spi-sh.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544
  1. /*
  2. * SH SPI bus driver
  3. *
  4. * Copyright (C) 2011 Renesas Solutions Corp.
  5. *
  6. * Based on pxa2xx_spi.c:
  7. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; version 2 of the License.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/sched.h>
  26. #include <linux/errno.h>
  27. #include <linux/timer.h>
  28. #include <linux/delay.h>
  29. #include <linux/list.h>
  30. #include <linux/workqueue.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/platform_device.h>
  33. #include <linux/io.h>
  34. #include <linux/spi/spi.h>
  35. #define SPI_SH_TBR 0x00
  36. #define SPI_SH_RBR 0x00
  37. #define SPI_SH_CR1 0x08
  38. #define SPI_SH_CR2 0x10
  39. #define SPI_SH_CR3 0x18
  40. #define SPI_SH_CR4 0x20
  41. #define SPI_SH_CR5 0x28
  42. /* CR1 */
  43. #define SPI_SH_TBE 0x80
  44. #define SPI_SH_TBF 0x40
  45. #define SPI_SH_RBE 0x20
  46. #define SPI_SH_RBF 0x10
  47. #define SPI_SH_PFONRD 0x08
  48. #define SPI_SH_SSDB 0x04
  49. #define SPI_SH_SSD 0x02
  50. #define SPI_SH_SSA 0x01
  51. /* CR2 */
  52. #define SPI_SH_RSTF 0x80
  53. #define SPI_SH_LOOPBK 0x40
  54. #define SPI_SH_CPOL 0x20
  55. #define SPI_SH_CPHA 0x10
  56. #define SPI_SH_L1M0 0x08
  57. /* CR3 */
  58. #define SPI_SH_MAX_BYTE 0xFF
  59. /* CR4 */
  60. #define SPI_SH_TBEI 0x80
  61. #define SPI_SH_TBFI 0x40
  62. #define SPI_SH_RBEI 0x20
  63. #define SPI_SH_RBFI 0x10
  64. #define SPI_SH_WPABRT 0x04
  65. #define SPI_SH_SSS 0x01
  66. /* CR8 */
  67. #define SPI_SH_P1L0 0x80
  68. #define SPI_SH_PP1L0 0x40
  69. #define SPI_SH_MUXI 0x20
  70. #define SPI_SH_MUXIRQ 0x10
  71. #define SPI_SH_FIFO_SIZE 32
  72. #define SPI_SH_SEND_TIMEOUT (3 * HZ)
  73. #define SPI_SH_RECEIVE_TIMEOUT (HZ >> 3)
  74. #undef DEBUG
  75. struct spi_sh_data {
  76. void __iomem *addr;
  77. int irq;
  78. struct spi_master *master;
  79. struct list_head queue;
  80. struct workqueue_struct *workqueue;
  81. struct work_struct ws;
  82. unsigned long cr1;
  83. wait_queue_head_t wait;
  84. spinlock_t lock;
  85. int width;
  86. };
  87. static void spi_sh_write(struct spi_sh_data *ss, unsigned long data,
  88. unsigned long offset)
  89. {
  90. if (ss->width == 8)
  91. iowrite8(data, ss->addr + (offset >> 2));
  92. else if (ss->width == 32)
  93. iowrite32(data, ss->addr + offset);
  94. }
  95. static unsigned long spi_sh_read(struct spi_sh_data *ss, unsigned long offset)
  96. {
  97. if (ss->width == 8)
  98. return ioread8(ss->addr + (offset >> 2));
  99. else if (ss->width == 32)
  100. return ioread32(ss->addr + offset);
  101. else
  102. return 0;
  103. }
  104. static void spi_sh_set_bit(struct spi_sh_data *ss, unsigned long val,
  105. unsigned long offset)
  106. {
  107. unsigned long tmp;
