hw.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../efuse.h"
  31. #include "../base.h"
  32. #include "../regd.h"
  33. #include "../cam.h"
  34. #include "../ps.h"
  35. #include "../pci.h"
  36. #include "reg.h"
  37. #include "def.h"
  38. #include "phy.h"
  39. #include "../rtl8192c/fw_common.h"
  40. #include "dm.h"
  41. #include "led.h"
  42. #include "hw.h"
  43. #define LLT_CONFIG 5
  44. static void _rtl92ce_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  45. u8 set_bits, u8 clear_bits)
  46. {
  47. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  48. struct rtl_priv *rtlpriv = rtl_priv(hw);
  49. rtlpci->reg_bcn_ctrl_val |= set_bits;
  50. rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
  51. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
  52. }
  53. static void _rtl92ce_stop_tx_beacon(struct ieee80211_hw *hw)
  54. {
  55. struct rtl_priv *rtlpriv = rtl_priv(hw);
  56. u8 tmp1byte;
  57. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  58. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
  59. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  60. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  61. tmp1byte &= ~(BIT(0));
  62. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  63. }
  64. static void _rtl92ce_resume_tx_beacon(struct ieee80211_hw *hw)
  65. {
  66. struct rtl_priv *rtlpriv = rtl_priv(hw);
  67. u8 tmp1byte;
  68. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  69. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
  70. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  71. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  72. tmp1byte |= BIT(0);
  73. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  74. }
  75. static void _rtl92ce_enable_bcn_sub_func(struct ieee80211_hw *hw)
  76. {
  77. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(1));
  78. }
  79. static void _rtl92ce_disable_bcn_sub_func(struct ieee80211_hw *hw)
  80. {
  81. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(1), 0);
  82. }
  83. void rtl92ce_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  84. {
  85. struct rtl_priv *rtlpriv = rtl_priv(hw);
  86. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  87. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  88. switch (variable) {
  89. case HW_VAR_RCR:
  90. *((u32 *) (val)) = rtlpci->receive_config;
  91. break;
  92. case HW_VAR_RF_STATE:
  93. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  94. break;
  95. case HW_VAR_FWLPS_RF_ON:{
  96. enum rf_pwrstate rfState;
  97. u32 val_rcr;
  98. rtlpriv->cfg->ops->get_hw_reg(hw,
  99. HW_VAR_RF_STATE,
  100. (u8 *) (&rfState));
  101. if (rfState == ERFOFF) {
  102. *((bool *) (val)) = true;
  103. } else {
  104. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  105. val_rcr &= 0x00070000;
  106. if (val_rcr)
  107. *((bool *) (val)) = false;
  108. else
  109. *((bool *) (val)) = true;
  110. }
  111. break;
  112. }
  113. case HW_VAR_FW_PSMODE_STATUS:
  114. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  115. break;
  116. case HW_VAR_CORRECT_TSF:{
  117. u64 tsf;
  118. u32 *ptsf_low = (u32 *)&tsf;
  119. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  120. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  121. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  122. *((u64 *) (val)) = tsf;
  123. break;
  124. }
  125. default:
  126. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  127. "switch case not processed\n");
  128. break;
  129. }
  130. }
  131. void rtl92ce_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  132. {
  133. struct rtl_priv *rtlpriv = rtl_priv(hw);
  134. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  135. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  136. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  137. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  138. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  139. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  140. u8 idx;
  141. switch (variable) {
  142. case HW_VAR_ETHER_ADDR:{
  143. for (idx = 0; idx < ETH_ALEN; idx++) {
  144. rtl_write_byte(rtlpriv, (REG_MACID + idx),
  145. val[idx]);
  146. }
  147. break;
  148. }
  149. case HW_VAR_BASIC_RATE:{
  150. u16 rate_cfg = ((u16 *) val)[0];
  151. u8 rate_index = 0;
  152. rate_cfg &= 0x15f;
  153. rate_cfg |= 0x01;
  154. rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
  155. rtl_write_byte(rtlpriv, REG_RRSR + 1,
  156. (rate_cfg >> 8) & 0xff);
  157. while (rate_cfg > 0x1) {
  158. rate_cfg = (rate_cfg >> 1);
  159. rate_index++;
  160. }
  161. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
  162. rate_index);
  163. break;
  164. }
  165. case HW_VAR_BSSID:{
  166. for (idx = 0; idx < ETH_ALEN; idx++) {
  167. rtl_write_byte(rtlpriv, (REG_BSSID + idx),
  168. val[idx]);
  169. }
  170. break;
  171. }
  172. case HW_VAR_SIFS:{
  173. rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
  174. rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
  175. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  176. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  177. if (!mac->ht_enable)
  178. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  179. 0x0e0e);
  180. else
  181. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  182. *((u16 *) val));
  183. break;
  184. }
  185. case HW_VAR_SLOT_TIME:{
  186. u8 e_aci;
  187. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  188. "HW_VAR_SLOT_TIME %x\n", val[0]);
  189. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  190. for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
  191. rtlpriv->cfg->ops->set_hw_reg(hw,
  192. HW_VAR_AC_PARAM,
  193. &e_aci);
  194. }
  195. break;
  196. }
  197. case HW_VAR_ACK_PREAMBLE:{
  198. u8 reg_tmp;
  199. u8 short_preamble = (bool)*val;
  200. reg_tmp = (mac->cur_40_prime_sc) << 5;
  201. if (short_preamble)
  202. reg_tmp |= 0x80;
  203. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
  204. break;
  205. }
  206. case HW_VAR_AMPDU_MIN_SPACE:{
  207. u8 min_spacing_to_set;
  208. u8 sec_min_space;
  209. min_spacing_to_set = *val;
  210. if (min_spacing_to_set <= 7) {
  211. sec_min_space = 0;
  212. if (min_spacing_to_set < sec_min_space)
  213. min_spacing_to_set = sec_min_space;
  214. mac->min_space_cfg = ((mac->min_space_cfg &
  215. 0xf8) |
  216. min_spacing_to_set);
  217. *val = min_spacing_to_set;
  218. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  219. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  220. mac->min_space_cfg);
  221. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  222. mac->min_space_cfg);
  223. }
  224. break;
  225. }
  226. case HW_VAR_SHORTGI_DENSITY:{
  227. u8 density_to_set;
  228. density_to_set = *val;
  229. mac->min_space_cfg |= (density_to_set << 3);
  230. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  231. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  232. mac->min_space_cfg);
  233. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  234. mac->min_space_cfg);
  235. break;
  236. }
  237. case HW_VAR_AMPDU_FACTOR:{
  238. u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
  239. u8 regtoset_bt[4] = {0x31, 0x74, 0x42, 0x97};
  240. u8 factor_toset;
  241. u8 *p_regtoset = NULL;
  242. u8 index = 0;
  243. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  244. (rtlpcipriv->bt_coexist.bt_coexist_type ==
  245. BT_CSR_BC4))
  246. p_regtoset = regtoset_bt;
  247. else
  248. p_regtoset = regtoset_normal;
  249. factor_toset = *(val);
  250. if (factor_toset <= 3) {
  251. factor_toset = (1 << (factor_toset + 2));
  252. if (factor_toset > 0xf)
  253. factor_toset = 0xf;
  254. for (index = 0; index < 4; index++) {
  255. if ((p_regtoset[index] & 0xf0) >
  256. (factor_toset << 4))
  257. p_regtoset[index] =
  258. (p_regtoset[index] & 0x0f) |
  259. (factor_toset << 4);
  260. if ((p_regtoset[index] & 0x0f) >
  261. factor_toset)
  262. p_regtoset[index] =
  263. (p_regtoset[index] & 0xf0) |
  264. (factor_toset);
  265. rtl_write_byte(rtlpriv,
  266. (REG_AGGLEN_LMT + index),
  267. p_regtoset[index]);
  268. }
  269. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  270. "Set HW_VAR_AMPDU_FACTOR: %#x\n",
  271. factor_toset);
  272. }
  273. break;
  274. }
  275. case HW_VAR_AC_PARAM:{
  276. u8 e_aci = *(val);
  277. rtl92c_dm_init_edca_turbo(hw);
  278. if (rtlpci->acm_method != eAcmWay2_SW)
  279. rtlpriv->cfg->ops->set_hw_reg(hw,
  280. HW_VAR_ACM_CTRL,
  281. (&e_aci));
  282. break;
  283. }
  284. case HW_VAR_ACM_CTRL:{
  285. u8 e_aci = *(val);
  286. union aci_aifsn *p_aci_aifsn =
  287. (union aci_aifsn *)(&(mac->ac[0].aifs));
  288. u8 acm = p_aci_aifsn->f.acm;
  289. u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
  290. acm_ctrl =
  291. acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
  292. if (acm) {
  293. switch (e_aci) {
  294. case AC0_BE:
  295. acm_ctrl |= AcmHw_BeqEn;
  296. break;
  297. case AC2_VI:
  298. acm_ctrl |= AcmHw_ViqEn;
  299. break;
  300. case AC3_VO:
  301. acm_ctrl |= AcmHw_VoqEn;
  302. break;
  303. default:
  304. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  305. "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
  306. acm);
  307. break;
  308. }
  309. } else {
  310. switch (e_aci) {
  311. case AC0_BE:
  312. acm_ctrl &= (~AcmHw_BeqEn);
