2457. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2458. put_filesystem(type);
  2459. if (IS_ERR(mnt))
  2460. panic("Can't create rootfs");
  2461. ns = create_mnt_ns(mnt);
  2462. if (IS_ERR(ns))
  2463. panic("Can't allocate initial namespace");
  2464. init_task.nsproxy->mnt_ns = ns;
  2465. get_mnt_ns(ns);
  2466. root.mnt = mnt;
  2467. root.dentry = mnt->mnt_root;
  2468. set_fs_pwd(current->fs, &root);
  2469. set_fs_root(current->fs, &root);
  2470. }
  2471. void __init mnt_init(void)
  2472. {
  2473. unsigned u;
  2474. int err;
  2475. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2476. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2477. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2478. sizeof(struct list_head),
  2479. mhash_entries, 19,
  2480. 0,
  2481. &m_hash_shift, &m_hash_mask, 0, 0);
  2482. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2483. sizeof(struct hlist_head),
  2484. mphash_entries, 19,
  2485. 0,
  2486. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2487. if (!mount_hashtable || !mountpoint_hashtable)
  2488. panic("Failed to allocate mount hash table\n");
  2489. for (u = 0; u <= m_hash_mask; u++)
  2490. INIT_LIST_HEAD(&mount_hashtable[u]);
  2491. for (u = 0; u <= mp_hash_mask; u++)
  2492. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2493. kernfs_init();
  2494. err = sysfs_init();
  2495. if (err)
  2496. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2497. __func__, err);
  2498. fs_kobj = kobject_create_and_add("fs", NULL);
  2499. if (!fs_kobj)
  2500. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2501. init_rootfs();
  2502. init_mount_tree();
  2503. }
  2504. void put_mnt_ns(struct mnt_namespace *ns)
  2505. {
  2506. if (!atomic_dec_and_test(&ns->count))
  2507. return;
  2508. drop_collected_mounts(&ns->root->mnt);
  2509. free_mnt_ns(ns);
  2510. }
  2511. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2512. {
  2513. struct vfsmount *mnt;
  2514. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2515. if (!IS_ERR(mnt)) {
  2516. /*
  2517. * it is a longterm mount, don't release mnt until
  2518. * we unmount before file sys is unregistered
  2519. */
  2520. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2521. }
  2522. return mnt;
  2523. }
  2524. EXPORT_SYMBOL_GPL(kern_mount_data);
  2525. void kern_unmount(struct vfsmount *mnt)
  2526. {
  2527. /* release long term mount so mount point can be released */
  2528. if (!IS_ERR_OR_NULL(mnt)) {
  2529. real_mount(mnt)->mnt_ns = NULL;
  2530. synchronize_rcu(); /* yecchhh... */
  2531. mntput(mnt);
  2532. }
  2533. }
  2534. EXPORT_SYMBOL(kern_unmount);
  2535. bool our_mnt(struct vfsmount *mnt)
  2536. {
  2537. return check_mnt(real_mount(mnt));
  2538. }
  2539. bool current_chrooted(void)
  2540. {
  2541. /* Does the current process have a non-standard root */
  2542. struct path ns_root;
  2543. struct path fs_root;
  2544. bool chrooted;
  2545. /* Find the namespace root */
  2546. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2547. ns_root.dentry = ns_root.mnt->mnt_root;
  2548. path_get(&ns_root);
  2549. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2550. ;
  2551. get_fs_root(current->fs, &fs_root);
  2552. chrooted = !path_equal(&fs_root, &ns_root);
  2553. path_put(&fs_root);
  2554. path_put(&ns_root);
  2555. return chrooted;
  2556. }
  2557. bool fs_fully_visible(struct file_system_type *type)
  2558. {
  2559. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2560. struct mount *mnt;
  2561. bool visible = false;
  2562. if (unlikely(!ns))
  2563. return false;
  2564. down_read(&namespace_sem);
  2565. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2566. struct mount *child;
  2567. if (mnt->mnt.mnt_sb->s_type != type)
  2568. continue;
  2569. /* This mount is not fully visible if there are any child mounts
  2570. * that cover anything except for empty directories.
  2571. */
  2572. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2573. struct inode *inode = child->mnt_mountpoint->d_inode;
  2574. if (!S_ISDIR(inode->i_mode))
  2575. goto next;
  2576. if (inode->i_nlink > 2)
  2577. goto next;
  2578. }
  2579. visible = true;
  2580. goto found;
  2581. next: ;
  2582. }
  2583. found:
  2584. up_read(&namespace_sem);
  2585. return visible;
  2586. }
  2587. static void *mntns_get(struct task_struct *task)
  2588. {
  2589. struct mnt_namespace *ns = NULL;
  2590. struct nsproxy *nsproxy;
  2591. rcu_read_lock();
  2592. nsproxy = task_nsproxy(task);
  2593. if (nsproxy) {
  2594. ns = nsproxy->mnt_ns;
  2595. get_mnt_ns(ns);
  2596. }
  2597. rcu_read_unlock();
  2598. return ns;
  2599. }
  2600. static void mntns_put(void *ns)
  2601. {
  2602. put_mnt_ns(ns);
  2603. }
  2604. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2605. {
  2606. struct fs_struct *fs = current->fs;
  2607. struct mnt_namespace *mnt_ns = ns;
  2608. struct path root;
  2609. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2610. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  2611. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  2612. return -EPERM;
  2613. if (fs->users != 1)
  2614. return -EINVAL;
  2615. get_mnt_ns(mnt_ns);
  2616. put_mnt_ns(nsproxy->mnt_ns);
  2617. nsproxy->mnt_ns = mnt_ns;
  2618. /* Find the root */
  2619. root.mnt = &mnt_ns->root->mnt;
  2620. root.dentry = mnt_ns->root->mnt.mnt_root;
  2621. path_get(&root);
  2622. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2623. ;
  2624. /* Update the pwd and root */
  2625. set_fs_pwd(fs, &root);
  2626. set_fs_root(fs, &root);
  2627. path_put(&root);
  2628. return 0;
  2629. }
  2630. static unsigned int mntns_inum(void *ns)
  2631. {
  2632. struct mnt_namespace *mnt_ns = ns;
  2633. return mnt_ns->proc_inum;
  2634. }
  2635. const struct proc_ns_operations mntns_operations = {
  2636. .name = "mnt",
  2637. .type = CLONE_NEWNS,
  2638. .get = mntns_get,
  2639. .put = mntns_put,
  2640. .install = mntns_install,
  2641. .inum = mntns_inum,
  2642. };