  108. tmp = spi_sh_read(ss, offset);
  109. tmp |= val;
  110. spi_sh_write(ss, tmp, offset);
  111. }
  112. static void spi_sh_clear_bit(struct spi_sh_data *ss, unsigned long val,
  113. unsigned long offset)
  114. {
  115. unsigned long tmp;
  116. tmp = spi_sh_read(ss, offset);
  117. tmp &= ~val;
  118. spi_sh_write(ss, tmp, offset);
  119. }
  120. static void clear_fifo(struct spi_sh_data *ss)
  121. {
  122. spi_sh_set_bit(ss, SPI_SH_RSTF, SPI_SH_CR2);
  123. spi_sh_clear_bit(ss, SPI_SH_RSTF, SPI_SH_CR2);
  124. }
  125. static int spi_sh_wait_receive_buffer(struct spi_sh_data *ss)
  126. {
  127. int timeout = 100000;
  128. while (spi_sh_read(ss, SPI_SH_CR1) & SPI_SH_RBE) {
  129. udelay(10);
  130. if (timeout-- < 0)
  131. return -ETIMEDOUT;
  132. }
  133. return 0;
  134. }
  135. static int spi_sh_wait_write_buffer_empty(struct spi_sh_data *ss)
  136. {
  137. int timeout = 100000;
  138. while (!(spi_sh_read(ss, SPI_SH_CR1) & SPI_SH_TBE)) {
  139. udelay(10);
  140. if (timeout-- < 0)
  141. return -ETIMEDOUT;
  142. }
  143. return 0;
  144. }
  145. static int spi_sh_send(struct spi_sh_data *ss, struct spi_message *mesg,
  146. struct spi_transfer *t)
  147. {
  148. int i, retval = 0;
  149. int remain = t->len;
  150. int cur_len;
  151. unsigned char *data;
  152. long ret;
  153. if (t->len)
  154. spi_sh_set_bit(ss, SPI_SH_SSA, SPI_SH_CR1);
  155. data = (unsigned char *)t->tx_buf;
  156. while (remain > 0) {
  157. cur_len = min(SPI_SH_FIFO_SIZE, remain);
  158. for (i = 0; i < cur_len &&
  159. !(spi_sh_read(ss, SPI_SH_CR4) &
  160. SPI_SH_WPABRT) &&
  161. !(spi_sh_read(ss, SPI_SH_CR1) & SPI_SH_TBF);
  162. i++)
  163. spi_sh_write(ss, (unsigned long)data[i], SPI_SH_TBR);
  164. if (spi_sh_read(ss, SPI_SH_CR4) & SPI_SH_WPABRT) {
  165. /* Abort SPI operation */
  166. spi_sh_set_bit(ss, SPI_SH_WPABRT, SPI_SH_CR4);
  167. retval = -EIO;
  168. break;
  169. }
  170. cur_len = i;
  171. remain -= cur_len;
  172. data += cur_len;
  173. if (remain > 0) {
  174. ss->cr1 &= ~SPI_SH_TBE;
  175. spi_sh_set_bit(ss, SPI_SH_TBE, SPI_SH_CR4);
  176. ret = wait_event_interruptible_timeout(ss->wait,
  177. ss->cr1 & SPI_SH_TBE,
  178. SPI_SH_SEND_TIMEOUT);
  179. if (ret == 0 && !(ss->cr1 & SPI_SH_TBE)) {
  180. printk(KERN_ERR "%s: timeout\n", __func__);
  181. return -ETIMEDOUT;
  182. }
  183. }
  184. }
  185. if (list_is_last(&t->transfer_list, &mesg->transfers)) {
  186. spi_sh_clear_bit(ss, SPI_SH_SSD | SPI_SH_SSDB, SPI_SH_CR1);
  187. spi_sh_set_bit(ss, SPI_SH_SSA, SPI_SH_CR1);
  188. ss->cr1 &= ~SPI_SH_TBE;
  189. spi_sh_set_bit(ss, SPI_SH_TBE, SPI_SH_CR4);
  190. ret = wait_event_interruptible_timeout(ss->wait,
  191. ss->cr1 & SPI_SH_TBE,
  192. SPI_SH_SEND_TIMEOUT);
  193. if (ret == 0 && (ss->cr1 & SPI_SH_TBE)) {