  313. break;
  314. case AC2_VI:
  315. acm_ctrl &= (~AcmHw_ViqEn);
  316. break;
  317. case AC3_VO:
  318. acm_ctrl &= (~AcmHw_BeqEn);
  319. break;
  320. default:
  321. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  322. "switch case not processed\n");
  323. break;
  324. }
  325. }
  326. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  327. "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
  328. acm_ctrl);
  329. rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
  330. break;
  331. }
  332. case HW_VAR_RCR:{
  333. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
  334. rtlpci->receive_config = ((u32 *) (val))[0];
  335. break;
  336. }
  337. case HW_VAR_RETRY_LIMIT:{
  338. u8 retry_limit = val[0];
  339. rtl_write_word(rtlpriv, REG_RL,
  340. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  341. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  342. break;
  343. }
  344. case HW_VAR_DUAL_TSF_RST:
  345. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  346. break;
  347. case HW_VAR_EFUSE_BYTES:
  348. rtlefuse->efuse_usedbytes = *((u16 *) val);
  349. break;
  350. case HW_VAR_EFUSE_USAGE:
  351. rtlefuse->efuse_usedpercentage = *val;
  352. break;
  353. case HW_VAR_IO_CMD:
  354. rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val));
  355. break;
  356. case HW_VAR_WPA_CONFIG:
  357. rtl_write_byte(rtlpriv, REG_SECCFG, *val);
  358. break;
  359. case HW_VAR_SET_RPWM:{
  360. u8 rpwm_val;
  361. rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
  362. udelay(1);
  363. if (rpwm_val & BIT(7)) {
  364. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val);
  365. } else {
  366. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
  367. *val | BIT(7));
  368. }
  369. break;
  370. }
  371. case HW_VAR_H2C_FW_PWRMODE:{
  372. u8 psmode = *val;
  373. if ((psmode != FW_PS_ACTIVE_MODE) &&
  374. (!IS_92C_SERIAL(rtlhal->version))) {
  375. rtl92c_dm_rf_saving(hw, true);
  376. }
  377. rtl92c_set_fw_pwrmode_cmd(hw, *val);
  378. break;
  379. }
  380. case HW_VAR_FW_PSMODE_STATUS:
  381. ppsc->fw_current_inpsmode = *((bool *) val);
  382. break;
  383. case HW_VAR_H2C_FW_JOINBSSRPT:{
  384. u8 mstatus = *val;
  385. u8 tmp_regcr, tmp_reg422;
  386. bool recover = false;
  387. if (mstatus == RT_MEDIA_CONNECT) {
  388. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID,
  389. NULL);
  390. tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
  391. rtl_write_byte(rtlpriv, REG_CR + 1,
  392. (tmp_regcr | BIT(0)));
  393. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3));
  394. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0);
  395. tmp_reg422 =
  396. rtl_read_byte(rtlpriv,
  397. REG_FWHW_TXQ_CTRL + 2);
  398. if (tmp_reg422 & BIT(6))
  399. recover = true;
  400. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  401. tmp_reg422 & (~BIT(6)));
  402. rtl92c_set_fw_rsvdpagepkt(hw, 0);
  403. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0);
  404. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4));
  405. if (recover) {
  406. rtl_write_byte(rtlpriv,
  407. REG_FWHW_TXQ_CTRL + 2,
  408. tmp_reg422);
  409. }
  410. rtl_write_byte(rtlpriv, REG_CR + 1,
  411. (tmp_regcr & ~(BIT(0))));
  412. }
  413. rtl92c_set_fw_joinbss_report_cmd(hw, *val);
  414. break;
  415. }
  416. case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
  417. rtl92c_set_p2p_ps_offload_cmd(hw, (*(u8 *)val));
  418. break;
  419. case HW_VAR_AID:{
  420. u16 u2btmp;
  421. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  422. u2btmp &= 0xC000;
  423. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
  424. mac->assoc_id));
  425. break;
  426. }
  427. case HW_VAR_CORRECT_TSF:{
  428. u8 btype_ibss = val[0];
  429. if (btype_ibss)
  430. _rtl92ce_stop_tx_beacon(hw);
  431. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(3));
  432. rtl_write_dword(rtlpriv, REG_TSFTR,
  433. (u32) (mac->tsf & 0xffffffff));
  434. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  435. (u32) ((mac->tsf >> 32) & 0xffffffff));
  436. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(3), 0);
  437. if (btype_ibss)
  438. _rtl92ce_resume_tx_beacon(hw);
  439. break;
  440. }
  441. case HW_VAR_FW_LPS_ACTION: {
  442. bool enter_fwlps = *((bool *)val);
  443. u8 rpwm_val, fw_pwrmode;
  444. bool fw_current_inps;
  445. if (enter_fwlps) {
  446. rpwm_val = 0x02; /* RF off */
  447. fw_current_inps = true;
  448. rtlpriv->cfg->ops->set_hw_reg(hw,
  449. HW_VAR_FW_PSMODE_STATUS,
  450. (u8 *)(&fw_current_inps));
  451. rtlpriv->cfg->ops->set_hw_reg(hw,
  452. HW_VAR_H2C_FW_PWRMODE,
  453. (u8 *)(&ppsc->fwctrl_psmode));
  454. rtlpriv->cfg->ops->set_hw_reg(hw,
  455. HW_VAR_SET_RPWM,
  456. (u8 *)(&rpwm_val));
  457. } else {
  458. rpwm_val = 0x0C; /* RF on */
  459. fw_pwrmode = FW_PS_ACTIVE_MODE;
  460. fw_current_inps = false;
  461. rtlpriv->cfg->ops->set_hw_reg(hw,
  462. HW_VAR_SET_RPWM,
  463. (u8 *)(&rpwm_val));
  464. rtlpriv->cfg->ops->set_hw_reg(hw,
  465. HW_VAR_H2C_FW_PWRMODE,
  466. (u8 *)(&fw_pwrmode));
  467. rtlpriv->cfg->ops->set_hw_reg(hw,
  468. HW_VAR_FW_PSMODE_STATUS,
  469. (u8 *)(&fw_current_inps));
  470. }
  471. break; }
  472. default:
  473. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  474. "switch case not processed\n");
  475. break;
  476. }
  477. }
  478. static bool _rtl92ce_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
  479. {
  480. struct rtl_priv *rtlpriv = rtl_priv(hw);
  481. bool status = true;
  482. long count = 0;
  483. u32 value = _LLT_INIT_ADDR(address) |
  484. _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
  485. rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
  486. do {
  487. value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
  488. if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
  489. break;
  490. if (count > POLLING_LLT_THRESHOLD) {
  491. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  492. "Failed to polling write LLT done at address %d!\n",
  493. address);
  494. status = false;
  495. break;
  496. }
  497. } while (++count);
  498. return status;
  499. }
  500. static bool _rtl92ce_llt_table_init(struct ieee80211_hw *hw)
  501. {
  502. struct rtl_priv *rtlpriv = rtl_priv(hw);
  503. unsigned short i;
  504. u8 txpktbuf_bndy;
  505. u8 maxPage;
  506. bool status;
  507. #if LLT_CONFIG == 1
  508. maxPage = 255;
  509. txpktbuf_bndy = 252;
  510. #elif LLT_CONFIG == 2
  511. maxPage = 127;
  512. txpktbuf_bndy = 124;
  513. #elif LLT_CONFIG == 3
  514. maxPage = 255;
  515. txpktbuf_bndy = 174;
  516. #elif LLT_CONFIG == 4
  517. maxPage = 255;
  518. txpktbuf_bndy = 246;
  519. #elif LLT_CONFIG == 5
  520. maxPage = 255;
  521. txpktbuf_bndy = 246;
  522. #endif
  523. #if LLT_CONFIG == 1
  524. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x1c);
  525. rtl_write_dword(rtlpriv, REG_RQPN, 0x80a71c1c);
  526. #elif LLT_CONFIG == 2
  527. rtl_write_dword(rtlpriv, REG_RQPN, 0x845B1010);
  528. #elif LLT_CONFIG == 3
  529. rtl_write_dword(rtlpriv, REG_RQPN, 0x84838484);
  530. #elif LLT_CONFIG == 4
  531. rtl_write_dword(rtlpriv, REG_RQPN, 0x80bd1c1c);
  532. #elif LLT_CONFIG == 5
  533. rtl_write_word(rtlpriv, REG_RQPN_NPQ, 0x0000);
  534. rtl_write_dword(rtlpriv, REG_RQPN, 0x80b01c29);
  535. #endif
  536. rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x27FF0000 | txpktbuf_bndy));
  537. rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
  538. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  539. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  540. rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
  541. rtl_write_byte(rtlpriv, REG_PBP, 0x11);
  542. rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
  543. for (i = 0; i < (txpktbuf_bndy - 1); i++) {
  544. status = _rtl92ce_llt_write(hw, i, i + 1);
  545. if (true != status)
  546. return status;
  547. }
  548. status = _rtl92ce_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
  549. if (true != status)
  550. return status;
  551. for (i = txpktbuf_bndy; i < maxPage; i++) {
  552. status = _rtl92ce_llt_write(hw, i, (i + 1));
  553. if (true != status)
  554. return status;
  555. }
  556. status = _rtl92ce_llt_write(hw, maxPage, txpktbuf_bndy);
  557. if (true != status)
  558. return status;
  559. return true;
  560. }
  561. static void _rtl92ce_gen_refresh_led_state(struct ieee80211_hw *hw)
  562. {
  563. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  564. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  565. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  566. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  567. if (rtlpci->up_first_time)
  568. return;
  569. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  570. rtl92ce_sw_led_on(hw, pLed0);
  571. else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
  572. rtl92ce_sw_led_on(hw, pLed0);
  573. else
  574. rtl92ce_sw_led_off(hw, pLed0);
  575. }
  576. static bool _rtl92ce_init_mac(struct ieee80211_hw *hw)
  577. {
  578. struct rtl_priv *rtlpriv = rtl_priv(hw);
  579. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  580. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  581. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  582. unsigned char bytetmp;
  583. unsigned short wordtmp;
  584. u16 retry;
  585. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
