ordered-data.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/slab.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/writeback.h>
  21. #include <linux/pagevec.h>
  22. #include "ctree.h"
  23. #include "transaction.h"
  24. #include "btrfs_inode.h"
  25. #include "extent_io.h"
  26. #include "disk-io.h"
  27. static struct kmem_cache *btrfs_ordered_extent_cache;
  28. static u64 entry_end(struct btrfs_ordered_extent *entry)
  29. {
  30. if (entry->file_offset + entry->len < entry->file_offset)
  31. return (u64)-1;
  32. return entry->file_offset + entry->len;
  33. }
  34. /* returns NULL if the insertion worked, or it returns the node it did find
  35. * in the tree
  36. */
  37. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  38. struct rb_node *node)
  39. {
  40. struct rb_node **p = &root->rb_node;
  41. struct rb_node *parent = NULL;
  42. struct btrfs_ordered_extent *entry;
  43. while (*p) {
  44. parent = *p;
  45. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  46. if (file_offset < entry->file_offset)
  47. p = &(*p)->rb_left;
  48. else if (file_offset >= entry_end(entry))
  49. p = &(*p)->rb_right;
  50. else
  51. return parent;
  52. }
  53. rb_link_node(node, parent, p);
  54. rb_insert_color(node, root);
  55. return NULL;
  56. }
  57. static void ordered_data_tree_panic(struct inode *inode, int errno,
  58. u64 offset)
  59. {
  60. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  61. btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  62. "%llu\n", offset);
  63. }
  64. /*
  65. * look for a given offset in the tree, and if it can't be found return the
  66. * first lesser offset
  67. */
  68. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  69. struct rb_node **prev_ret)
  70. {
  71. struct rb_node *n = root->rb_node;
  72. struct rb_node *prev = NULL;
  73. struct rb_node *test;
  74. struct btrfs_ordered_extent *entry;
  75. struct btrfs_ordered_extent *prev_entry = NULL;
  76. while (n) {
  77. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  78. prev = n;
  79. prev_entry = entry;
  80. if (file_offset < entry->file_offset)
  81. n = n->rb_left;
  82. else if (file_offset >= entry_end(entry))
  83. n = n->rb_right;
  84. else
  85. return n;
  86. }
  87. if (!prev_ret)
  88. return NULL;
  89. while (prev && file_offset >= entry_end(prev_entry)) {
  90. test = rb_next(prev);
  91. if (!test)
  92. break;
  93. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  94. rb_node);
  95. if (file_offset < entry_end(prev_entry))
  96. break;
  97. prev = test;
  98. }
  99. if (prev)
  100. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  101. rb_node);
  102. while (prev && file_offset < entry_end(prev_entry)) {
  103. test = rb_prev(prev);
  104. if (!test)
  105. break;
  106. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  107. rb_node);
  108. prev = test;
  109. }
  110. *prev_ret = prev;
  111. return NULL;
  112. }
  113. /*
  114. * helper to check if a given offset is inside a given entry
  115. */
  116. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  117. {
  118. if (file_offset < entry->file_offset ||
  119. entry->file_offset + entry->len <= file_offset)
  120. return 0;
  121. return 1;
  122. }
  123. static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
  124. u64 len)
  125. {
  126. if (file_offset + len <= entry->file_offset ||
  127. entry->file_offset + entry->len <= file_offset)
  128. return 0;
  129. return 1;
  130. }
  131. /*
  132. * look find the first ordered struct that has this offset, otherwise
  133. * the first one less than this offset
  134. */
  135. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  136. u64 file_offset)
  137. {
  138. struct rb_root *root = &tree->tree;
  139. struct rb_node *prev = NULL;
  140. struct rb_node *ret;
  141. struct btrfs_ordered_extent *entry;
  142. if (tree->last) {
  143. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  144. rb_node);
  145. if (offset_in_entry(entry, file_offset))
  146. return tree->last;
  147. }
  148. ret = __tree_search(root, file_offset, &prev);
  149. if (!ret)
  150. ret = prev;
  151. if (ret)
  152. tree->last = ret;
  153. return ret;
  154. }
  155. /* allocate and add a new ordered_extent into the per-inode tree.
  156. * file_offset is the logical offset in the file
  157. *
  158. * start is the disk block number of an extent already reserved in the
  159. * extent allocation tree
  160. *
  161. * len is the length of the extent
  162. *
  163. * The tree is given a single reference on the ordered extent that was
  164. * inserted.
