spi-topcliff-pch.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797
  1. /*
  2. * SPI bus driver for the Topcliff PCH used by Intel SoCs
  3. *
  4. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/pci.h>
  21. #include <linux/wait.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/sched.h>
  25. #include <linux/spi/spidev.h>
  26. #include <linux/module.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/dmaengine.h>
  30. #include <linux/pch_dma.h>
  31. /* Register offsets */
  32. #define PCH_SPCR 0x00 /* SPI control register */
  33. #define PCH_SPBRR 0x04 /* SPI baud rate register */
  34. #define PCH_SPSR 0x08 /* SPI status register */
  35. #define PCH_SPDWR 0x0C /* SPI write data register */
  36. #define PCH_SPDRR 0x10 /* SPI read data register */
  37. #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
  38. #define PCH_SRST 0x1C /* SPI reset register */
  39. #define PCH_ADDRESS_SIZE 0x20
  40. #define PCH_SPSR_TFD 0x000007C0
  41. #define PCH_SPSR_RFD 0x0000F800
  42. #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
  43. #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
  44. #define PCH_RX_THOLD 7
  45. #define PCH_RX_THOLD_MAX 15
  46. #define PCH_TX_THOLD 2
  47. #define PCH_MAX_BAUDRATE 5000000
  48. #define PCH_MAX_FIFO_DEPTH 16
  49. #define STATUS_RUNNING 1
  50. #define STATUS_EXITING 2
  51. #define PCH_SLEEP_TIME 10
  52. #define SSN_LOW 0x02U
  53. #define SSN_HIGH 0x03U
  54. #define SSN_NO_CONTROL 0x00U
  55. #define PCH_MAX_CS 0xFF
  56. #define PCI_DEVICE_ID_GE_SPI 0x8816
  57. #define SPCR_SPE_BIT (1 << 0)
  58. #define SPCR_MSTR_BIT (1 << 1)
  59. #define SPCR_LSBF_BIT (1 << 4)
  60. #define SPCR_CPHA_BIT (1 << 5)
  61. #define SPCR_CPOL_BIT (1 << 6)
  62. #define SPCR_TFIE_BIT (1 << 8)
  63. #define SPCR_RFIE_BIT (1 << 9)
  64. #define SPCR_FIE_BIT (1 << 10)
  65. #define SPCR_ORIE_BIT (1 << 11)
  66. #define SPCR_MDFIE_BIT (1 << 12)
  67. #define SPCR_FICLR_BIT (1 << 24)
  68. #define SPSR_TFI_BIT (1 << 0)
  69. #define SPSR_RFI_BIT (1 << 1)
  70. #define SPSR_FI_BIT (1 << 2)
  71. #define SPSR_ORF_BIT (1 << 3)
  72. #define SPBRR_SIZE_BIT (1 << 10)
  73. #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74. SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75. #define SPCR_RFIC_FIELD 20
  76. #define SPCR_TFIC_FIELD 16
  77. #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
  78. #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
  79. #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
  80. #define PCH_CLOCK_HZ 50000000
  81. #define PCH_MAX_SPBR 1023
  82. /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  83. #define PCI_VENDOR_ID_ROHM 0x10DB
  84. #define PCI_DEVICE_ID_ML7213_SPI 0x802c
  85. #define PCI_DEVICE_ID_ML7223_SPI 0x800F
  86. #define PCI_DEVICE_ID_ML7831_SPI 0x8816
  87. /*
  88. * Set the number of SPI instance max
  89. * Intel EG20T PCH : 1ch
  90. * LAPIS Semiconductor ML7213 IOH : 2ch
  91. * LAPIS Semiconductor ML7223 IOH : 1ch
  92. * LAPIS Semiconductor ML7831 IOH : 1ch
  93. */
  94. #define PCH_SPI_MAX_DEV 2
  95. #define PCH_BUF_SIZE 4096
  96. #define PCH_DMA_TRANS_SIZE 12
  97. static int use_dma = 1;
  98. struct pch_spi_dma_ctrl {
  99. struct dma_async_tx_descriptor *desc_tx;
  100. struct dma_async_tx_descriptor *desc_rx;
  101. struct pch_dma_slave param_tx;
  102. struct pch_dma_slave param_rx;
  103. struct dma_chan *chan_tx;
  104. struct dma_chan *chan_rx;
  105. struct scatterlist *sg_tx_p;
  106. struct scatterlist *sg_rx_p;
  107. struct scatterlist sg_tx;
  108. struct scatterlist sg_rx;
  109. int nent;
  110. void *tx_buf_virt;
  111. void *rx_buf_virt;
  112. dma_addr_t tx_buf_dma;
  113. dma_addr_t rx_buf_dma;
  114. };
  115. /**
  116. * struct pch_spi_data - Holds the SPI channel specific details
  117. * @io_remap_addr: The remapped PCI base address
  118. * @master: Pointer to the SPI master structure
  119. * @work: Reference to work queue handler
  120. * @wk: Workqueue for carrying out execution of the
  121. * requests
  122. * @wait: Wait queue for waking up upon receiving an
  123. * interrupt.
  124. * @transfer_complete: Status of SPI Transfer
  125. * @bcurrent_msg_processing: Status flag for message processing
  126. * @lock: Lock for protecting this structure
  127. * @queue: SPI Message queue
  128. * @status: Status of the SPI driver
  129. * @bpw_len: Length of data to be transferred in bits per
  130. * word
  131. * @transfer_active: Flag showing active transfer
  132. * @tx_index: Transmit data count; for bookkeeping during
  133. * transfer
  134. * @rx_index: Receive data count; for bookkeeping during
  135. * transfer
  136. * @tx_buff: Buffer for data to be transmitted
  137. * @rx_index: Buffer for Received data
  138. * @n_curnt_chip: The chip number that this SPI driver currently
  139. * operates on
  140. * @current_chip: Reference to the current chip that this SPI
  141. * driver currently operates on
  142. * @current_msg: The current message that this SPI driver is
  143. * handling
  144. * @cur_trans: The current transfer that this SPI driver is
  145. * handling
  146. * @board_dat: Reference to the SPI device data structure
  147. * @plat_dev: platform_device structure
  148. * @ch: SPI channel number
  149. * @irq_reg_sts: Status of IRQ registration
  150. */
  151. struct pch_spi_data {
  152. void __iomem *io_remap_addr;
  153. unsigned long io_base_addr;
  154. struct spi_master *master;
  155. struct work_struct work;
  156. struct workqueue_struct *wk;
  157. wait_queue_head_t wait;
  158. u8 transfer_complete;
  159. u8 bcurrent_msg_processing;
  160. spinlock_t lock;
  161. struct list_head queue;
  162. u8 status;
  163. u32 bpw_len;
  164. u8 transfer_active;
  165. u32 tx_index;
  166. u32 rx_index;
  167. u16 *pkt_tx_buff;
  168. u16 *pkt_rx_buff;
  169. u8 n_curnt_chip;
  170. struct spi_device *current_chip;
  171. struct spi_message *current_msg;
  172. struct spi_transfer *cur_trans;
  173. struct pch_spi_board_data *board_dat;
  174. struct platform_device *plat_dev;
  175. int ch;
  176. struct pch_spi_dma_ctrl dma;
  177. int use_dma;
  178. u8 irq_reg_sts;
  179. int save_total_len;
  180. };
  181. /**
  182. * struct pch_spi_board_data - Holds the SPI device specific details
  183. * @pdev: Pointer to the PCI device
  184. * @suspend_sts: Status of suspend
  185. * @num: The number of SPI device instance
  186. */
  187. struct pch_spi_board_data {
  188. struct pci_dev *pdev;
  189. u8 suspend_sts;
  190. int num;
  191. };
  192. struct pch_pd_dev_save {
  193. int num;
  194. struct platform_device *pd_save[PCH_SPI_MAX_DEV];
  195. struct pch_spi_board_data *board_dat;
  196. };
  197. static const struct pci_device_id pch_spi_pcidev_id[] = {
  198. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
  199. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
  200. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
  201. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
  202. { }
  203. };
  204. /**
  205. * pch_spi_writereg() - Performs register writes
  206. * @master: Pointer to struct spi_master.