  586. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  587. u32 value32;
  588. value32 = rtl_read_dword(rtlpriv, REG_APS_FSMCO);
  589. value32 |= (SOP_ABG | SOP_AMB | XOP_BTCK);
  590. rtl_write_dword(rtlpriv, REG_APS_FSMCO, value32);
  591. }
  592. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  593. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
  594. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  595. u32 u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL);
  596. u4b_tmp &= (~0x00024800);
  597. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp);
  598. }
  599. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
  600. udelay(2);
  601. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
  602. udelay(2);
  603. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
  604. udelay(2);
  605. retry = 0;
  606. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n",
  607. rtl_read_dword(rtlpriv, 0xEC), bytetmp);
  608. while ((bytetmp & BIT(0)) && retry < 1000) {
  609. retry++;
  610. udelay(50);
  611. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
  612. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "reg0xec:%x:%x\n",
  613. rtl_read_dword(rtlpriv, 0xEC), bytetmp);
  614. udelay(50);
  615. }
  616. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
  617. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
  618. udelay(2);
  619. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  620. bytetmp = rtl_read_byte(rtlpriv, REG_AFE_XTAL_CTRL+2) & 0xfd;
  621. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL+2, bytetmp);
  622. }
  623. rtl_write_word(rtlpriv, REG_CR, 0x2ff);
  624. if (!_rtl92ce_llt_table_init(hw))
  625. return false;
  626. rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
  627. rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
  628. rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x27ff);
  629. wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
  630. wordtmp &= 0xf;
  631. wordtmp |= 0xF771;
  632. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
  633. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
  634. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  635. rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
  636. rtl_write_byte(rtlpriv, 0x4d0, 0x0);
  637. rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
  638. ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
  639. DMA_BIT_MASK(32));
  640. rtl_write_dword(rtlpriv, REG_MGQ_DESA,
  641. (u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
  642. DMA_BIT_MASK(32));
  643. rtl_write_dword(rtlpriv, REG_VOQ_DESA,
  644. (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
  645. rtl_write_dword(rtlpriv, REG_VIQ_DESA,
  646. (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
  647. rtl_write_dword(rtlpriv, REG_BEQ_DESA,
  648. (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
  649. rtl_write_dword(rtlpriv, REG_BKQ_DESA,
  650. (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
  651. rtl_write_dword(rtlpriv, REG_HQ_DESA,
  652. (u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
  653. DMA_BIT_MASK(32));
  654. rtl_write_dword(rtlpriv, REG_RX_DESA,
  655. (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
  656. DMA_BIT_MASK(32));
  657. if (IS_92C_SERIAL(rtlhal->version))
  658. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x77);
  659. else
  660. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x22);
  661. rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
  662. bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
  663. rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
  664. do {
  665. retry++;
  666. bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
  667. } while ((retry < 200) && (bytetmp & BIT(7)));
  668. _rtl92ce_gen_refresh_led_state(hw);
  669. rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
  670. return true;
  671. }
  672. static void _rtl92ce_hw_configure(struct ieee80211_hw *hw)
  673. {
  674. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  675. struct rtl_priv *rtlpriv = rtl_priv(hw);
  676. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  677. u8 reg_bw_opmode;
  678. u32 reg_prsr;
  679. reg_bw_opmode = BW_OPMODE_20MHZ;
  680. reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
  681. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
  682. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  683. rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr);
  684. rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
  685. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
  686. rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
  687. rtl_write_word(rtlpriv, REG_RL, 0x0707);
  688. rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
  689. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
  690. rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
  691. rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
  692. rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
  693. rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
  694. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  695. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4))
  696. rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x97427431);
  697. else
  698. rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
  699. rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
  700. rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
  701. rtlpci->reg_bcn_ctrl_val = 0x1f;
  702. rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
  703. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  704. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  705. rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
  706. rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
  707. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  708. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4)) {
  709. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  710. rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x0402);
  711. } else {
  712. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  713. rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
  714. }
  715. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  716. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4))
  717. rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666);
  718. else
  719. rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x086666);
  720. rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
  721. rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
  722. rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
  723. rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
  724. rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
  725. rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
  726. rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
  727. }
  728. static void _rtl92ce_enable_aspm_back_door(struct ieee80211_hw *hw)
  729. {
  730. struct rtl_priv *rtlpriv = rtl_priv(hw);
  731. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  732. rtl_write_byte(rtlpriv, 0x34b, 0x93);
  733. rtl_write_word(rtlpriv, 0x350, 0x870c);
  734. rtl_write_byte(rtlpriv, 0x352, 0x1);
  735. if (ppsc->support_backdoor)
  736. rtl_write_byte(rtlpriv, 0x349, 0x1b);
  737. else
  738. rtl_write_byte(rtlpriv, 0x349, 0x03);
  739. rtl_write_word(rtlpriv, 0x350, 0x2718);
  740. rtl_write_byte(rtlpriv, 0x352, 0x1);
  741. }
  742. void rtl92ce_enable_hw_security_config(struct ieee80211_hw *hw)
  743. {
  744. struct rtl_priv *rtlpriv = rtl_priv(hw);
  745. u8 sec_reg_value;
  746. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  747. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  748. rtlpriv->sec.pairwise_enc_algorithm,
  749. rtlpriv->sec.group_enc_algorithm);
  750. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  751. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  752. "not open hw encryption\n");
  753. return;
  754. }
  755. sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable;
  756. if (rtlpriv->sec.use_defaultkey) {
  757. sec_reg_value |= SCR_TxUseDK;
  758. sec_reg_value |= SCR_RxUseDK;
  759. }
  760. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  761. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  762. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  763. "The SECR-value %x\n", sec_reg_value);
  764. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  765. }
  766. int rtl92ce_hw_init(struct ieee80211_hw *hw)
  767. {
  768. struct rtl_priv *rtlpriv = rtl_priv(hw);
  769. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  770. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  771. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  772. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  773. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  774. bool rtstatus = true;
  775. bool is92c;
  776. int err;
  777. u8 tmp_u1b;
  778. unsigned long flags;
  779. rtlpci->being_init_adapter = true;
  780. /* Since this function can take a very long time (up to 350 ms)
  781. * and can be called with irqs disabled, reenable the irqs
  782. * to let the other devices continue being serviced.
  783. *
  784. * It is safe doing so since our own interrupts will only be enabled
  785. * in a subsequent step.
