wa-xfer.c 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693
  1. /*
  2. * WUSB Wire Adapter
  3. * Data transfer and URB enqueing
  4. *
  5. * Copyright (C) 2005-2006 Intel Corporation
  6. * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License version
  10. * 2 as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20. * 02110-1301, USA.
  21. *
  22. *
  23. * How transfers work: get a buffer, break it up in segments (segment
  24. * size is a multiple of the maxpacket size). For each segment issue a
  25. * segment request (struct wa_xfer_*), then send the data buffer if
  26. * out or nothing if in (all over the DTO endpoint).
  27. *
  28. * For each submitted segment request, a notification will come over
  29. * the NEP endpoint and a transfer result (struct xfer_result) will
  30. * arrive in the DTI URB. Read it, get the xfer ID, see if there is
  31. * data coming (inbound transfer), schedule a read and handle it.
  32. *
  33. * Sounds simple, it is a pain to implement.
  34. *
  35. *
  36. * ENTRY POINTS
  37. *
  38. * FIXME
  39. *
  40. * LIFE CYCLE / STATE DIAGRAM
  41. *
  42. * FIXME
  43. *
  44. * THIS CODE IS DISGUSTING
  45. *
  46. * Warned you are; it's my second try and still not happy with it.
  47. *
  48. * NOTES:
  49. *
  50. * - No iso
  51. *
  52. * - Supports DMA xfers, control, bulk and maybe interrupt
  53. *
  54. * - Does not recycle unused rpipes
  55. *
  56. * An rpipe is assigned to an endpoint the first time it is used,
  57. * and then it's there, assigned, until the endpoint is disabled
  58. * (destroyed [{h,d}wahc_op_ep_disable()]. The assignment of the
  59. * rpipe to the endpoint is done under the wa->rpipe_sem semaphore
  60. * (should be a mutex).
  61. *
  62. * Two methods it could be done:
  63. *
  64. * (a) set up a timer every time an rpipe's use count drops to 1
  65. * (which means unused) or when a transfer ends. Reset the
  66. * timer when a xfer is queued. If the timer expires, release
  67. * the rpipe [see rpipe_ep_disable()].
  68. *
  69. * (b) when looking for free rpipes to attach [rpipe_get_by_ep()],
  70. * when none are found go over the list, check their endpoint
  71. * and their activity record (if no last-xfer-done-ts in the
  72. * last x seconds) take it
  73. *
  74. * However, due to the fact that we have a set of limited
  75. * resources (max-segments-at-the-same-time per xfer,
  76. * xfers-per-ripe, blocks-per-rpipe, rpipes-per-host), at the end
  77. * we are going to have to rebuild all this based on an scheduler,
  78. * to where we have a list of transactions to do and based on the
  79. * availability of the different required components (blocks,
  80. * rpipes, segment slots, etc), we go scheduling them. Painful.
  81. */
  82. #include <linux/spinlock.h>
  83. #include <linux/slab.h>
  84. #include <linux/hash.h>
  85. #include <linux/ratelimit.h>
  86. #include <linux/export.h>
  87. #include <linux/scatterlist.h>
  88. #include "wa-hc.h"
  89. #include "wusbhc.h"
  90. enum {
  91. /* [WUSB] section 8.3.3 allocates 7 bits for the segment index. */
  92. WA_SEGS_MAX = 128,
  93. };
  94. enum wa_seg_status {
  95. WA_SEG_NOTREADY,
  96. WA_SEG_READY,
  97. WA_SEG_DELAYED,
  98. WA_SEG_SUBMITTED,
  99. WA_SEG_PENDING,
  100. WA_SEG_DTI_PENDING,
  101. WA_SEG_DONE,
  102. WA_SEG_ERROR,
  103. WA_SEG_ABORTED,
  104. };
  105. static void wa_xfer_delayed_run(struct wa_rpipe *);
  106. static int __wa_xfer_delayed_run(struct wa_rpipe *rpipe, int *dto_waiting);
  107. /*
  108. * Life cycle governed by 'struct urb' (the refcount of the struct is
  109. * that of the 'struct urb' and usb_free_urb() would free the whole
  110. * struct).
  111. */
  112. struct wa_seg {
  113. struct urb tr_urb; /* transfer request urb. */
  114. struct urb *isoc_pack_desc_urb; /* for isoc packet descriptor. */
  115. struct urb *dto_urb; /* for data output. */
  116. struct list_head list_node; /* for rpipe->req_list */
  117. struct wa_xfer *xfer; /* out xfer */
  118. u8 index; /* which segment we are */
  119. int isoc_frame_count; /* number of isoc frames in this segment. */
  120. int isoc_frame_offset; /* starting frame offset in the xfer URB. */
  121. /* Isoc frame that the current transfer buffer corresponds to. */
  122. int isoc_frame_index;
  123. int isoc_size; /* size of all isoc frames sent by this seg. */
  124. enum wa_seg_status status;
  125. ssize_t result; /* bytes xfered or error */
  126. struct wa_xfer_hdr xfer_hdr;
  127. };
  128. static inline void wa_seg_init(struct wa_seg *seg)
  129. {
  130. usb_init_urb(&seg->tr_urb);
  131. /* set the remaining memory to 0. */
  132. memset(((void *)seg) + sizeof(seg->tr_urb), 0,
  133. sizeof(*seg) - sizeof(seg->tr_urb));
  134. }
  135. /*
  136. * Protected by xfer->lock
  137. *
  138. */
  139. struct wa_xfer {
  140. struct kref refcnt;
  141. struct list_head list_node;
  142. spinlock_t lock;
  143. u32 id;
  144. struct wahc *wa; /* Wire adapter we are plugged to */
  145. struct usb_host_endpoint *ep;
  146. struct urb *urb; /* URB we are transferring for */
  147. struct wa_seg **seg; /* transfer segments */
  148. u8 segs, segs_submitted, segs_done;
  149. unsigned is_inbound:1;
  150. unsigned is_dma:1;
  151. size_t seg_size;
  152. int result;
  153. gfp_t gfp; /* allocation mask */
  154. struct wusb_dev *wusb_dev; /* for activity timestamps */
  155. };
  156. static void __wa_populate_dto_urb_isoc(struct wa_xfer *xfer,
  157. struct wa_seg *seg, int curr_iso_frame);
  158. static inline void wa_xfer_init(struct wa_xfer *xfer)
  159. {
  160. kref_init(&xfer->refcnt);
  161. INIT_LIST_HEAD(&xfer->list_node);
  162. spin_lock_init(&xfer->lock);
  163. }
  164. /*
  165. * Destroy a transfer structure
  166. *
  167. * Note that freeing xfer->seg[cnt]->tr_urb will free the containing
  168. * xfer->seg[cnt] memory that was allocated by __wa_xfer_setup_segs.
  169. */
  170. static void wa_xfer_destroy(struct kref *_xfer)
  171. {
  172. struct wa_xfer *xfer = container_of(_xfer, struct wa_xfer, refcnt);
  173. if (xfer->seg) {
  174. unsigned cnt;
  175. for (cnt = 0; cnt < xfer->segs; cnt++) {
  176. struct wa_seg *seg = xfer->seg[cnt];
  177. if (seg) {
  178. usb_free_urb(seg->isoc_pack_desc_urb);
  179. if (seg->dto_urb) {
  180. kfree(seg->dto_urb->sg);
  181. usb_free_urb(seg->dto_urb);
  182. }
  183. usb_free_urb(&seg->tr_urb);
  184. }
  185. }
  186. kfree(xfer->seg);
  187. }
  188. kfree(xfer);
  189. }
  190. static void wa_xfer_get(struct wa_xfer *xfer)
  191. {
  192. kref_get(&xfer->refcnt);
  193. }
  194. static void wa_xfer_put(struct wa_xfer *xfer)
  195. {
  196. kref_put(&xfer->refcnt, wa_xfer_destroy);
  197. }
  198. /*
  199. * Try to get exclusive access to the DTO endpoint resource. Return true
  200. * if successful.
  201. */
  202. static inline int __wa_dto_try_get(struct wahc *wa)
  203. {
  204. return (test_and_set_bit(0, &wa->dto_in_use) == 0);
  205. }
  206. /* Release the DTO endpoint resource. */
  207. static inline void __wa_dto_put(struct wahc *wa)
  208. {
  209. clear_bit_unlock(0, &wa->dto_in_use);
  210. }
  211. /* Service RPIPEs that are waiting on the DTO resource. */
  212. static void wa_check_for_delayed_rpipes(struct wahc *wa)
  213. {
  214. unsigned long flags;
  215. int dto_waiting = 0;
  216. struct wa_rpipe *rpipe;
  217. spin_lock_irqsave(&wa->rpipe_lock, flags);
  218. while (!list_empty(&wa->rpipe_delayed_list) && !dto_waiting) {
  219. rpipe = list_first_entry(&wa->rpipe_delayed_list,
  220. struct wa_rpipe, list_node);
  221. __wa_xfer_delayed_run(rpipe, &dto_waiting);
  222. /* remove this RPIPE from the list if it is not waiting. */
  223. if (!dto_waiting) {
  224. pr_debug("%s: RPIPE %d serviced and removed from delayed list.\n",
  225. __func__,
  226. le16_to_cpu(rpipe->descr.wRPipeIndex));
  227. list_del_init(&rpipe->list_node);
  228. }
  229. }
  230. spin_unlock_irqrestore(&wa->rpipe_lock, flags);
  231. }
  232. /* add this RPIPE to the end of the delayed RPIPE list. */
  233. static void wa_add_delayed_rpipe(struct wahc *wa, struct wa_rpipe *rpipe)
  234. {
  235. unsigned long flags;
  236. spin_lock_irqsave(&wa->rpipe_lock, flags);
  237. /* add rpipe to the list if it is not already on it. */
  238. if (list_empty(&rpipe->list_node)) {
  239. pr_debug("%s: adding RPIPE %d to the delayed list.\n",
  240. __func__, le16_to_cpu(rpipe->descr.wRPipeIndex));
  241. list_add_tail(&rpipe->list_node, &wa->rpipe_delayed_list);
  242. }
  243. spin_unlock_irqrestore(&wa->rpipe_lock, flags);
  244. }
  245. /*
  246. * xfer is referenced
  247. *
  248. * xfer->lock has to be unlocked
  249. *
  250. * We take xfer->lock for setting the result; this is a barrier
  251. * against drivers/usb/core/hcd.c:unlink1() being called after we call
  252. * usb_hcd_giveback_urb() and wa_urb_dequeue() trying to get a
  253. * reference to the transfer.
  254. */
  255. static void wa_xfer_giveback(struct wa_xfer *xfer)
  256. {
  257. unsigned long flags;
  258. spin_lock_irqsave(&xfer->wa->xfer_list_lock, flags);
  259. list_del_init(&xfer->list_node);
  260. usb_hcd_unlink_urb_from_ep(&(xfer->wa->wusb->usb_hcd), xfer->urb);
  261. spin_unlock_irqrestore(&xfer->wa->xfer_list_lock, flags);
  262. /* FIXME: segmentation broken -- kills DWA */
  263. wusbhc_giveback_urb(xfer->wa->wusb, xfer->urb, xfer->result);
  264. wa_put(xfer->wa);
  265. wa_xfer_put(xfer);
  266. }
  267. /*
  268. * xfer is referenced
  269. *
  270. * xfer->lock has to be unlocked
  271. */
  272. static void wa_xfer_completion(struct wa_xfer *xfer)
  273. {
  274. if (xfer->wusb_dev)
  275. wusb_dev_put(xfer->wusb_dev);
  276. rpipe_put(xfer->ep->hcpriv);
  277. wa_xfer_giveback(xfer);
  278. }
  279. /*
  280. * Initialize a transfer's ID
  281. *
  282. * We need to use a sequential number; if we use the pointer or the
  283. * hash of the pointer, it can repeat over sequential transfers and
  284. * then it will confuse the HWA....wonder why in hell they put a 32
  285. * bit handle in there then.
  286. */
  287. static void wa_xfer_id_init(struct wa_xfer *xfer)
  288. {
  289. xfer->id = atomic_add_return(1, &xfer->wa->xfer_id_count);
  290. }
  291. /* Return the xfer's ID. */
  292. static inline u32 wa_xfer_id(struct wa_xfer *xfer)
  293. {
  294. return xfer->id;
  295. }
  296. /* Return the xfer's ID in transport format (little endian). */
  297. static inline __le32 wa_xfer_id_le32(struct wa_xfer *xfer)
  298. {
  299. return cpu_to_le32(xfer->id);
  300. }
  301. /*
  302. * If transfer is done, wrap it up and return true
  303. *
  304. * xfer->lock has to be locked
  305. */
  306. static unsigned __wa_xfer_is_done(struct wa_xfer *xfer)
  307. {
  308. struct device *dev = &xfer->wa->usb_iface->dev;
  309. unsigned result, cnt;
  310. struct wa_seg *seg;
  311. struct urb *urb = xfer->urb;
  312. unsigned found_short = 0;
  313. result = xfer->segs_done == xfer->segs_submitted;
  314. if (result == 0)
  315. goto out;
  316. urb->actual_length = 0;
  317. for (cnt = 0; cnt < xfer->segs; cnt++) {
  318. seg = xfer->seg[cnt];
  319. switch (seg->status) {
  320. case WA_SEG_DONE:
  321. if (found_short && seg->result > 0) {
  322. dev_dbg(dev, "xfer %p ID %08X#%u: bad short segments (%zu)\n",
  323. xfer, wa_xfer_id(xfer), cnt,
  324. seg->result);
  325. urb->status = -EINVAL;
  326. goto out;
  327. }
  328. urb->actual_length += seg->result;
  329. if (!(usb_pipeisoc(xfer->urb->pipe))
  330. && seg->result < xfer->seg_size
  331. && cnt != xfer->segs-1)
  332. found_short = 1;
  333. dev_dbg(dev, "xfer %p ID %08X#%u: DONE short %d "
  334. "result %zu urb->actual_length %d\n",
  335. xfer, wa_xfer_id(xfer), seg->index, found_short,
  336. seg->result, urb->actual_length);
  337. break;
  338. case WA_SEG_ERROR:
  339. xfer->result = seg->result;
  340. dev_dbg(dev, "xfer %p ID %08X#%u: ERROR result %zu(0x%08zX)\n",
  341. xfer, wa_xfer_id(xfer), seg->index, seg->result,
  342. seg->result);
  343. goto out;
  344. case WA_SEG_ABORTED:
  345. xfer->result = seg->result;
  346. dev_dbg(dev, "xfer %p ID %08X#%u: ABORTED result %zu(0x%08zX)\n",
  347. xfer, wa_xfer_id(xfer), seg->index, seg->result,
  348. seg->result);
  349. goto out;
  350. default:
  351. dev_warn(dev, "xfer %p ID %08X#%u: is_done bad state %d\n",
  352. xfer, wa_xfer_id(xfer), cnt, seg->status);
  353. xfer->result = -EINVAL;
  354. goto out;
  355. }
  356. }
  357. xfer->result = 0;
  358. out:
  359. return result;
  360. }
  361. /*
  362. * Search for a transfer list ID on the HCD's URB list
  363. *
  364. * For 32 bit architectures, we use the pointer itself; for 64 bits, a
  365. * 32-bit hash of the pointer.