  165. */
  166. static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  167. u64 start, u64 len, u64 disk_len,
  168. int type, int dio, int compress_type)
  169. {
  170. struct btrfs_root *root = BTRFS_I(inode)->root;
  171. struct btrfs_ordered_inode_tree *tree;
  172. struct rb_node *node;
  173. struct btrfs_ordered_extent *entry;
  174. tree = &BTRFS_I(inode)->ordered_tree;
  175. entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
  176. if (!entry)
  177. return -ENOMEM;
  178. entry->file_offset = file_offset;
  179. entry->start = start;
  180. entry->len = len;
  181. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
  182. !(type == BTRFS_ORDERED_NOCOW))
  183. entry->csum_bytes_left = disk_len;
  184. entry->disk_len = disk_len;
  185. entry->bytes_left = len;
  186. entry->inode = igrab(inode);
  187. entry->compress_type = compress_type;
  188. entry->truncated_len = (u64)-1;
  189. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  190. set_bit(type, &entry->flags);
  191. if (dio)
  192. set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
  193. /* one ref for the tree */
  194. atomic_set(&entry->refs, 1);
  195. init_waitqueue_head(&entry->wait);
  196. INIT_LIST_HEAD(&entry->list);
  197. INIT_LIST_HEAD(&entry->root_extent_list);
  198. INIT_LIST_HEAD(&entry->work_list);
  199. init_completion(&entry->completion);
  200. INIT_LIST_HEAD(&entry->log_list);
  201. trace_btrfs_ordered_extent_add(inode, entry);
  202. spin_lock_irq(&tree->lock);
  203. node = tree_insert(&tree->tree, file_offset,
  204. &entry->rb_node);
  205. if (node)
  206. ordered_data_tree_panic(inode, -EEXIST, file_offset);
  207. spin_unlock_irq(&tree->lock);
  208. spin_lock(&root->ordered_extent_lock);
  209. list_add_tail(&entry->root_extent_list,
  210. &root->ordered_extents);
  211. root->nr_ordered_extents++;
  212. if (root->nr_ordered_extents == 1) {
  213. spin_lock(&root->fs_info->ordered_root_lock);
  214. BUG_ON(!list_empty(&root->ordered_root));
  215. list_add_tail(&root->ordered_root,
  216. &root->fs_info->ordered_roots);
  217. spin_unlock(&root->fs_info->ordered_root_lock);
  218. }
  219. spin_unlock(&root->ordered_extent_lock);
  220. return 0;
  221. }
  222. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  223. u64 start, u64 len, u64 disk_len, int type)
  224. {
  225. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  226. disk_len, type, 0,
  227. BTRFS_COMPRESS_NONE);
  228. }
  229. int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
  230. u64 start, u64 len, u64 disk_len, int type)
  231. {
  232. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  233. disk_len, type, 1,
  234. BTRFS_COMPRESS_NONE);
  235. }
  236. int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
  237. u64 start, u64 len, u64 disk_len,
  238. int type, int compress_type)
  239. {
  240. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  241. disk_len, type, 0,
  242. compress_type);
  243. }
  244. /*
  245. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  246. * when an ordered extent is finished. If the list covers more than one
  247. * ordered extent, it is split across multiples.
  248. */
  249. void btrfs_add_ordered_sum(struct inode *inode,
  250. struct btrfs_ordered_extent *entry,
  251. struct btrfs_ordered_sum *sum)
  252. {
  253. struct btrfs_ordered_inode_tree *tree;
  254. tree = &BTRFS_I(inode)->ordered_tree;
  255. spin_lock_irq(&tree->lock);
  256. list_add_tail(&sum->list, &entry->list);
  257. WARN_ON(entry->csum_bytes_left < sum->len);
  258. entry->csum_bytes_left -= sum->len;
  259. if (entry->csum_bytes_left == 0)
  260. wake_up(&entry->wait);
  261. spin_unlock_irq(&tree->lock);
  262. }
  263. /*
  264. * this is used to account for finished IO across a given range
  265. * of the file. The IO may span ordered extents. If
  266. * a given ordered_extent is completely done, 1 is returned, otherwise
  267. * 0.
  268. *
  269. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  270. * to make sure this function only returns 1 once for a given ordered extent.
  271. *
  272. * file_offset is updated to one byte past the range that is recorded as
  273. * complete. This allows you to walk forward in the file.
