spi-rspi.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066
  1. /*
  2. * SH RSPI driver
  3. *
  4. * Copyright (C) 2012 Renesas Solutions Corp.
  5. *
  6. * Based on spi-sh.c:
  7. * Copyright (C) 2011 Renesas Solutions Corp.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; version 2 of the License.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/sched.h>
  26. #include <linux/errno.h>
  27. #include <linux/list.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/io.h>
  32. #include <linux/clk.h>
  33. #include <linux/dmaengine.h>
  34. #include <linux/dma-mapping.h>
  35. #include <linux/sh_dma.h>
  36. #include <linux/spi/spi.h>
  37. #include <linux/spi/rspi.h>
  38. #define RSPI_SPCR 0x00 /* Control Register */
  39. #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
  40. #define RSPI_SPPCR 0x02 /* Pin Control Register */
  41. #define RSPI_SPSR 0x03 /* Status Register */
  42. #define RSPI_SPDR 0x04 /* Data Register */
  43. #define RSPI_SPSCR 0x08 /* Sequence Control Register */
  44. #define RSPI_SPSSR 0x09 /* Sequence Status Register */
  45. #define RSPI_SPBR 0x0a /* Bit Rate Register */
  46. #define RSPI_SPDCR 0x0b /* Data Control Register */
  47. #define RSPI_SPCKD 0x0c /* Clock Delay Register */
  48. #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
  49. #define RSPI_SPND 0x0e /* Next-Access Delay Register */
  50. #define RSPI_SPCR2 0x0f /* Control Register 2 */
  51. #define RSPI_SPCMD0 0x10 /* Command Register 0 */
  52. #define RSPI_SPCMD1 0x12 /* Command Register 1 */
  53. #define RSPI_SPCMD2 0x14 /* Command Register 2 */
  54. #define RSPI_SPCMD3 0x16 /* Command Register 3 */
  55. #define RSPI_SPCMD4 0x18 /* Command Register 4 */
  56. #define RSPI_SPCMD5 0x1a /* Command Register 5 */
  57. #define RSPI_SPCMD6 0x1c /* Command Register 6 */
  58. #define RSPI_SPCMD7 0x1e /* Command Register 7 */
  59. #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
  60. #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
  61. /*qspi only */
  62. #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
  63. #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
  64. #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
  65. #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
  66. #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
  67. #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
  68. /* SPCR - Control Register */
  69. #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
  70. #define SPCR_SPE 0x40 /* Function Enable */
  71. #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
  72. #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
  73. #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
  74. #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
  75. /* RSPI on SH only */
  76. #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
  77. #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
  78. /* QSPI on R-Car M2 only */
  79. #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
  80. #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
  81. /* SSLP - Slave Select Polarity Register */
  82. #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
  83. #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
  84. /* SPPCR - Pin Control Register */
  85. #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
  86. #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
  87. #define SPPCR_SPOM 0x04
  88. #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
  89. #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
  90. #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  91. #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  92. /* SPSR - Status Register */
  93. #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
  94. #define SPSR_TEND 0x40 /* Transmit End */
  95. #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
  96. #define SPSR_PERF 0x08 /* Parity Error Flag */
  97. #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
  98. #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
  99. #define SPSR_OVRF 0x01 /* Overrun Error Flag */
  100. /* SPSCR - Sequence Control Register */
  101. #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
  102. /* SPSSR - Sequence Status Register */
  103. #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