  366. *
  367. * @returns NULL if not found.
  368. */
  369. static struct wa_xfer *wa_xfer_get_by_id(struct wahc *wa, u32 id)
  370. {
  371. unsigned long flags;
  372. struct wa_xfer *xfer_itr;
  373. spin_lock_irqsave(&wa->xfer_list_lock, flags);
  374. list_for_each_entry(xfer_itr, &wa->xfer_list, list_node) {
  375. if (id == xfer_itr->id) {
  376. wa_xfer_get(xfer_itr);
  377. goto out;
  378. }
  379. }
  380. xfer_itr = NULL;
  381. out:
  382. spin_unlock_irqrestore(&wa->xfer_list_lock, flags);
  383. return xfer_itr;
  384. }
  385. struct wa_xfer_abort_buffer {
  386. struct urb urb;
  387. struct wa_xfer_abort cmd;
  388. };
  389. static void __wa_xfer_abort_cb(struct urb *urb)
  390. {
  391. struct wa_xfer_abort_buffer *b = urb->context;
  392. usb_put_urb(&b->urb);
  393. }
  394. /*
  395. * Aborts an ongoing transaction
  396. *
  397. * Assumes the transfer is referenced and locked and in a submitted
  398. * state (mainly that there is an endpoint/rpipe assigned).
  399. *
  400. * The callback (see above) does nothing but freeing up the data by
  401. * putting the URB. Because the URB is allocated at the head of the
  402. * struct, the whole space we allocated is kfreed. *
  403. */
  404. static int __wa_xfer_abort(struct wa_xfer *xfer)
  405. {
  406. int result = -ENOMEM;
  407. struct device *dev = &xfer->wa->usb_iface->dev;
  408. struct wa_xfer_abort_buffer *b;
  409. struct wa_rpipe *rpipe = xfer->ep->hcpriv;
  410. b = kmalloc(sizeof(*b), GFP_ATOMIC);
  411. if (b == NULL)
  412. goto error_kmalloc;
  413. b->cmd.bLength = sizeof(b->cmd);
  414. b->cmd.bRequestType = WA_XFER_ABORT;
  415. b->cmd.wRPipe = rpipe->descr.wRPipeIndex;
  416. b->cmd.dwTransferID = wa_xfer_id_le32(xfer);
  417. usb_init_urb(&b->urb);
  418. usb_fill_bulk_urb(&b->urb, xfer->wa->usb_dev,
  419. usb_sndbulkpipe(xfer->wa->usb_dev,
  420. xfer->wa->dto_epd->bEndpointAddress),
  421. &b->cmd, sizeof(b->cmd), __wa_xfer_abort_cb, b);
  422. result = usb_submit_urb(&b->urb, GFP_ATOMIC);
  423. if (result < 0)
  424. goto error_submit;
  425. return result; /* callback frees! */
  426. error_submit:
  427. if (printk_ratelimit())
  428. dev_err(dev, "xfer %p: Can't submit abort request: %d\n",
  429. xfer, result);
  430. kfree(b);
  431. error_kmalloc:
  432. return result;
  433. }
  434. /*
  435. * Calculate the number of isoc frames starting from isoc_frame_offset
  436. * that will fit a in transfer segment.
  437. */
  438. static int __wa_seg_calculate_isoc_frame_count(struct wa_xfer *xfer,
  439. int isoc_frame_offset, int *total_size)
  440. {
  441. int segment_size = 0, frame_count = 0;
  442. int index = isoc_frame_offset;
  443. struct usb_iso_packet_descriptor *iso_frame_desc =
  444. xfer->urb->iso_frame_desc;
  445. while ((index < xfer->urb->number_of_packets)
  446. && ((segment_size + iso_frame_desc[index].length)
  447. <= xfer->seg_size)) {
  448. /*
  449. * For Alereon HWA devices, only include an isoc frame in an
  450. * out segment if it is physically contiguous with the previous
  451. * frame. This is required because those devices expect
  452. * the isoc frames to be sent as a single USB transaction as
  453. * opposed to one transaction per frame with standard HWA.
  454. */
  455. if ((xfer->wa->quirks & WUSB_QUIRK_ALEREON_HWA_CONCAT_ISOC)
  456. && (xfer->is_inbound == 0)
  457. && (index > isoc_frame_offset)
  458. && ((iso_frame_desc[index - 1].offset +
  459. iso_frame_desc[index - 1].length) !=
  460. iso_frame_desc[index].offset))
  461. break;
  462. /* this frame fits. count it. */
  463. ++frame_count;
  464. segment_size += iso_frame_desc[index].length;
  465. /* move to the next isoc frame. */
  466. ++index;
  467. }
  468. *total_size = segment_size;
  469. return frame_count;
  470. }
  471. /*
  472. *
  473. * @returns < 0 on error, transfer segment request size if ok
  474. */
  475. static ssize_t __wa_xfer_setup_sizes(struct wa_xfer *xfer,
  476. enum wa_xfer_type *pxfer_type)
  477. {
  478. ssize_t result;
  479. struct device *dev = &xfer->wa->usb_iface->dev;
  480. size_t maxpktsize;
  481. struct urb *urb = xfer->urb;
  482. struct wa_rpipe *rpipe = xfer->ep->hcpriv;
  483. switch (rpipe->descr.bmAttribute & 0x3) {
  484. case USB_ENDPOINT_XFER_CONTROL:
  485. *pxfer_type = WA_XFER_TYPE_CTL;
  486. result = sizeof(struct wa_xfer_ctl);
  487. break;
  488. case USB_ENDPOINT_XFER_INT:
  489. case USB_ENDPOINT_XFER_BULK:
  490. *pxfer_type = WA_XFER_TYPE_BI;
  491. result = sizeof(struct wa_xfer_bi);
  492. break;
  493. case USB_ENDPOINT_XFER_ISOC:
  494. *pxfer_type = WA_XFER_TYPE_ISO;
  495. result = sizeof(struct wa_xfer_hwaiso);
  496. break;
  497. default:
  498. /* never happens */
  499. BUG();
  500. result = -EINVAL; /* shut gcc up */
  501. }
  502. xfer->is_inbound = urb->pipe & USB_DIR_IN ? 1 : 0;
  503. xfer->is_dma = urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? 1 : 0;
  504. maxpktsize = le16_to_cpu(rpipe->descr.wMaxPacketSize);
  505. xfer->seg_size = le16_to_cpu(rpipe->descr.wBlocks)
  506. * 1 << (xfer->wa->wa_descr->bRPipeBlockSize - 1);
  507. /* Compute the segment size and make sure it is a multiple of
  508. * the maxpktsize (WUSB1.0[8.3.3.1])...not really too much of
  509. * a check (FIXME) */
  510. if (xfer->seg_size < maxpktsize) {
  511. dev_err(dev,
  512. "HW BUG? seg_size %zu smaller than maxpktsize %zu\n",
  513. xfer->seg_size, maxpktsize);
  514. result = -EINVAL;
  515. goto error;
  516. }
  517. xfer->seg_size = (xfer->seg_size / maxpktsize) * maxpktsize;
  518. if ((rpipe->descr.bmAttribute & 0x3) == USB_ENDPOINT_XFER_ISOC) {
  519. int index = 0;
  520. xfer->segs = 0;
  521. /*
  522. * loop over urb->number_of_packets to determine how many
  523. * xfer segments will be needed to send the isoc frames.
  524. */
  525. while (index < urb->number_of_packets) {
  526. int seg_size; /* don't care. */
  527. index += __wa_seg_calculate_isoc_frame_count(xfer,
  528. index, &seg_size);
  529. ++xfer->segs;
  530. }
  531. } else {
  532. xfer->segs = DIV_ROUND_UP(urb->transfer_buffer_length,
  533. xfer->seg_size);
  534. if (xfer->segs == 0 && *pxfer_type == WA_XFER_TYPE_CTL)
  535. xfer->segs = 1;
  536. }
  537. if (xfer->segs > WA_SEGS_MAX) {
  538. dev_err(dev, "BUG? oops, number of segments %zu bigger than %d\n",
  539. (urb->transfer_buffer_length/xfer->seg_size),
  540. WA_SEGS_MAX);
  541. result = -EINVAL;
  542. goto error;
  543. }
  544. error:
  545. return result;
  546. }
  547. static void __wa_setup_isoc_packet_descr(
  548. struct wa_xfer_packet_info_hwaiso *packet_desc,
  549. struct wa_xfer *xfer,
  550. struct wa_seg *seg) {
  551. struct usb_iso_packet_descriptor *iso_frame_desc =
  552. xfer->urb->iso_frame_desc;
  553. int frame_index;
  554. /* populate isoc packet descriptor. */
  555. packet_desc->bPacketType = WA_XFER_ISO_PACKET_INFO;
  556. packet_desc->wLength = cpu_to_le16(sizeof(*packet_desc) +
  557. (sizeof(packet_desc->PacketLength[0]) *
  558. seg->isoc_frame_count));
  559. for (frame_index = 0; frame_index < seg->isoc_frame_count;
  560. ++frame_index) {
  561. int offset_index = frame_index + seg->isoc_frame_offset;
  562. packet_desc->PacketLength[frame_index] =
  563. cpu_to_le16(iso_frame_desc[offset_index].length);
  564. }
  565. }
  566. /* Fill in the common request header and xfer-type specific data. */
  567. static void __wa_xfer_setup_hdr0(struct wa_xfer *xfer,
  568. struct wa_xfer_hdr *xfer_hdr0,
  569. enum wa_xfer_type xfer_type,
  570. size_t xfer_hdr_size)
  571. {
  572. struct wa_rpipe *rpipe = xfer->ep->hcpriv;
  573. struct wa_seg *seg = xfer->seg[0];
  574. xfer_hdr0 = &seg->xfer_hdr;
  575. xfer_hdr0->bLength = xfer_hdr_size;
  576. xfer_hdr0->bRequestType = xfer_type;
  577. xfer_hdr0->wRPipe = rpipe->descr.wRPipeIndex;
  578. xfer_hdr0->dwTransferID = wa_xfer_id_le32(xfer);
  579. xfer_hdr0->bTransferSegment = 0;
  580. switch (xfer_type) {
  581. case WA_XFER_TYPE_CTL: {
  582. struct wa_xfer_ctl *xfer_ctl =
  583. container_of(xfer_hdr0, struct wa_xfer_ctl, hdr);
  584. xfer_ctl->bmAttribute = xfer->is_inbound ? 1 : 0;
  585. memcpy(&xfer_ctl->baSetupData, xfer->urb->setup_packet,
  586. sizeof(xfer_ctl->baSetupData));
  587. break;
  588. }
  589. case WA_XFER_TYPE_BI:
  590. break;
  591. case WA_XFER_TYPE_ISO: {
  592. struct wa_xfer_hwaiso *xfer_iso =
  593. container_of(xfer_hdr0, struct wa_xfer_hwaiso, hdr);
  594. struct wa_xfer_packet_info_hwaiso *packet_desc =
  595. ((void *)xfer_iso) + xfer_hdr_size;
  596. /* populate the isoc section of the transfer request. */
  597. xfer_iso->dwNumOfPackets = cpu_to_le32(seg->isoc_frame_count);
  598. /* populate isoc packet descriptor. */
  599. __wa_setup_isoc_packet_descr(packet_desc, xfer, seg);
  600. break;
  601. }
  602. default:
  603. BUG();
  604. };
  605. }
  606. /*
  607. * Callback for the OUT data phase of the segment request
  608. *
  609. * Check wa_seg_tr_cb(); most comments also apply here because this
  610. * function does almost the same thing and they work closely
  611. * together.
  612. *
  613. * If the seg request has failed but this DTO phase has succeeded,
  614. * wa_seg_tr_cb() has already failed the segment and moved the
  615. * status to WA_SEG_ERROR, so this will go through 'case 0' and
  616. * effectively do nothing.
  617. */
  618. static void wa_seg_dto_cb(struct urb *urb)
  619. {
  620. struct wa_seg *seg = urb->context;
  621. struct wa_xfer *xfer = seg->xfer;
  622. struct wahc *wa;
  623. struct device *dev;
  624. struct wa_rpipe *rpipe;
  625. unsigned long flags;
  626. unsigned rpipe_ready = 0;
  627. int data_send_done = 1, release_dto = 0, holding_dto = 0;
  628. u8 done = 0;
  629. int result;
  630. /* free the sg if it was used. */
  631. kfree(urb->sg);
  632. urb->sg = NULL;
  633. spin_lock_irqsave(&xfer->lock, flags);
  634. wa = xfer->wa;
  635. dev = &wa->usb_iface->dev;
  636. if (usb_pipeisoc(xfer->urb->pipe)) {
  637. /* Alereon HWA sends all isoc frames in a single transfer. */
  638. if (wa->quirks & WUSB_QUIRK_ALEREON_HWA_CONCAT_ISOC)
  639. seg->isoc_frame_index += seg->isoc_frame_count;
  640. else
  641. seg->isoc_frame_index += 1;
  642. if (seg->isoc_frame_index < seg->isoc_frame_count) {
  643. data_send_done = 0;
  644. holding_dto = 1; /* checked in error cases. */
  645. /*
  646. * if this is the last isoc frame of the segment, we
  647. * can release DTO after sending this frame.
  648. */
  649. if ((seg->isoc_frame_index + 1) >=
  650. seg->isoc_frame_count)
  651. release_dto = 1;
  652. }
  653. dev_dbg(dev, "xfer 0x%08X#%u: isoc frame = %d, holding_dto = %d, release_dto = %d.\n",
  654. wa_xfer_id(xfer), seg->index, seg->isoc_frame_index,
  655. holding_dto, release_dto);
  656. }
  657. spin_unlock_irqrestore(&xfer->lock, flags);
  658. switch (urb->status) {
  659. case 0:
  660. spin_lock_irqsave(&xfer->lock, flags);
  661. seg->result += urb->actual_length;
  662. if (data_send_done) {
  663. dev_dbg(dev, "xfer 0x%08X#%u: data out done (%zu bytes)\n",
  664. wa_xfer_id(xfer), seg->index, seg->result);
  665. if (seg->status < WA_SEG_PENDING)
  666. seg->status = WA_SEG_PENDING;
  667. } else {
  668. /* should only hit this for isoc xfers. */
  669. /*
  670. * Populate the dto URB with the next isoc frame buffer,
  671. * send the URB and release DTO if we no longer need it.