  786. */
  787. local_save_flags(flags);
  788. local_irq_enable();
  789. rtlpriv->intf_ops->disable_aspm(hw);
  790. rtstatus = _rtl92ce_init_mac(hw);
  791. if (!rtstatus) {
  792. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
  793. err = 1;
  794. goto exit;
  795. }
  796. err = rtl92c_download_fw(hw);
  797. if (err) {
  798. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  799. "Failed to download FW. Init HW without FW now..\n");
  800. err = 1;
  801. goto exit;
  802. }
  803. rtlhal->last_hmeboxnum = 0;
  804. rtl92c_phy_mac_config(hw);
  805. /* because last function modify RCR, so we update
  806. * rcr var here, or TP will unstable for receive_config
  807. * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
  808. * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
  809. rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
  810. rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
  811. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  812. rtl92c_phy_bb_config(hw);
  813. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  814. rtl92c_phy_rf_config(hw);
  815. if (IS_VENDOR_UMC_A_CUT(rtlhal->version) &&
  816. !IS_92C_SERIAL(rtlhal->version)) {
  817. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255);
  818. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00);
  819. } else if (IS_81xxC_VENDOR_UMC_B_CUT(rtlhal->version)) {
  820. rtl_set_rfreg(hw, RF90_PATH_A, 0x0C, MASKDWORD, 0x894AE);
  821. rtl_set_rfreg(hw, RF90_PATH_A, 0x0A, MASKDWORD, 0x1AF31);
  822. rtl_set_rfreg(hw, RF90_PATH_A, RF_IPA, MASKDWORD, 0x8F425);
  823. rtl_set_rfreg(hw, RF90_PATH_A, RF_SYN_G2, MASKDWORD, 0x4F200);
  824. rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK1, MASKDWORD, 0x44053);
  825. rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK2, MASKDWORD, 0x80201);
  826. }
  827. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  828. RF_CHNLBW, RFREG_OFFSET_MASK);
  829. rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
  830. RF_CHNLBW, RFREG_OFFSET_MASK);
  831. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  832. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  833. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);
  834. _rtl92ce_hw_configure(hw);
  835. rtl_cam_reset_all_entry(hw);
  836. rtl92ce_enable_hw_security_config(hw);
  837. ppsc->rfpwr_state = ERFON;
  838. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  839. _rtl92ce_enable_aspm_back_door(hw);
  840. rtlpriv->intf_ops->enable_aspm(hw);
  841. rtl8192ce_bt_hw_init(hw);
  842. if (ppsc->rfpwr_state == ERFON) {
  843. rtl92c_phy_set_rfpath_switch(hw, 1);
  844. if (rtlphy->iqk_initialized) {
  845. rtl92c_phy_iq_calibrate(hw, true);
  846. } else {
  847. rtl92c_phy_iq_calibrate(hw, false);
  848. rtlphy->iqk_initialized = true;
  849. }
  850. rtl92c_dm_check_txpower_tracking(hw);
  851. rtl92c_phy_lc_calibrate(hw);
  852. }
  853. is92c = IS_92C_SERIAL(rtlhal->version);
  854. tmp_u1b = efuse_read_1byte(hw, 0x1FA);
  855. if (!(tmp_u1b & BIT(0))) {
  856. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
  857. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path A\n");
  858. }
  859. if (!(tmp_u1b & BIT(1)) && is92c) {
  860. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0F, 0x05);
  861. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path B\n");
  862. }
  863. if (!(tmp_u1b & BIT(4))) {
  864. tmp_u1b = rtl_read_byte(rtlpriv, 0x16);
  865. tmp_u1b &= 0x0F;
  866. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80);
  867. udelay(10);
  868. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90);
  869. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "under 1.5V\n");
  870. }
  871. rtl92c_dm_init(hw);
  872. exit:
  873. local_irq_restore(flags);
  874. rtlpci->being_init_adapter = false;
  875. return err;
  876. }
  877. static enum version_8192c _rtl92ce_read_chip_version(struct ieee80211_hw *hw)
  878. {
  879. struct rtl_priv *rtlpriv = rtl_priv(hw);
  880. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  881. enum version_8192c version = VERSION_UNKNOWN;
  882. u32 value32;
  883. const char *versionid;
  884. value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
  885. if (value32 & TRP_VAUX_EN) {
  886. version = (value32 & TYPE_ID) ? VERSION_A_CHIP_92C :
  887. VERSION_A_CHIP_88C;
  888. } else {
  889. version = (enum version_8192c) (CHIP_VER_B |
  890. ((value32 & TYPE_ID) ? CHIP_92C_BITMASK : 0) |
  891. ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0));
  892. if ((!IS_CHIP_VENDOR_UMC(version)) && (value32 &
  893. CHIP_VER_RTL_MASK)) {
  894. version = (enum version_8192c)(version |
  895. ((((value32 & CHIP_VER_RTL_MASK) == BIT(12))
  896. ? CHIP_VENDOR_UMC_B_CUT : CHIP_UNKNOWN) |
  897. CHIP_VENDOR_UMC));
  898. }
  899. if (IS_92C_SERIAL(version)) {
  900. value32 = rtl_read_dword(rtlpriv, REG_HPON_FSM);
  901. version = (enum version_8192c)(version |
  902. ((CHIP_BONDING_IDENTIFIER(value32)
  903. == CHIP_BONDING_92C_1T2R) ?
  904. RF_TYPE_1T2R : 0));
  905. }
  906. }
  907. switch (version) {
  908. case VERSION_B_CHIP_92C:
  909. versionid = "B_CHIP_92C";
  910. break;
  911. case VERSION_B_CHIP_88C:
  912. versionid = "B_CHIP_88C";
  913. break;
  914. case VERSION_A_CHIP_92C:
  915. versionid = "A_CHIP_92C";
  916. break;
  917. case VERSION_A_CHIP_88C:
  918. versionid = "A_CHIP_88C";
  919. break;
  920. case VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT:
  921. versionid = "A_CUT_92C_1T2R";
  922. break;
  923. case VERSION_NORMAL_UMC_CHIP_92C_A_CUT:
  924. versionid = "A_CUT_92C";
  925. break;
  926. case VERSION_NORMAL_UMC_CHIP_88C_A_CUT:
  927. versionid = "A_CUT_88C";
  928. break;
  929. case VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT:
  930. versionid = "B_CUT_92C_1T2R";
  931. break;
  932. case VERSION_NORMAL_UMC_CHIP_92C_B_CUT:
  933. versionid = "B_CUT_92C";
  934. break;
  935. case VERSION_NORMAL_UMC_CHIP_88C_B_CUT:
  936. versionid = "B_CUT_88C";
  937. break;
  938. default:
  939. versionid = "Unknown. Bug?";
  940. break;
  941. }
  942. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  943. "Chip Version ID: %s\n", versionid);
  944. switch (version & 0x3) {
  945. case CHIP_88C:
  946. rtlphy->rf_type = RF_1T1R;
  947. break;
  948. case CHIP_92C:
  949. rtlphy->rf_type = RF_2T2R;
  950. break;
  951. case CHIP_92C_1T2R:
  952. rtlphy->rf_type = RF_1T2R;
  953. break;
  954. default:
  955. rtlphy->rf_type = RF_1T1R;
  956. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  957. "ERROR RF_Type is set!!\n");
  958. break;
  959. }
  960. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Chip RF Type: %s\n",
  961. rtlphy->rf_type == RF_2T2R ? "RF_2T2R" : "RF_1T1R");
  962. return version;
  963. }
  964. static int _rtl92ce_set_media_status(struct ieee80211_hw *hw,
  965. enum nl80211_iftype type)
  966. {
  967. struct rtl_priv *rtlpriv = rtl_priv(hw);
  968. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  969. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  970. bt_msr &= 0xfc;
  971. if (type == NL80211_IFTYPE_UNSPECIFIED ||
  972. type == NL80211_IFTYPE_STATION) {
  973. _rtl92ce_stop_tx_beacon(hw);
  974. _rtl92ce_enable_bcn_sub_func(hw);
  975. } else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP ||
  976. type == NL80211_IFTYPE_MESH_POINT) {
  977. _rtl92ce_resume_tx_beacon(hw);
  978. _rtl92ce_disable_bcn_sub_func(hw);
  979. } else {
  980. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  981. "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
  982. type);
  983. }
  984. switch (type) {
  985. case NL80211_IFTYPE_UNSPECIFIED:
  986. bt_msr |= MSR_NOLINK;
  987. ledaction = LED_CTL_LINK;
  988. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  989. "Set Network type to NO LINK!\n");
  990. break;
  991. case NL80211_IFTYPE_ADHOC:
  992. bt_msr |= MSR_ADHOC;
  993. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  994. "Set Network type to Ad Hoc!\n");
  995. break;
  996. case NL80211_IFTYPE_STATION:
  997. bt_msr |= MSR_INFRA;
  998. ledaction = LED_CTL_LINK;
  999. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1000. "Set Network type to STA!\n");
  1001. break;
  1002. case NL80211_IFTYPE_AP:
  1003. bt_msr |= MSR_AP;
  1004. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1005. "Set Network type to AP!\n");
  1006. break;
  1007. case NL80211_IFTYPE_MESH_POINT:
  1008. bt_msr |= MSR_ADHOC;
  1009. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1010. "Set Network type to Mesh Point!\n");
  1011. break;
  1012. default:
  1013. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1014. "Network type %d not supported!\n", type);
  1015. return 1;
  1016. break;
  1017. }
  1018. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  1019. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1020. if ((bt_msr & 0xfc) == MSR_AP)
  1021. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1022. else
  1023. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1024. return 0;
  1025. }
  1026. void rtl92ce_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1027. {
  1028. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1029. u32 reg_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  1030. if (rtlpriv->psc.rfpwr_state != ERFON)