  104. #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
  105. /* SPDCR - Data Control Register */
  106. #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
  107. #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
  108. #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
  109. #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
  110. #define SPDCR_SPLWORD SPDCR_SPLW1
  111. #define SPDCR_SPLBYTE SPDCR_SPLW0
  112. #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
  113. #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select */
  114. #define SPDCR_SLSEL1 0x08
  115. #define SPDCR_SLSEL0 0x04
  116. #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select */
  117. #define SPDCR_SPFC1 0x02
  118. #define SPDCR_SPFC0 0x01
  119. #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) */
  120. /* SPCKD - Clock Delay Register */
  121. #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
  122. /* SSLND - Slave Select Negation Delay Register */
  123. #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
  124. /* SPND - Next-Access Delay Register */
  125. #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
  126. /* SPCR2 - Control Register 2 */
  127. #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
  128. #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
  129. #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
  130. #define SPCR2_SPPE 0x01 /* Parity Enable */
  131. /* SPCMDn - Command Registers */
  132. #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
  133. #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
  134. #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
  135. #define SPCMD_LSBF 0x1000 /* LSB First */
  136. #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
  137. #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
  138. #define SPCMD_SPB_8BIT 0x0000 /* qspi only */
  139. #define SPCMD_SPB_16BIT 0x0100
  140. #define SPCMD_SPB_20BIT 0x0000
  141. #define SPCMD_SPB_24BIT 0x0100
  142. #define SPCMD_SPB_32BIT 0x0200
  143. #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
  144. #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
  145. #define SPCMD_SPIMOD1 0x0040
  146. #define SPCMD_SPIMOD0 0x0020
  147. #define SPCMD_SPIMOD_SINGLE 0
  148. #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
  149. #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
  150. #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
  151. #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
  152. #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
  153. #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
  154. #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
  155. /* SPBFCR - Buffer Control Register */
  156. #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset (qspi only) */
  157. #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset (qspi only) */
  158. #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
  159. #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
  160. #define DUMMY_DATA 0x00
  161. struct rspi_data {
  162. void __iomem *addr;
  163. u32 max_speed_hz;
  164. struct spi_master *master;
  165. struct list_head queue;
  166. struct work_struct ws;
  167. wait_queue_head_t wait;
  168. spinlock_t lock;
  169. struct clk *clk;
  170. u8 spsr;
  171. u16 spcmd;
  172. const struct spi_ops *ops;
  173. /* for dmaengine */
  174. struct dma_chan *chan_tx;
  175. struct dma_chan *chan_rx;
  176. int irq;
  177. unsigned dma_width_16bit:1;
  178. unsigned dma_callbacked:1;
  179. };
  180. static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
  181. {
  182. iowrite8(data, rspi->addr + offset);
  183. }
  184. static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
  185. {
  186. iowrite16(data, rspi->addr + offset);
  187. }
  188. static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
  189. {
  190. iowrite32(data, rspi->addr + offset);
  191. }
  192. static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
  193. {
  194. return ioread8(rspi->addr + offset);
  195. }
  196. static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
  197. {
  198. return ioread16(rspi->addr + offset);
  199. }
  200. /* optional functions */
  201. struct spi_ops {
  202. int (*set_config_register)(const struct rspi_data *rspi,