  194. printk(KERN_ERR "%s: timeout\n", __func__);
  195. return -ETIMEDOUT;
  196. }
  197. }
  198. return retval;
  199. }
  200. static int spi_sh_receive(struct spi_sh_data *ss, struct spi_message *mesg,
  201. struct spi_transfer *t)
  202. {
  203. int i;
  204. int remain = t->len;
  205. int cur_len;
  206. unsigned char *data;
  207. long ret;
  208. if (t->len > SPI_SH_MAX_BYTE)
  209. spi_sh_write(ss, SPI_SH_MAX_BYTE, SPI_SH_CR3);
  210. else
  211. spi_sh_write(ss, t->len, SPI_SH_CR3);
  212. spi_sh_clear_bit(ss, SPI_SH_SSD | SPI_SH_SSDB, SPI_SH_CR1);
  213. spi_sh_set_bit(ss, SPI_SH_SSA, SPI_SH_CR1);
  214. spi_sh_wait_write_buffer_empty(ss);
  215. data = (unsigned char *)t->rx_buf;
  216. while (remain > 0) {
  217. if (remain >= SPI_SH_FIFO_SIZE) {
  218. ss->cr1 &= ~SPI_SH_RBF;
  219. spi_sh_set_bit(ss, SPI_SH_RBF, SPI_SH_CR4);
  220. ret = wait_event_interruptible_timeout(ss->wait,
  221. ss->cr1 & SPI_SH_RBF,
  222. SPI_SH_RECEIVE_TIMEOUT);
  223. if (ret == 0 &&
  224. spi_sh_read(ss, SPI_SH_CR1) & SPI_SH_RBE) {
  225. printk(KERN_ERR "%s: timeout\n", __func__);
  226. return -ETIMEDOUT;
  227. }
  228. }
  229. cur_len = min(SPI_SH_FIFO_SIZE, remain);
  230. for (i = 0; i < cur_len; i++) {
  231. if (spi_sh_wait_receive_buffer(ss))
  232. break;
  233. data[i] = (unsigned char)spi_sh_read(ss, SPI_SH_RBR);
  234. }
  235. remain -= cur_len;
  236. data += cur_len;
  237. }
  238. /* deassert CS when SPI is receiving. */
  239. if (t->len > SPI_SH_MAX_BYTE) {
  240. clear_fifo(ss);
  241. spi_sh_write(ss, 1, SPI_SH_CR3);
  242. } else {
  243. spi_sh_write(ss, 0, SPI_SH_CR3);
  244. }
  245. return 0;
  246. }
  247. static void spi_sh_work(struct work_struct *work)
  248. {
  249. struct spi_sh_data *ss = container_of(work, struct spi_sh_data, ws);
  250. struct spi_message *mesg;
  251. struct spi_transfer *t;
  252. unsigned long flags;
  253. int ret;
  254. pr_debug("%s: enter\n", __func__);
  255. spin_lock_irqsave(&ss->lock, flags);
  256. while (!list_empty(&ss->queue)) {
  257. mesg = list_entry(ss->queue.next, struct spi_message, queue);
  258. list_del_init(&mesg->queue);
  259. spin_unlock_irqrestore(&ss->lock, flags);
  260. list_for_each_entry(t, &mesg->transfers, transfer_list) {
  261. pr_debug("tx_buf = %p, rx_buf = %p\n",
  262. t->tx_buf, t->rx_buf);
  263. pr_debug("len = %d, delay_usecs = %d\n",
  264. t->len, t->delay_usecs);
  265. if (t->tx_buf) {
  266. ret = spi_sh_send(ss, mesg, t);
  267. if (ret < 0)
  268. goto error;
  269. }
  270. if (t->rx_buf) {
  271. ret = spi_sh_receive(ss, mesg, t);
  272. if (ret < 0)
  273. goto error;
  274. }
  275. mesg->actual_length += t->len;
  276. }
  277. spin_lock_irqsave(&ss->lock, flags);
  278. mesg->status = 0;
  279. mesg->complete(mesg->context);
  280. }
  281. clear_fifo(ss);