  207. * @idx: Register offset.
  208. * @val: Value to be written to register.
  209. */
  210. static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
  211. {
  212. struct pch_spi_data *data = spi_master_get_devdata(master);
  213. iowrite32(val, (data->io_remap_addr + idx));
  214. }
  215. /**
  216. * pch_spi_readreg() - Performs register reads
  217. * @master: Pointer to struct spi_master.
  218. * @idx: Register offset.
  219. */
  220. static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
  221. {
  222. struct pch_spi_data *data = spi_master_get_devdata(master);
  223. return ioread32(data->io_remap_addr + idx);
  224. }
  225. static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
  226. u32 set, u32 clr)
  227. {
  228. u32 tmp = pch_spi_readreg(master, idx);
  229. tmp = (tmp & ~clr) | set;
  230. pch_spi_writereg(master, idx, tmp);
  231. }
  232. static void pch_spi_set_master_mode(struct spi_master *master)
  233. {
  234. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
  235. }
  236. /**
  237. * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
  238. * @master: Pointer to struct spi_master.
  239. */
  240. static void pch_spi_clear_fifo(struct spi_master *master)
  241. {
  242. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
  243. pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
  244. }
  245. static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
  246. void __iomem *io_remap_addr)
  247. {
  248. u32 n_read, tx_index, rx_index, bpw_len;
  249. u16 *pkt_rx_buffer, *pkt_tx_buff;
  250. int read_cnt;
  251. u32 reg_spcr_val;
  252. void __iomem *spsr;
  253. void __iomem *spdrr;
  254. void __iomem *spdwr;
  255. spsr = io_remap_addr + PCH_SPSR;
  256. iowrite32(reg_spsr_val, spsr);
  257. if (data->transfer_active) {
  258. rx_index = data->rx_index;
  259. tx_index = data->tx_index;
  260. bpw_len = data->bpw_len;
  261. pkt_rx_buffer = data->pkt_rx_buff;
  262. pkt_tx_buff = data->pkt_tx_buff;
  263. spdrr = io_remap_addr + PCH_SPDRR;
  264. spdwr = io_remap_addr + PCH_SPDWR;
  265. n_read = PCH_READABLE(reg_spsr_val);
  266. for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
  267. pkt_rx_buffer[rx_index++] = ioread32(spdrr);
  268. if (tx_index < bpw_len)
  269. iowrite32(pkt_tx_buff[tx_index++], spdwr);
  270. }
  271. /* disable RFI if not needed */
  272. if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
  273. reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
  274. reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
  275. /* reset rx threshold */
  276. reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
  277. reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
  278. iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
  279. }
  280. /* update counts */
  281. data->tx_index = tx_index;
  282. data->rx_index = rx_index;
  283. /* if transfer complete interrupt */
  284. if (reg_spsr_val & SPSR_FI_BIT) {
  285. if ((tx_index == bpw_len) && (rx_index == tx_index)) {
  286. /* disable interrupts */
  287. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  288. PCH_ALL);
  289. /* transfer is completed;
  290. inform pch_spi_process_messages */
  291. data->transfer_complete = true;
  292. data->transfer_active = false;
  293. wake_up(&data->wait);
  294. } else {
  295. dev_err(&data->master->dev,
  296. "%s : Transfer is not completed",
  297. __func__);
  298. }
  299. }
  300. }
  301. }
  302. /**
  303. * pch_spi_handler() - Interrupt handler
  304. * @irq: The interrupt number.
  305. * @dev_id: Pointer to struct pch_spi_board_data.
  306. */
  307. static irqreturn_t pch_spi_handler(int irq, void *dev_id)
  308. {
  309. u32 reg_spsr_val;
  310. void __iomem *spsr;
  311. void __iomem *io_remap_addr;
  312. irqreturn_t ret = IRQ_NONE;
  313. struct pch_spi_data *data = dev_id;
  314. struct pch_spi_board_data *board_dat = data->board_dat;
  315. if (board_dat->suspend_sts) {
  316. dev_dbg(&board_dat->pdev->dev,
  317. "%s returning due to suspend\n", __func__);
  318. return IRQ_NONE;
  319. }
  320. io_remap_addr = data->io_remap_addr;
  321. spsr = io_remap_addr + PCH_SPSR;
  322. reg_spsr_val = ioread32(spsr);
  323. if (reg_spsr_val & SPSR_ORF_BIT) {
  324. dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
  325. if (data->current_msg->complete) {
  326. data->transfer_complete = true;
  327. data->current_msg->status = -EIO;
  328. data->current_msg->complete(data->current_msg->context);
  329. data->bcurrent_msg_processing = false;
  330. data->current_msg = NULL;
  331. data->cur_trans = NULL;
  332. }
  333. }
  334. if (data->use_dma)
  335. return IRQ_NONE;
  336. /* Check if the interrupt is for SPI device */
  337. if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
  338. pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
  339. ret = IRQ_HANDLED;
  340. }
  341. dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
  342. __func__, ret);
  343. return ret;
  344. }
  345. /**
  346. * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
  347. * @master: Pointer to struct spi_master.
  348. * @speed_hz: Baud rate.
  349. */
  350. static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
  351. {
  352. u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
  353. /* if baud rate is less than we can support limit it */
  354. if (n_spbr > PCH_MAX_SPBR)
  355. n_spbr = PCH_MAX_SPBR;
  356. pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
  357. }
  358. /**
  359. * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
  360. * @master: Pointer to struct spi_master.
  361. * @bits_per_word: Bits per word for SPI transfer.
  362. */
  363. static void pch_spi_set_bits_per_word(struct spi_master *master,
  364. u8 bits_per_word)
  365. {
  366. if (bits_per_word == 8)
  367. pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
  368. else
  369. pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
  370. }
  371. /**
  372. * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
  373. * @spi: Pointer to struct spi_device.
  374. */
  375. static void pch_spi_setup_transfer(struct spi_device *spi)
  376. {
  377. u32 flags = 0;
  378. dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
  379. __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
  380. spi->max_speed_hz);
  381. pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
  382. /* set bits per word */
  383. pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
  384. if (!(spi->mode & SPI_LSB_FIRST))
  385. flags |= SPCR_LSBF_BIT;
  386. if (spi->mode & SPI_CPOL)
  387. flags |= SPCR_CPOL_BIT;
  388. if (spi->mode & SPI_CPHA)
  389. flags |= SPCR_CPHA_BIT;
  390. pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
  391. (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
  392. /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
  393. pch_spi_clear_fifo(spi->master);
  394. }
  395. /**
  396. * pch_spi_reset() - Clears SPI registers
  397. * @master: Pointer to struct spi_master.