  203. int access_size);
  204. int (*send_pio)(struct rspi_data *rspi, struct spi_message *mesg,
  205. struct spi_transfer *t);
  206. int (*receive_pio)(struct rspi_data *rspi, struct spi_message *mesg,
  207. struct spi_transfer *t);
  208. };
  209. /*
  210. * functions for RSPI
  211. */
  212. static int rspi_set_config_register(const struct rspi_data *rspi,
  213. int access_size)
  214. {
  215. int spbr;
  216. /* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
  217. rspi_write8(rspi, 0x00, RSPI_SPPCR);
  218. /* Sets transfer bit rate */
  219. spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
  220. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  221. /* Sets number of frames to be used: 1 frame */
  222. rspi_write8(rspi, 0x00, RSPI_SPDCR);
  223. /* Sets RSPCK, SSL, next-access delay value */
  224. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  225. rspi_write8(rspi, 0x00, RSPI_SSLND);
  226. rspi_write8(rspi, 0x00, RSPI_SPND);
  227. /* Sets parity, interrupt mask */
  228. rspi_write8(rspi, 0x00, RSPI_SPCR2);
  229. /* Sets SPCMD */
  230. rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | rspi->spcmd,
  231. RSPI_SPCMD0);
  232. /* Sets RSPI mode */
  233. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  234. return 0;
  235. }
  236. /*
  237. * functions for QSPI
  238. */
  239. static int qspi_set_config_register(const struct rspi_data *rspi,
  240. int access_size)
  241. {
  242. u16 spcmd;
  243. int spbr;
  244. /* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
  245. rspi_write8(rspi, 0x00, RSPI_SPPCR);
  246. /* Sets transfer bit rate */
  247. spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
  248. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  249. /* Sets number of frames to be used: 1 frame */
  250. rspi_write8(rspi, 0x00, RSPI_SPDCR);
  251. /* Sets RSPCK, SSL, next-access delay value */
  252. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  253. rspi_write8(rspi, 0x00, RSPI_SSLND);
  254. rspi_write8(rspi, 0x00, RSPI_SPND);
  255. /* Data Length Setting */
  256. if (access_size == 8)
  257. spcmd = SPCMD_SPB_8BIT;
  258. else if (access_size == 16)
  259. spcmd = SPCMD_SPB_16BIT;
  260. else
  261. spcmd = SPCMD_SPB_32BIT;
  262. spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | rspi->spcmd | SPCMD_SPNDEN;
  263. /* Resets transfer data length */
  264. rspi_write32(rspi, 0, QSPI_SPBMUL0);
  265. /* Resets transmit and receive buffer */
  266. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  267. /* Sets buffer to allow normal operation */
  268. rspi_write8(rspi, 0x00, QSPI_SPBFCR);
  269. /* Sets SPCMD */
  270. rspi_write16(rspi, spcmd, RSPI_SPCMD0);
  271. /* Enables SPI function in a master mode */
  272. rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
  273. return 0;
  274. }
  275. #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
  276. static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
  277. {
  278. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
  279. }
  280. static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
  281. {
  282. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
  283. }
  284. static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
  285. u8 enable_bit)
  286. {
  287. int ret;
  288. rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
  289. rspi_enable_irq(rspi, enable_bit);
  290. ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
  291. if (ret == 0 && !(rspi->spsr & wait_mask))
  292. return -ETIMEDOUT;
  293. return 0;
  294. }
  295. static void rspi_assert_ssl(const struct rspi_data *rspi)
  296. {
  297. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
  298. }
  299. static void rspi_negate_ssl(const struct rspi_data *rspi)
  300. {
  301. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
  302. }
  303. static int rspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg,
  304. struct spi_transfer *t)
  305. {
  306. int remain = t->len;
  307. const u8 *data = t->tx_buf;
  308. while (remain > 0) {
  309. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD,
  310. RSPI_SPCR);
  311. if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
  312. dev_err(&rspi->master->dev,
  313. "%s: tx empty timeout\n", __func__);
  314. return -ETIMEDOUT;
  315. }
  316. rspi_write16(rspi, *data, RSPI_SPDR);