  282. spi_sh_set_bit(ss, SPI_SH_SSD, SPI_SH_CR1);
  283. udelay(100);
  284. spi_sh_clear_bit(ss, SPI_SH_SSA | SPI_SH_SSDB | SPI_SH_SSD,
  285. SPI_SH_CR1);
  286. clear_fifo(ss);
  287. spin_unlock_irqrestore(&ss->lock, flags);
  288. return;
  289. error:
  290. mesg->status = ret;
  291. mesg->complete(mesg->context);
  292. spi_sh_clear_bit(ss, SPI_SH_SSA | SPI_SH_SSDB | SPI_SH_SSD,
  293. SPI_SH_CR1);
  294. clear_fifo(ss);
  295. }
  296. static int spi_sh_setup(struct spi_device *spi)
  297. {
  298. struct spi_sh_data *ss = spi_master_get_devdata(spi->master);
  299. pr_debug("%s: enter\n", __func__);
  300. spi_sh_write(ss, 0xfe, SPI_SH_CR1); /* SPI sycle stop */
  301. spi_sh_write(ss, 0x00, SPI_SH_CR1); /* CR1 init */
  302. spi_sh_write(ss, 0x00, SPI_SH_CR3); /* CR3 init */
  303. clear_fifo(ss);
  304. /* 1/8 clock */
  305. spi_sh_write(ss, spi_sh_read(ss, SPI_SH_CR2) | 0x07, SPI_SH_CR2);
  306. udelay(10);
  307. return 0;
  308. }
  309. static int spi_sh_transfer(struct spi_device *spi, struct spi_message *mesg)
  310. {
  311. struct spi_sh_data *ss = spi_master_get_devdata(spi->master);
  312. unsigned long flags;
  313. pr_debug("%s: enter\n", __func__);
  314. pr_debug("\tmode = %02x\n", spi->mode);
  315. spin_lock_irqsave(&ss->lock, flags);
  316. mesg->actual_length = 0;
  317. mesg->status = -EINPROGRESS;
  318. spi_sh_clear_bit(ss, SPI_SH_SSA, SPI_SH_CR1);
  319. list_add_tail(&mesg->queue, &ss->queue);
  320. queue_work(ss->workqueue, &ss->ws);
  321. spin_unlock_irqrestore(&ss->lock, flags);
  322. return 0;
  323. }
  324. static void spi_sh_cleanup(struct spi_device *spi)
  325. {
  326. struct spi_sh_data *ss = spi_master_get_devdata(spi->master);
  327. pr_debug("%s: enter\n", __func__);
  328. spi_sh_clear_bit(ss, SPI_SH_SSA | SPI_SH_SSDB | SPI_SH_SSD,
  329. SPI_SH_CR1);
  330. }
  331. static irqreturn_t spi_sh_irq(int irq, void *_ss)
  332. {
  333. struct spi_sh_data *ss = (struct spi_sh_data *)_ss;
  334. unsigned long cr1;
  335. cr1 = spi_sh_read(ss, SPI_SH_CR1);
  336. if (cr1 & SPI_SH_TBE)
  337. ss->cr1 |= SPI_SH_TBE;
  338. if (cr1 & SPI_SH_TBF)
  339. ss->cr1 |= SPI_SH_TBF;
  340. if (cr1 & SPI_SH_RBE)
  341. ss->cr1 |= SPI_SH_RBE;
  342. if (cr1 & SPI_SH_RBF)
  343. ss->cr1 |= SPI_SH_RBF;
  344. if (ss->cr1) {
  345. spi_sh_clear_bit(ss, ss->cr1, SPI_SH_CR4);
  346. wake_up(&ss->wait);
  347. }
  348. return IRQ_HANDLED;
  349. }
  350. static int spi_sh_remove(struct platform_device *pdev)
  351. {
  352. struct spi_sh_data *ss = platform_get_drvdata(pdev);
  353. spi_unregister_master(ss->master);
  354. destroy_workqueue(ss->workqueue);
  355. free_irq(ss->irq, ss);
  356. iounmap(ss->addr);
  357. return 0;
  358. }
  359. static int spi_sh_probe(struct platform_device *pdev)
  360. {
  361. struct resource *res;