  274. */
  275. int btrfs_dec_test_first_ordered_pending(struct inode *inode,
  276. struct btrfs_ordered_extent **cached,
  277. u64 *file_offset, u64 io_size, int uptodate)
  278. {
  279. struct btrfs_ordered_inode_tree *tree;
  280. struct rb_node *node;
  281. struct btrfs_ordered_extent *entry = NULL;
  282. int ret;
  283. unsigned long flags;
  284. u64 dec_end;
  285. u64 dec_start;
  286. u64 to_dec;
  287. tree = &BTRFS_I(inode)->ordered_tree;
  288. spin_lock_irqsave(&tree->lock, flags);
  289. node = tree_search(tree, *file_offset);
  290. if (!node) {
  291. ret = 1;
  292. goto out;
  293. }
  294. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  295. if (!offset_in_entry(entry, *file_offset)) {
  296. ret = 1;
  297. goto out;
  298. }
  299. dec_start = max(*file_offset, entry->file_offset);
  300. dec_end = min(*file_offset + io_size, entry->file_offset +
  301. entry->len);
  302. *file_offset = dec_end;
  303. if (dec_start > dec_end) {
  304. btrfs_crit(BTRFS_I(inode)->root->fs_info,
  305. "bad ordering dec_start %llu end %llu", dec_start, dec_end);
  306. }
  307. to_dec = dec_end - dec_start;
  308. if (to_dec > entry->bytes_left) {
  309. btrfs_crit(BTRFS_I(inode)->root->fs_info,
  310. "bad ordered accounting left %llu size %llu",
  311. entry->bytes_left, to_dec);
  312. }
  313. entry->bytes_left -= to_dec;
  314. if (!uptodate)
  315. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  316. if (entry->bytes_left == 0)
  317. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  318. else
  319. ret = 1;
  320. out:
  321. if (!ret && cached && entry) {
  322. *cached = entry;
  323. atomic_inc(&entry->refs);
  324. }
  325. spin_unlock_irqrestore(&tree->lock, flags);
  326. return ret == 0;
  327. }
  328. /*
  329. * this is used to account for finished IO across a given range
  330. * of the file. The IO should not span ordered extents. If
  331. * a given ordered_extent is completely done, 1 is returned, otherwise
  332. * 0.
  333. *
  334. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  335. * to make sure this function only returns 1 once for a given ordered extent.
  336. */
  337. int btrfs_dec_test_ordered_pending(struct inode *inode,
  338. struct btrfs_ordered_extent **cached,
  339. u64 file_offset, u64 io_size, int uptodate)
  340. {
  341. struct btrfs_ordered_inode_tree *tree;
  342. struct rb_node *node;
  343. struct btrfs_ordered_extent *entry = NULL;
  344. unsigned long flags;
  345. int ret;
  346. tree = &BTRFS_I(inode)->ordered_tree;
  347. spin_lock_irqsave(&tree->lock, flags);
  348. if (cached && *cached) {
  349. entry = *cached;
  350. goto have_entry;
  351. }
  352. node = tree_search(tree, file_offset);
  353. if (!node) {
  354. ret = 1;
  355. goto out;
  356. }
  357. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  358. have_entry:
  359. if (!offset_in_entry(entry, file_offset)) {
  360. ret = 1;
  361. goto out;
  362. }
  363. if (io_size > entry->bytes_left) {
  364. btrfs_crit(BTRFS_I(inode)->root->fs_info,
  365. "bad ordered accounting left %llu size %llu",
  366. entry->bytes_left, io_size);
  367. }
  368. entry->bytes_left -= io_size;
  369. if (!uptodate)
  370. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  371. if (entry->bytes_left == 0)
  372. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  373. else
  374. ret = 1;
  375. out:
  376. if (!ret && cached && entry) {
  377. *cached = entry;
  378. atomic_inc(&entry->refs);
  379. }
  380. spin_unlock_irqrestore(&tree->lock, flags);
  381. return ret == 0;
  382. }
  383. /* Needs to either be called under a log transaction or the log_mutex */
  384. void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
  385. {
  386. struct btrfs_ordered_inode_tree *tree;
  387. struct btrfs_ordered_extent *ordered;
  388. struct rb_node *n;
  389. int index = log->log_transid % 2;
  390. tree = &BTRFS_I(inode)->ordered_tree;
  391. spin_lock_irq(&tree->lock);
  392. for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
  393. ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  394. spin_lock(&log->log_extents_lock[index]);
  395. if (list_empty(&ordered->log_list)) {
  396. list_add_tail(&ordered->log_list, &log->logged_list[index]);
  397. atomic_inc(&ordered->refs);