  317. data++;
  318. remain--;
  319. }
  320. /* Waiting for the last transmission */
  321. rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  322. return 0;
  323. }
  324. static int qspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg,
  325. struct spi_transfer *t)
  326. {
  327. int remain = t->len;
  328. const u8 *data = t->tx_buf;
  329. rspi_write8(rspi, SPBFCR_TXRST, QSPI_SPBFCR);
  330. rspi_write8(rspi, 0x00, QSPI_SPBFCR);
  331. while (remain > 0) {
  332. if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
  333. dev_err(&rspi->master->dev,
  334. "%s: tx empty timeout\n", __func__);
  335. return -ETIMEDOUT;
  336. }
  337. rspi_write8(rspi, *data++, RSPI_SPDR);
  338. if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
  339. dev_err(&rspi->master->dev,
  340. "%s: receive timeout\n", __func__);
  341. return -ETIMEDOUT;
  342. }
  343. rspi_read8(rspi, RSPI_SPDR);
  344. remain--;
  345. }
  346. /* Waiting for the last transmission */
  347. rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  348. return 0;
  349. }
  350. #define send_pio(spi, mesg, t) spi->ops->send_pio(spi, mesg, t)
  351. static void rspi_dma_complete(void *arg)
  352. {
  353. struct rspi_data *rspi = arg;
  354. rspi->dma_callbacked = 1;
  355. wake_up_interruptible(&rspi->wait);
  356. }
  357. static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
  358. unsigned len, struct dma_chan *chan,
  359. enum dma_transfer_direction dir)
  360. {
  361. sg_init_table(sg, 1);
  362. sg_set_buf(sg, buf, len);
  363. sg_dma_len(sg) = len;
  364. return dma_map_sg(chan->device->dev, sg, 1, dir);
  365. }
  366. static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
  367. enum dma_transfer_direction dir)
  368. {
  369. dma_unmap_sg(chan->device->dev, sg, 1, dir);
  370. }
  371. static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
  372. {
  373. u16 *dst = buf;
  374. const u8 *src = data;
  375. while (len) {
  376. *dst++ = (u16)(*src++);
  377. len--;
  378. }
  379. }
  380. static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
  381. {
  382. u8 *dst = buf;
  383. const u16 *src = data;
  384. while (len) {
  385. *dst++ = (u8)*src++;
  386. len--;
  387. }
  388. }
  389. static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
  390. {
  391. struct scatterlist sg;
  392. const void *buf = NULL;
  393. struct dma_async_tx_descriptor *desc;
  394. unsigned len;
  395. int ret = 0;
  396. if (rspi->dma_width_16bit) {
  397. void *tmp;
  398. /*
  399. * If DMAC bus width is 16-bit, the driver allocates a dummy
  400. * buffer. And, the driver converts original data into the
  401. * DMAC data as the following format:
  402. * original data: 1st byte, 2nd byte ...
  403. * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
  404. */
  405. len = t->len * 2;
  406. tmp = kmalloc(len, GFP_KERNEL);
  407. if (!tmp)
  408. return -ENOMEM;
  409. rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
  410. buf = tmp;
  411. } else {
  412. len = t->len;
  413. buf = t->tx_buf;
  414. }
  415. if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
  416. ret = -EFAULT;
  417. goto end_nomap;
  418. }
  419. desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
  420. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  421. if (!desc) {
  422. ret = -EIO;
  423. goto end;
  424. }
  425. /*
  426. * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
  427. * called. So, this driver disables the IRQ while DMA transfer.
  428. */
  429. disable_irq(rspi->irq);
  430. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
  431. rspi_enable_irq(rspi, SPCR_SPTIE);
  432. rspi->dma_callbacked = 0;
  433. desc->callback = rspi_dma_complete;
  434. desc->callback_param = rspi;
  435. dmaengine_submit(desc);
  436. dma_async_issue_pending(rspi->chan_tx);
  437. ret = wait_event_interruptible_timeout(rspi->wait,
  438. rspi->dma_callbacked, HZ);
  439. if (ret > 0 && rspi->dma_callbacked)
  440. ret = 0;
  441. else if (!ret)
  442. ret = -ETIMEDOUT;
  443. rspi_disable_irq(rspi, SPCR_SPTIE);
  444. enable_irq(rspi->irq);
  445. end:
  446. rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
  447. end_nomap:
  448. if (rspi->dma_width_16bit)
  449. kfree(buf);
  450. return ret;
  451. }