  398. */
  399. static void pch_spi_reset(struct spi_master *master)
  400. {
  401. /* write 1 to reset SPI */
  402. pch_spi_writereg(master, PCH_SRST, 0x1);
  403. /* clear reset */
  404. pch_spi_writereg(master, PCH_SRST, 0x0);
  405. }
  406. static int pch_spi_setup(struct spi_device *pspi)
  407. {
  408. /* Check baud rate setting */
  409. /* if baud rate of chip is greater than
  410. max we can support,return error */
  411. if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
  412. pspi->max_speed_hz = PCH_MAX_BAUDRATE;
  413. dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
  414. (pspi->mode) & (SPI_CPOL | SPI_CPHA));
  415. return 0;
  416. }
  417. static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
  418. {
  419. struct spi_transfer *transfer;
  420. struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
  421. int retval;
  422. unsigned long flags;
  423. /* validate spi message and baud rate */
  424. if (unlikely(list_empty(&pmsg->transfers) == 1)) {
  425. dev_err(&pspi->dev, "%s list empty\n", __func__);
  426. retval = -EINVAL;
  427. goto err_out;
  428. }
  429. if (unlikely(pspi->max_speed_hz == 0)) {
  430. dev_err(&pspi->dev, "%s pch_spi_transfer maxspeed=%d\n",
  431. __func__, pspi->max_speed_hz);
  432. retval = -EINVAL;
  433. goto err_out;
  434. }
  435. dev_dbg(&pspi->dev,
  436. "%s Transfer List not empty. Transfer Speed is set.\n", __func__);
  437. spin_lock_irqsave(&data->lock, flags);
  438. /* validate Tx/Rx buffers and Transfer length */
  439. list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
  440. if (!transfer->tx_buf && !transfer->rx_buf) {
  441. dev_err(&pspi->dev,
  442. "%s Tx and Rx buffer NULL\n", __func__);
  443. retval = -EINVAL;
  444. goto err_return_spinlock;
  445. }
  446. if (!transfer->len) {
  447. dev_err(&pspi->dev, "%s Transfer length invalid\n",
  448. __func__);
  449. retval = -EINVAL;
  450. goto err_return_spinlock;
  451. }
  452. dev_dbg(&pspi->dev,
  453. "%s Tx/Rx buffer valid. Transfer length valid\n",
  454. __func__);
  455. /* if baud rate has been specified validate the same */
  456. if (transfer->speed_hz > PCH_MAX_BAUDRATE)
  457. transfer->speed_hz = PCH_MAX_BAUDRATE;
  458. }
  459. spin_unlock_irqrestore(&data->lock, flags);
  460. /* We won't process any messages if we have been asked to terminate */
  461. if (data->status == STATUS_EXITING) {
  462. dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
  463. retval = -ESHUTDOWN;
  464. goto err_out;
  465. }
  466. /* If suspended ,return -EINVAL */
  467. if (data->board_dat->suspend_sts) {
  468. dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
  469. retval = -EINVAL;
  470. goto err_out;
  471. }
  472. /* set status of message */
  473. pmsg->actual_length = 0;
  474. dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
  475. pmsg->status = -EINPROGRESS;
  476. spin_lock_irqsave(&data->lock, flags);
  477. /* add message to queue */
  478. list_add_tail(&pmsg->queue, &data->queue);
  479. spin_unlock_irqrestore(&data->lock, flags);
  480. dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
  481. /* schedule work queue to run */
  482. queue_work(data->wk, &data->work);
  483. dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
  484. retval = 0;
  485. err_out:
  486. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  487. return retval;
  488. err_return_spinlock:
  489. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  490. spin_unlock_irqrestore(&data->lock, flags);
  491. return retval;
  492. }
  493. static inline void pch_spi_select_chip(struct pch_spi_data *data,
  494. struct spi_device *pspi)
  495. {
  496. if (data->current_chip != NULL) {
  497. if (pspi->chip_select != data->n_curnt_chip) {
  498. dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
  499. data->current_chip = NULL;
  500. }
  501. }
  502. data->current_chip = pspi;
  503. data->n_curnt_chip = data->current_chip->chip_select;
  504. dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
  505. pch_spi_setup_transfer(pspi);
  506. }
  507. static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
  508. {
  509. int size;
  510. u32 n_writes;
  511. int j;
  512. struct spi_message *pmsg, *tmp;
  513. const u8 *tx_buf;
  514. const u16 *tx_sbuf;
  515. /* set baud rate if needed */
  516. if (data->cur_trans->speed_hz) {
  517. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  518. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  519. }
  520. /* set bits per word if needed */
  521. if (data->cur_trans->bits_per_word &&
  522. (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
  523. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  524. pch_spi_set_bits_per_word(data->master,
  525. data->cur_trans->bits_per_word);
  526. *bpw = data->cur_trans->bits_per_word;
  527. } else {
  528. *bpw = data->current_msg->spi->bits_per_word;
  529. }
  530. /* reset Tx/Rx index */
  531. data->tx_index = 0;
  532. data->rx_index = 0;
  533. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  534. /* find alloc size */
  535. size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
  536. /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
  537. data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
  538. if (data->pkt_tx_buff != NULL) {
  539. data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
  540. if (!data->pkt_rx_buff)
  541. kfree(data->pkt_tx_buff);
  542. }
  543. if (!data->pkt_rx_buff) {
  544. /* flush queue and set status of all transfers to -ENOMEM */
  545. dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
  546. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  547. pmsg->status = -ENOMEM;
  548. if (pmsg->complete)
  549. pmsg->complete(pmsg->context);
  550. /* delete from queue */
  551. list_del_init(&pmsg->queue);
  552. }
  553. return;
  554. }
  555. /* copy Tx Data */
  556. if (data->cur_trans->tx_buf != NULL) {
  557. if (*bpw == 8) {
  558. tx_buf = data->cur_trans->tx_buf;
  559. for (j = 0; j < data->bpw_len; j++)
  560. data->pkt_tx_buff[j] = *tx_buf++;
  561. } else {
  562. tx_sbuf = data->cur_trans->tx_buf;
  563. for (j = 0; j < data->bpw_len; j++)
  564. data->pkt_tx_buff[j] = *tx_sbuf++;
  565. }
  566. }
  567. /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
  568. n_writes = data->bpw_len;
  569. if (n_writes > PCH_MAX_FIFO_DEPTH)
  570. n_writes = PCH_MAX_FIFO_DEPTH;
  571. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  572. "0x2 to SSNXCR\n", __func__);
  573. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  574. for (j = 0; j < n_writes; j++)
  575. pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
  576. /* update tx_index */
  577. data->tx_index = j;
  578. /* reset transfer complete flag */
  579. data->transfer_complete = false;
  580. data->transfer_active = true;
  581. }
  582. static void pch_spi_nomore_transfer(struct pch_spi_data *data)