  672. */
  673. __wa_populate_dto_urb_isoc(xfer, seg,
  674. seg->isoc_frame_offset + seg->isoc_frame_index);
  675. /* resubmit the URB with the next isoc frame. */
  676. result = usb_submit_urb(seg->dto_urb, GFP_ATOMIC);
  677. if (result < 0) {
  678. dev_err(dev, "xfer 0x%08X#%u: DTO submit failed: %d\n",
  679. wa_xfer_id(xfer), seg->index, result);
  680. spin_unlock_irqrestore(&xfer->lock, flags);
  681. goto error_dto_submit;
  682. }
  683. }
  684. spin_unlock_irqrestore(&xfer->lock, flags);
  685. if (release_dto) {
  686. __wa_dto_put(wa);
  687. wa_check_for_delayed_rpipes(wa);
  688. }
  689. break;
  690. case -ECONNRESET: /* URB unlinked; no need to do anything */
  691. case -ENOENT: /* as it was done by the who unlinked us */
  692. if (holding_dto) {
  693. __wa_dto_put(wa);
  694. wa_check_for_delayed_rpipes(wa);
  695. }
  696. break;
  697. default: /* Other errors ... */
  698. dev_err(dev, "xfer 0x%08X#%u: data out error %d\n",
  699. wa_xfer_id(xfer), seg->index, urb->status);
  700. goto error_default;
  701. }
  702. return;
  703. error_dto_submit:
  704. error_default:
  705. spin_lock_irqsave(&xfer->lock, flags);
  706. rpipe = xfer->ep->hcpriv;
  707. if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
  708. EDC_ERROR_TIMEFRAME)){
  709. dev_err(dev, "DTO: URB max acceptable errors exceeded, resetting device\n");
  710. wa_reset_all(wa);
  711. }
  712. if (seg->status != WA_SEG_ERROR) {
  713. seg->status = WA_SEG_ERROR;
  714. seg->result = urb->status;
  715. xfer->segs_done++;
  716. __wa_xfer_abort(xfer);
  717. rpipe_ready = rpipe_avail_inc(rpipe);
  718. done = __wa_xfer_is_done(xfer);
  719. }
  720. spin_unlock_irqrestore(&xfer->lock, flags);
  721. if (holding_dto) {
  722. __wa_dto_put(wa);
  723. wa_check_for_delayed_rpipes(wa);
  724. }
  725. if (done)
  726. wa_xfer_completion(xfer);
  727. if (rpipe_ready)
  728. wa_xfer_delayed_run(rpipe);
  729. }
  730. /*
  731. * Callback for the isoc packet descriptor phase of the segment request
  732. *
  733. * Check wa_seg_tr_cb(); most comments also apply here because this
  734. * function does almost the same thing and they work closely
  735. * together.
  736. *
  737. * If the seg request has failed but this phase has succeeded,
  738. * wa_seg_tr_cb() has already failed the segment and moved the
  739. * status to WA_SEG_ERROR, so this will go through 'case 0' and
  740. * effectively do nothing.
  741. */
  742. static void wa_seg_iso_pack_desc_cb(struct urb *urb)
  743. {
  744. struct wa_seg *seg = urb->context;
  745. struct wa_xfer *xfer = seg->xfer;
  746. struct wahc *wa;
  747. struct device *dev;
  748. struct wa_rpipe *rpipe;
  749. unsigned long flags;
  750. unsigned rpipe_ready = 0;
  751. u8 done = 0;
  752. switch (urb->status) {
  753. case 0:
  754. spin_lock_irqsave(&xfer->lock, flags);
  755. wa = xfer->wa;
  756. dev = &wa->usb_iface->dev;
  757. dev_dbg(dev, "iso xfer %08X#%u: packet descriptor done\n",
  758. wa_xfer_id(xfer), seg->index);
  759. if (xfer->is_inbound && seg->status < WA_SEG_PENDING)
  760. seg->status = WA_SEG_PENDING;
  761. spin_unlock_irqrestore(&xfer->lock, flags);
  762. break;
  763. case -ECONNRESET: /* URB unlinked; no need to do anything */
  764. case -ENOENT: /* as it was done by the who unlinked us */
  765. break;
  766. default: /* Other errors ... */
  767. spin_lock_irqsave(&xfer->lock, flags);
  768. wa = xfer->wa;
  769. dev = &wa->usb_iface->dev;
  770. rpipe = xfer->ep->hcpriv;
  771. pr_err_ratelimited("iso xfer %08X#%u: packet descriptor error %d\n",
  772. wa_xfer_id(xfer), seg->index, urb->status);
  773. if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
  774. EDC_ERROR_TIMEFRAME)){
  775. dev_err(dev, "iso xfer: URB max acceptable errors exceeded, resetting device\n");
  776. wa_reset_all(wa);
  777. }
  778. if (seg->status != WA_SEG_ERROR) {
  779. usb_unlink_urb(seg->dto_urb);
  780. seg->status = WA_SEG_ERROR;
  781. seg->result = urb->status;
  782. xfer->segs_done++;
  783. __wa_xfer_abort(xfer);
  784. rpipe_ready = rpipe_avail_inc(rpipe);
  785. done = __wa_xfer_is_done(xfer);
  786. }
  787. spin_unlock_irqrestore(&xfer->lock, flags);
  788. if (done)
  789. wa_xfer_completion(xfer);
  790. if (rpipe_ready)
  791. wa_xfer_delayed_run(rpipe);
  792. }
  793. }
  794. /*
  795. * Callback for the segment request
  796. *
  797. * If successful transition state (unless already transitioned or
  798. * outbound transfer); otherwise, take a note of the error, mark this
  799. * segment done and try completion.
  800. *
  801. * Note we don't access until we are sure that the transfer hasn't
  802. * been cancelled (ECONNRESET, ENOENT), which could mean that
  803. * seg->xfer could be already gone.
  804. *
  805. * We have to check before setting the status to WA_SEG_PENDING
  806. * because sometimes the xfer result callback arrives before this
  807. * callback (geeeeeeze), so it might happen that we are already in
  808. * another state. As well, we don't set it if the transfer is not inbound,
  809. * as in that case, wa_seg_dto_cb will do it when the OUT data phase
  810. * finishes.
  811. */
  812. static void wa_seg_tr_cb(struct urb *urb)
  813. {
  814. struct wa_seg *seg = urb->context;
  815. struct wa_xfer *xfer = seg->xfer;
  816. struct wahc *wa;
  817. struct device *dev;
  818. struct wa_rpipe *rpipe;
  819. unsigned long flags;
  820. unsigned rpipe_ready;
  821. u8 done = 0;
  822. switch (urb->status) {
  823. case 0:
  824. spin_lock_irqsave(&xfer->lock, flags);
  825. wa = xfer->wa;
  826. dev = &wa->usb_iface->dev;
  827. dev_dbg(dev, "xfer %p ID 0x%08X#%u: request done\n",
  828. xfer, wa_xfer_id(xfer), seg->index);
  829. if (xfer->is_inbound &&
  830. seg->status < WA_SEG_PENDING &&
  831. !(usb_pipeisoc(xfer->urb->pipe)))
  832. seg->status = WA_SEG_PENDING;
  833. spin_unlock_irqrestore(&xfer->lock, flags);
  834. break;
  835. case -ECONNRESET: /* URB unlinked; no need to do anything */
  836. case -ENOENT: /* as it was done by the who unlinked us */
  837. break;
  838. default: /* Other errors ... */
  839. spin_lock_irqsave(&xfer->lock, flags);
  840. wa = xfer->wa;
  841. dev = &wa->usb_iface->dev;
  842. rpipe = xfer->ep->hcpriv;
  843. if (printk_ratelimit())
  844. dev_err(dev, "xfer %p ID 0x%08X#%u: request error %d\n",
  845. xfer, wa_xfer_id(xfer), seg->index,
  846. urb->status);
  847. if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
  848. EDC_ERROR_TIMEFRAME)){
  849. dev_err(dev, "DTO: URB max acceptable errors "
  850. "exceeded, resetting device\n");
  851. wa_reset_all(wa);
  852. }
  853. usb_unlink_urb(seg->isoc_pack_desc_urb);
  854. usb_unlink_urb(seg->dto_urb);
  855. seg->status = WA_SEG_ERROR;
  856. seg->result = urb->status;
  857. xfer->segs_done++;
  858. __wa_xfer_abort(xfer);
  859. rpipe_ready = rpipe_avail_inc(rpipe);
  860. done = __wa_xfer_is_done(xfer);
  861. spin_unlock_irqrestore(&xfer->lock, flags);
  862. if (done)
  863. wa_xfer_completion(xfer);
  864. if (rpipe_ready)
  865. wa_xfer_delayed_run(rpipe);
  866. }
  867. }
  868. /*
  869. * Allocate an SG list to store bytes_to_transfer bytes and copy the
  870. * subset of the in_sg that matches the buffer subset
  871. * we are about to transfer.
  872. */
  873. static struct scatterlist *wa_xfer_create_subset_sg(struct scatterlist *in_sg,
  874. const unsigned int bytes_transferred,
  875. const unsigned int bytes_to_transfer, unsigned int *out_num_sgs)
  876. {
  877. struct scatterlist *out_sg;
  878. unsigned int bytes_processed = 0, offset_into_current_page_data = 0,
  879. nents;
  880. struct scatterlist *current_xfer_sg = in_sg;
  881. struct scatterlist *current_seg_sg, *last_seg_sg;
  882. /* skip previously transferred pages. */
  883. while ((current_xfer_sg) &&
  884. (bytes_processed < bytes_transferred)) {
  885. bytes_processed += current_xfer_sg->length;
  886. /* advance the sg if current segment starts on or past the
  887. next page. */
  888. if (bytes_processed <= bytes_transferred)
  889. current_xfer_sg = sg_next(current_xfer_sg);
  890. }
  891. /* the data for the current segment starts in current_xfer_sg.
  892. calculate the offset. */
  893. if (bytes_processed > bytes_transferred) {
  894. offset_into_current_page_data = current_xfer_sg->length -
  895. (bytes_processed - bytes_transferred);
  896. }
  897. /* calculate the number of pages needed by this segment. */
  898. nents = DIV_ROUND_UP((bytes_to_transfer +
  899. offset_into_current_page_data +
  900. current_xfer_sg->offset),
  901. PAGE_SIZE);
  902. out_sg = kmalloc((sizeof(struct scatterlist) * nents), GFP_ATOMIC);
  903. if (out_sg) {
  904. sg_init_table(out_sg, nents);
  905. /* copy the portion of the incoming SG that correlates to the
  906. * data to be transferred by this segment to the segment SG. */
  907. last_seg_sg = current_seg_sg = out_sg;
  908. bytes_processed = 0;
  909. /* reset nents and calculate the actual number of sg entries
  910. needed. */
  911. nents = 0;
  912. while ((bytes_processed < bytes_to_transfer) &&
  913. current_seg_sg && current_xfer_sg) {
  914. unsigned int page_len = min((current_xfer_sg->length -
  915. offset_into_current_page_data),
  916. (bytes_to_transfer - bytes_processed));
  917. sg_set_page(current_seg_sg, sg_page(current_xfer_sg),
  918. page_len,
  919. current_xfer_sg->offset +
  920. offset_into_current_page_data);
  921. bytes_processed += page_len;
  922. last_seg_sg = current_seg_sg;
  923. current_seg_sg = sg_next(current_seg_sg);
  924. current_xfer_sg = sg_next(current_xfer_sg);
  925. /* only the first page may require additional offset. */
  926. offset_into_current_page_data = 0;
  927. nents++;
  928. }
  929. /* update num_sgs and terminate the list since we may have
  930. * concatenated pages. */
  931. sg_mark_end(last_seg_sg);
  932. *out_num_sgs = nents;
  933. }
  934. return out_sg;
  935. }
  936. /*
  937. * Populate DMA buffer info for the isoc dto urb.
  938. */
  939. static void __wa_populate_dto_urb_isoc(struct wa_xfer *xfer,
  940. struct wa_seg *seg, int curr_iso_frame)
  941. {
  942. seg->dto_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  943. seg->dto_urb->sg = NULL;
  944. seg->dto_urb->num_sgs = 0;
  945. /* dto urb buffer address pulled from iso_frame_desc. */
  946. seg->dto_urb->transfer_dma = xfer->urb->transfer_dma +
  947. xfer->urb->iso_frame_desc[curr_iso_frame].offset;
  948. /* The Alereon HWA sends a single URB with all isoc segs. */
  949. if (xfer->wa->quirks & WUSB_QUIRK_ALEREON_HWA_CONCAT_ISOC)
  950. seg->dto_urb->transfer_buffer_length = seg->isoc_size;
  951. else
  952. seg->dto_urb->transfer_buffer_length =
  953. xfer->urb->iso_frame_desc[curr_iso_frame].length;
  954. }
  955. /*
  956. * Populate buffer ptr and size, DMA buffer or SG list for the dto urb.
  957. */
  958. static int __wa_populate_dto_urb(struct wa_xfer *xfer,
  959. struct wa_seg *seg, size_t buf_itr_offset, size_t buf_itr_size)
  960. {
  961. int result = 0;
  962. if (xfer->is_dma) {
  963. seg->dto_urb->transfer_dma =
  964. xfer->urb->transfer_dma + buf_itr_offset;
  965. seg->dto_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  966. seg->dto_urb->sg = NULL;
  967. seg->dto_urb->num_sgs = 0;
  968. } else {
  969. /* do buffer or SG processing. */
  970. seg->dto_urb->transfer_flags &=
  971. ~URB_NO_TRANSFER_DMA_MAP;
  972. /* this should always be 0 before a resubmit. */
  973. seg->dto_urb->num_mapped_sgs = 0;
  974. if (xfer->urb->transfer_buffer) {
  975. seg->dto_urb->transfer_buffer =
  976. xfer->urb->transfer_buffer +
  977. buf_itr_offset;
  978. seg->dto_urb->sg = NULL;
  979. seg->dto_urb->num_sgs = 0;
  980. } else {
  981. seg->dto_urb->transfer_buffer = NULL;
  982. /*
  983. * allocate an SG list to store seg_size bytes
  984. * and copy the subset of the xfer->urb->sg that
  985. * matches the buffer subset we are about to
  986. * read.
  987. */
  988. seg->dto_urb->sg = wa_xfer_create_subset_sg(
  989. xfer->urb->sg,
  990. buf_itr_offset, buf_itr_size,
  991. &(seg->dto_urb->num_sgs));
  992. if (!(seg->dto_urb->sg))
  993. result = -ENOMEM;
  994. }
  995. }
  996. seg->dto_urb->transfer_buffer_length = buf_itr_size;
  997. return result;
  998. }
  999. /*
  1000. * Allocate the segs array and initialize each of them
  1001. *
  1002. * The segments are freed by wa_xfer_destroy() when the xfer use count
  1003. * drops to zero; however, because each segment is given the same life
  1004. * cycle as the USB URB it contains, it is actually freed by
  1005. * usb_put_urb() on the contained USB URB (twisted, eh?).