  452. static void rspi_receive_init(const struct rspi_data *rspi)
  453. {
  454. u8 spsr;
  455. spsr = rspi_read8(rspi, RSPI_SPSR);
  456. if (spsr & SPSR_SPRF)
  457. rspi_read16(rspi, RSPI_SPDR); /* dummy read */
  458. if (spsr & SPSR_OVRF)
  459. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
  460. RSPI_SPSR);
  461. }
  462. static int rspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg,
  463. struct spi_transfer *t)
  464. {
  465. int remain = t->len;
  466. u8 *data;
  467. rspi_receive_init(rspi);
  468. data = t->rx_buf;
  469. while (remain > 0) {
  470. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD,
  471. RSPI_SPCR);
  472. if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
  473. dev_err(&rspi->master->dev,
  474. "%s: tx empty timeout\n", __func__);
  475. return -ETIMEDOUT;
  476. }
  477. /* dummy write for generate clock */
  478. rspi_write16(rspi, DUMMY_DATA, RSPI_SPDR);
  479. if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
  480. dev_err(&rspi->master->dev,
  481. "%s: receive timeout\n", __func__);
  482. return -ETIMEDOUT;
  483. }
  484. /* SPDR allows 16 or 32-bit access only */
  485. *data = (u8)rspi_read16(rspi, RSPI_SPDR);
  486. data++;
  487. remain--;
  488. }
  489. return 0;
  490. }
  491. static void qspi_receive_init(const struct rspi_data *rspi)
  492. {
  493. u8 spsr;
  494. spsr = rspi_read8(rspi, RSPI_SPSR);
  495. if (spsr & SPSR_SPRF)
  496. rspi_read8(rspi, RSPI_SPDR); /* dummy read */
  497. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  498. rspi_write8(rspi, 0x00, QSPI_SPBFCR);
  499. }
  500. static int qspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg,
  501. struct spi_transfer *t)
  502. {
  503. int remain = t->len;
  504. u8 *data;
  505. qspi_receive_init(rspi);
  506. data = t->rx_buf;
  507. while (remain > 0) {
  508. if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
  509. dev_err(&rspi->master->dev,
  510. "%s: tx empty timeout\n", __func__);
  511. return -ETIMEDOUT;
  512. }
  513. /* dummy write for generate clock */
  514. rspi_write8(rspi, DUMMY_DATA, RSPI_SPDR);
  515. if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
  516. dev_err(&rspi->master->dev,
  517. "%s: receive timeout\n", __func__);
  518. return -ETIMEDOUT;
  519. }
  520. /* SPDR allows 8, 16 or 32-bit access */
  521. *data++ = rspi_read8(rspi, RSPI_SPDR);
  522. remain--;
  523. }
  524. return 0;
  525. }
  526. #define receive_pio(spi, mesg, t) spi->ops->receive_pio(spi, mesg, t)
  527. static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
  528. {
  529. struct scatterlist sg, sg_dummy;
  530. void *dummy = NULL, *rx_buf = NULL;
  531. struct dma_async_tx_descriptor *desc, *desc_dummy;
  532. unsigned len;
  533. int ret = 0;
  534. if (rspi->dma_width_16bit) {
  535. /*
  536. * If DMAC bus width is 16-bit, the driver allocates a dummy
  537. * buffer. And, finally the driver converts the DMAC data into
  538. * actual data as the following format:
  539. * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
  540. * actual data: 1st byte, 2nd byte ...
  541. */
  542. len = t->len * 2;
  543. rx_buf = kmalloc(len, GFP_KERNEL);
  544. if (!rx_buf)
  545. return -ENOMEM;
  546. } else {
  547. len = t->len;
  548. rx_buf = t->rx_buf;
  549. }
  550. /* prepare dummy transfer to generate SPI clocks */
  551. dummy = kzalloc(len, GFP_KERNEL);
  552. if (!dummy) {
  553. ret = -ENOMEM;
  554. goto end_nomap;
  555. }
  556. if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
  557. DMA_TO_DEVICE)) {
  558. ret = -EFAULT;
  559. goto end_nomap;
  560. }
  561. desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
  562. DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  563. if (!desc_dummy) {
  564. ret = -EIO;
  565. goto end_dummy_mapped;
  566. }
  567. /* prepare receive transfer */
  568. if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
  569. DMA_FROM_DEVICE)) {
  570. ret = -EFAULT;
  571. goto end_dummy_mapped;
  572. }
  573. desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
  574. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  575. if (!desc) {
  576. ret = -EIO;
  577. goto end;
  578. }
  579. rspi_receive_init(rspi);
  580. /*
  581. * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
  582. * called. So, this driver disables the IRQ while DMA transfer.