  1031. return;
  1032. if (check_bssid) {
  1033. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1034. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1035. (u8 *) (&reg_rcr));
  1036. _rtl92ce_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1037. } else if (!check_bssid) {
  1038. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1039. _rtl92ce_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1040. rtlpriv->cfg->ops->set_hw_reg(hw,
  1041. HW_VAR_RCR, (u8 *) (&reg_rcr));
  1042. }
  1043. }
  1044. int rtl92ce_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  1045. {
  1046. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1047. if (_rtl92ce_set_media_status(hw, type))
  1048. return -EOPNOTSUPP;
  1049. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  1050. if (type != NL80211_IFTYPE_AP &&
  1051. type != NL80211_IFTYPE_MESH_POINT)
  1052. rtl92ce_set_check_bssid(hw, true);
  1053. } else {
  1054. rtl92ce_set_check_bssid(hw, false);
  1055. }
  1056. return 0;
  1057. }
  1058. /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
  1059. void rtl92ce_set_qos(struct ieee80211_hw *hw, int aci)
  1060. {
  1061. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1062. rtl92c_dm_init_edca_turbo(hw);
  1063. switch (aci) {
  1064. case AC1_BK:
  1065. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
  1066. break;
  1067. case AC0_BE:
  1068. /* rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, u4b_ac_param); */
  1069. break;
  1070. case AC2_VI:
  1071. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
  1072. break;
  1073. case AC3_VO:
  1074. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
  1075. break;
  1076. default:
  1077. RT_ASSERT(false, "invalid aci: %d !\n", aci);
  1078. break;
  1079. }
  1080. }
  1081. void rtl92ce_enable_interrupt(struct ieee80211_hw *hw)
  1082. {
  1083. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1084. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1085. rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
  1086. rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
  1087. }
  1088. void rtl92ce_disable_interrupt(struct ieee80211_hw *hw)
  1089. {
  1090. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1091. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1092. rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
  1093. rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
  1094. synchronize_irq(rtlpci->pdev->irq);
  1095. }
  1096. static void _rtl92ce_poweroff_adapter(struct ieee80211_hw *hw)
  1097. {
  1098. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1099. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1100. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1101. u8 u1b_tmp;
  1102. u32 u4b_tmp;
  1103. rtlpriv->intf_ops->enable_aspm(hw);
  1104. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  1105. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
  1106. rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
  1107. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
  1108. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  1109. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
  1110. if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7))
  1111. rtl92c_firmware_selfreset(hw);
  1112. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
  1113. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
  1114. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
  1115. u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
  1116. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  1117. ((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) ||
  1118. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8))) {
  1119. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00F30000 |
  1120. (u1b_tmp << 8));
  1121. } else {
  1122. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00FF0000 |
  1123. (u1b_tmp << 8));
  1124. }
  1125. rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
  1126. rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
  1127. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
  1128. if (!IS_81xxC_VENDOR_UMC_B_CUT(rtlhal->version))
  1129. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
  1130. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  1131. u4b_tmp = rtl_read_dword(rtlpriv, REG_AFE_XTAL_CTRL);
  1132. u4b_tmp |= 0x03824800;
  1133. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, u4b_tmp);
  1134. } else {
  1135. rtl_write_dword(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
  1136. }
  1137. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
  1138. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
  1139. }
  1140. void rtl92ce_card_disable(struct ieee80211_hw *hw)
  1141. {
  1142. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1143. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1144. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1145. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1146. enum nl80211_iftype opmode;
  1147. mac->link_state = MAC80211_NOLINK;
  1148. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1149. _rtl92ce_set_media_status(hw, opmode);
  1150. if (rtlpci->driver_is_goingto_unload ||
  1151. ppsc->rfoff_reason > RF_CHANGE_BY_PS)
  1152. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1153. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1154. _rtl92ce_poweroff_adapter(hw);
  1155. /* after power off we should do iqk again */
  1156. rtlpriv->phy.iqk_initialized = false;
  1157. }
  1158. void rtl92ce_interrupt_recognized(struct ieee80211_hw *hw,
  1159. u32 *p_inta, u32 *p_intb)
  1160. {
  1161. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1162. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1163. *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
  1164. rtl_write_dword(rtlpriv, ISR, *p_inta);
  1165. /*
  1166. * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
  1167. * rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
  1168. */
  1169. }
  1170. void rtl92ce_set_beacon_related_registers(struct ieee80211_hw *hw)
  1171. {
  1172. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1173. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1174. u16 bcn_interval, atim_window;
  1175. bcn_interval = mac->beacon_interval;
  1176. atim_window = 2; /*FIX MERGE */
  1177. rtl92ce_disable_interrupt(hw);
  1178. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1179. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1180. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
  1181. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
  1182. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
  1183. rtl_write_byte(rtlpriv, 0x606, 0x30);
  1184. rtl92ce_enable_interrupt(hw);
  1185. }
  1186. void rtl92ce_set_beacon_interval(struct ieee80211_hw *hw)
  1187. {
  1188. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1189. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1190. u16 bcn_interval = mac->beacon_interval;
  1191. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
  1192. "beacon_interval:%d\n", bcn_interval);
  1193. rtl92ce_disable_interrupt(hw);
  1194. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1195. rtl92ce_enable_interrupt(hw);
  1196. }
  1197. void rtl92ce_update_interrupt_mask(struct ieee80211_hw *hw,
  1198. u32 add_msr, u32 rm_msr)
  1199. {
  1200. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1201. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1202. RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
  1203. add_msr, rm_msr);
  1204. if (add_msr)
  1205. rtlpci->irq_mask[0] |= add_msr;
  1206. if (rm_msr)
  1207. rtlpci->irq_mask[0] &= (~rm_msr);
  1208. rtl92ce_disable_interrupt(hw);
  1209. rtl92ce_enable_interrupt(hw);
  1210. }
  1211. static void _rtl92ce_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  1212. bool autoload_fail,
  1213. u8 *hwinfo)
  1214. {
  1215. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1216. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1217. u8 rf_path, index, tempval;
  1218. u16 i;
  1219. for (rf_path = 0; rf_path < 2; rf_path++) {
  1220. for (i = 0; i < 3; i++) {
  1221. if (!autoload_fail) {
  1222. rtlefuse->
  1223. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1224. hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i];
  1225. rtlefuse->
  1226. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1227. hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 +
  1228. i];
  1229. } else {
  1230. rtlefuse->
  1231. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  1232. EEPROM_DEFAULT_TXPOWERLEVEL;
  1233. rtlefuse->
  1234. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  1235. EEPROM_DEFAULT_TXPOWERLEVEL;
  1236. }
  1237. }
  1238. }
  1239. for (i = 0; i < 3; i++) {
  1240. if (!autoload_fail)
  1241. tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i];
  1242. else
  1243. tempval = EEPROM_DEFAULT_HT40_2SDIFF;
  1244. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_A][i] =
  1245. (tempval & 0xf);
  1246. rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_B][i] =
  1247. ((tempval & 0xf0) >> 4);
  1248. }