  1006. */
  1007. static int __wa_xfer_setup_segs(struct wa_xfer *xfer, size_t xfer_hdr_size)
  1008. {
  1009. int result, cnt, iso_frame_offset;
  1010. size_t alloc_size = sizeof(*xfer->seg[0])
  1011. - sizeof(xfer->seg[0]->xfer_hdr) + xfer_hdr_size;
  1012. struct usb_device *usb_dev = xfer->wa->usb_dev;
  1013. const struct usb_endpoint_descriptor *dto_epd = xfer->wa->dto_epd;
  1014. struct wa_seg *seg;
  1015. size_t buf_itr, buf_size, buf_itr_size;
  1016. int isoc_frame_offset = 0;
  1017. result = -ENOMEM;
  1018. xfer->seg = kcalloc(xfer->segs, sizeof(xfer->seg[0]), GFP_ATOMIC);
  1019. if (xfer->seg == NULL)
  1020. goto error_segs_kzalloc;
  1021. buf_itr = 0;
  1022. buf_size = xfer->urb->transfer_buffer_length;
  1023. iso_frame_offset = 0;
  1024. for (cnt = 0; cnt < xfer->segs; cnt++) {
  1025. size_t iso_pkt_descr_size = 0;
  1026. int seg_isoc_frame_count = 0, seg_isoc_size = 0;
  1027. /*
  1028. * Adjust the size of the segment object to contain space for
  1029. * the isoc packet descriptor buffer.
  1030. */
  1031. if (usb_pipeisoc(xfer->urb->pipe)) {
  1032. seg_isoc_frame_count =
  1033. __wa_seg_calculate_isoc_frame_count(xfer,
  1034. isoc_frame_offset, &seg_isoc_size);
  1035. iso_pkt_descr_size =
  1036. sizeof(struct wa_xfer_packet_info_hwaiso) +
  1037. (seg_isoc_frame_count * sizeof(__le16));
  1038. }
  1039. seg = xfer->seg[cnt] = kmalloc(alloc_size + iso_pkt_descr_size,
  1040. GFP_ATOMIC);
  1041. if (seg == NULL)
  1042. goto error_seg_kmalloc;
  1043. wa_seg_init(seg);
  1044. seg->xfer = xfer;
  1045. seg->index = cnt;
  1046. usb_fill_bulk_urb(&seg->tr_urb, usb_dev,
  1047. usb_sndbulkpipe(usb_dev,
  1048. dto_epd->bEndpointAddress),
  1049. &seg->xfer_hdr, xfer_hdr_size,
  1050. wa_seg_tr_cb, seg);
  1051. buf_itr_size = min(buf_size, xfer->seg_size);
  1052. if (usb_pipeisoc(xfer->urb->pipe)) {
  1053. seg->isoc_frame_count = seg_isoc_frame_count;
  1054. seg->isoc_frame_offset = isoc_frame_offset;
  1055. seg->isoc_size = seg_isoc_size;
  1056. /* iso packet descriptor. */
  1057. seg->isoc_pack_desc_urb =
  1058. usb_alloc_urb(0, GFP_ATOMIC);
  1059. if (seg->isoc_pack_desc_urb == NULL)
  1060. goto error_iso_pack_desc_alloc;
  1061. /*
  1062. * The buffer for the isoc packet descriptor starts
  1063. * after the transfer request header in the
  1064. * segment object memory buffer.
  1065. */
  1066. usb_fill_bulk_urb(
  1067. seg->isoc_pack_desc_urb, usb_dev,
  1068. usb_sndbulkpipe(usb_dev,
  1069. dto_epd->bEndpointAddress),
  1070. (void *)(&seg->xfer_hdr) +
  1071. xfer_hdr_size,
  1072. iso_pkt_descr_size,
  1073. wa_seg_iso_pack_desc_cb, seg);
  1074. /* adjust starting frame offset for next seg. */
  1075. isoc_frame_offset += seg_isoc_frame_count;
  1076. }
  1077. if (xfer->is_inbound == 0 && buf_size > 0) {
  1078. /* outbound data. */
  1079. seg->dto_urb = usb_alloc_urb(0, GFP_ATOMIC);
  1080. if (seg->dto_urb == NULL)
  1081. goto error_dto_alloc;
  1082. usb_fill_bulk_urb(
  1083. seg->dto_urb, usb_dev,
  1084. usb_sndbulkpipe(usb_dev,
  1085. dto_epd->bEndpointAddress),
  1086. NULL, 0, wa_seg_dto_cb, seg);
  1087. if (usb_pipeisoc(xfer->urb->pipe)) {
  1088. /*
  1089. * Fill in the xfer buffer information for the
  1090. * first isoc frame. Subsequent frames in this
  1091. * segment will be filled in and sent from the
  1092. * DTO completion routine, if needed.
  1093. */
  1094. __wa_populate_dto_urb_isoc(xfer, seg,
  1095. seg->isoc_frame_offset);
  1096. } else {
  1097. /* fill in the xfer buffer information. */
  1098. result = __wa_populate_dto_urb(xfer, seg,
  1099. buf_itr, buf_itr_size);
  1100. if (result < 0)
  1101. goto error_seg_outbound_populate;
  1102. buf_itr += buf_itr_size;
  1103. buf_size -= buf_itr_size;
  1104. }
  1105. }
  1106. seg->status = WA_SEG_READY;
  1107. }
  1108. return 0;
  1109. /*
  1110. * Free the memory for the current segment which failed to init.
  1111. * Use the fact that cnt is left at were it failed. The remaining
  1112. * segments will be cleaned up by wa_xfer_destroy.
  1113. */
  1114. error_seg_outbound_populate:
  1115. usb_free_urb(xfer->seg[cnt]->dto_urb);
  1116. error_dto_alloc:
  1117. usb_free_urb(xfer->seg[cnt]->isoc_pack_desc_urb);
  1118. error_iso_pack_desc_alloc:
  1119. kfree(xfer->seg[cnt]);
  1120. xfer->seg[cnt] = NULL;
  1121. error_seg_kmalloc:
  1122. error_segs_kzalloc:
  1123. return result;
  1124. }
  1125. /*
  1126. * Allocates all the stuff needed to submit a transfer
  1127. *
  1128. * Breaks the whole data buffer in a list of segments, each one has a
  1129. * structure allocated to it and linked in xfer->seg[index]
  1130. *
  1131. * FIXME: merge setup_segs() and the last part of this function, no
  1132. * need to do two for loops when we could run everything in a
  1133. * single one
  1134. */
  1135. static int __wa_xfer_setup(struct wa_xfer *xfer, struct urb *urb)
  1136. {
  1137. int result;
  1138. struct device *dev = &xfer->wa->usb_iface->dev;
  1139. enum wa_xfer_type xfer_type = 0; /* shut up GCC */
  1140. size_t xfer_hdr_size, cnt, transfer_size;
  1141. struct wa_xfer_hdr *xfer_hdr0, *xfer_hdr;
  1142. result = __wa_xfer_setup_sizes(xfer, &xfer_type);
  1143. if (result < 0)
  1144. goto error_setup_sizes;
  1145. xfer_hdr_size = result;
  1146. result = __wa_xfer_setup_segs(xfer, xfer_hdr_size);
  1147. if (result < 0) {
  1148. dev_err(dev, "xfer %p: Failed to allocate %d segments: %d\n",
  1149. xfer, xfer->segs, result);
  1150. goto error_setup_segs;
  1151. }
  1152. /* Fill the first header */
  1153. xfer_hdr0 = &xfer->seg[0]->xfer_hdr;
  1154. wa_xfer_id_init(xfer);
  1155. __wa_xfer_setup_hdr0(xfer, xfer_hdr0, xfer_type, xfer_hdr_size);
  1156. /* Fill remaining headers */
  1157. xfer_hdr = xfer_hdr0;
  1158. if (xfer_type == WA_XFER_TYPE_ISO) {
  1159. xfer_hdr0->dwTransferLength =
  1160. cpu_to_le32(xfer->seg[0]->isoc_size);
  1161. for (cnt = 1; cnt < xfer->segs; cnt++) {
  1162. struct wa_xfer_packet_info_hwaiso *packet_desc;
  1163. struct wa_seg *seg = xfer->seg[cnt];
  1164. struct wa_xfer_hwaiso *xfer_iso;
  1165. xfer_hdr = &seg->xfer_hdr;
  1166. xfer_iso = container_of(xfer_hdr,
  1167. struct wa_xfer_hwaiso, hdr);
  1168. packet_desc = ((void *)xfer_hdr) + xfer_hdr_size;
  1169. /*
  1170. * Copy values from the 0th header. Segment specific
  1171. * values are set below.
  1172. */
  1173. memcpy(xfer_hdr, xfer_hdr0, xfer_hdr_size);
  1174. xfer_hdr->bTransferSegment = cnt;
  1175. xfer_hdr->dwTransferLength =
  1176. cpu_to_le32(seg->isoc_size);
  1177. xfer_iso->dwNumOfPackets =
  1178. cpu_to_le32(seg->isoc_frame_count);
  1179. __wa_setup_isoc_packet_descr(packet_desc, xfer, seg);
  1180. seg->status = WA_SEG_READY;
  1181. }
  1182. } else {
  1183. transfer_size = urb->transfer_buffer_length;
  1184. xfer_hdr0->dwTransferLength = transfer_size > xfer->seg_size ?
  1185. cpu_to_le32(xfer->seg_size) :
  1186. cpu_to_le32(transfer_size);
  1187. transfer_size -= xfer->seg_size;
  1188. for (cnt = 1; cnt < xfer->segs; cnt++) {
  1189. xfer_hdr = &xfer->seg[cnt]->xfer_hdr;
  1190. memcpy(xfer_hdr, xfer_hdr0, xfer_hdr_size);
  1191. xfer_hdr->bTransferSegment = cnt;
  1192. xfer_hdr->dwTransferLength =
  1193. transfer_size > xfer->seg_size ?
  1194. cpu_to_le32(xfer->seg_size)
  1195. : cpu_to_le32(transfer_size);
  1196. xfer->seg[cnt]->status = WA_SEG_READY;
  1197. transfer_size -= xfer->seg_size;
  1198. }
  1199. }
  1200. xfer_hdr->bTransferSegment |= 0x80; /* this is the last segment */
  1201. result = 0;
  1202. error_setup_segs:
  1203. error_setup_sizes:
  1204. return result;
  1205. }
  1206. /*
  1207. *
  1208. *
  1209. * rpipe->seg_lock is held!
  1210. */
  1211. static int __wa_seg_submit(struct wa_rpipe *rpipe, struct wa_xfer *xfer,
  1212. struct wa_seg *seg, int *dto_done)
  1213. {
  1214. int result;
  1215. /* default to done unless we encounter a multi-frame isoc segment. */
  1216. *dto_done = 1;
  1217. /* submit the transfer request. */
  1218. result = usb_submit_urb(&seg->tr_urb, GFP_ATOMIC);
  1219. if (result < 0) {
  1220. pr_err("%s: xfer %p#%u: REQ submit failed: %d\n",
  1221. __func__, xfer, seg->index, result);
  1222. goto error_seg_submit;
  1223. }
  1224. /* submit the isoc packet descriptor if present. */
  1225. if (seg->isoc_pack_desc_urb) {
  1226. result = usb_submit_urb(seg->isoc_pack_desc_urb, GFP_ATOMIC);
  1227. seg->isoc_frame_index = 0;
  1228. if (result < 0) {
  1229. pr_err("%s: xfer %p#%u: ISO packet descriptor submit failed: %d\n",
  1230. __func__, xfer, seg->index, result);
  1231. goto error_iso_pack_desc_submit;
  1232. }
  1233. }
  1234. /* submit the out data if this is an out request. */
  1235. if (seg->dto_urb) {
  1236. struct wahc *wa = xfer->wa;
  1237. result = usb_submit_urb(seg->dto_urb, GFP_ATOMIC);
  1238. if (result < 0) {
  1239. pr_err("%s: xfer %p#%u: DTO submit failed: %d\n",
  1240. __func__, xfer, seg->index, result);
  1241. goto error_dto_submit;
  1242. }
  1243. /*
  1244. * If this segment contains more than one isoc frame, hold
  1245. * onto the dto resource until we send all frames.
  1246. * Only applies to non-Alereon devices.
  1247. */
  1248. if (((wa->quirks & WUSB_QUIRK_ALEREON_HWA_CONCAT_ISOC) == 0)
  1249. && (seg->isoc_frame_count > 1))
  1250. *dto_done = 0;
  1251. }
  1252. seg->status = WA_SEG_SUBMITTED;
  1253. rpipe_avail_dec(rpipe);
  1254. return 0;
  1255. error_dto_submit:
  1256. usb_unlink_urb(seg->isoc_pack_desc_urb);
  1257. error_iso_pack_desc_submit:
  1258. usb_unlink_urb(&seg->tr_urb);
  1259. error_seg_submit:
  1260. seg->status = WA_SEG_ERROR;
  1261. seg->result = result;
  1262. *dto_done = 1;
  1263. return result;
  1264. }
  1265. /*
  1266. * Execute more queued request segments until the maximum concurrent allowed.
  1267. * Return true if the DTO resource was acquired and released.
  1268. *
  1269. * The ugly unlock/lock sequence on the error path is needed as the
  1270. * xfer->lock normally nests the seg_lock and not viceversa.
  1271. */
  1272. static int __wa_xfer_delayed_run(struct wa_rpipe *rpipe, int *dto_waiting)
  1273. {
  1274. int result, dto_acquired = 0, dto_done = 0;
  1275. struct device *dev = &rpipe->wa->usb_iface->dev;
  1276. struct wa_seg *seg;
  1277. struct wa_xfer *xfer;
  1278. unsigned long flags;
  1279. *dto_waiting = 0;
  1280. spin_lock_irqsave(&rpipe->seg_lock, flags);
  1281. while (atomic_read(&rpipe->segs_available) > 0
  1282. && !list_empty(&rpipe->seg_list)
  1283. && (dto_acquired = __wa_dto_try_get(rpipe->wa))) {
  1284. seg = list_first_entry(&(rpipe->seg_list), struct wa_seg,
  1285. list_node);
  1286. list_del(&seg->list_node);
  1287. xfer = seg->xfer;
  1288. result = __wa_seg_submit(rpipe, xfer, seg, &dto_done);
  1289. /* release the dto resource if this RPIPE is done with it. */
  1290. if (dto_done)
  1291. __wa_dto_put(rpipe->wa);
  1292. dev_dbg(dev, "xfer %p ID %08X#%u submitted from delayed [%d segments available] %d\n",
  1293. xfer, wa_xfer_id(xfer), seg->index,
  1294. atomic_read(&rpipe->segs_available), result);
  1295. if (unlikely(result < 0)) {
  1296. spin_unlock_irqrestore(&rpipe->seg_lock, flags);
  1297. spin_lock_irqsave(&xfer->lock, flags);
  1298. __wa_xfer_abort(xfer);
  1299. xfer->segs_done++;
  1300. spin_unlock_irqrestore(&xfer->lock, flags);
  1301. spin_lock_irqsave(&rpipe->seg_lock, flags);
  1302. }
  1303. }
  1304. /*
  1305. * Mark this RPIPE as waiting if dto was not acquired, there are
  1306. * delayed segs and no active transfers to wake us up later.