  398. }
  399. spin_unlock(&log->log_extents_lock[index]);
  400. }
  401. spin_unlock_irq(&tree->lock);
  402. }
  403. void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
  404. {
  405. struct btrfs_ordered_extent *ordered;
  406. int index = transid % 2;
  407. spin_lock_irq(&log->log_extents_lock[index]);
  408. while (!list_empty(&log->logged_list[index])) {
  409. ordered = list_first_entry(&log->logged_list[index],
  410. struct btrfs_ordered_extent,
  411. log_list);
  412. list_del_init(&ordered->log_list);
  413. spin_unlock_irq(&log->log_extents_lock[index]);
  414. wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
  415. &ordered->flags));
  416. btrfs_put_ordered_extent(ordered);
  417. spin_lock_irq(&log->log_extents_lock[index]);
  418. }
  419. spin_unlock_irq(&log->log_extents_lock[index]);
  420. }
  421. void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
  422. {
  423. struct btrfs_ordered_extent *ordered;
  424. int index = transid % 2;
  425. spin_lock_irq(&log->log_extents_lock[index]);
  426. while (!list_empty(&log->logged_list[index])) {
  427. ordered = list_first_entry(&log->logged_list[index],
  428. struct btrfs_ordered_extent,
  429. log_list);
  430. list_del_init(&ordered->log_list);
  431. spin_unlock_irq(&log->log_extents_lock[index]);
  432. btrfs_put_ordered_extent(ordered);
  433. spin_lock_irq(&log->log_extents_lock[index]);
  434. }
  435. spin_unlock_irq(&log->log_extents_lock[index]);
  436. }
  437. /*
  438. * used to drop a reference on an ordered extent. This will free
  439. * the extent if the last reference is dropped
  440. */
  441. void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  442. {
  443. struct list_head *cur;
  444. struct btrfs_ordered_sum *sum;
  445. trace_btrfs_ordered_extent_put(entry->inode, entry);
  446. if (atomic_dec_and_test(&entry->refs)) {
  447. if (entry->inode)
  448. btrfs_add_delayed_iput(entry->inode);
  449. while (!list_empty(&entry->list)) {
  450. cur = entry->list.next;
  451. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  452. list_del(&sum->list);
  453. kfree(sum);
  454. }
  455. kmem_cache_free(btrfs_ordered_extent_cache, entry);
  456. }
  457. }
  458. /*
  459. * remove an ordered extent from the tree. No references are dropped
  460. * and waiters are woken up.
  461. */
  462. void btrfs_remove_ordered_extent(struct inode *inode,
  463. struct btrfs_ordered_extent *entry)
  464. {
  465. struct btrfs_ordered_inode_tree *tree;
  466. struct btrfs_root *root = BTRFS_I(inode)->root;
  467. struct rb_node *node;
  468. tree = &BTRFS_I(inode)->ordered_tree;
  469. spin_lock_irq(&tree->lock);
  470. node = &entry->rb_node;
  471. rb_erase(node, &tree->tree);
  472. if (tree->last == node)
  473. tree->last = NULL;
  474. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  475. spin_unlock_irq(&tree->lock);
  476. spin_lock(&root->ordered_extent_lock);
  477. list_del_init(&entry->root_extent_list);
  478. root->nr_ordered_extents--;
  479. trace_btrfs_ordered_extent_remove(inode, entry);
  480. /*
  481. * we have no more ordered extents for this inode and
  482. * no dirty pages. We can safely remove it from the
  483. * list of ordered extents
  484. */
  485. if (RB_EMPTY_ROOT(&tree->tree) &&
  486. !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
  487. spin_lock(&root->fs_info->ordered_root_lock);
  488. list_del_init(&BTRFS_I(inode)->ordered_operations);
  489. spin_unlock(&root->fs_info->ordered_root_lock);
  490. }
  491. if (!root->nr_ordered_extents) {
  492. spin_lock(&root->fs_info->ordered_root_lock);
  493. BUG_ON(list_empty(&root->ordered_root));
  494. list_del_init(&root->ordered_root);
  495. spin_unlock(&root->fs_info->ordered_root_lock);
  496. }
  497. spin_unlock(&root->ordered_extent_lock);
  498. wake_up(&entry->wait);
  499. }
  500. static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
  501. {
  502. struct btrfs_ordered_extent *ordered;
  503. ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
  504. btrfs_start_ordered_extent(ordered->inode, ordered, 1);
  505. complete(&ordered->completion);
  506. }
  507. /*
  508. * wait for all the ordered extents in a root. This is done when balancing
  509. * space between drives.