  583. */
  584. disable_irq(rspi->irq);
  585. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
  586. rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
  587. rspi->dma_callbacked = 0;
  588. desc->callback = rspi_dma_complete;
  589. desc->callback_param = rspi;
  590. dmaengine_submit(desc);
  591. dma_async_issue_pending(rspi->chan_rx);
  592. desc_dummy->callback = NULL; /* No callback */
  593. dmaengine_submit(desc_dummy);
  594. dma_async_issue_pending(rspi->chan_tx);
  595. ret = wait_event_interruptible_timeout(rspi->wait,
  596. rspi->dma_callbacked, HZ);
  597. if (ret > 0 && rspi->dma_callbacked)
  598. ret = 0;
  599. else if (!ret)
  600. ret = -ETIMEDOUT;
  601. rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
  602. enable_irq(rspi->irq);
  603. end:
  604. rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
  605. end_dummy_mapped:
  606. rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
  607. end_nomap:
  608. if (rspi->dma_width_16bit) {
  609. if (!ret)
  610. rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
  611. kfree(rx_buf);
  612. }
  613. kfree(dummy);
  614. return ret;
  615. }
  616. static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
  617. {
  618. if (t->tx_buf && rspi->chan_tx)
  619. return 1;
  620. /* If the module receives data by DMAC, it also needs TX DMAC */
  621. if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
  622. return 1;
  623. return 0;
  624. }
  625. static void rspi_work(struct work_struct *work)
  626. {
  627. struct rspi_data *rspi = container_of(work, struct rspi_data, ws);
  628. struct spi_message *mesg;
  629. struct spi_transfer *t;
  630. unsigned long flags;
  631. int ret;
  632. while (1) {
  633. spin_lock_irqsave(&rspi->lock, flags);
  634. if (list_empty(&rspi->queue)) {
  635. spin_unlock_irqrestore(&rspi->lock, flags);
  636. break;
  637. }
  638. mesg = list_entry(rspi->queue.next, struct spi_message, queue);
  639. list_del_init(&mesg->queue);
  640. spin_unlock_irqrestore(&rspi->lock, flags);
  641. rspi_assert_ssl(rspi);
  642. list_for_each_entry(t, &mesg->transfers, transfer_list) {
  643. if (t->tx_buf) {
  644. if (rspi_is_dma(rspi, t))
  645. ret = rspi_send_dma(rspi, t);
  646. else
  647. ret = send_pio(rspi, mesg, t);
  648. if (ret < 0)
  649. goto error;
  650. }
  651. if (t->rx_buf) {
  652. if (rspi_is_dma(rspi, t))
  653. ret = rspi_receive_dma(rspi, t);
  654. else
  655. ret = receive_pio(rspi, mesg, t);
  656. if (ret < 0)
  657. goto error;
  658. }
  659. mesg->actual_length += t->len;
  660. }
  661. rspi_negate_ssl(rspi);
  662. mesg->status = 0;
  663. mesg->complete(mesg->context);
  664. }
  665. return;
  666. error:
  667. mesg->status = ret;
  668. mesg->complete(mesg->context);
  669. }
  670. static int rspi_setup(struct spi_device *spi)
  671. {
  672. struct rspi_data *rspi = spi_master_get_devdata(spi->master);
  673. rspi->max_speed_hz = spi->max_speed_hz;
  674. rspi->spcmd = SPCMD_SSLKP;
  675. if (spi->mode & SPI_CPOL)
  676. rspi->spcmd |= SPCMD_CPOL;
  677. if (spi->mode & SPI_CPHA)
  678. rspi->spcmd |= SPCMD_CPHA;
  679. set_config_register(rspi, 8);
  680. return 0;
  681. }
  682. static int rspi_transfer(struct spi_device *spi, struct spi_message *mesg)
  683. {
  684. struct rspi_data *rspi = spi_master_get_devdata(spi->master);
  685. unsigned long flags;
  686. mesg->actual_length = 0;
  687. mesg->status = -EINPROGRESS;