  1307. */
  1308. if (!dto_acquired && !list_empty(&rpipe->seg_list)
  1309. && (atomic_read(&rpipe->segs_available) ==
  1310. le16_to_cpu(rpipe->descr.wRequests)))
  1311. *dto_waiting = 1;
  1312. spin_unlock_irqrestore(&rpipe->seg_lock, flags);
  1313. return dto_done;
  1314. }
  1315. static void wa_xfer_delayed_run(struct wa_rpipe *rpipe)
  1316. {
  1317. int dto_waiting;
  1318. int dto_done = __wa_xfer_delayed_run(rpipe, &dto_waiting);
  1319. /*
  1320. * If this RPIPE is waiting on the DTO resource, add it to the tail of
  1321. * the waiting list.
  1322. * Otherwise, if the WA DTO resource was acquired and released by
  1323. * __wa_xfer_delayed_run, another RPIPE may have attempted to acquire
  1324. * DTO and failed during that time. Check the delayed list and process
  1325. * any waiters. Start searching from the next RPIPE index.
  1326. */
  1327. if (dto_waiting)
  1328. wa_add_delayed_rpipe(rpipe->wa, rpipe);
  1329. else if (dto_done)
  1330. wa_check_for_delayed_rpipes(rpipe->wa);
  1331. }
  1332. /*
  1333. *
  1334. * xfer->lock is taken
  1335. *
  1336. * On failure submitting we just stop submitting and return error;
  1337. * wa_urb_enqueue_b() will execute the completion path
  1338. */
  1339. static int __wa_xfer_submit(struct wa_xfer *xfer)
  1340. {
  1341. int result, dto_acquired = 0, dto_done = 0, dto_waiting = 0;
  1342. struct wahc *wa = xfer->wa;
  1343. struct device *dev = &wa->usb_iface->dev;
  1344. unsigned cnt;
  1345. struct wa_seg *seg;
  1346. unsigned long flags;
  1347. struct wa_rpipe *rpipe = xfer->ep->hcpriv;
  1348. size_t maxrequests = le16_to_cpu(rpipe->descr.wRequests);
  1349. u8 available;
  1350. u8 empty;
  1351. spin_lock_irqsave(&wa->xfer_list_lock, flags);
  1352. list_add_tail(&xfer->list_node, &wa->xfer_list);
  1353. spin_unlock_irqrestore(&wa->xfer_list_lock, flags);
  1354. BUG_ON(atomic_read(&rpipe->segs_available) > maxrequests);
  1355. result = 0;
  1356. spin_lock_irqsave(&rpipe->seg_lock, flags);
  1357. for (cnt = 0; cnt < xfer->segs; cnt++) {
  1358. int delay_seg = 1;
  1359. available = atomic_read(&rpipe->segs_available);
  1360. empty = list_empty(&rpipe->seg_list);
  1361. seg = xfer->seg[cnt];
  1362. if (available && empty) {
  1363. /*
  1364. * Only attempt to acquire DTO if we have a segment
  1365. * to send.
  1366. */
  1367. dto_acquired = __wa_dto_try_get(rpipe->wa);
  1368. if (dto_acquired) {
  1369. delay_seg = 0;
  1370. result = __wa_seg_submit(rpipe, xfer, seg,
  1371. &dto_done);
  1372. dev_dbg(dev, "xfer %p ID 0x%08X#%u: available %u empty %u submitted\n",
  1373. xfer, wa_xfer_id(xfer), cnt, available,
  1374. empty);
  1375. if (dto_done)
  1376. __wa_dto_put(rpipe->wa);
  1377. if (result < 0) {
  1378. __wa_xfer_abort(xfer);
  1379. goto error_seg_submit;
  1380. }
  1381. }
  1382. }
  1383. if (delay_seg) {
  1384. dev_dbg(dev, "xfer %p ID 0x%08X#%u: available %u empty %u delayed\n",
  1385. xfer, wa_xfer_id(xfer), cnt, available, empty);
  1386. seg->status = WA_SEG_DELAYED;
  1387. list_add_tail(&seg->list_node, &rpipe->seg_list);
  1388. }
  1389. xfer->segs_submitted++;
  1390. }
  1391. error_seg_submit:
  1392. /*
  1393. * Mark this RPIPE as waiting if dto was not acquired, there are
  1394. * delayed segs and no active transfers to wake us up later.
  1395. */
  1396. if (!dto_acquired && !list_empty(&rpipe->seg_list)
  1397. && (atomic_read(&rpipe->segs_available) ==
  1398. le16_to_cpu(rpipe->descr.wRequests)))
  1399. dto_waiting = 1;
  1400. spin_unlock_irqrestore(&rpipe->seg_lock, flags);
  1401. if (dto_waiting)
  1402. wa_add_delayed_rpipe(rpipe->wa, rpipe);
  1403. else if (dto_done)
  1404. wa_check_for_delayed_rpipes(rpipe->wa);
  1405. return result;
  1406. }
  1407. /*
  1408. * Second part of a URB/transfer enqueuement
  1409. *
  1410. * Assumes this comes from wa_urb_enqueue() [maybe through
  1411. * wa_urb_enqueue_run()]. At this point:
  1412. *
  1413. * xfer->wa filled and refcounted
  1414. * xfer->ep filled with rpipe refcounted if
  1415. * delayed == 0
  1416. * xfer->urb filled and refcounted (this is the case when called
  1417. * from wa_urb_enqueue() as we come from usb_submit_urb()
  1418. * and when called by wa_urb_enqueue_run(), as we took an
  1419. * extra ref dropped by _run() after we return).
  1420. * xfer->gfp filled
  1421. *
  1422. * If we fail at __wa_xfer_submit(), then we just check if we are done
  1423. * and if so, we run the completion procedure. However, if we are not
  1424. * yet done, we do nothing and wait for the completion handlers from
  1425. * the submitted URBs or from the xfer-result path to kick in. If xfer
  1426. * result never kicks in, the xfer will timeout from the USB code and
  1427. * dequeue() will be called.
  1428. */
  1429. static int wa_urb_enqueue_b(struct wa_xfer *xfer)
  1430. {
  1431. int result;
  1432. unsigned long flags;
  1433. struct urb *urb = xfer->urb;
  1434. struct wahc *wa = xfer->wa;
  1435. struct wusbhc *wusbhc = wa->wusb;
  1436. struct wusb_dev *wusb_dev;
  1437. unsigned done;
  1438. result = rpipe_get_by_ep(wa, xfer->ep, urb, xfer->gfp);
  1439. if (result < 0) {
  1440. pr_err("%s: error_rpipe_get\n", __func__);
  1441. goto error_rpipe_get;
  1442. }
  1443. result = -ENODEV;
  1444. /* FIXME: segmentation broken -- kills DWA */
  1445. mutex_lock(&wusbhc->mutex); /* get a WUSB dev */
  1446. if (urb->dev == NULL) {
  1447. mutex_unlock(&wusbhc->mutex);
  1448. pr_err("%s: error usb dev gone\n", __func__);
  1449. goto error_dev_gone;
  1450. }
  1451. wusb_dev = __wusb_dev_get_by_usb_dev(wusbhc, urb->dev);
  1452. if (wusb_dev == NULL) {
  1453. mutex_unlock(&wusbhc->mutex);
  1454. dev_err(&(urb->dev->dev), "%s: error wusb dev gone\n",
  1455. __func__);
  1456. goto error_dev_gone;
  1457. }
  1458. mutex_unlock(&wusbhc->mutex);
  1459. spin_lock_irqsave(&xfer->lock, flags);
  1460. xfer->wusb_dev = wusb_dev;
  1461. result = urb->status;
  1462. if (urb->status != -EINPROGRESS) {
  1463. dev_err(&(urb->dev->dev), "%s: error_dequeued\n", __func__);
  1464. goto error_dequeued;
  1465. }
  1466. result = __wa_xfer_setup(xfer, urb);
  1467. if (result < 0) {
  1468. dev_err(&(urb->dev->dev), "%s: error_xfer_setup\n", __func__);
  1469. goto error_xfer_setup;
  1470. }
  1471. result = __wa_xfer_submit(xfer);
  1472. if (result < 0) {
  1473. dev_err(&(urb->dev->dev), "%s: error_xfer_submit\n", __func__);
  1474. goto error_xfer_submit;
  1475. }
  1476. spin_unlock_irqrestore(&xfer->lock, flags);
  1477. return 0;
  1478. /*
  1479. * this is basically wa_xfer_completion() broken up wa_xfer_giveback()
  1480. * does a wa_xfer_put() that will call wa_xfer_destroy() and undo
  1481. * setup().
  1482. */
  1483. error_xfer_setup:
  1484. error_dequeued:
  1485. spin_unlock_irqrestore(&xfer->lock, flags);
  1486. /* FIXME: segmentation broken, kills DWA */
  1487. if (wusb_dev)
  1488. wusb_dev_put(wusb_dev);
  1489. error_dev_gone:
  1490. rpipe_put(xfer->ep->hcpriv);
  1491. error_rpipe_get:
  1492. xfer->result = result;
  1493. return result;
  1494. error_xfer_submit:
  1495. done = __wa_xfer_is_done(xfer);
  1496. xfer->result = result;
  1497. spin_unlock_irqrestore(&xfer->lock, flags);
  1498. if (done)
  1499. wa_xfer_completion(xfer);
  1500. /* return success since the completion routine will run. */
  1501. return 0;
  1502. }
  1503. /*
  1504. * Execute the delayed transfers in the Wire Adapter @wa
  1505. *
  1506. * We need to be careful here, as dequeue() could be called in the
  1507. * middle. That's why we do the whole thing under the
  1508. * wa->xfer_list_lock. If dequeue() jumps in, it first locks xfer->lock
  1509. * and then checks the list -- so as we would be acquiring in inverse
  1510. * order, we move the delayed list to a separate list while locked and then
  1511. * submit them without the list lock held.
  1512. */
  1513. void wa_urb_enqueue_run(struct work_struct *ws)
  1514. {
  1515. struct wahc *wa = container_of(ws, struct wahc, xfer_enqueue_work);
  1516. struct wa_xfer *xfer, *next;
  1517. struct urb *urb;
  1518. LIST_HEAD(tmp_list);
  1519. /* Create a copy of the wa->xfer_delayed_list while holding the lock */
  1520. spin_lock_irq(&wa->xfer_list_lock);
  1521. list_cut_position(&tmp_list, &wa->xfer_delayed_list,
  1522. wa->xfer_delayed_list.prev);
  1523. spin_unlock_irq(&wa->xfer_list_lock);
  1524. /*
  1525. * enqueue from temp list without list lock held since wa_urb_enqueue_b
  1526. * can take xfer->lock as well as lock mutexes.
  1527. */
  1528. list_for_each_entry_safe(xfer, next, &tmp_list, list_node) {
  1529. list_del_init(&xfer->list_node);
  1530. urb = xfer->urb;
  1531. if (wa_urb_enqueue_b(xfer) < 0)
  1532. wa_xfer_giveback(xfer);
  1533. usb_put_urb(urb); /* taken when queuing */
  1534. }
  1535. }
  1536. EXPORT_SYMBOL_GPL(wa_urb_enqueue_run);
  1537. /*
  1538. * Process the errored transfers on the Wire Adapter outside of interrupt.
  1539. */
  1540. void wa_process_errored_transfers_run(struct work_struct *ws)
  1541. {
  1542. struct wahc *wa = container_of(ws, struct wahc, xfer_error_work);
  1543. struct wa_xfer *xfer, *next;
  1544. LIST_HEAD(tmp_list);
  1545. pr_info("%s: Run delayed STALL processing.\n", __func__);
  1546. /* Create a copy of the wa->xfer_errored_list while holding the lock */
  1547. spin_lock_irq(&wa->xfer_list_lock);
  1548. list_cut_position(&tmp_list, &wa->xfer_errored_list,
  1549. wa->xfer_errored_list.prev);
  1550. spin_unlock_irq(&wa->xfer_list_lock);
  1551. /*
  1552. * run rpipe_clear_feature_stalled from temp list without list lock
  1553. * held.
  1554. */
  1555. list_for_each_entry_safe(xfer, next, &tmp_list, list_node) {
  1556. struct usb_host_endpoint *ep;
  1557. unsigned long flags;
  1558. struct wa_rpipe *rpipe;
  1559. spin_lock_irqsave(&xfer->lock, flags);
  1560. ep = xfer->ep;
  1561. rpipe = ep->hcpriv;
  1562. spin_unlock_irqrestore(&xfer->lock, flags);
  1563. /* clear RPIPE feature stalled without holding a lock. */
  1564. rpipe_clear_feature_stalled(wa, ep);
  1565. /* complete the xfer. This removes it from the tmp list. */
  1566. wa_xfer_completion(xfer);
  1567. /* check for work. */
  1568. wa_xfer_delayed_run(rpipe);
  1569. }
  1570. }
  1571. EXPORT_SYMBOL_GPL(wa_process_errored_transfers_run);
  1572. /*
  1573. * Submit a transfer to the Wire Adapter in a delayed way
  1574. *
  1575. * The process of enqueuing involves possible sleeps() [see
  1576. * enqueue_b(), for the rpipe_get() and the mutex_lock()]. If we are
  1577. * in an atomic section, we defer the enqueue_b() call--else we call direct.
  1578. *
  1579. * @urb: We own a reference to it done by the HCI Linux USB stack that
  1580. * will be given up by calling usb_hcd_giveback_urb() or by
  1581. * returning error from this function -> ergo we don't have to
  1582. * refcount it.