  583. {
  584. struct spi_message *pmsg, *tmp;
  585. dev_dbg(&data->master->dev, "%s called\n", __func__);
  586. /* Invoke complete callback
  587. * [To the spi core..indicating end of transfer] */
  588. data->current_msg->status = 0;
  589. if (data->current_msg->complete) {
  590. dev_dbg(&data->master->dev,
  591. "%s:Invoking callback of SPI core\n", __func__);
  592. data->current_msg->complete(data->current_msg->context);
  593. }
  594. /* update status in global variable */
  595. data->bcurrent_msg_processing = false;
  596. dev_dbg(&data->master->dev,
  597. "%s:data->bcurrent_msg_processing = false\n", __func__);
  598. data->current_msg = NULL;
  599. data->cur_trans = NULL;
  600. /* check if we have items in list and not suspending
  601. * return 1 if list empty */
  602. if ((list_empty(&data->queue) == 0) &&
  603. (!data->board_dat->suspend_sts) &&
  604. (data->status != STATUS_EXITING)) {
  605. /* We have some more work to do (either there is more tranint
  606. * bpw;sfer requests in the current message or there are
  607. *more messages)
  608. */
  609. dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
  610. queue_work(data->wk, &data->work);
  611. } else if (data->board_dat->suspend_sts ||
  612. data->status == STATUS_EXITING) {
  613. dev_dbg(&data->master->dev,
  614. "%s suspend/remove initiated, flushing queue\n",
  615. __func__);
  616. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  617. pmsg->status = -EIO;
  618. if (pmsg->complete)
  619. pmsg->complete(pmsg->context);
  620. /* delete from queue */
  621. list_del_init(&pmsg->queue);
  622. }
  623. }
  624. }
  625. static void pch_spi_set_ir(struct pch_spi_data *data)
  626. {
  627. /* enable interrupts, set threshold, enable SPI */
  628. if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
  629. /* set receive threshold to PCH_RX_THOLD */
  630. pch_spi_setclr_reg(data->master, PCH_SPCR,
  631. PCH_RX_THOLD << SPCR_RFIC_FIELD |
  632. SPCR_FIE_BIT | SPCR_RFIE_BIT |
  633. SPCR_ORIE_BIT | SPCR_SPE_BIT,
  634. MASK_RFIC_SPCR_BITS | PCH_ALL);
  635. else
  636. /* set receive threshold to maximum */
  637. pch_spi_setclr_reg(data->master, PCH_SPCR,
  638. PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
  639. SPCR_FIE_BIT | SPCR_ORIE_BIT |
  640. SPCR_SPE_BIT,
  641. MASK_RFIC_SPCR_BITS | PCH_ALL);
  642. /* Wait until the transfer completes; go to sleep after
  643. initiating the transfer. */
  644. dev_dbg(&data->master->dev,
  645. "%s:waiting for transfer to get over\n", __func__);
  646. wait_event_interruptible(data->wait, data->transfer_complete);
  647. /* clear all interrupts */
  648. pch_spi_writereg(data->master, PCH_SPSR,
  649. pch_spi_readreg(data->master, PCH_SPSR));
  650. /* Disable interrupts and SPI transfer */
  651. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
  652. /* clear FIFO */
  653. pch_spi_clear_fifo(data->master);
  654. }
  655. static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
  656. {
  657. int j;
  658. u8 *rx_buf;
  659. u16 *rx_sbuf;
  660. /* copy Rx Data */
  661. if (!data->cur_trans->rx_buf)
  662. return;
  663. if (bpw == 8) {
  664. rx_buf = data->cur_trans->rx_buf;
  665. for (j = 0; j < data->bpw_len; j++)
  666. *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
  667. } else {
  668. rx_sbuf = data->cur_trans->rx_buf;
  669. for (j = 0; j < data->bpw_len; j++)
  670. *rx_sbuf++ = data->pkt_rx_buff[j];
  671. }
  672. }
  673. static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
  674. {
  675. int j;
  676. u8 *rx_buf;
  677. u16 *rx_sbuf;
  678. const u8 *rx_dma_buf;
  679. const u16 *rx_dma_sbuf;
  680. /* copy Rx Data */
  681. if (!data->cur_trans->rx_buf)
  682. return;
  683. if (bpw == 8) {
  684. rx_buf = data->cur_trans->rx_buf;
  685. rx_dma_buf = data->dma.rx_buf_virt;
  686. for (j = 0; j < data->bpw_len; j++)
  687. *rx_buf++ = *rx_dma_buf++ & 0xFF;
  688. data->cur_trans->rx_buf = rx_buf;
  689. } else {
  690. rx_sbuf = data->cur_trans->rx_buf;
  691. rx_dma_sbuf = data->dma.rx_buf_virt;
  692. for (j = 0; j < data->bpw_len; j++)
  693. *rx_sbuf++ = *rx_dma_sbuf++;
  694. data->cur_trans->rx_buf = rx_sbuf;
  695. }
  696. }
  697. static int pch_spi_start_transfer(struct pch_spi_data *data)
  698. {
  699. struct pch_spi_dma_ctrl *dma;
  700. unsigned long flags;
  701. int rtn;
  702. dma = &data->dma;
  703. spin_lock_irqsave(&data->lock, flags);
  704. /* disable interrupts, SPI set enable */
  705. pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
  706. spin_unlock_irqrestore(&data->lock, flags);
  707. /* Wait until the transfer completes; go to sleep after
  708. initiating the transfer. */
  709. dev_dbg(&data->master->dev,
  710. "%s:waiting for transfer to get over\n", __func__);
  711. rtn = wait_event_interruptible_timeout(data->wait,
  712. data->transfer_complete,
  713. msecs_to_jiffies(2 * HZ));
  714. if (!rtn)
  715. dev_err(&data->master->dev,
  716. "%s wait-event timeout\n", __func__);
  717. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
  718. DMA_FROM_DEVICE);
  719. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
  720. DMA_FROM_DEVICE);
  721. memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
  722. async_tx_ack(dma->desc_rx);
  723. async_tx_ack(dma->desc_tx);
  724. kfree(dma->sg_tx_p);
  725. kfree(dma->sg_rx_p);
  726. spin_lock_irqsave(&data->lock, flags);
  727. /* clear fifo threshold, disable interrupts, disable SPI transfer */
  728. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  729. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
  730. SPCR_SPE_BIT);
  731. /* clear all interrupts */
  732. pch_spi_writereg(data->master, PCH_SPSR,
  733. pch_spi_readreg(data->master, PCH_SPSR));
  734. /* clear FIFO */
  735. pch_spi_clear_fifo(data->master);
  736. spin_unlock_irqrestore(&data->lock, flags);
  737. return rtn;
  738. }
  739. static void pch_dma_rx_complete(void *arg)
  740. {
  741. struct pch_spi_data *data = arg;
  742. /* transfer is completed;inform pch_spi_process_messages_dma */
  743. data->transfer_complete = true;
  744. wake_up_interruptible(&data->wait);
  745. }
  746. static bool pch_spi_filter(struct dma_chan *chan, void *slave)
  747. {
  748. struct pch_dma_slave *param = slave;
  749. if ((chan->chan_id == param->chan_id) &&
  750. (param->dma_dev == chan->device->dev)) {
  751. chan->private = param;
  752. return true;
  753. } else {
  754. return false;
  755. }
  756. }
  757. static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
  758. {
  759. dma_cap_mask_t mask;
  760. struct dma_chan *chan;
  761. struct pci_dev *dma_dev;
  762. struct pch_dma_slave *param;
  763. struct pch_spi_dma_ctrl *dma;
  764. unsigned int width;
  765. if (bpw == 8)
  766. width = PCH_DMA_WIDTH_1_BYTE;
  767. else
  768. width = PCH_DMA_WIDTH_2_BYTES;
  769. dma = &data->dma;
  770. dma_cap_zero(mask);