  688. spin_lock_irqsave(&rspi->lock, flags);
  689. list_add_tail(&mesg->queue, &rspi->queue);
  690. schedule_work(&rspi->ws);
  691. spin_unlock_irqrestore(&rspi->lock, flags);
  692. return 0;
  693. }
  694. static void rspi_cleanup(struct spi_device *spi)
  695. {
  696. }
  697. static irqreturn_t rspi_irq(int irq, void *_sr)
  698. {
  699. struct rspi_data *rspi = _sr;
  700. u8 spsr;
  701. irqreturn_t ret = IRQ_NONE;
  702. u8 disable_irq = 0;
  703. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  704. if (spsr & SPSR_SPRF)
  705. disable_irq |= SPCR_SPRIE;
  706. if (spsr & SPSR_SPTEF)
  707. disable_irq |= SPCR_SPTIE;
  708. if (disable_irq) {
  709. ret = IRQ_HANDLED;
  710. rspi_disable_irq(rspi, disable_irq);
  711. wake_up(&rspi->wait);
  712. }
  713. return ret;
  714. }
  715. static int rspi_request_dma(struct rspi_data *rspi,
  716. struct platform_device *pdev)
  717. {
  718. const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
  719. struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  720. dma_cap_mask_t mask;
  721. struct dma_slave_config cfg;
  722. int ret;
  723. if (!res || !rspi_pd)
  724. return 0; /* The driver assumes no error. */
  725. rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
  726. /* If the module receives data by DMAC, it also needs TX DMAC */
  727. if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
  728. dma_cap_zero(mask);
  729. dma_cap_set(DMA_SLAVE, mask);
  730. rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
  731. (void *)rspi_pd->dma_rx_id);
  732. if (rspi->chan_rx) {
  733. cfg.slave_id = rspi_pd->dma_rx_id;
  734. cfg.direction = DMA_DEV_TO_MEM;
  735. cfg.dst_addr = 0;
  736. cfg.src_addr = res->start + RSPI_SPDR;
  737. ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
  738. if (!ret)
  739. dev_info(&pdev->dev, "Use DMA when rx.\n");
  740. else
  741. return ret;
  742. }
  743. }
  744. if (rspi_pd->dma_tx_id) {
  745. dma_cap_zero(mask);
  746. dma_cap_set(DMA_SLAVE, mask);
  747. rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
  748. (void *)rspi_pd->dma_tx_id);
  749. if (rspi->chan_tx) {
  750. cfg.slave_id = rspi_pd->dma_tx_id;
  751. cfg.direction = DMA_MEM_TO_DEV;
  752. cfg.dst_addr = res->start + RSPI_SPDR;
  753. cfg.src_addr = 0;
  754. ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
  755. if (!ret)
  756. dev_info(&pdev->dev, "Use DMA when tx\n");
  757. else
  758. return ret;
  759. }
  760. }
  761. return 0;
  762. }
  763. static void rspi_release_dma(struct rspi_data *rspi)
  764. {
  765. if (rspi->chan_tx)
  766. dma_release_channel(rspi->chan_tx);
  767. if (rspi->chan_rx)
  768. dma_release_channel(rspi->chan_rx);
  769. }
  770. static int rspi_remove(struct platform_device *pdev)
  771. {
  772. struct rspi_data *rspi = platform_get_drvdata(pdev);
  773. rspi_release_dma(rspi);
  774. clk_disable(rspi->clk);
  775. return 0;
  776. }
  777. static int rspi_probe(struct platform_device *pdev)
  778. {
  779. struct resource *res;
  780. struct spi_master *master;
  781. struct rspi_data *rspi;
  782. int ret, irq;
  783. char clk_name[16];
  784. const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
  785. const struct spi_ops *ops;
  786. const struct platform_device_id *id_entry = pdev->id_entry;
  787. ops = (struct spi_ops *)id_entry->driver_data;
  788. /* ops parameter check */
  789. if (!ops->set_config_register) {