  1583. */
  1584. int wa_urb_enqueue(struct wahc *wa, struct usb_host_endpoint *ep,
  1585. struct urb *urb, gfp_t gfp)
  1586. {
  1587. int result;
  1588. struct device *dev = &wa->usb_iface->dev;
  1589. struct wa_xfer *xfer;
  1590. unsigned long my_flags;
  1591. unsigned cant_sleep = irqs_disabled() | in_atomic();
  1592. if ((urb->transfer_buffer == NULL)
  1593. && (urb->sg == NULL)
  1594. && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
  1595. && urb->transfer_buffer_length != 0) {
  1596. dev_err(dev, "BUG? urb %p: NULL xfer buffer & NODMA\n", urb);
  1597. dump_stack();
  1598. }
  1599. spin_lock_irqsave(&wa->xfer_list_lock, my_flags);
  1600. result = usb_hcd_link_urb_to_ep(&(wa->wusb->usb_hcd), urb);
  1601. spin_unlock_irqrestore(&wa->xfer_list_lock, my_flags);
  1602. if (result < 0)
  1603. goto error_link_urb;
  1604. result = -ENOMEM;
  1605. xfer = kzalloc(sizeof(*xfer), gfp);
  1606. if (xfer == NULL)
  1607. goto error_kmalloc;
  1608. result = -ENOENT;
  1609. if (urb->status != -EINPROGRESS) /* cancelled */
  1610. goto error_dequeued; /* before starting? */
  1611. wa_xfer_init(xfer);
  1612. xfer->wa = wa_get(wa);
  1613. xfer->urb = urb;
  1614. xfer->gfp = gfp;
  1615. xfer->ep = ep;
  1616. urb->hcpriv = xfer;
  1617. dev_dbg(dev, "xfer %p urb %p pipe 0x%02x [%d bytes] %s %s %s\n",
  1618. xfer, urb, urb->pipe, urb->transfer_buffer_length,
  1619. urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP ? "dma" : "nodma",
  1620. urb->pipe & USB_DIR_IN ? "inbound" : "outbound",
  1621. cant_sleep ? "deferred" : "inline");
  1622. if (cant_sleep) {
  1623. usb_get_urb(urb);
  1624. spin_lock_irqsave(&wa->xfer_list_lock, my_flags);
  1625. list_add_tail(&xfer->list_node, &wa->xfer_delayed_list);
  1626. spin_unlock_irqrestore(&wa->xfer_list_lock, my_flags);
  1627. queue_work(wusbd, &wa->xfer_enqueue_work);
  1628. } else {
  1629. result = wa_urb_enqueue_b(xfer);
  1630. if (result < 0) {
  1631. /*
  1632. * URB submit/enqueue failed. Clean up, return an
  1633. * error and do not run the callback. This avoids
  1634. * an infinite submit/complete loop.
  1635. */
  1636. dev_err(dev, "%s: URB enqueue failed: %d\n",
  1637. __func__, result);
  1638. wa_put(xfer->wa);
  1639. wa_xfer_put(xfer);
  1640. spin_lock_irqsave(&wa->xfer_list_lock, my_flags);
  1641. usb_hcd_unlink_urb_from_ep(&(wa->wusb->usb_hcd), urb);
  1642. spin_unlock_irqrestore(&wa->xfer_list_lock, my_flags);
  1643. return result;
  1644. }
  1645. }
  1646. return 0;
  1647. error_dequeued:
  1648. kfree(xfer);
  1649. error_kmalloc:
  1650. spin_lock_irqsave(&wa->xfer_list_lock, my_flags);
  1651. usb_hcd_unlink_urb_from_ep(&(wa->wusb->usb_hcd), urb);
  1652. spin_unlock_irqrestore(&wa->xfer_list_lock, my_flags);
  1653. error_link_urb:
  1654. return result;
  1655. }
  1656. EXPORT_SYMBOL_GPL(wa_urb_enqueue);
  1657. /*
  1658. * Dequeue a URB and make sure uwb_hcd_giveback_urb() [completion
  1659. * handler] is called.
  1660. *
  1661. * Until a transfer goes successfully through wa_urb_enqueue() it
  1662. * needs to be dequeued with completion calling; when stuck in delayed
  1663. * or before wa_xfer_setup() is called, we need to do completion.
  1664. *
  1665. * not setup If there is no hcpriv yet, that means that that enqueue
  1666. * still had no time to set the xfer up. Because
  1667. * urb->status should be other than -EINPROGRESS,
  1668. * enqueue() will catch that and bail out.
  1669. *
  1670. * If the transfer has gone through setup, we just need to clean it
  1671. * up. If it has gone through submit(), we have to abort it [with an
  1672. * asynch request] and then make sure we cancel each segment.
  1673. *
  1674. */
  1675. int wa_urb_dequeue(struct wahc *wa, struct urb *urb, int status)
  1676. {
  1677. unsigned long flags, flags2;
  1678. struct wa_xfer *xfer;
  1679. struct wa_seg *seg;
  1680. struct wa_rpipe *rpipe;
  1681. unsigned cnt, done = 0, xfer_abort_pending;
  1682. unsigned rpipe_ready = 0;
  1683. int result;
  1684. /* check if it is safe to unlink. */
  1685. spin_lock_irqsave(&wa->xfer_list_lock, flags);
  1686. result = usb_hcd_check_unlink_urb(&(wa->wusb->usb_hcd), urb, status);
  1687. spin_unlock_irqrestore(&wa->xfer_list_lock, flags);
  1688. if (result)
  1689. return result;
  1690. xfer = urb->hcpriv;
  1691. if (xfer == NULL) {
  1692. /*
  1693. * Nothing setup yet enqueue will see urb->status !=
  1694. * -EINPROGRESS (by hcd layer) and bail out with
  1695. * error, no need to do completion
  1696. */
  1697. BUG_ON(urb->status == -EINPROGRESS);
  1698. goto out;
  1699. }
  1700. spin_lock_irqsave(&xfer->lock, flags);
  1701. pr_debug("%s: DEQUEUE xfer id 0x%08X\n", __func__, wa_xfer_id(xfer));
  1702. rpipe = xfer->ep->hcpriv;
  1703. if (rpipe == NULL) {
  1704. pr_debug("%s: xfer %p id 0x%08X has no RPIPE. %s",
  1705. __func__, xfer, wa_xfer_id(xfer),
  1706. "Probably already aborted.\n" );
  1707. result = -ENOENT;
  1708. goto out_unlock;
  1709. }
  1710. /* Check the delayed list -> if there, release and complete */
  1711. spin_lock_irqsave(&wa->xfer_list_lock, flags2);
  1712. if (!list_empty(&xfer->list_node) && xfer->seg == NULL)
  1713. goto dequeue_delayed;
  1714. spin_unlock_irqrestore(&wa->xfer_list_lock, flags2);
  1715. if (xfer->seg == NULL) /* still hasn't reached */
  1716. goto out_unlock; /* setup(), enqueue_b() completes */
  1717. /* Ok, the xfer is in flight already, it's been setup and submitted.*/
  1718. xfer_abort_pending = __wa_xfer_abort(xfer) >= 0;
  1719. for (cnt = 0; cnt < xfer->segs; cnt++) {
  1720. seg = xfer->seg[cnt];
  1721. pr_debug("%s: xfer id 0x%08X#%d status = %d\n",
  1722. __func__, wa_xfer_id(xfer), cnt, seg->status);
  1723. switch (seg->status) {
  1724. case WA_SEG_NOTREADY:
  1725. case WA_SEG_READY:
  1726. printk(KERN_ERR "xfer %p#%u: dequeue bad state %u\n",
  1727. xfer, cnt, seg->status);
  1728. WARN_ON(1);
  1729. break;
  1730. case WA_SEG_DELAYED:
  1731. /*
  1732. * delete from rpipe delayed list. If no segments on
  1733. * this xfer have been submitted, __wa_xfer_is_done will
  1734. * trigger a giveback below. Otherwise, the submitted
  1735. * segments will be completed in the DTI interrupt.
  1736. */
  1737. seg->status = WA_SEG_ABORTED;
  1738. seg->result = -ENOENT;
  1739. spin_lock_irqsave(&rpipe->seg_lock, flags2);
  1740. list_del(&seg->list_node);
  1741. xfer->segs_done++;
  1742. spin_unlock_irqrestore(&rpipe->seg_lock, flags2);
  1743. break;
  1744. case WA_SEG_DONE:
  1745. case WA_SEG_ERROR:
  1746. case WA_SEG_ABORTED:
  1747. break;
  1748. /*
  1749. * In the states below, the HWA device already knows
  1750. * about the transfer. If an abort request was sent,
  1751. * allow the HWA to process it and wait for the
  1752. * results. Otherwise, the DTI state and seg completed
  1753. * counts can get out of sync.
  1754. */
  1755. case WA_SEG_SUBMITTED:
  1756. case WA_SEG_PENDING:
  1757. case WA_SEG_DTI_PENDING:
  1758. /*
  1759. * Check if the abort was successfully sent. This could
  1760. * be false if the HWA has been removed but we haven't
  1761. * gotten the disconnect notification yet.
  1762. */
  1763. if (!xfer_abort_pending) {
  1764. seg->status = WA_SEG_ABORTED;
  1765. rpipe_ready = rpipe_avail_inc(rpipe);
  1766. xfer->segs_done++;
  1767. }
  1768. break;
  1769. }
  1770. }
  1771. xfer->result = urb->status; /* -ENOENT or -ECONNRESET */
  1772. done = __wa_xfer_is_done(xfer);
  1773. spin_unlock_irqrestore(&xfer->lock, flags);
  1774. if (done)
  1775. wa_xfer_completion(xfer);
  1776. if (rpipe_ready)
  1777. wa_xfer_delayed_run(rpipe);
  1778. return result;
  1779. out_unlock:
  1780. spin_unlock_irqrestore(&xfer->lock, flags);
  1781. out:
  1782. return result;
  1783. dequeue_delayed:
  1784. list_del_init(&xfer->list_node);
  1785. spin_unlock_irqrestore(&wa->xfer_list_lock, flags2);
  1786. xfer->result = urb->status;
  1787. spin_unlock_irqrestore(&xfer->lock, flags);
  1788. wa_xfer_giveback(xfer);
  1789. usb_put_urb(urb); /* we got a ref in enqueue() */
  1790. return 0;
  1791. }
  1792. EXPORT_SYMBOL_GPL(wa_urb_dequeue);
  1793. /*
  1794. * Translation from WA status codes (WUSB1.0 Table 8.15) to errno
  1795. * codes
  1796. *
  1797. * Positive errno values are internal inconsistencies and should be
  1798. * flagged louder. Negative are to be passed up to the user in the
  1799. * normal way.
  1800. *
  1801. * @status: USB WA status code -- high two bits are stripped.
  1802. */
  1803. static int wa_xfer_status_to_errno(u8 status)
  1804. {
  1805. int errno;
  1806. u8 real_status = status;
  1807. static int xlat[] = {
  1808. [WA_XFER_STATUS_SUCCESS] = 0,
  1809. [WA_XFER_STATUS_HALTED] = -EPIPE,
  1810. [WA_XFER_STATUS_DATA_BUFFER_ERROR] = -ENOBUFS,
  1811. [WA_XFER_STATUS_BABBLE] = -EOVERFLOW,
  1812. [WA_XFER_RESERVED] = EINVAL,
  1813. [WA_XFER_STATUS_NOT_FOUND] = 0,
  1814. [WA_XFER_STATUS_INSUFFICIENT_RESOURCE] = -ENOMEM,
  1815. [WA_XFER_STATUS_TRANSACTION_ERROR] = -EILSEQ,
  1816. [WA_XFER_STATUS_ABORTED] = -ENOENT,
  1817. [WA_XFER_STATUS_RPIPE_NOT_READY] = EINVAL,
  1818. [WA_XFER_INVALID_FORMAT] = EINVAL,
  1819. [WA_XFER_UNEXPECTED_SEGMENT_NUMBER] = EINVAL,
  1820. [WA_XFER_STATUS_RPIPE_TYPE_MISMATCH] = EINVAL,
  1821. };
  1822. status &= 0x3f;
  1823. if (status == 0)
  1824. return 0;
  1825. if (status >= ARRAY_SIZE(xlat)) {
  1826. printk_ratelimited(KERN_ERR "%s(): BUG? "
  1827. "Unknown WA transfer status 0x%02x\n",
  1828. __func__, real_status);
  1829. return -EINVAL;
  1830. }
  1831. errno = xlat[status];
  1832. if (unlikely(errno > 0)) {
  1833. printk_ratelimited(KERN_ERR "%s(): BUG? "
  1834. "Inconsistent WA status: 0x%02x\n",
  1835. __func__, real_status);
  1836. errno = -errno;
  1837. }
  1838. return errno;
  1839. }
  1840. /*
  1841. * If a last segment flag and/or a transfer result error is encountered,
  1842. * no other segment transfer results will be returned from the device.
  1843. * Mark the remaining submitted or pending xfers as completed so that
  1844. * the xfer will complete cleanly.
  1845. */
  1846. static void wa_complete_remaining_xfer_segs(struct wa_xfer *xfer,
  1847. struct wa_seg *incoming_seg, enum wa_seg_status status)
  1848. {
  1849. int index;
  1850. struct wa_rpipe *rpipe = xfer->ep->hcpriv;
  1851. for (index = incoming_seg->index + 1; index < xfer->segs_submitted;
  1852. index++) {
  1853. struct wa_seg *current_seg = xfer->seg[index];
  1854. BUG_ON(current_seg == NULL);
  1855. switch (current_seg->status) {
  1856. case WA_SEG_SUBMITTED:
  1857. case WA_SEG_PENDING:
  1858. case WA_SEG_DTI_PENDING:
  1859. rpipe_avail_inc(rpipe);
  1860. /*
  1861. * do not increment RPIPE avail for the WA_SEG_DELAYED case
  1862. * since it has not been submitted to the RPIPE.