  771. dma_cap_set(DMA_SLAVE, mask);
  772. /* Get DMA's dev information */
  773. dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
  774. PCI_DEVFN(12, 0));
  775. /* Set Tx DMA */
  776. param = &dma->param_tx;
  777. param->dma_dev = &dma_dev->dev;
  778. param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
  779. param->tx_reg = data->io_base_addr + PCH_SPDWR;
  780. param->width = width;
  781. chan = dma_request_channel(mask, pch_spi_filter, param);
  782. if (!chan) {
  783. dev_err(&data->master->dev,
  784. "ERROR: dma_request_channel FAILS(Tx)\n");
  785. data->use_dma = 0;
  786. return;
  787. }
  788. dma->chan_tx = chan;
  789. /* Set Rx DMA */
  790. param = &dma->param_rx;
  791. param->dma_dev = &dma_dev->dev;
  792. param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
  793. param->rx_reg = data->io_base_addr + PCH_SPDRR;
  794. param->width = width;
  795. chan = dma_request_channel(mask, pch_spi_filter, param);
  796. if (!chan) {
  797. dev_err(&data->master->dev,
  798. "ERROR: dma_request_channel FAILS(Rx)\n");
  799. dma_release_channel(dma->chan_tx);
  800. dma->chan_tx = NULL;
  801. data->use_dma = 0;
  802. return;
  803. }
  804. dma->chan_rx = chan;
  805. }
  806. static void pch_spi_release_dma(struct pch_spi_data *data)
  807. {
  808. struct pch_spi_dma_ctrl *dma;
  809. dma = &data->dma;
  810. if (dma->chan_tx) {
  811. dma_release_channel(dma->chan_tx);
  812. dma->chan_tx = NULL;
  813. }
  814. if (dma->chan_rx) {
  815. dma_release_channel(dma->chan_rx);
  816. dma->chan_rx = NULL;
  817. }
  818. return;
  819. }
  820. static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
  821. {
  822. const u8 *tx_buf;
  823. const u16 *tx_sbuf;
  824. u8 *tx_dma_buf;
  825. u16 *tx_dma_sbuf;
  826. struct scatterlist *sg;
  827. struct dma_async_tx_descriptor *desc_tx;
  828. struct dma_async_tx_descriptor *desc_rx;
  829. int num;
  830. int i;
  831. int size;
  832. int rem;
  833. int head;
  834. unsigned long flags;
  835. struct pch_spi_dma_ctrl *dma;
  836. dma = &data->dma;
  837. /* set baud rate if needed */
  838. if (data->cur_trans->speed_hz) {
  839. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  840. spin_lock_irqsave(&data->lock, flags);
  841. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  842. spin_unlock_irqrestore(&data->lock, flags);
  843. }
  844. /* set bits per word if needed */
  845. if (data->cur_trans->bits_per_word &&
  846. (data->current_msg->spi->bits_per_word !=
  847. data->cur_trans->bits_per_word)) {
  848. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  849. spin_lock_irqsave(&data->lock, flags);
  850. pch_spi_set_bits_per_word(data->master,
  851. data->cur_trans->bits_per_word);
  852. spin_unlock_irqrestore(&data->lock, flags);
  853. *bpw = data->cur_trans->bits_per_word;
  854. } else {
  855. *bpw = data->current_msg->spi->bits_per_word;
  856. }
  857. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  858. if (data->bpw_len > PCH_BUF_SIZE) {
  859. data->bpw_len = PCH_BUF_SIZE;
  860. data->cur_trans->len -= PCH_BUF_SIZE;
  861. }
  862. /* copy Tx Data */
  863. if (data->cur_trans->tx_buf != NULL) {
  864. if (*bpw == 8) {
  865. tx_buf = data->cur_trans->tx_buf;
  866. tx_dma_buf = dma->tx_buf_virt;
  867. for (i = 0; i < data->bpw_len; i++)
  868. *tx_dma_buf++ = *tx_buf++;
  869. } else {
  870. tx_sbuf = data->cur_trans->tx_buf;
  871. tx_dma_sbuf = dma->tx_buf_virt;
  872. for (i = 0; i < data->bpw_len; i++)
  873. *tx_dma_sbuf++ = *tx_sbuf++;
  874. }
  875. }
  876. /* Calculate Rx parameter for DMA transmitting */
  877. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  878. if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
  879. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  880. rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
  881. } else {
  882. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  883. rem = PCH_DMA_TRANS_SIZE;
  884. }
  885. size = PCH_DMA_TRANS_SIZE;
  886. } else {
  887. num = 1;
  888. size = data->bpw_len;
  889. rem = data->bpw_len;
  890. }
  891. dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
  892. __func__, num, size, rem);
  893. spin_lock_irqsave(&data->lock, flags);
  894. /* set receive fifo threshold and transmit fifo threshold */
  895. pch_spi_setclr_reg(data->master, PCH_SPCR,
  896. ((size - 1) << SPCR_RFIC_FIELD) |
  897. (PCH_TX_THOLD << SPCR_TFIC_FIELD),
  898. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
  899. spin_unlock_irqrestore(&data->lock, flags);
  900. /* RX */
  901. dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  902. sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
  903. /* offset, length setting */
  904. sg = dma->sg_rx_p;
  905. for (i = 0; i < num; i++, sg++) {
  906. if (i == (num - 2)) {
  907. sg->offset = size * i;
  908. sg->offset = sg->offset * (*bpw / 8);
  909. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
  910. sg->offset);
  911. sg_dma_len(sg) = rem;
  912. } else if (i == (num - 1)) {
  913. sg->offset = size * (i - 1) + rem;
  914. sg->offset = sg->offset * (*bpw / 8);
  915. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  916. sg->offset);
  917. sg_dma_len(sg) = size;
  918. } else {
  919. sg->offset = size * i;
  920. sg->offset = sg->offset * (*bpw / 8);
  921. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  922. sg->offset);
  923. sg_dma_len(sg) = size;
  924. }
  925. sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
  926. }
  927. sg = dma->sg_rx_p;
  928. desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
  929. num, DMA_DEV_TO_MEM,
  930. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  931. if (!desc_rx) {
  932. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  933. __func__);
  934. return;
  935. }
  936. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
  937. desc_rx->callback = pch_dma_rx_complete;
  938. desc_rx->callback_param = data;
  939. dma->nent = num;
  940. dma->desc_rx = desc_rx;
  941. /* Calculate Tx parameter for DMA transmitting */
  942. if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
  943. head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
  944. if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
  945. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  946. rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
  947. } else {
  948. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  949. rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
  950. PCH_DMA_TRANS_SIZE - head;
  951. }
  952. size = PCH_DMA_TRANS_SIZE;
  953. } else {
  954. num = 1;
  955. size = data->bpw_len;
  956. rem = data->bpw_len;
  957. head = 0;
  958. }
  959. dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  960. sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
  961. /* offset, length setting */
  962. sg = dma->sg_tx_p;
  963. for (i = 0; i < num; i++, sg++) {