  510. */
  511. int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
  512. {
  513. struct list_head splice, works;
  514. struct btrfs_ordered_extent *ordered, *next;
  515. int count = 0;
  516. INIT_LIST_HEAD(&splice);
  517. INIT_LIST_HEAD(&works);
  518. mutex_lock(&root->fs_info->ordered_operations_mutex);
  519. spin_lock(&root->ordered_extent_lock);
  520. list_splice_init(&root->ordered_extents, &splice);
  521. while (!list_empty(&splice) && nr) {
  522. ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
  523. root_extent_list);
  524. list_move_tail(&ordered->root_extent_list,
  525. &root->ordered_extents);
  526. atomic_inc(&ordered->refs);
  527. spin_unlock(&root->ordered_extent_lock);
  528. ordered->flush_work.func = btrfs_run_ordered_extent_work;
  529. list_add_tail(&ordered->work_list, &works);
  530. btrfs_queue_worker(&root->fs_info->flush_workers,
  531. &ordered->flush_work);
  532. cond_resched();
  533. spin_lock(&root->ordered_extent_lock);
  534. if (nr != -1)
  535. nr--;
  536. count++;
  537. }
  538. list_splice_tail(&splice, &root->ordered_extents);
  539. spin_unlock(&root->ordered_extent_lock);
  540. list_for_each_entry_safe(ordered, next, &works, work_list) {
  541. list_del_init(&ordered->work_list);
  542. wait_for_completion(&ordered->completion);
  543. btrfs_put_ordered_extent(ordered);
  544. cond_resched();
  545. }
  546. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  547. return count;
  548. }
  549. void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
  550. {
  551. struct btrfs_root *root;
  552. struct list_head splice;
  553. int done;
  554. INIT_LIST_HEAD(&splice);
  555. spin_lock(&fs_info->ordered_root_lock);
  556. list_splice_init(&fs_info->ordered_roots, &splice);
  557. while (!list_empty(&splice) && nr) {
  558. root = list_first_entry(&splice, struct btrfs_root,
  559. ordered_root);
  560. root = btrfs_grab_fs_root(root);
  561. BUG_ON(!root);
  562. list_move_tail(&root->ordered_root,
  563. &fs_info->ordered_roots);
  564. spin_unlock(&fs_info->ordered_root_lock);
  565. done = btrfs_wait_ordered_extents(root, nr);
  566. btrfs_put_fs_root(root);
  567. spin_lock(&fs_info->ordered_root_lock);
  568. if (nr != -1) {
  569. nr -= done;
  570. WARN_ON(nr < 0);
  571. }
  572. }
  573. list_splice_tail(&splice, &fs_info->ordered_roots);
  574. spin_unlock(&fs_info->ordered_root_lock);
  575. }
  576. /*
  577. * this is used during transaction commit to write all the inodes
  578. * added to the ordered operation list. These files must be fully on
  579. * disk before the transaction commits.
  580. *
  581. * we have two modes here, one is to just start the IO via filemap_flush
  582. * and the other is to wait for all the io. When we wait, we have an
  583. * extra check to make sure the ordered operation list really is empty
  584. * before we return
  585. */
  586. int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
  587. struct btrfs_root *root, int wait)
  588. {
  589. struct btrfs_inode *btrfs_inode;
  590. struct inode *inode;
  591. struct btrfs_transaction *cur_trans = trans->transaction;
  592. struct list_head splice;
  593. struct list_head works;
  594. struct btrfs_delalloc_work *work, *next;
  595. int ret = 0;
  596. INIT_LIST_HEAD(&splice);
  597. INIT_LIST_HEAD(&works);
  598. mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
  599. spin_lock(&root->fs_info->ordered_root_lock);
  600. list_splice_init(&cur_trans->ordered_operations, &splice);
  601. while (!list_empty(&splice)) {
  602. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  603. ordered_operations);
  604. inode = &btrfs_inode->vfs_inode;
  605. list_del_init(&btrfs_inode->ordered_operations);
  606. /*
  607. * the inode may be getting freed (in sys_unlink path).
  608. */
  609. inode = igrab(inode);
  610. if (!inode)
  611. continue;
  612. if (!wait)
  613. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  614. &cur_trans->ordered_operations);
  615. spin_unlock(&root->fs_info->ordered_root_lock);
  616. work = btrfs_alloc_delalloc_work(inode, wait, 1);
  617. if (!work) {
  618. spin_lock(&root->fs_info->ordered_root_lock);
  619. if (list_empty(&BTRFS_I(inode)->ordered_operations))
  620. list_add_tail(&btrfs_inode->ordered_operations,
  621. &splice);
  622. list_splice_tail(&splice,
  623. &cur_trans->ordered_operations);
  624. spin_unlock(&root->fs_info->ordered_root_lock);
  625. ret = -ENOMEM;
  626. goto out;
  627. }
  628. list_add_tail(&work->list, &works);
  629. btrfs_queue_worker(&root->fs_info->flush_workers,
  630. &work->work);
  631. cond_resched();
  632. spin_lock(&root->fs_info->ordered_root_lock);
  633. }
  634. spin_unlock(&root->fs_info->ordered_root_lock);
  635. out:
  636. list_for_each_entry_safe(work, next, &works, list) {
  637. list_del_init(&work->list);
  638. btrfs_wait_and_free_delalloc_work(work);
  639. }
  640. mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
  641. return ret;
  642. }
  643. /*
  644. * Used to start IO or wait for a given ordered extent to finish.