  1863. */
  1864. case WA_SEG_DELAYED:
  1865. xfer->segs_done++;
  1866. current_seg->status = status;
  1867. break;
  1868. case WA_SEG_ABORTED:
  1869. break;
  1870. default:
  1871. WARN(1, "%s: xfer 0x%08X#%d. bad seg status = %d\n",
  1872. __func__, wa_xfer_id(xfer), index,
  1873. current_seg->status);
  1874. break;
  1875. }
  1876. }
  1877. }
  1878. /* Populate the wa->buf_in_urb based on the current isoc transfer state. */
  1879. static void __wa_populate_buf_in_urb_isoc(struct wahc *wa, struct wa_xfer *xfer,
  1880. struct wa_seg *seg, int curr_iso_frame)
  1881. {
  1882. BUG_ON(wa->buf_in_urb->status == -EINPROGRESS);
  1883. /* this should always be 0 before a resubmit. */
  1884. wa->buf_in_urb->num_mapped_sgs = 0;
  1885. wa->buf_in_urb->transfer_dma = xfer->urb->transfer_dma +
  1886. xfer->urb->iso_frame_desc[curr_iso_frame].offset;
  1887. wa->buf_in_urb->transfer_buffer_length =
  1888. xfer->urb->iso_frame_desc[curr_iso_frame].length;
  1889. wa->buf_in_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  1890. wa->buf_in_urb->transfer_buffer = NULL;
  1891. wa->buf_in_urb->sg = NULL;
  1892. wa->buf_in_urb->num_sgs = 0;
  1893. wa->buf_in_urb->context = seg;
  1894. }
  1895. /* Populate the wa->buf_in_urb based on the current transfer state. */
  1896. static int wa_populate_buf_in_urb(struct wahc *wa, struct wa_xfer *xfer,
  1897. unsigned int seg_idx, unsigned int bytes_transferred)
  1898. {
  1899. int result = 0;
  1900. struct wa_seg *seg = xfer->seg[seg_idx];
  1901. BUG_ON(wa->buf_in_urb->status == -EINPROGRESS);
  1902. /* this should always be 0 before a resubmit. */
  1903. wa->buf_in_urb->num_mapped_sgs = 0;
  1904. if (xfer->is_dma) {
  1905. wa->buf_in_urb->transfer_dma = xfer->urb->transfer_dma
  1906. + (seg_idx * xfer->seg_size);
  1907. wa->buf_in_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  1908. wa->buf_in_urb->transfer_buffer = NULL;
  1909. wa->buf_in_urb->sg = NULL;
  1910. wa->buf_in_urb->num_sgs = 0;
  1911. } else {
  1912. /* do buffer or SG processing. */
  1913. wa->buf_in_urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
  1914. if (xfer->urb->transfer_buffer) {
  1915. wa->buf_in_urb->transfer_buffer =
  1916. xfer->urb->transfer_buffer
  1917. + (seg_idx * xfer->seg_size);
  1918. wa->buf_in_urb->sg = NULL;
  1919. wa->buf_in_urb->num_sgs = 0;
  1920. } else {
  1921. /* allocate an SG list to store seg_size bytes
  1922. and copy the subset of the xfer->urb->sg
  1923. that matches the buffer subset we are
  1924. about to read. */
  1925. wa->buf_in_urb->sg = wa_xfer_create_subset_sg(
  1926. xfer->urb->sg,
  1927. seg_idx * xfer->seg_size,
  1928. bytes_transferred,
  1929. &(wa->buf_in_urb->num_sgs));
  1930. if (!(wa->buf_in_urb->sg)) {
  1931. wa->buf_in_urb->num_sgs = 0;
  1932. result = -ENOMEM;
  1933. }
  1934. wa->buf_in_urb->transfer_buffer = NULL;
  1935. }
  1936. }
  1937. wa->buf_in_urb->transfer_buffer_length = bytes_transferred;
  1938. wa->buf_in_urb->context = seg;
  1939. return result;
  1940. }
  1941. /*
  1942. * Process a xfer result completion message
  1943. *
  1944. * inbound transfers: need to schedule a buf_in_urb read
  1945. *
  1946. * FIXME: this function needs to be broken up in parts
  1947. */
  1948. static void wa_xfer_result_chew(struct wahc *wa, struct wa_xfer *xfer,
  1949. struct wa_xfer_result *xfer_result)
  1950. {
  1951. int result;
  1952. struct device *dev = &wa->usb_iface->dev;
  1953. unsigned long flags;
  1954. unsigned int seg_idx;
  1955. struct wa_seg *seg;
  1956. struct wa_rpipe *rpipe;
  1957. unsigned done = 0;
  1958. u8 usb_status;
  1959. unsigned rpipe_ready = 0;
  1960. unsigned bytes_transferred = le32_to_cpu(xfer_result->dwTransferLength);
  1961. spin_lock_irqsave(&xfer->lock, flags);
  1962. seg_idx = xfer_result->bTransferSegment & 0x7f;
  1963. if (unlikely(seg_idx >= xfer->segs))
  1964. goto error_bad_seg;
  1965. seg = xfer->seg[seg_idx];
  1966. rpipe = xfer->ep->hcpriv;
  1967. usb_status = xfer_result->bTransferStatus;
  1968. dev_dbg(dev, "xfer %p ID 0x%08X#%u: bTransferStatus 0x%02x (seg status %u)\n",
  1969. xfer, wa_xfer_id(xfer), seg_idx, usb_status, seg->status);
  1970. if (seg->status == WA_SEG_ABORTED
  1971. || seg->status == WA_SEG_ERROR) /* already handled */
  1972. goto segment_aborted;
  1973. if (seg->status == WA_SEG_SUBMITTED) /* ops, got here */
  1974. seg->status = WA_SEG_PENDING; /* before wa_seg{_dto}_cb() */
  1975. if (seg->status != WA_SEG_PENDING) {
  1976. if (printk_ratelimit())
  1977. dev_err(dev, "xfer %p#%u: Bad segment state %u\n",
  1978. xfer, seg_idx, seg->status);
  1979. seg->status = WA_SEG_PENDING; /* workaround/"fix" it */
  1980. }
  1981. if (usb_status & 0x80) {
  1982. seg->result = wa_xfer_status_to_errno(usb_status);
  1983. dev_err(dev, "DTI: xfer %p#:%08X:%u failed (0x%02x)\n",
  1984. xfer, xfer->id, seg->index, usb_status);
  1985. seg->status = ((usb_status & 0x7F) == WA_XFER_STATUS_ABORTED) ?
  1986. WA_SEG_ABORTED : WA_SEG_ERROR;
  1987. goto error_complete;
  1988. }
  1989. /* FIXME: we ignore warnings, tally them for stats */
  1990. if (usb_status & 0x40) /* Warning?... */
  1991. usb_status = 0; /* ... pass */
  1992. /*
  1993. * If the last segment bit is set, complete the remaining segments.
  1994. * When the current segment is completed, either in wa_buf_in_cb for
  1995. * transfers with data or below for no data, the xfer will complete.
  1996. */
  1997. if (xfer_result->bTransferSegment & 0x80)
  1998. wa_complete_remaining_xfer_segs(xfer, seg, WA_SEG_DONE);
  1999. if (usb_pipeisoc(xfer->urb->pipe)
  2000. && (le32_to_cpu(xfer_result->dwNumOfPackets) > 0)) {
  2001. /* set up WA state to read the isoc packet status next. */
  2002. wa->dti_isoc_xfer_in_progress = wa_xfer_id(xfer);
  2003. wa->dti_isoc_xfer_seg = seg_idx;
  2004. wa->dti_state = WA_DTI_ISOC_PACKET_STATUS_PENDING;
  2005. } else if (xfer->is_inbound && !usb_pipeisoc(xfer->urb->pipe)
  2006. && (bytes_transferred > 0)) {
  2007. /* IN data phase: read to buffer */
  2008. seg->status = WA_SEG_DTI_PENDING;
  2009. result = wa_populate_buf_in_urb(wa, xfer, seg_idx,
  2010. bytes_transferred);
  2011. if (result < 0)
  2012. goto error_buf_in_populate;
  2013. result = usb_submit_urb(wa->buf_in_urb, GFP_ATOMIC);
  2014. if (result < 0)
  2015. goto error_submit_buf_in;
  2016. } else {
  2017. /* OUT data phase or no data, complete it -- */
  2018. seg->status = WA_SEG_DONE;
  2019. seg->result = bytes_transferred;
  2020. xfer->segs_done++;
  2021. rpipe_ready = rpipe_avail_inc(rpipe);
  2022. done = __wa_xfer_is_done(xfer);
  2023. }
  2024. spin_unlock_irqrestore(&xfer->lock, flags);
  2025. if (done)
  2026. wa_xfer_completion(xfer);
  2027. if (rpipe_ready)
  2028. wa_xfer_delayed_run(rpipe);
  2029. return;
  2030. error_submit_buf_in:
  2031. if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
  2032. dev_err(dev, "DTI: URB max acceptable errors "
  2033. "exceeded, resetting device\n");
  2034. wa_reset_all(wa);
  2035. }
  2036. if (printk_ratelimit())
  2037. dev_err(dev, "xfer %p#%u: can't submit DTI data phase: %d\n",
  2038. xfer, seg_idx, result);
  2039. seg->result = result;
  2040. kfree(wa->buf_in_urb->sg);
  2041. wa->buf_in_urb->sg = NULL;
  2042. error_buf_in_populate:
  2043. __wa_xfer_abort(xfer);
  2044. seg->status = WA_SEG_ERROR;
  2045. error_complete:
  2046. xfer->segs_done++;
  2047. rpipe_ready = rpipe_avail_inc(rpipe);
  2048. wa_complete_remaining_xfer_segs(xfer, seg, seg->status);
  2049. done = __wa_xfer_is_done(xfer);
  2050. /*
  2051. * queue work item to clear STALL for control endpoints.
  2052. * Otherwise, let endpoint_reset take care of it.
  2053. */
  2054. if (((usb_status & 0x3f) == WA_XFER_STATUS_HALTED) &&
  2055. usb_endpoint_xfer_control(&xfer->ep->desc) &&
  2056. done) {
  2057. dev_info(dev, "Control EP stall. Queue delayed work.\n");
  2058. spin_lock_irq(&wa->xfer_list_lock);
  2059. /* move xfer from xfer_list to xfer_errored_list. */
  2060. list_move_tail(&xfer->list_node, &wa->xfer_errored_list);
  2061. spin_unlock_irq(&wa->xfer_list_lock);
  2062. spin_unlock_irqrestore(&xfer->lock, flags);
  2063. queue_work(wusbd, &wa->xfer_error_work);
  2064. } else {
  2065. spin_unlock_irqrestore(&xfer->lock, flags);
  2066. if (done)
  2067. wa_xfer_completion(xfer);
  2068. if (rpipe_ready)
  2069. wa_xfer_delayed_run(rpipe);
  2070. }
  2071. return;
  2072. error_bad_seg:
  2073. spin_unlock_irqrestore(&xfer->lock, flags);
  2074. wa_urb_dequeue(wa, xfer->urb, -ENOENT);
  2075. if (printk_ratelimit())
  2076. dev_err(dev, "xfer %p#%u: bad segment\n", xfer, seg_idx);
  2077. if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS, EDC_ERROR_TIMEFRAME)) {
  2078. dev_err(dev, "DTI: URB max acceptable errors "
  2079. "exceeded, resetting device\n");
  2080. wa_reset_all(wa);
  2081. }
  2082. return;
  2083. segment_aborted:
  2084. /* nothing to do, as the aborter did the completion */
  2085. spin_unlock_irqrestore(&xfer->lock, flags);
  2086. }
  2087. /*
  2088. * Process a isochronous packet status message
  2089. *
  2090. * inbound transfers: need to schedule a buf_in_urb read
  2091. */
  2092. static int wa_process_iso_packet_status(struct wahc *wa, struct urb *urb)
  2093. {
  2094. struct device *dev = &wa->usb_iface->dev;
  2095. struct wa_xfer_packet_status_hwaiso *packet_status;
  2096. struct wa_xfer_packet_status_len_hwaiso *status_array;
  2097. struct wa_xfer *xfer;
  2098. unsigned long flags;
  2099. struct wa_seg *seg;
  2100. struct wa_rpipe *rpipe;
  2101. unsigned done = 0, dti_busy = 0, data_frame_count = 0, seg_index;
  2102. unsigned first_frame_index = 0, rpipe_ready = 0;
  2103. int expected_size;
  2104. /* We have a xfer result buffer; check it */
  2105. dev_dbg(dev, "DTI: isoc packet status %d bytes at %p\n",
  2106. urb->actual_length, urb->transfer_buffer);
  2107. packet_status = (struct wa_xfer_packet_status_hwaiso *)(wa->dti_buf);
  2108. if (packet_status->bPacketType != WA_XFER_ISO_PACKET_STATUS) {
  2109. dev_err(dev, "DTI Error: isoc packet status--bad type 0x%02x\n",
  2110. packet_status->bPacketType);
  2111. goto error_parse_buffer;
  2112. }
  2113. xfer = wa_xfer_get_by_id(wa, wa->dti_isoc_xfer_in_progress);
  2114. if (xfer == NULL) {
  2115. dev_err(dev, "DTI Error: isoc packet status--unknown xfer 0x%08x\n",
  2116. wa->dti_isoc_xfer_in_progress);
  2117. goto error_parse_buffer;
  2118. }
  2119. spin_lock_irqsave(&xfer->lock, flags);
  2120. if (unlikely(wa->dti_isoc_xfer_seg >= xfer->segs))
  2121. goto error_bad_seg;
  2122. seg = xfer->seg[wa->dti_isoc_xfer_seg];
  2123. rpipe = xfer->ep->hcpriv;
  2124. expected_size = sizeof(*packet_status) +
  2125. (sizeof(packet_status->PacketStatus[0]) *
  2126. seg->isoc_frame_count);
  2127. if (urb->actual_length != expected_size) {
  2128. dev_err(dev, "DTI Error: isoc packet status--bad urb length (%d bytes vs %d needed)\n",
  2129. urb->actual_length, expected_size);
  2130. goto error_bad_seg;
  2131. }
  2132. if (le16_to_cpu(packet_status->wLength) != expected_size) {
  2133. dev_err(dev, "DTI Error: isoc packet status--bad length %u\n",
  2134. le16_to_cpu(packet_status->wLength));
  2135. goto error_bad_seg;
  2136. }
  2137. /* write isoc packet status and lengths back to the xfer urb. */
  2138. status_array = packet_status->PacketStatus;
  2139. xfer->urb->start_frame =
  2140. wa->wusb->usb_hcd.driver->get_frame_number(&wa->wusb->usb_hcd);
  2141. for (seg_index = 0; seg_index < seg->isoc_frame_count; ++seg_index) {
  2142. struct usb_iso_packet_descriptor *iso_frame_desc =
  2143. xfer->urb->iso_frame_desc;
  2144. const int urb_frame_index =
  2145. seg->isoc_frame_offset + seg_index;
  2146. iso_frame_desc[urb_frame_index].status =
  2147. wa_xfer_status_to_errno(
  2148. le16_to_cpu(status_array[seg_index].PacketStatus));
  2149. iso_frame_desc[urb_frame_index].actual_length =
  2150. le16_to_cpu(status_array[seg_index].PacketLength);
  2151. /* track the number of frames successfully transferred. */
  2152. if (iso_frame_desc[urb_frame_index].actual_length > 0) {
  2153. /* save the starting frame index for buf_in_urb. */
  2154. if (!data_frame_count)
  2155. first_frame_index = seg_index;
  2156. ++data_frame_count;
  2157. }
  2158. }
  2159. if (xfer->is_inbound && data_frame_count) {
  2160. int result;
  2161. seg->isoc_frame_index = first_frame_index;
  2162. /* submit a read URB for the first frame with data. */
  2163. __wa_populate_buf_in_urb_isoc(wa, xfer, seg,
  2164. seg->isoc_frame_index + seg->isoc_frame_offset);
  2165. result = usb_submit_urb(wa->buf_in_urb, GFP_ATOMIC);
  2166. if (result < 0) {
  2167. dev_err(dev, "DTI Error: Could not submit buf in URB (%d)",
  2168. result);
  2169. wa_reset_all(wa);
  2170. } else if (data_frame_count > 1)
  2171. /* If we need to read multiple frames, set DTI busy. */
  2172. dti_busy = 1;
  2173. } else {
  2174. /* OUT transfer or no more IN data, complete it -- */
  2175. seg->status = WA_SEG_DONE;
  2176. xfer->segs_done++;
  2177. rpipe_ready = rpipe_avail_inc(rpipe);
  2178. done = __wa_xfer_is_done(xfer);
  2179. }
  2180. spin_unlock_irqrestore(&xfer->lock, flags);
  2181. wa->dti_state = WA_DTI_TRANSFER_RESULT_PENDING;
  2182. if (done)
  2183. wa_xfer_completion(xfer);
  2184. if (rpipe_ready)
  2185. wa_xfer_delayed_run(rpipe);
  2186. wa_xfer_put(xfer);
  2187. return dti_busy;
  2188. error_bad_seg:
  2189. spin_unlock_irqrestore(&xfer->lock, flags);
  2190. wa_xfer_put(xfer);
  2191. error_parse_buffer:
  2192. return dti_busy;
  2193. }
  2194. /*
  2195. * Callback for the IN data phase
  2196. *
  2197. * If successful transition state; otherwise, take a note of the
  2198. * error, mark this segment done and try completion.