  964. if (i == 0) {
  965. sg->offset = 0;
  966. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
  967. sg->offset);
  968. sg_dma_len(sg) = size + head;
  969. } else if (i == (num - 1)) {
  970. sg->offset = head + size * i;
  971. sg->offset = sg->offset * (*bpw / 8);
  972. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
  973. sg->offset);
  974. sg_dma_len(sg) = rem;
  975. } else {
  976. sg->offset = head + size * i;
  977. sg->offset = sg->offset * (*bpw / 8);
  978. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
  979. sg->offset);
  980. sg_dma_len(sg) = size;
  981. }
  982. sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
  983. }
  984. sg = dma->sg_tx_p;
  985. desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
  986. sg, num, DMA_MEM_TO_DEV,
  987. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  988. if (!desc_tx) {
  989. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  990. __func__);
  991. return;
  992. }
  993. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
  994. desc_tx->callback = NULL;
  995. desc_tx->callback_param = data;
  996. dma->nent = num;
  997. dma->desc_tx = desc_tx;
  998. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  999. "0x2 to SSNXCR\n", __func__);
  1000. spin_lock_irqsave(&data->lock, flags);
  1001. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  1002. desc_rx->tx_submit(desc_rx);
  1003. desc_tx->tx_submit(desc_tx);
  1004. spin_unlock_irqrestore(&data->lock, flags);
  1005. /* reset transfer complete flag */
  1006. data->transfer_complete = false;
  1007. }
  1008. static void pch_spi_process_messages(struct work_struct *pwork)
  1009. {
  1010. struct spi_message *pmsg, *tmp;
  1011. struct pch_spi_data *data;
  1012. int bpw;
  1013. data = container_of(pwork, struct pch_spi_data, work);
  1014. dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
  1015. spin_lock(&data->lock);
  1016. /* check if suspend has been initiated;if yes flush queue */
  1017. if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
  1018. dev_dbg(&data->master->dev,
  1019. "%s suspend/remove initiated, flushing queue\n", __func__);
  1020. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  1021. pmsg->status = -EIO;
  1022. if (pmsg->complete) {
  1023. spin_unlock(&data->lock);
  1024. pmsg->complete(pmsg->context);
  1025. spin_lock(&data->lock);
  1026. }
  1027. /* delete from queue */
  1028. list_del_init(&pmsg->queue);
  1029. }
  1030. spin_unlock(&data->lock);
  1031. return;
  1032. }
  1033. data->bcurrent_msg_processing = true;
  1034. dev_dbg(&data->master->dev,
  1035. "%s Set data->bcurrent_msg_processing= true\n", __func__);
  1036. /* Get the message from the queue and delete it from there. */
  1037. data->current_msg = list_entry(data->queue.next, struct spi_message,
  1038. queue);
  1039. list_del_init(&data->current_msg->queue);
  1040. data->current_msg->status = 0;
  1041. pch_spi_select_chip(data, data->current_msg->spi);
  1042. spin_unlock(&data->lock);
  1043. if (data->use_dma)
  1044. pch_spi_request_dma(data,
  1045. data->current_msg->spi->bits_per_word);
  1046. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  1047. do {
  1048. int cnt;
  1049. /* If we are already processing a message get the next
  1050. transfer structure from the message otherwise retrieve
  1051. the 1st transfer request from the message. */
  1052. spin_lock(&data->lock);
  1053. if (data->cur_trans == NULL) {
  1054. data->cur_trans =
  1055. list_entry(data->current_msg->transfers.next,
  1056. struct spi_transfer, transfer_list);
  1057. dev_dbg(&data->master->dev, "%s "
  1058. ":Getting 1st transfer message\n", __func__);
  1059. } else {
  1060. data->cur_trans =
  1061. list_entry(data->cur_trans->transfer_list.next,
  1062. struct spi_transfer, transfer_list);
  1063. dev_dbg(&data->master->dev, "%s "
  1064. ":Getting next transfer message\n", __func__);
  1065. }
  1066. spin_unlock(&data->lock);
  1067. if (!data->cur_trans->len)
  1068. goto out;
  1069. cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
  1070. data->save_total_len = data->cur_trans->len;
  1071. if (data->use_dma) {
  1072. int i;
  1073. char *save_rx_buf = data->cur_trans->rx_buf;
  1074. for (i = 0; i < cnt; i ++) {
  1075. pch_spi_handle_dma(data, &bpw);
  1076. if (!pch_spi_start_transfer(data)) {
  1077. data->transfer_complete = true;
  1078. data->current_msg->status = -EIO;
  1079. data->current_msg->complete
  1080. (data->current_msg->context);
  1081. data->bcurrent_msg_processing = false;
  1082. data->current_msg = NULL;
  1083. data->cur_trans = NULL;
  1084. goto out;
  1085. }
  1086. pch_spi_copy_rx_data_for_dma(data, bpw);
  1087. }
  1088. data->cur_trans->rx_buf = save_rx_buf;
  1089. } else {
  1090. pch_spi_set_tx(data, &bpw);
  1091. pch_spi_set_ir(data);
  1092. pch_spi_copy_rx_data(data, bpw);
  1093. kfree(data->pkt_rx_buff);
  1094. data->pkt_rx_buff = NULL;
  1095. kfree(data->pkt_tx_buff);
  1096. data->pkt_tx_buff = NULL;
  1097. }
  1098. /* increment message count */
  1099. data->cur_trans->len = data->save_total_len;
  1100. data->current_msg->actual_length += data->cur_trans->len;
  1101. dev_dbg(&data->master->dev,
  1102. "%s:data->current_msg->actual_length=%d\n",
  1103. __func__, data->current_msg->actual_length);
  1104. /* check for delay */
  1105. if (data->cur_trans->delay_usecs) {
  1106. dev_dbg(&data->master->dev, "%s:"
  1107. "delay in usec=%d\n", __func__,
  1108. data->cur_trans->delay_usecs);
  1109. udelay(data->cur_trans->delay_usecs);
  1110. }
  1111. spin_lock(&data->lock);
  1112. /* No more transfer in this message. */
  1113. if ((data->cur_trans->transfer_list.next) ==
  1114. &(data->current_msg->transfers)) {
  1115. pch_spi_nomore_transfer(data);
  1116. }
  1117. spin_unlock(&data->lock);
  1118. } while (data->cur_trans != NULL);
  1119. out:
  1120. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
  1121. if (data->use_dma)
  1122. pch_spi_release_dma(data);
  1123. }
  1124. static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
  1125. struct pch_spi_data *data)
  1126. {
  1127. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1128. /* free workqueue */
  1129. if (data->wk != NULL) {
  1130. destroy_workqueue(data->wk);
  1131. data->wk = NULL;
  1132. dev_dbg(&board_dat->pdev->dev,
  1133. "%s destroy_workqueue invoked successfully\n",
  1134. __func__);
  1135. }
  1136. }
  1137. static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
  1138. struct pch_spi_data *data)
  1139. {
  1140. int retval = 0;
  1141. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1142. /* create workqueue */
  1143. data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
  1144. if (!data->wk) {
  1145. dev_err(&board_dat->pdev->dev,
  1146. "%s create_singlet hread_workqueue failed\n", __func__);
  1147. retval = -EBUSY;
  1148. goto err_return;