  645. *
  646. * If wait is one, this effectively waits on page writeback for all the pages
  647. * in the extent, and it waits on the io completion code to insert
  648. * metadata into the btree corresponding to the extent
  649. */
  650. void btrfs_start_ordered_extent(struct inode *inode,
  651. struct btrfs_ordered_extent *entry,
  652. int wait)
  653. {
  654. u64 start = entry->file_offset;
  655. u64 end = start + entry->len - 1;
  656. trace_btrfs_ordered_extent_start(inode, entry);
  657. /*
  658. * pages in the range can be dirty, clean or writeback. We
  659. * start IO on any dirty ones so the wait doesn't stall waiting
  660. * for the flusher thread to find them
  661. */
  662. if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
  663. filemap_fdatawrite_range(inode->i_mapping, start, end);
  664. if (wait) {
  665. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  666. &entry->flags));
  667. }
  668. }
  669. /*
  670. * Used to wait on ordered extents across a large range of bytes.
  671. */
  672. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  673. {
  674. int ret = 0;
  675. u64 end;
  676. u64 orig_end;
  677. struct btrfs_ordered_extent *ordered;
  678. if (start + len < start) {
  679. orig_end = INT_LIMIT(loff_t);
  680. } else {
  681. orig_end = start + len - 1;
  682. if (orig_end > INT_LIMIT(loff_t))
  683. orig_end = INT_LIMIT(loff_t);
  684. }
  685. /* start IO across the range first to instantiate any delalloc
  686. * extents
  687. */
  688. ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  689. if (ret)
  690. return ret;
  691. /*
  692. * So with compression we will find and lock a dirty page and clear the
  693. * first one as dirty, setup an async extent, and immediately return
  694. * with the entire range locked but with nobody actually marked with
  695. * writeback. So we can't just filemap_write_and_wait_range() and
  696. * expect it to work since it will just kick off a thread to do the
  697. * actual work. So we need to call filemap_fdatawrite_range _again_
  698. * since it will wait on the page lock, which won't be unlocked until
  699. * after the pages have been marked as writeback and so we're good to go
  700. * from there. We have to do this otherwise we'll miss the ordered
  701. * extents and that results in badness. Please Josef, do not think you
  702. * know better and pull this out at some point in the future, it is
  703. * right and you are wrong.
  704. */
  705. if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  706. &BTRFS_I(inode)->runtime_flags)) {
  707. ret = filemap_fdatawrite_range(inode->i_mapping, start,
  708. orig_end);
  709. if (ret)
  710. return ret;
  711. }
  712. ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  713. if (ret)
  714. return ret;
  715. end = orig_end;
  716. while (1) {
  717. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  718. if (!ordered)
  719. break;
  720. if (ordered->file_offset > orig_end) {
  721. btrfs_put_ordered_extent(ordered);
  722. break;
  723. }
  724. if (ordered->file_offset + ordered->len <= start) {
  725. btrfs_put_ordered_extent(ordered);
  726. break;
  727. }
  728. btrfs_start_ordered_extent(inode, ordered, 1);
  729. end = ordered->file_offset;
  730. if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
  731. ret = -EIO;
  732. btrfs_put_ordered_extent(ordered);
  733. if (ret || end == 0 || end == start)
  734. break;
  735. end--;
  736. }
  737. return ret;
  738. }
  739. /*
  740. * find an ordered extent corresponding to file_offset. return NULL if
  741. * nothing is found, otherwise take a reference on the extent and return it
  742. */
  743. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  744. u64 file_offset)
  745. {
  746. struct btrfs_ordered_inode_tree *tree;
  747. struct rb_node *node;
  748. struct btrfs_ordered_extent *entry = NULL;
  749. tree = &BTRFS_I(inode)->ordered_tree;
  750. spin_lock_irq(&tree->lock);
  751. node = tree_search(tree, file_offset);
  752. if (!node)
  753. goto out;
  754. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  755. if (!offset_in_entry(entry, file_offset))
  756. entry = NULL;
  757. if (entry)
  758. atomic_inc(&entry->refs);
  759. out:
  760. spin_unlock_irq(&tree->lock);
  761. return entry;
  762. }
  763. /* Since the DIO code tries to lock a wide area we need to look for any ordered
  764. * extents that exist in the range, rather than just the start of the range.