  362. struct spi_master *master;
  363. struct spi_sh_data *ss;
  364. int ret, irq;
  365. /* get base addr */
  366. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  367. if (unlikely(res == NULL)) {
  368. dev_err(&pdev->dev, "invalid resource\n");
  369. return -EINVAL;
  370. }
  371. irq = platform_get_irq(pdev, 0);
  372. if (irq < 0) {
  373. dev_err(&pdev->dev, "platform_get_irq error\n");
  374. return -ENODEV;
  375. }
  376. master = spi_alloc_master(&pdev->dev, sizeof(struct spi_sh_data));
  377. if (master == NULL) {
  378. dev_err(&pdev->dev, "spi_alloc_master error.\n");
  379. return -ENOMEM;
  380. }
  381. ss = spi_master_get_devdata(master);
  382. platform_set_drvdata(pdev, ss);
  383. switch (res->flags & IORESOURCE_MEM_TYPE_MASK) {
  384. case IORESOURCE_MEM_8BIT:
  385. ss->width = 8;
  386. break;
  387. case IORESOURCE_MEM_32BIT:
  388. ss->width = 32;
  389. break;
  390. default:
  391. dev_err(&pdev->dev, "No support width\n");
  392. ret = -ENODEV;
  393. goto error1;
  394. }
  395. ss->irq = irq;
  396. ss->master = master;
  397. ss->addr = ioremap(res->start, resource_size(res));
  398. if (ss->addr == NULL) {
  399. dev_err(&pdev->dev, "ioremap error.\n");
  400. ret = -ENOMEM;
  401. goto error1;
  402. }
  403. INIT_LIST_HEAD(&ss->queue);
  404. spin_lock_init(&ss->lock);
  405. INIT_WORK(&ss->ws, spi_sh_work);
  406. init_waitqueue_head(&ss->wait);
  407. ss->workqueue = create_singlethread_workqueue(
  408. dev_name(master->dev.parent));
  409. if (ss->workqueue == NULL) {
  410. dev_err(&pdev->dev, "create workqueue error\n");
  411. ret = -EBUSY;
  412. goto error2;
  413. }
  414. ret = request_irq(irq, spi_sh_irq, 0, "spi_sh", ss);
  415. if (ret < 0) {
  416. dev_err(&pdev->dev, "request_irq error\n");
  417. goto error3;
  418. }
  419. master->num_chipselect = 2;
  420. master->bus_num = pdev->id;
  421. master->setup = spi_sh_setup;
  422. master->transfer = spi_sh_transfer;
  423. master->cleanup = spi_sh_cleanup;
  424. ret = spi_register_master(master);
  425. if (ret < 0) {
  426. printk(KERN_ERR "spi_register_master error.\n");
  427. goto error4;
  428. }
  429. return 0;
  430. error4:
  431. free_irq(irq, ss);
  432. error3:
  433. destroy_workqueue(ss->workqueue);
  434. error2:
  435. iounmap(ss->addr);
  436. error1:
  437. spi_master_put(master);
  438. return ret;
  439. }
  440. static struct platform_driver spi_sh_driver = {
  441. .probe = spi_sh_probe,
  442. .remove = spi_sh_remove,
  443. .driver = {
  444. .name = "sh_spi",
  445. .owner = THIS_MODULE,
  446. },
  447. };
  448. module_platform_driver(spi_sh_driver);
  449. MODULE_DESCRIPTION("SH SPI bus driver");
  450. MODULE_LICENSE("GPL");
  451. MODULE_AUTHOR("Yoshihiro Shimoda");
  452. MODULE_ALIAS("platform:sh_spi");