  1149. }
  1150. /* reset PCH SPI h/w */
  1151. pch_spi_reset(data->master);
  1152. dev_dbg(&board_dat->pdev->dev,
  1153. "%s pch_spi_reset invoked successfully\n", __func__);
  1154. dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
  1155. err_return:
  1156. if (retval != 0) {
  1157. dev_err(&board_dat->pdev->dev,
  1158. "%s FAIL:invoking pch_spi_free_resources\n", __func__);
  1159. pch_spi_free_resources(board_dat, data);
  1160. }
  1161. dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
  1162. return retval;
  1163. }
  1164. static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
  1165. struct pch_spi_data *data)
  1166. {
  1167. struct pch_spi_dma_ctrl *dma;
  1168. dma = &data->dma;
  1169. if (dma->tx_buf_dma)
  1170. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1171. dma->tx_buf_virt, dma->tx_buf_dma);
  1172. if (dma->rx_buf_dma)
  1173. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1174. dma->rx_buf_virt, dma->rx_buf_dma);
  1175. return;
  1176. }
  1177. static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
  1178. struct pch_spi_data *data)
  1179. {
  1180. struct pch_spi_dma_ctrl *dma;
  1181. dma = &data->dma;
  1182. /* Get Consistent memory for Tx DMA */
  1183. dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1184. PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
  1185. /* Get Consistent memory for Rx DMA */
  1186. dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1187. PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
  1188. }
  1189. static int pch_spi_pd_probe(struct platform_device *plat_dev)
  1190. {
  1191. int ret;
  1192. struct spi_master *master;
  1193. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1194. struct pch_spi_data *data;
  1195. dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
  1196. master = spi_alloc_master(&board_dat->pdev->dev,
  1197. sizeof(struct pch_spi_data));
  1198. if (!master) {
  1199. dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
  1200. plat_dev->id);
  1201. return -ENOMEM;
  1202. }
  1203. data = spi_master_get_devdata(master);
  1204. data->master = master;
  1205. platform_set_drvdata(plat_dev, data);
  1206. /* baseaddress + address offset) */
  1207. data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
  1208. PCH_ADDRESS_SIZE * plat_dev->id;
  1209. data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
  1210. if (!data->io_remap_addr) {
  1211. dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
  1212. ret = -ENOMEM;
  1213. goto err_pci_iomap;
  1214. }
  1215. data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
  1216. dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
  1217. plat_dev->id, data->io_remap_addr);
  1218. /* initialize members of SPI master */
  1219. master->num_chipselect = PCH_MAX_CS;
  1220. master->setup = pch_spi_setup;
  1221. master->transfer = pch_spi_transfer;
  1222. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1223. master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
  1224. data->board_dat = board_dat;
  1225. data->plat_dev = plat_dev;
  1226. data->n_curnt_chip = 255;
  1227. data->status = STATUS_RUNNING;
  1228. data->ch = plat_dev->id;
  1229. data->use_dma = use_dma;
  1230. INIT_LIST_HEAD(&data->queue);
  1231. spin_lock_init(&data->lock);
  1232. INIT_WORK(&data->work, pch_spi_process_messages);
  1233. init_waitqueue_head(&data->wait);
  1234. ret = pch_spi_get_resources(board_dat, data);
  1235. if (ret) {
  1236. dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
  1237. goto err_spi_get_resources;
  1238. }
  1239. ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1240. IRQF_SHARED, KBUILD_MODNAME, data);
  1241. if (ret) {
  1242. dev_err(&plat_dev->dev,
  1243. "%s request_irq failed\n", __func__);
  1244. goto err_request_irq;
  1245. }
  1246. data->irq_reg_sts = true;
  1247. pch_spi_set_master_mode(master);
  1248. if (use_dma) {
  1249. dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
  1250. pch_alloc_dma_buf(board_dat, data);
  1251. }
  1252. ret = spi_register_master(master);
  1253. if (ret != 0) {
  1254. dev_err(&plat_dev->dev,
  1255. "%s spi_register_master FAILED\n", __func__);
  1256. goto err_spi_register_master;
  1257. }
  1258. return 0;
  1259. err_spi_register_master:
  1260. pch_free_dma_buf(board_dat, data);
  1261. free_irq(board_dat->pdev->irq, data);
  1262. err_request_irq:
  1263. pch_spi_free_resources(board_dat, data);
  1264. err_spi_get_resources:
  1265. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1266. err_pci_iomap:
  1267. spi_master_put(master);
  1268. return ret;
  1269. }
  1270. static int pch_spi_pd_remove(struct platform_device *plat_dev)
  1271. {
  1272. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1273. struct pch_spi_data *data = platform_get_drvdata(plat_dev);
  1274. int count;
  1275. unsigned long flags;
  1276. dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
  1277. __func__, plat_dev->id, board_dat->pdev->irq);
  1278. if (use_dma)
  1279. pch_free_dma_buf(board_dat, data);
  1280. /* check for any pending messages; no action is taken if the queue
  1281. * is still full; but at least we tried. Unload anyway */
  1282. count = 500;
  1283. spin_lock_irqsave(&data->lock, flags);
  1284. data->status = STATUS_EXITING;
  1285. while ((list_empty(&data->queue) == 0) && --count) {
  1286. dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
  1287. __func__);
  1288. spin_unlock_irqrestore(&data->lock, flags);
  1289. msleep(PCH_SLEEP_TIME);
  1290. spin_lock_irqsave(&data->lock, flags);
  1291. }
  1292. spin_unlock_irqrestore(&data->lock, flags);
  1293. pch_spi_free_resources(board_dat, data);
  1294. /* disable interrupts & free IRQ */
  1295. if (data->irq_reg_sts) {
  1296. /* disable interrupts */
  1297. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1298. data->irq_reg_sts = false;
  1299. free_irq(board_dat->pdev->irq, data);
  1300. }
  1301. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1302. spi_unregister_master(data->master);
  1303. return 0;
  1304. }
  1305. #ifdef CONFIG_PM
  1306. static int pch_spi_pd_suspend(struct platform_device *pd_dev,
  1307. pm_message_t state)
  1308. {
  1309. u8 count;
  1310. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1311. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1312. dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
  1313. if (!board_dat) {
  1314. dev_err(&pd_dev->dev,
  1315. "%s pci_get_drvdata returned NULL\n", __func__);
  1316. return -EFAULT;
  1317. }
  1318. /* check if the current message is processed:
  1319. Only after thats done the transfer will be suspended */
  1320. count = 255;
  1321. while ((--count) > 0) {
  1322. if (!(data->bcurrent_msg_processing))
  1323. break;
  1324. msleep(PCH_SLEEP_TIME);
  1325. }
  1326. /* Free IRQ */
  1327. if (data->irq_reg_sts) {
  1328. /* disable all interrupts */