  765. */
  766. struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
  767. u64 file_offset,
  768. u64 len)
  769. {
  770. struct btrfs_ordered_inode_tree *tree;
  771. struct rb_node *node;
  772. struct btrfs_ordered_extent *entry = NULL;
  773. tree = &BTRFS_I(inode)->ordered_tree;
  774. spin_lock_irq(&tree->lock);
  775. node = tree_search(tree, file_offset);
  776. if (!node) {
  777. node = tree_search(tree, file_offset + len);
  778. if (!node)
  779. goto out;
  780. }
  781. while (1) {
  782. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  783. if (range_overlaps(entry, file_offset, len))
  784. break;
  785. if (entry->file_offset >= file_offset + len) {
  786. entry = NULL;
  787. break;
  788. }
  789. entry = NULL;
  790. node = rb_next(node);
  791. if (!node)
  792. break;
  793. }
  794. out:
  795. if (entry)
  796. atomic_inc(&entry->refs);
  797. spin_unlock_irq(&tree->lock);
  798. return entry;
  799. }
  800. /*
  801. * lookup and return any extent before 'file_offset'. NULL is returned
  802. * if none is found
  803. */
  804. struct btrfs_ordered_extent *
  805. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  806. {
  807. struct btrfs_ordered_inode_tree *tree;
  808. struct rb_node *node;
  809. struct btrfs_ordered_extent *entry = NULL;
  810. tree = &BTRFS_I(inode)->ordered_tree;
  811. spin_lock_irq(&tree->lock);
  812. node = tree_search(tree, file_offset);
  813. if (!node)
  814. goto out;
  815. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  816. atomic_inc(&entry->refs);
  817. out:
  818. spin_unlock_irq(&tree->lock);
  819. return entry;
  820. }
  821. /*
  822. * After an extent is done, call this to conditionally update the on disk
  823. * i_size. i_size is updated to cover any fully written part of the file.
  824. */
  825. int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
  826. struct btrfs_ordered_extent *ordered)
  827. {
  828. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  829. u64 disk_i_size;
  830. u64 new_i_size;
  831. u64 i_size = i_size_read(inode);
  832. struct rb_node *node;
  833. struct rb_node *prev = NULL;
  834. struct btrfs_ordered_extent *test;
  835. int ret = 1;
  836. spin_lock_irq(&tree->lock);
  837. if (ordered) {
  838. offset = entry_end(ordered);
  839. if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
  840. offset = min(offset,
  841. ordered->file_offset +
  842. ordered->truncated_len);
  843. } else {
  844. offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
  845. }
  846. disk_i_size = BTRFS_I(inode)->disk_i_size;
  847. /* truncate file */
  848. if (disk_i_size > i_size) {
  849. BTRFS_I(inode)->disk_i_size = i_size;
  850. ret = 0;
  851. goto out;
  852. }
  853. /*
  854. * if the disk i_size is already at the inode->i_size, or
  855. * this ordered extent is inside the disk i_size, we're done
  856. */
  857. if (disk_i_size == i_size)
  858. goto out;
  859. /*
  860. * We still need to update disk_i_size if outstanding_isize is greater
  861. * than disk_i_size.
  862. */
  863. if (offset <= disk_i_size &&
  864. (!ordered || ordered->outstanding_isize <= disk_i_size))
  865. goto out;
  866. /*
  867. * walk backward from this ordered extent to disk_i_size.
  868. * if we find an ordered extent then we can't update disk i_size
  869. * yet
  870. */
  871. if (ordered) {
  872. node = rb_prev(&ordered->rb_node);
  873. } else {
  874. prev = tree_search(tree, offset);
  875. /*
  876. * we insert file extents without involving ordered struct,
  877. * so there should be no ordered struct cover this offset
  878. */
  879. if (prev) {
  880. test = rb_entry(prev, struct btrfs_ordered_extent,
  881. rb_node);
  882. BUG_ON(offset_in_entry(test, offset));
  883. }
  884. node = prev;
  885. }
  886. for (; node; node = rb_prev(node)) {
  887. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  888. /* We treat this entry as if it doesnt exist */
  889. if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
  890. continue;
  891. if (test->file_offset + test->len <= disk_i_size)
  892. break;
  893. if (test->file_offset >= i_size)
  894. break;
  895. if (entry_end(test) > disk_i_size) {
  896. /*
  897. * we don't update disk_i_size now, so record this
  898. * undealt i_size. Or we will not know the real
  899. * i_size.