  1249. for (rf_path = 0; rf_path < 2; rf_path++)
  1250. for (i = 0; i < 3; i++)
  1251. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1252. "RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
  1253. rf_path, i,
  1254. rtlefuse->
  1255. eeprom_chnlarea_txpwr_cck[rf_path][i]);
  1256. for (rf_path = 0; rf_path < 2; rf_path++)
  1257. for (i = 0; i < 3; i++)
  1258. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1259. "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  1260. rf_path, i,
  1261. rtlefuse->
  1262. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]);
  1263. for (rf_path = 0; rf_path < 2; rf_path++)
  1264. for (i = 0; i < 3; i++)
  1265. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1266. "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  1267. rf_path, i,
  1268. rtlefuse->
  1269. eprom_chnl_txpwr_ht40_2sdf[rf_path][i]);
  1270. for (rf_path = 0; rf_path < 2; rf_path++) {
  1271. for (i = 0; i < 14; i++) {
  1272. index = _rtl92c_get_chnl_group((u8) i);
  1273. rtlefuse->txpwrlevel_cck[rf_path][i] =
  1274. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index];
  1275. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1276. rtlefuse->
  1277. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index];
  1278. if ((rtlefuse->
  1279. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] -
  1280. rtlefuse->
  1281. eprom_chnl_txpwr_ht40_2sdf[rf_path][index])
  1282. > 0) {
  1283. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  1284. rtlefuse->
  1285. eeprom_chnlarea_txpwr_ht40_1s[rf_path]
  1286. [index] -
  1287. rtlefuse->
  1288. eprom_chnl_txpwr_ht40_2sdf[rf_path]
  1289. [index];
  1290. } else {
  1291. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0;
  1292. }
  1293. }
  1294. for (i = 0; i < 14; i++) {
  1295. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1296. "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
  1297. rf_path, i,
  1298. rtlefuse->txpwrlevel_cck[rf_path][i],
  1299. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  1300. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
  1301. }
  1302. }
  1303. for (i = 0; i < 3; i++) {
  1304. if (!autoload_fail) {
  1305. rtlefuse->eeprom_pwrlimit_ht40[i] =
  1306. hwinfo[EEPROM_TXPWR_GROUP + i];
  1307. rtlefuse->eeprom_pwrlimit_ht20[i] =
  1308. hwinfo[EEPROM_TXPWR_GROUP + 3 + i];
  1309. } else {
  1310. rtlefuse->eeprom_pwrlimit_ht40[i] = 0;
  1311. rtlefuse->eeprom_pwrlimit_ht20[i] = 0;
  1312. }
  1313. }
  1314. for (rf_path = 0; rf_path < 2; rf_path++) {
  1315. for (i = 0; i < 14; i++) {
  1316. index = _rtl92c_get_chnl_group((u8) i);
  1317. if (rf_path == RF90_PATH_A) {
  1318. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1319. (rtlefuse->eeprom_pwrlimit_ht20[index]
  1320. & 0xf);
  1321. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1322. (rtlefuse->eeprom_pwrlimit_ht40[index]
  1323. & 0xf);
  1324. } else if (rf_path == RF90_PATH_B) {
  1325. rtlefuse->pwrgroup_ht20[rf_path][i] =
  1326. ((rtlefuse->eeprom_pwrlimit_ht20[index]
  1327. & 0xf0) >> 4);
  1328. rtlefuse->pwrgroup_ht40[rf_path][i] =
  1329. ((rtlefuse->eeprom_pwrlimit_ht40[index]
  1330. & 0xf0) >> 4);
  1331. }
  1332. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1333. "RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  1334. rf_path, i,
  1335. rtlefuse->pwrgroup_ht20[rf_path][i]);
  1336. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1337. "RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  1338. rf_path, i,
  1339. rtlefuse->pwrgroup_ht40[rf_path][i]);
  1340. }
  1341. }
  1342. for (i = 0; i < 14; i++) {
  1343. index = _rtl92c_get_chnl_group((u8) i);
  1344. if (!autoload_fail)
  1345. tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index];
  1346. else
  1347. tempval = EEPROM_DEFAULT_HT20_DIFF;
  1348. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  1349. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  1350. ((tempval >> 4) & 0xF);
  1351. if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3))
  1352. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0;
  1353. if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3))
  1354. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0;
  1355. index = _rtl92c_get_chnl_group((u8) i);
  1356. if (!autoload_fail)
  1357. tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index];
  1358. else
  1359. tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
  1360. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF);
  1361. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  1362. ((tempval >> 4) & 0xF);
  1363. }
  1364. rtlefuse->legacy_ht_txpowerdiff =
  1365. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7];
  1366. for (i = 0; i < 14; i++)
  1367. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1368. "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
  1369. i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
  1370. for (i = 0; i < 14; i++)
  1371. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1372. "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
  1373. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
  1374. for (i = 0; i < 14; i++)
  1375. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1376. "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
  1377. i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
  1378. for (i = 0; i < 14; i++)
  1379. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1380. "RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
  1381. i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
  1382. if (!autoload_fail)
  1383. rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7);
  1384. else
  1385. rtlefuse->eeprom_regulatory = 0;
  1386. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1387. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  1388. if (!autoload_fail) {
  1389. rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A];
  1390. rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B];
  1391. } else {
  1392. rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI;
  1393. rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI;
  1394. }
  1395. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  1396. rtlefuse->eeprom_tssi[RF90_PATH_A],
  1397. rtlefuse->eeprom_tssi[RF90_PATH_B]);
  1398. if (!autoload_fail)
  1399. tempval = hwinfo[EEPROM_THERMAL_METER];
  1400. else
  1401. tempval = EEPROM_DEFAULT_THERMALMETER;
  1402. rtlefuse->eeprom_thermalmeter = (tempval & 0x1f);
  1403. if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail)
  1404. rtlefuse->apk_thermalmeterignore = true;
  1405. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  1406. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1407. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  1408. }
  1409. static void _rtl92ce_read_adapter_info(struct ieee80211_hw *hw)
  1410. {
  1411. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1412. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1413. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1414. u16 i, usvalue;
  1415. u8 hwinfo[HWSET_MAX_SIZE];
  1416. u16 eeprom_id;
  1417. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  1418. rtl_efuse_shadow_map_update(hw);
  1419. memcpy((void *)hwinfo,
  1420. (void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  1421. HWSET_MAX_SIZE);
  1422. } else if (rtlefuse->epromtype == EEPROM_93C46) {
  1423. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1424. "RTL819X Not boot from eeprom, check it !!");
  1425. }
  1426. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
  1427. hwinfo, HWSET_MAX_SIZE);
  1428. eeprom_id = *((u16 *)&hwinfo[0]);
  1429. if (eeprom_id != RTL8190_EEPROM_ID) {
  1430. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1431. "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
  1432. rtlefuse->autoload_failflag = true;
  1433. } else {
  1434. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1435. rtlefuse->autoload_failflag = false;
  1436. }
  1437. if (rtlefuse->autoload_failflag)
  1438. return;
  1439. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  1440. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  1441. rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
  1442. rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
  1443. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1444. "EEPROMId = 0x%4x\n", eeprom_id);
  1445. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1446. "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
  1447. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1448. "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
  1449. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1450. "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
  1451. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1452. "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
  1453. for (i = 0; i < 6; i += 2) {
  1454. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  1455. *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
  1456. }
  1457. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
  1458. _rtl92ce_read_txpower_info_from_hwpg(hw,
  1459. rtlefuse->autoload_failflag,
  1460. hwinfo);