  1329. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1330. pch_spi_reset(data->master);
  1331. free_irq(board_dat->pdev->irq, data);
  1332. data->irq_reg_sts = false;
  1333. dev_dbg(&pd_dev->dev,
  1334. "%s free_irq invoked successfully.\n", __func__);
  1335. }
  1336. return 0;
  1337. }
  1338. static int pch_spi_pd_resume(struct platform_device *pd_dev)
  1339. {
  1340. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1341. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1342. int retval;
  1343. if (!board_dat) {
  1344. dev_err(&pd_dev->dev,
  1345. "%s pci_get_drvdata returned NULL\n", __func__);
  1346. return -EFAULT;
  1347. }
  1348. if (!data->irq_reg_sts) {
  1349. /* register IRQ */
  1350. retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1351. IRQF_SHARED, KBUILD_MODNAME, data);
  1352. if (retval < 0) {
  1353. dev_err(&pd_dev->dev,
  1354. "%s request_irq failed\n", __func__);
  1355. return retval;
  1356. }
  1357. /* reset PCH SPI h/w */
  1358. pch_spi_reset(data->master);
  1359. pch_spi_set_master_mode(data->master);
  1360. data->irq_reg_sts = true;
  1361. }
  1362. return 0;
  1363. }
  1364. #else
  1365. #define pch_spi_pd_suspend NULL
  1366. #define pch_spi_pd_resume NULL
  1367. #endif
  1368. static struct platform_driver pch_spi_pd_driver = {
  1369. .driver = {
  1370. .name = "pch-spi",
  1371. .owner = THIS_MODULE,
  1372. },
  1373. .probe = pch_spi_pd_probe,
  1374. .remove = pch_spi_pd_remove,
  1375. .suspend = pch_spi_pd_suspend,
  1376. .resume = pch_spi_pd_resume
  1377. };
  1378. static int pch_spi_probe(struct pci_dev *pdev,
  1379. const struct pci_device_id *id)
  1380. {
  1381. struct pch_spi_board_data *board_dat;
  1382. struct platform_device *pd_dev = NULL;
  1383. int retval;
  1384. int i;
  1385. struct pch_pd_dev_save *pd_dev_save;
  1386. pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
  1387. if (!pd_dev_save) {
  1388. dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
  1389. return -ENOMEM;
  1390. }
  1391. board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
  1392. if (!board_dat) {
  1393. dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
  1394. retval = -ENOMEM;
  1395. goto err_no_mem;
  1396. }
  1397. retval = pci_request_regions(pdev, KBUILD_MODNAME);
  1398. if (retval) {
  1399. dev_err(&pdev->dev, "%s request_region failed\n", __func__);
  1400. goto pci_request_regions;
  1401. }
  1402. board_dat->pdev = pdev;
  1403. board_dat->num = id->driver_data;
  1404. pd_dev_save->num = id->driver_data;
  1405. pd_dev_save->board_dat = board_dat;
  1406. retval = pci_enable_device(pdev);
  1407. if (retval) {
  1408. dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
  1409. goto pci_enable_device;
  1410. }
  1411. for (i = 0; i < board_dat->num; i++) {
  1412. pd_dev = platform_device_alloc("pch-spi", i);
  1413. if (!pd_dev) {
  1414. dev_err(&pdev->dev, "platform_device_alloc failed\n");
  1415. retval = -ENOMEM;
  1416. goto err_platform_device;
  1417. }
  1418. pd_dev_save->pd_save[i] = pd_dev;
  1419. pd_dev->dev.parent = &pdev->dev;
  1420. retval = platform_device_add_data(pd_dev, board_dat,
  1421. sizeof(*board_dat));
  1422. if (retval) {
  1423. dev_err(&pdev->dev,
  1424. "platform_device_add_data failed\n");
  1425. platform_device_put(pd_dev);
  1426. goto err_platform_device;
  1427. }
  1428. retval = platform_device_add(pd_dev);
  1429. if (retval) {
  1430. dev_err(&pdev->dev, "platform_device_add failed\n");
  1431. platform_device_put(pd_dev);
  1432. goto err_platform_device;
  1433. }
  1434. }
  1435. pci_set_drvdata(pdev, pd_dev_save);
  1436. return 0;
  1437. err_platform_device:
  1438. pci_disable_device(pdev);
  1439. pci_enable_device:
  1440. pci_release_regions(pdev);
  1441. pci_request_regions:
  1442. kfree(board_dat);
  1443. err_no_mem:
  1444. kfree(pd_dev_save);
  1445. return retval;
  1446. }
  1447. static void pch_spi_remove(struct pci_dev *pdev)
  1448. {
  1449. int i;
  1450. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1451. dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
  1452. for (i = 0; i < pd_dev_save->num; i++)
  1453. platform_device_unregister(pd_dev_save->pd_save[i]);
  1454. pci_disable_device(pdev);
  1455. pci_release_regions(pdev);
  1456. kfree(pd_dev_save->board_dat);
  1457. kfree(pd_dev_save);
  1458. }
  1459. #ifdef CONFIG_PM
  1460. static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
  1461. {
  1462. int retval;
  1463. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1464. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1465. pd_dev_save->board_dat->suspend_sts = true;
  1466. /* save config space */
  1467. retval = pci_save_state(pdev);
  1468. if (retval == 0) {
  1469. pci_enable_wake(pdev, PCI_D3hot, 0);
  1470. pci_disable_device(pdev);
  1471. pci_set_power_state(pdev, PCI_D3hot);
  1472. } else {
  1473. dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
  1474. }
  1475. return retval;
  1476. }
  1477. static int pch_spi_resume(struct pci_dev *pdev)
  1478. {
  1479. int retval;
  1480. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1481. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1482. pci_set_power_state(pdev, PCI_D0);
  1483. pci_restore_state(pdev);
  1484. retval = pci_enable_device(pdev);
  1485. if (retval < 0) {
  1486. dev_err(&pdev->dev,
  1487. "%s pci_enable_device failed\n", __func__);
  1488. } else {
  1489. pci_enable_wake(pdev, PCI_D3hot, 0);
  1490. /* set suspend status to false */
  1491. pd_dev_save->board_dat->suspend_sts = false;
  1492. }
  1493. return retval;
  1494. }
  1495. #else
  1496. #define pch_spi_suspend NULL
  1497. #define pch_spi_resume NULL
  1498. #endif
  1499. static struct pci_driver pch_spi_pcidev_driver = {
  1500. .name = "pch_spi",
  1501. .id_table = pch_spi_pcidev_id,
  1502. .probe = pch_spi_probe,
  1503. .remove = pch_spi_remove,
  1504. .suspend = pch_spi_suspend,
  1505. .resume = pch_spi_resume,
  1506. };
  1507. static int __init pch_spi_init(void)
  1508. {
  1509. int ret;
  1510. ret = platform_driver_register(&pch_spi_pd_driver);
  1511. if (ret)
  1512. return ret;
  1513. ret = pci_register_driver(&pch_spi_pcidev_driver);
  1514. if (ret) {
  1515. platform_driver_unregister(&pch_spi_pd_driver);
  1516. return ret;
  1517. }
  1518. return 0;
  1519. }
  1520. module_init(pch_spi_init);
  1521. static void __exit pch_spi_exit(void)
  1522. {
  1523. pci_unregister_driver(&pch_spi_pcidev_driver);
  1524. platform_driver_unregister(&pch_spi_pd_driver);
  1525. }
  1526. module_exit(pch_spi_exit);
  1527. module_param(use_dma, int, 0644);
  1528. MODULE_PARM_DESC(use_dma,
  1529. "to use DMA for data transfers pass 1 else 0; default 1");
  1530. MODULE_LICENSE("GPL");
  1531. MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
  1532. MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);