  790. dev_err(&pdev->dev, "there is no set_config_register\n");
  791. return -ENODEV;
  792. }
  793. irq = platform_get_irq(pdev, 0);
  794. if (irq < 0) {
  795. dev_err(&pdev->dev, "platform_get_irq error\n");
  796. return -ENODEV;
  797. }
  798. master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
  799. if (master == NULL) {
  800. dev_err(&pdev->dev, "spi_alloc_master error.\n");
  801. return -ENOMEM;
  802. }
  803. rspi = spi_master_get_devdata(master);
  804. platform_set_drvdata(pdev, rspi);
  805. rspi->ops = ops;
  806. rspi->master = master;
  807. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  808. rspi->addr = devm_ioremap_resource(&pdev->dev, res);
  809. if (IS_ERR(rspi->addr)) {
  810. ret = PTR_ERR(rspi->addr);
  811. goto error1;
  812. }
  813. snprintf(clk_name, sizeof(clk_name), "%s%d", id_entry->name, pdev->id);
  814. rspi->clk = devm_clk_get(&pdev->dev, clk_name);
  815. if (IS_ERR(rspi->clk)) {
  816. dev_err(&pdev->dev, "cannot get clock\n");
  817. ret = PTR_ERR(rspi->clk);
  818. goto error1;
  819. }
  820. clk_enable(rspi->clk);
  821. INIT_LIST_HEAD(&rspi->queue);
  822. spin_lock_init(&rspi->lock);
  823. INIT_WORK(&rspi->ws, rspi_work);
  824. init_waitqueue_head(&rspi->wait);
  825. if (rspi_pd && rspi_pd->num_chipselect)
  826. master->num_chipselect = rspi_pd->num_chipselect;
  827. else
  828. master->num_chipselect = 2; /* default */
  829. master->bus_num = pdev->id;
  830. master->setup = rspi_setup;
  831. master->transfer = rspi_transfer;
  832. master->cleanup = rspi_cleanup;
  833. master->mode_bits = SPI_CPHA | SPI_CPOL;
  834. ret = devm_request_irq(&pdev->dev, irq, rspi_irq, 0,
  835. dev_name(&pdev->dev), rspi);
  836. if (ret < 0) {
  837. dev_err(&pdev->dev, "request_irq error\n");
  838. goto error2;
  839. }
  840. rspi->irq = irq;
  841. ret = rspi_request_dma(rspi, pdev);
  842. if (ret < 0) {
  843. dev_err(&pdev->dev, "rspi_request_dma failed.\n");
  844. goto error3;
  845. }
  846. ret = devm_spi_register_master(&pdev->dev, master);
  847. if (ret < 0) {
  848. dev_err(&pdev->dev, "spi_register_master error.\n");
  849. goto error3;
  850. }
  851. dev_info(&pdev->dev, "probed\n");
  852. return 0;
  853. error3:
  854. rspi_release_dma(rspi);
  855. error2:
  856. clk_disable(rspi->clk);
  857. error1:
  858. spi_master_put(master);
  859. return ret;
  860. }
  861. static struct spi_ops rspi_ops = {
  862. .set_config_register = rspi_set_config_register,
  863. .send_pio = rspi_send_pio,
  864. .receive_pio = rspi_receive_pio,
  865. };
  866. static struct spi_ops qspi_ops = {
  867. .set_config_register = qspi_set_config_register,
  868. .send_pio = qspi_send_pio,
  869. .receive_pio = qspi_receive_pio,
  870. };
  871. static struct platform_device_id spi_driver_ids[] = {
  872. { "rspi", (kernel_ulong_t)&rspi_ops },
  873. { "qspi", (kernel_ulong_t)&qspi_ops },
  874. {},
  875. };
  876. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  877. static struct platform_driver rspi_driver = {
  878. .probe = rspi_probe,
  879. .remove = rspi_remove,
  880. .id_table = spi_driver_ids,
  881. .driver = {
  882. .name = "renesas_spi",
  883. .owner = THIS_MODULE,
  884. },
  885. };
  886. module_platform_driver(rspi_driver);
  887. MODULE_DESCRIPTION("Renesas RSPI bus driver");
  888. MODULE_LICENSE("GPL v2");
  889. MODULE_AUTHOR("Yoshihiro Shimoda");
  890. MODULE_ALIAS("platform:rspi");