  2199. *
  2200. * Note we don't access until we are sure that the transfer hasn't
  2201. * been cancelled (ECONNRESET, ENOENT), which could mean that
  2202. * seg->xfer could be already gone.
  2203. */
  2204. static void wa_buf_in_cb(struct urb *urb)
  2205. {
  2206. struct wa_seg *seg = urb->context;
  2207. struct wa_xfer *xfer = seg->xfer;
  2208. struct wahc *wa;
  2209. struct device *dev;
  2210. struct wa_rpipe *rpipe;
  2211. unsigned rpipe_ready = 0, seg_index, isoc_data_frame_count = 0;
  2212. unsigned long flags;
  2213. u8 done = 0;
  2214. /* free the sg if it was used. */
  2215. kfree(urb->sg);
  2216. urb->sg = NULL;
  2217. spin_lock_irqsave(&xfer->lock, flags);
  2218. wa = xfer->wa;
  2219. dev = &wa->usb_iface->dev;
  2220. if (usb_pipeisoc(xfer->urb->pipe)) {
  2221. /*
  2222. * Find the next isoc frame with data. Bail out after
  2223. * isoc_data_frame_count > 1 since there is no need to walk
  2224. * the entire frame array. We just need to know if
  2225. * isoc_data_frame_count is 0, 1, or >1.
  2226. */
  2227. seg_index = seg->isoc_frame_index + 1;
  2228. while ((seg_index < seg->isoc_frame_count)
  2229. && (isoc_data_frame_count <= 1)) {
  2230. struct usb_iso_packet_descriptor *iso_frame_desc =
  2231. xfer->urb->iso_frame_desc;
  2232. const int urb_frame_index =
  2233. seg->isoc_frame_offset + seg_index;
  2234. if (iso_frame_desc[urb_frame_index].actual_length > 0) {
  2235. /* save the index of the next frame with data */
  2236. if (!isoc_data_frame_count)
  2237. seg->isoc_frame_index = seg_index;
  2238. ++isoc_data_frame_count;
  2239. }
  2240. ++seg_index;
  2241. }
  2242. }
  2243. spin_unlock_irqrestore(&xfer->lock, flags);
  2244. switch (urb->status) {
  2245. case 0:
  2246. spin_lock_irqsave(&xfer->lock, flags);
  2247. seg->result += urb->actual_length;
  2248. if (isoc_data_frame_count > 0) {
  2249. int result;
  2250. /* submit a read URB for the first frame with data. */
  2251. __wa_populate_buf_in_urb_isoc(wa, xfer, seg,
  2252. seg->isoc_frame_index + seg->isoc_frame_offset);
  2253. result = usb_submit_urb(wa->buf_in_urb, GFP_ATOMIC);
  2254. if (result < 0) {
  2255. dev_err(dev, "DTI Error: Could not submit buf in URB (%d)",
  2256. result);
  2257. wa_reset_all(wa);
  2258. }
  2259. } else {
  2260. rpipe = xfer->ep->hcpriv;
  2261. seg->status = WA_SEG_DONE;
  2262. dev_dbg(dev, "xfer %p#%u: data in done (%zu bytes)\n",
  2263. xfer, seg->index, seg->result);
  2264. xfer->segs_done++;
  2265. rpipe_ready = rpipe_avail_inc(rpipe);
  2266. done = __wa_xfer_is_done(xfer);
  2267. }
  2268. spin_unlock_irqrestore(&xfer->lock, flags);
  2269. if (done)
  2270. wa_xfer_completion(xfer);
  2271. if (rpipe_ready)
  2272. wa_xfer_delayed_run(rpipe);
  2273. break;
  2274. case -ECONNRESET: /* URB unlinked; no need to do anything */
  2275. case -ENOENT: /* as it was done by the who unlinked us */
  2276. break;
  2277. default: /* Other errors ... */
  2278. spin_lock_irqsave(&xfer->lock, flags);
  2279. rpipe = xfer->ep->hcpriv;
  2280. if (printk_ratelimit())
  2281. dev_err(dev, "xfer %p#%u: data in error %d\n",
  2282. xfer, seg->index, urb->status);
  2283. if (edc_inc(&wa->nep_edc, EDC_MAX_ERRORS,
  2284. EDC_ERROR_TIMEFRAME)){
  2285. dev_err(dev, "DTO: URB max acceptable errors "
  2286. "exceeded, resetting device\n");
  2287. wa_reset_all(wa);
  2288. }
  2289. seg->status = WA_SEG_ERROR;
  2290. seg->result = urb->status;
  2291. xfer->segs_done++;
  2292. rpipe_ready = rpipe_avail_inc(rpipe);
  2293. __wa_xfer_abort(xfer);
  2294. done = __wa_xfer_is_done(xfer);
  2295. spin_unlock_irqrestore(&xfer->lock, flags);
  2296. if (done)
  2297. wa_xfer_completion(xfer);
  2298. if (rpipe_ready)
  2299. wa_xfer_delayed_run(rpipe);
  2300. }
  2301. /*
  2302. * If we are in this callback and isoc_data_frame_count > 0, it means
  2303. * that the dti_urb submission was delayed in wa_dti_cb. Once
  2304. * isoc_data_frame_count gets to 1, we can submit the deferred URB
  2305. * since the last buf_in_urb was just submitted.
  2306. */
  2307. if (isoc_data_frame_count == 1) {
  2308. int result = usb_submit_urb(wa->dti_urb, GFP_ATOMIC);
  2309. if (result < 0) {
  2310. dev_err(dev, "DTI Error: Could not submit DTI URB (%d)\n",
  2311. result);
  2312. wa_reset_all(wa);
  2313. }
  2314. }
  2315. }
  2316. /*
  2317. * Handle an incoming transfer result buffer
  2318. *
  2319. * Given a transfer result buffer, it completes the transfer (possibly
  2320. * scheduling and buffer in read) and then resubmits the DTI URB for a
  2321. * new transfer result read.
  2322. *
  2323. *
  2324. * The xfer_result DTI URB state machine
  2325. *
  2326. * States: OFF | RXR (Read-Xfer-Result) | RBI (Read-Buffer-In)
  2327. *
  2328. * We start in OFF mode, the first xfer_result notification [through
  2329. * wa_handle_notif_xfer()] moves us to RXR by posting the DTI-URB to
  2330. * read.
  2331. *
  2332. * We receive a buffer -- if it is not a xfer_result, we complain and
  2333. * repost the DTI-URB. If it is a xfer_result then do the xfer seg
  2334. * request accounting. If it is an IN segment, we move to RBI and post
  2335. * a BUF-IN-URB to the right buffer. The BUF-IN-URB callback will
  2336. * repost the DTI-URB and move to RXR state. if there was no IN
  2337. * segment, it will repost the DTI-URB.
  2338. *
  2339. * We go back to OFF when we detect a ENOENT or ESHUTDOWN (or too many
  2340. * errors) in the URBs.
  2341. */
  2342. static void wa_dti_cb(struct urb *urb)
  2343. {
  2344. int result, dti_busy = 0;
  2345. struct wahc *wa = urb->context;
  2346. struct device *dev = &wa->usb_iface->dev;
  2347. u32 xfer_id;
  2348. u8 usb_status;
  2349. BUG_ON(wa->dti_urb != urb);
  2350. switch (wa->dti_urb->status) {
  2351. case 0:
  2352. if (wa->dti_state == WA_DTI_TRANSFER_RESULT_PENDING) {
  2353. struct wa_xfer_result *xfer_result;
  2354. struct wa_xfer *xfer;
  2355. /* We have a xfer result buffer; check it */
  2356. dev_dbg(dev, "DTI: xfer result %d bytes at %p\n",
  2357. urb->actual_length, urb->transfer_buffer);
  2358. if (urb->actual_length != sizeof(*xfer_result)) {
  2359. dev_err(dev, "DTI Error: xfer result--bad size xfer result (%d bytes vs %zu needed)\n",
  2360. urb->actual_length,
  2361. sizeof(*xfer_result));
  2362. break;
  2363. }
  2364. xfer_result = (struct wa_xfer_result *)(wa->dti_buf);
  2365. if (xfer_result->hdr.bLength != sizeof(*xfer_result)) {
  2366. dev_err(dev, "DTI Error: xfer result--bad header length %u\n",
  2367. xfer_result->hdr.bLength);
  2368. break;
  2369. }
  2370. if (xfer_result->hdr.bNotifyType != WA_XFER_RESULT) {
  2371. dev_err(dev, "DTI Error: xfer result--bad header type 0x%02x\n",
  2372. xfer_result->hdr.bNotifyType);
  2373. break;
  2374. }
  2375. usb_status = xfer_result->bTransferStatus & 0x3f;
  2376. if (usb_status == WA_XFER_STATUS_NOT_FOUND)
  2377. /* taken care of already */
  2378. break;
  2379. xfer_id = le32_to_cpu(xfer_result->dwTransferID);
  2380. xfer = wa_xfer_get_by_id(wa, xfer_id);
  2381. if (xfer == NULL) {
  2382. /* FIXME: transaction not found. */
  2383. dev_err(dev, "DTI Error: xfer result--unknown xfer 0x%08x (status 0x%02x)\n",
  2384. xfer_id, usb_status);
  2385. break;
  2386. }
  2387. wa_xfer_result_chew(wa, xfer, xfer_result);
  2388. wa_xfer_put(xfer);
  2389. } else if (wa->dti_state == WA_DTI_ISOC_PACKET_STATUS_PENDING) {
  2390. dti_busy = wa_process_iso_packet_status(wa, urb);
  2391. } else {
  2392. dev_err(dev, "DTI Error: unexpected EP state = %d\n",
  2393. wa->dti_state);
  2394. }
  2395. break;
  2396. case -ENOENT: /* (we killed the URB)...so, no broadcast */
  2397. case -ESHUTDOWN: /* going away! */
  2398. dev_dbg(dev, "DTI: going down! %d\n", urb->status);
  2399. goto out;
  2400. default:
  2401. /* Unknown error */
  2402. if (edc_inc(&wa->dti_edc, EDC_MAX_ERRORS,
  2403. EDC_ERROR_TIMEFRAME)) {
  2404. dev_err(dev, "DTI: URB max acceptable errors "
  2405. "exceeded, resetting device\n");
  2406. wa_reset_all(wa);
  2407. goto out;
  2408. }
  2409. if (printk_ratelimit())
  2410. dev_err(dev, "DTI: URB error %d\n", urb->status);
  2411. break;
  2412. }
  2413. /* Resubmit the DTI URB if we are not busy processing isoc in frames. */
  2414. if (!dti_busy) {
  2415. result = usb_submit_urb(wa->dti_urb, GFP_ATOMIC);
  2416. if (result < 0) {
  2417. dev_err(dev, "DTI Error: Could not submit DTI URB (%d)\n",
  2418. result);
  2419. wa_reset_all(wa);
  2420. }
  2421. }
  2422. out:
  2423. return;
  2424. }
  2425. /*
  2426. * Transfer complete notification
  2427. *
  2428. * Called from the notif.c code. We get a notification on EP2 saying
  2429. * that some endpoint has some transfer result data available. We are
  2430. * about to read it.
  2431. *
  2432. * To speed up things, we always have a URB reading the DTI URB; we
  2433. * don't really set it up and start it until the first xfer complete
  2434. * notification arrives, which is what we do here.
  2435. *
  2436. * Follow up in wa_dti_cb(), as that's where the whole state
  2437. * machine starts.
  2438. *
  2439. * So here we just initialize the DTI URB for reading transfer result
  2440. * notifications and also the buffer-in URB, for reading buffers. Then
  2441. * we just submit the DTI URB.
  2442. *
  2443. * @wa shall be referenced
  2444. */
  2445. void wa_handle_notif_xfer(struct wahc *wa, struct wa_notif_hdr *notif_hdr)
  2446. {
  2447. int result;
  2448. struct device *dev = &wa->usb_iface->dev;
  2449. struct wa_notif_xfer *notif_xfer;
  2450. const struct usb_endpoint_descriptor *dti_epd = wa->dti_epd;
  2451. notif_xfer = container_of(notif_hdr, struct wa_notif_xfer, hdr);
  2452. BUG_ON(notif_hdr->bNotifyType != WA_NOTIF_TRANSFER);
  2453. if ((0x80 | notif_xfer->bEndpoint) != dti_epd->bEndpointAddress) {
  2454. /* FIXME: hardcoded limitation, adapt */
  2455. dev_err(dev, "BUG: DTI ep is %u, not %u (hack me)\n",
  2456. notif_xfer->bEndpoint, dti_epd->bEndpointAddress);
  2457. goto error;
  2458. }
  2459. if (wa->dti_urb != NULL) /* DTI URB already started */
  2460. goto out;
  2461. wa->dti_urb = usb_alloc_urb(0, GFP_KERNEL);
  2462. if (wa->dti_urb == NULL) {
  2463. dev_err(dev, "Can't allocate DTI URB\n");
  2464. goto error_dti_urb_alloc;
  2465. }
  2466. usb_fill_bulk_urb(
  2467. wa->dti_urb, wa->usb_dev,
  2468. usb_rcvbulkpipe(wa->usb_dev, 0x80 | notif_xfer->bEndpoint),
  2469. wa->dti_buf, wa->dti_buf_size,
  2470. wa_dti_cb, wa);
  2471. wa->buf_in_urb = usb_alloc_urb(0, GFP_KERNEL);
  2472. if (wa->buf_in_urb == NULL) {
  2473. dev_err(dev, "Can't allocate BUF-IN URB\n");
  2474. goto error_buf_in_urb_alloc;
  2475. }
  2476. usb_fill_bulk_urb(
  2477. wa->buf_in_urb, wa->usb_dev,
  2478. usb_rcvbulkpipe(wa->usb_dev, 0x80 | notif_xfer->bEndpoint),
  2479. NULL, 0, wa_buf_in_cb, wa);
  2480. result = usb_submit_urb(wa->dti_urb, GFP_KERNEL);
  2481. if (result < 0) {
  2482. dev_err(dev, "DTI Error: Could not submit DTI URB (%d) resetting\n",
  2483. result);
  2484. goto error_dti_urb_submit;
  2485. }
  2486. out:
  2487. return;
  2488. error_dti_urb_submit:
  2489. usb_put_urb(wa->buf_in_urb);
  2490. wa->buf_in_urb = NULL;
  2491. error_buf_in_urb_alloc:
  2492. usb_put_urb(wa->dti_urb);
  2493. wa->dti_urb = NULL;
  2494. error_dti_urb_alloc:
  2495. error:
  2496. wa_reset_all(wa);
  2497. }