  900. */
  901. if (test->outstanding_isize < offset)
  902. test->outstanding_isize = offset;
  903. if (ordered &&
  904. ordered->outstanding_isize >
  905. test->outstanding_isize)
  906. test->outstanding_isize =
  907. ordered->outstanding_isize;
  908. goto out;
  909. }
  910. }
  911. new_i_size = min_t(u64, offset, i_size);
  912. /*
  913. * Some ordered extents may completed before the current one, and
  914. * we hold the real i_size in ->outstanding_isize.
  915. */
  916. if (ordered && ordered->outstanding_isize > new_i_size)
  917. new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
  918. BTRFS_I(inode)->disk_i_size = new_i_size;
  919. ret = 0;
  920. out:
  921. /*
  922. * We need to do this because we can't remove ordered extents until
  923. * after the i_disk_size has been updated and then the inode has been
  924. * updated to reflect the change, so we need to tell anybody who finds
  925. * this ordered extent that we've already done all the real work, we
  926. * just haven't completed all the other work.
  927. */
  928. if (ordered)
  929. set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
  930. spin_unlock_irq(&tree->lock);
  931. return ret;
  932. }
  933. /*
  934. * search the ordered extents for one corresponding to 'offset' and
  935. * try to find a checksum. This is used because we allow pages to
  936. * be reclaimed before their checksum is actually put into the btree
  937. */
  938. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  939. u32 *sum, int len)
  940. {
  941. struct btrfs_ordered_sum *ordered_sum;
  942. struct btrfs_ordered_extent *ordered;
  943. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  944. unsigned long num_sectors;
  945. unsigned long i;
  946. u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
  947. int index = 0;
  948. ordered = btrfs_lookup_ordered_extent(inode, offset);
  949. if (!ordered)
  950. return 0;
  951. spin_lock_irq(&tree->lock);
  952. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  953. if (disk_bytenr >= ordered_sum->bytenr &&
  954. disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
  955. i = (disk_bytenr - ordered_sum->bytenr) >>
  956. inode->i_sb->s_blocksize_bits;
  957. num_sectors = ordered_sum->len >>
  958. inode->i_sb->s_blocksize_bits;
  959. num_sectors = min_t(int, len - index, num_sectors - i);
  960. memcpy(sum + index, ordered_sum->sums + i,
  961. num_sectors);
  962. index += (int)num_sectors;
  963. if (index == len)
  964. goto out;
  965. disk_bytenr += num_sectors * sectorsize;
  966. }
  967. }
  968. out:
  969. spin_unlock_irq(&tree->lock);
  970. btrfs_put_ordered_extent(ordered);
  971. return index;
  972. }
  973. /*
  974. * add a given inode to the list of inodes that must be fully on
  975. * disk before a transaction commit finishes.
  976. *
  977. * This basically gives us the ext3 style data=ordered mode, and it is mostly
  978. * used to make sure renamed files are fully on disk.
  979. *
  980. * It is a noop if the inode is already fully on disk.
  981. *
  982. * If trans is not null, we'll do a friendly check for a transaction that
  983. * is already flushing things and force the IO down ourselves.
  984. */
  985. void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
  986. struct btrfs_root *root, struct inode *inode)
  987. {
  988. struct btrfs_transaction *cur_trans = trans->transaction;
  989. u64 last_mod;
  990. last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
  991. /*
  992. * if this file hasn't been changed since the last transaction
  993. * commit, we can safely return without doing anything
  994. */
  995. if (last_mod <= root->fs_info->last_trans_committed)
  996. return;
  997. spin_lock(&root->fs_info->ordered_root_lock);
  998. if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
  999. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  1000. &cur_trans->ordered_operations);
  1001. }
  1002. spin_unlock(&root->fs_info->ordered_root_lock);
  1003. }
  1004. int __init ordered_data_init(void)
  1005. {
  1006. btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
  1007. sizeof(struct btrfs_ordered_extent), 0,
  1008. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  1009. NULL);
  1010. if (!btrfs_ordered_extent_cache)
  1011. return -ENOMEM;
  1012. return 0;
  1013. }
  1014. void ordered_data_exit(void)
  1015. {
  1016. if (btrfs_ordered_extent_cache)
  1017. kmem_cache_destroy(btrfs_ordered_extent_cache);
  1018. }