  1461. rtl8192ce_read_bt_coexist_info_from_hwpg(hw,
  1462. rtlefuse->autoload_failflag,
  1463. hwinfo);
  1464. rtlefuse->eeprom_channelplan = *&hwinfo[EEPROM_CHANNELPLAN];
  1465. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  1466. rtlefuse->txpwr_fromeprom = true;
  1467. rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMER_ID];
  1468. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1469. "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
  1470. /* set channel paln to world wide 13 */
  1471. rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
  1472. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  1473. switch (rtlefuse->eeprom_oemid) {
  1474. case EEPROM_CID_DEFAULT:
  1475. if (rtlefuse->eeprom_did == 0x8176) {
  1476. if ((rtlefuse->eeprom_svid == 0x103C &&
  1477. rtlefuse->eeprom_smid == 0x1629))
  1478. rtlhal->oem_id = RT_CID_819x_HP;
  1479. else
  1480. rtlhal->oem_id = RT_CID_DEFAULT;
  1481. } else {
  1482. rtlhal->oem_id = RT_CID_DEFAULT;
  1483. }
  1484. break;
  1485. case EEPROM_CID_TOSHIBA:
  1486. rtlhal->oem_id = RT_CID_TOSHIBA;
  1487. break;
  1488. case EEPROM_CID_QMI:
  1489. rtlhal->oem_id = RT_CID_819x_QMI;
  1490. break;
  1491. case EEPROM_CID_WHQL:
  1492. default:
  1493. rtlhal->oem_id = RT_CID_DEFAULT;
  1494. break;
  1495. }
  1496. }
  1497. }
  1498. static void _rtl92ce_hal_customized_behavior(struct ieee80211_hw *hw)
  1499. {
  1500. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1501. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1502. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1503. switch (rtlhal->oem_id) {
  1504. case RT_CID_819x_HP:
  1505. pcipriv->ledctl.led_opendrain = true;
  1506. break;
  1507. case RT_CID_819x_Lenovo:
  1508. case RT_CID_DEFAULT:
  1509. case RT_CID_TOSHIBA:
  1510. case RT_CID_CCX:
  1511. case RT_CID_819x_Acer:
  1512. case RT_CID_WHQL:
  1513. default:
  1514. break;
  1515. }
  1516. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1517. "RT Customized ID: 0x%02X\n", rtlhal->oem_id);
  1518. }
  1519. void rtl92ce_read_eeprom_info(struct ieee80211_hw *hw)
  1520. {
  1521. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1522. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1523. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1524. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1525. u8 tmp_u1b;
  1526. rtlhal->version = _rtl92ce_read_chip_version(hw);
  1527. if (get_rf_type(rtlphy) == RF_1T1R)
  1528. rtlpriv->dm.rfpath_rxenable[0] = true;
  1529. else
  1530. rtlpriv->dm.rfpath_rxenable[0] =
  1531. rtlpriv->dm.rfpath_rxenable[1] = true;
  1532. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
  1533. rtlhal->version);
  1534. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  1535. if (tmp_u1b & BIT(4)) {
  1536. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
  1537. rtlefuse->epromtype = EEPROM_93C46;
  1538. } else {
  1539. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
  1540. rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
  1541. }
  1542. if (tmp_u1b & BIT(5)) {
  1543. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1544. rtlefuse->autoload_failflag = false;
  1545. _rtl92ce_read_adapter_info(hw);
  1546. } else {
  1547. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
  1548. }
  1549. _rtl92ce_hal_customized_behavior(hw);
  1550. }
  1551. static void rtl92ce_update_hal_rate_table(struct ieee80211_hw *hw,
  1552. struct ieee80211_sta *sta)
  1553. {
  1554. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1555. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1556. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1557. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1558. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1559. u32 ratr_value;
  1560. u8 ratr_index = 0;
  1561. u8 nmode = mac->ht_enable;
  1562. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1563. u16 shortgi_rate;
  1564. u32 tmp_ratr_value;
  1565. u8 curtxbw_40mhz = mac->bw_40;
  1566. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1567. 1 : 0;
  1568. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1569. 1 : 0;
  1570. enum wireless_mode wirelessmode = mac->mode;
  1571. if (rtlhal->current_bandtype == BAND_ON_5G)
  1572. ratr_value = sta->supp_rates[1] << 4;
  1573. else
  1574. ratr_value = sta->supp_rates[0];
  1575. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1576. ratr_value = 0xfff;
  1577. ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1578. sta->ht_cap.mcs.rx_mask[0] << 12);
  1579. switch (wirelessmode) {
  1580. case WIRELESS_MODE_B:
  1581. if (ratr_value & 0x0000000c)
  1582. ratr_value &= 0x0000000d;
  1583. else
  1584. ratr_value &= 0x0000000f;
  1585. break;
  1586. case WIRELESS_MODE_G:
  1587. ratr_value &= 0x00000FF5;
  1588. break;
  1589. case WIRELESS_MODE_N_24G:
  1590. case WIRELESS_MODE_N_5G:
  1591. nmode = 1;
  1592. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1593. ratr_value &= 0x0007F005;
  1594. } else {
  1595. u32 ratr_mask;
  1596. if (get_rf_type(rtlphy) == RF_1T2R ||
  1597. get_rf_type(rtlphy) == RF_1T1R)
  1598. ratr_mask = 0x000ff005;
  1599. else
  1600. ratr_mask = 0x0f0ff005;
  1601. ratr_value &= ratr_mask;
  1602. }
  1603. break;
  1604. default:
  1605. if (rtlphy->rf_type == RF_1T2R)
  1606. ratr_value &= 0x000ff0ff;
  1607. else
  1608. ratr_value &= 0x0f0ff0ff;
  1609. break;
  1610. }
  1611. if ((rtlpcipriv->bt_coexist.bt_coexistence) &&
  1612. (rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) &&
  1613. (rtlpcipriv->bt_coexist.bt_cur_state) &&
  1614. (rtlpcipriv->bt_coexist.bt_ant_isolation) &&
  1615. ((rtlpcipriv->bt_coexist.bt_service == BT_SCO) ||
  1616. (rtlpcipriv->bt_coexist.bt_service == BT_BUSY)))
  1617. ratr_value &= 0x0fffcfc0;
  1618. else
  1619. ratr_value &= 0x0FFFFFFF;
  1620. if (nmode && ((curtxbw_40mhz &&
  1621. curshortgi_40mhz) || (!curtxbw_40mhz &&
  1622. curshortgi_20mhz))) {
  1623. ratr_value |= 0x10000000;
  1624. tmp_ratr_value = (ratr_value >> 12);
  1625. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1626. if ((1 << shortgi_rate) & tmp_ratr_value)
  1627. break;
  1628. }
  1629. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1630. (shortgi_rate << 4) | (shortgi_rate);
  1631. }
  1632. rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
  1633. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
  1634. rtl_read_dword(rtlpriv, REG_ARFR0));
  1635. }
  1636. static void rtl92ce_update_hal_rate_mask(struct ieee80211_hw *hw,
  1637. struct ieee80211_sta *sta, u8 rssi_level)
  1638. {
  1639. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1640. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1641. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1642. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1643. struct rtl_sta_info *sta_entry = NULL;
  1644. u32 ratr_bitmap;
  1645. u8 ratr_index;
  1646. u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
  1647. u8 curshortgi_40mhz = curtxbw_40mhz &&
  1648. (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1649. 1 : 0;
  1650. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1651. 1 : 0;
  1652. enum wireless_mode wirelessmode = 0;
  1653. bool shortgi = false;
  1654. u8 rate_mask[5];
  1655. u8 macid = 0;
  1656. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1657. sta_entry = (struct rtl_sta_info *) sta->drv_priv;
  1658. wirelessmode = sta_entry->wireless_mode;
  1659. if (mac->opmode == NL80211_IFTYPE_STATION ||
  1660. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1661. curtxbw_40mhz = mac->bw_40;
  1662. else if (mac->opmode == NL80211_IFTYPE_AP ||
  1663. mac->opmode == NL80211_IFTYPE_ADHOC)
  1664. macid = sta->aid + 1;
  1665. if (rtlhal->current_bandtype == BAND_ON_5G)
  1666. ratr_bitmap = sta->supp_rates[1] << 4;
  1667. else
  1668. ratr_bitmap = sta->supp_rates[0];
  1669. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1670. ratr_bitmap = 0xfff;
  1671. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1672. sta->ht_cap.mcs.rx_mask[0] << 12);
  1673. switch (wirelessmode) {
  1674. case WIRELESS_MODE_B:
  1675. ratr_index = RATR_INX_WIRELESS_B;
  1676. if (ratr_bitmap & 0x0000000c)
  1677. ratr_bitmap &= 0x0000000d;
  1678. else
  1679. ratr_bitmap &= 0x0000000f;
  1680. break;
  1681. case WIRELESS_MODE_G:
  1682. ratr_index = RATR_INX_WIRELESS_GB;
  1683. if (rssi_level == 1)
  1684. ratr_bitmap &= 0x00000f00;
  1685. else if (rssi_level == 2)
  1686. ratr_bitmap &= 0x00000ff0;
  1687. else
  1688. ratr_bitmap &= 0x00000ff5;
  1689. break;
  1690. case WIRELESS_MODE_A:
  1691. ratr_index = RATR_INX_WIRELESS_A;
  1692. ratr_bitmap &= 0x00000ff0;
  1693. break;
  1694. case WIRELESS_MODE_N_24G:
  1695. case WIRELESS_MODE_N_5G:
  1696. ratr_index = RATR_INX_WIRELESS_NGB;
  1697. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1698. if (rssi_level == 1)
  1699. ratr_bitmap &= 0x00070000;
  1700. else if (rssi_level == 2)
  1701. ratr_bitmap &= 0x0007f000;
  1702. else
  1703. ratr_bitmap &= 0x0007f005;
  1704. } else {
  1705. if (rtlphy->rf_type == RF_1T2R ||
  1706. rtlphy->rf_type == RF_1T1R) {
  1707. if (curtxbw_40mhz) {
  1708. if (rssi_level == 1)
  1709. ratr_bitmap &= 0x000f0000;
  1710. else if (rssi_level == 2)
  1711. ratr_bitmap &= 0x000ff000;
  1712. else
  1713. ratr_bitmap &= 0x000ff015;
  1714. } else {
  1715. if (rssi_level == 1)
  1716. ratr_bitmap &= 0x000f0000;
  1717. else if (rssi_level == 2)
  1718. ratr_bitmap &= 0x000ff000;
  1719. else
  1720. ratr_bitmap &= 0x000ff005;
  1721. }
  1722. } else {
  1723. if (curtxbw_40mhz) {
  1724. if (rssi_level == 1)
  1725. ratr_bitmap &= 0x0f0f0000;
  1726. else if (rssi_level == 2)
  1727. ratr_bitmap &= 0x0f0ff000;
  1728. else
  1729. ratr_bitmap &= 0x0f0ff015;
  1730. } else {
  1731. if (rssi_level == 1)
  1732. ratr_bitmap &= 0x0f0f0000;
  1733. else if (rssi_level == 2)
  1734. ratr_bitmap &= 0x0f0ff000;
  1735. else
  1736. ratr_bitmap &= 0x0f0ff005;
  1737. }
  1738. }
  1739. }
  1740. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  1741. (!curtxbw_40mhz && curshortgi_20mhz)) {
  1742. if (macid == 0)
  1743. shortgi = true;
  1744. else if (macid == 1)
  1745. shortgi = false;
  1746. }
  1747. break;
  1748. default:
  1749. ratr_index = RATR_INX_WIRELESS_NGB;
  1750. if (rtlphy->rf_type == RF_1T2R)
  1751. ratr_bitmap &= 0x000ff0ff;
  1752. else
  1753. ratr_bitmap &= 0x0f0ff0ff;
  1754. break;
  1755. }
  1756. sta_entry->ratr_index = ratr_index;
  1757. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1758. "ratr_bitmap :%x\n", ratr_bitmap);
  1759. *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
  1760. (ratr_index << 28);
  1761. rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
  1762. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1763. "Rate_index:%x, ratr_val:%x, %5phC\n",
  1764. ratr_index, ratr_bitmap, rate_mask);
  1765. rtl92c_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask);
  1766. if (macid != 0)
  1767. sta_entry->ratr_index = ratr_index;
  1768. }
  1769. void rtl92ce_update_hal_rate_tbl(struct ieee80211_hw *hw,
  1770. struct ieee80211_sta *sta, u8 rssi_level)
  1771. {
  1772. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1773. if (rtlpriv->dm.useramask)
  1774. rtl92ce_update_hal_rate_mask(hw, sta, rssi_level);
  1775. else
  1776. rtl92ce_update_hal_rate_table(hw, sta);
  1777. }
  1778. void rtl92ce_update_channel_access_setting(struct ieee80211_hw *hw)
  1779. {
  1780. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1781. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1782. u16 sifs_timer;
  1783. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  1784. &mac->slot_time);
  1785. if (!mac->ht_enable)
  1786. sifs_timer = 0x0a0a;
  1787. else
  1788. sifs_timer = 0x1010;
  1789. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  1790. }
  1791. bool rtl92ce_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
  1792. {
  1793. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1794. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1795. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1796. enum rf_pwrstate e_rfpowerstate_toset;
  1797. u8 u1tmp;
  1798. bool actuallyset = false;
  1799. unsigned long flag;
  1800. if (rtlpci->being_init_adapter)
  1801. return false;
  1802. if (ppsc->swrf_processing)
  1803. return false;
  1804. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1805. if (ppsc->rfchange_inprogress) {
  1806. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1807. return false;
  1808. } else {
  1809. ppsc->rfchange_inprogress = true;
  1810. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1811. }
  1812. rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
  1813. REG_MAC_PINMUX_CFG)&~(BIT(3)));
  1814. u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
  1815. e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
  1816. if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) {
  1817. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1818. "GPIOChangeRF - HW Radio ON, RF ON\n");
  1819. e_rfpowerstate_toset = ERFON;
  1820. ppsc->hwradiooff = false;
  1821. actuallyset = true;
  1822. } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
  1823. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1824. "GPIOChangeRF - HW Radio OFF, RF OFF\n");
  1825. e_rfpowerstate_toset = ERFOFF;
  1826. ppsc->hwradiooff = true;
  1827. actuallyset = true;
  1828. }
  1829. if (actuallyset) {
  1830. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1831. ppsc->rfchange_inprogress = false;
  1832. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1833. } else {
  1834. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
  1835. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1836. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  1837. ppsc->rfchange_inprogress = false;
  1838. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  1839. }
  1840. *valid = 1;
  1841. return !ppsc->hwradiooff;
  1842. }
  1843. void rtl92ce_set_key(struct ieee80211_hw *hw, u32 key_index,
  1844. u8 *p_macaddr, bool is_group, u8 enc_algo,
  1845. bool is_wepkey, bool clear_all)
  1846. {
  1847. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1848. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1849. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1850. u8 *macaddr = p_macaddr;
  1851. u32 entry_id = 0;
  1852. bool is_pairwise = false;
  1853. static u8 cam_const_addr[4][6] = {
  1854. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
  1855. {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  1856. {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
  1857. {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
  1858. };
  1859. static u8 cam_const_broad[] = {
  1860. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  1861. };
  1862. if (clear_all) {
  1863. u8 idx = 0;
  1864. u8 cam_offset = 0;
  1865. u8 clear_number = 5;
  1866. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
  1867. for (idx = 0; idx < clear_number; idx++) {
  1868. rtl_cam_mark_invalid(hw, cam_offset + idx);
  1869. rtl_cam_empty_entry(hw, cam_offset + idx);
  1870. if (idx < 5) {
  1871. memset(rtlpriv->sec.key_buf[idx], 0,
  1872. MAX_KEY_LEN);
  1873. rtlpriv->sec.key_len[idx] = 0;
  1874. }
  1875. }
  1876. } else {
  1877. switch (enc_algo) {
  1878. case WEP40_ENCRYPTION:
  1879. enc_algo = CAM_WEP40;
  1880. break;
  1881. case WEP104_ENCRYPTION:
  1882. enc_algo = CAM_WEP104;
  1883. break;
  1884. case TKIP_ENCRYPTION:
  1885. enc_algo = CAM_TKIP;
  1886. break;
  1887. case AESCCMP_ENCRYPTION:
  1888. enc_algo = CAM_AES;
  1889. break;
  1890. default:
  1891. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1892. "switch case not processed\n");
  1893. enc_algo = CAM_TKIP;
  1894. break;
  1895. }
  1896. if (is_wepkey || rtlpriv->sec.use_defaultkey) {
  1897. macaddr = cam_const_addr[key_index];
  1898. entry_id = key_index;
  1899. } else {
  1900. if (is_group) {
  1901. macaddr = cam_const_broad;
  1902. entry_id = key_index;
  1903. } else {
  1904. if (mac->opmode == NL80211_IFTYPE_AP ||
  1905. mac->opmode == NL80211_IFTYPE_MESH_POINT) {
  1906. entry_id = rtl_cam_get_free_entry(hw,
  1907. p_macaddr);
  1908. if (entry_id >= TOTAL_CAM_ENTRY) {
  1909. RT_TRACE(rtlpriv, COMP_SEC,
  1910. DBG_EMERG,
  1911. "Can not find free hw security cam entry\n");
  1912. return;
  1913. }
  1914. } else {
  1915. entry_id = CAM_PAIRWISE_KEY_POSITION;
  1916. }
  1917. key_index = PAIRWISE_KEYIDX;
  1918. is_pairwise = true;
  1919. }
  1920. }
  1921. if (rtlpriv->sec.key_len[key_index] == 0) {
  1922. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1923. "delete one entry, entry_id is %d\n",
  1924. entry_id);
  1925. if (mac->opmode == NL80211_IFTYPE_AP ||
  1926. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1927. rtl_cam_del_entry(hw, p_macaddr);
  1928. rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
  1929. } else {
  1930. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  1931. "The insert KEY length is %d\n",
  1932. rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
  1933. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  1934. "The insert KEY is %x %x\n",
  1935. rtlpriv->sec.key_buf[0][0],
  1936. rtlpriv->sec.key_buf[0][1]);
  1937. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1938. "add one entry\n");
  1939. if (is_pairwise) {
  1940. RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
  1941. "Pairwise Key content",
  1942. rtlpriv->sec.pairwise_key,
  1943. rtlpriv->sec.
  1944. key_len[PAIRWISE_KEYIDX]);
  1945. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1946. "set Pairwise key\n");
  1947. rtl_cam_add_one_entry(hw, macaddr, key_index,
  1948. entry_id, enc_algo,
  1949. CAM_CONFIG_NO_USEDK,
  1950. rtlpriv->sec.
  1951. key_buf[key_index]);
  1952. } else {
  1953. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1954. "set group key\n");
  1955. if (mac->opmode == NL80211_IFTYPE_ADHOC) {
  1956. rtl_cam_add_one_entry(hw,
  1957. rtlefuse->dev_addr,
  1958. PAIRWISE_KEYIDX,
  1959. CAM_PAIRWISE_KEY_POSITION,
  1960. enc_algo,
  1961. CAM_CONFIG_NO_USEDK,
  1962. rtlpriv->sec.key_buf
  1963. [entry_id]);
  1964. }
  1965. rtl_cam_add_one_entry(hw, macaddr, key_index,
  1966. entry_id, enc_algo,
  1967. CAM_CONFIG_NO_USEDK,
  1968. rtlpriv->sec.key_buf[entry_id]);
  1969. }
  1970. }
  1971. }
  1972. }
  1973. static void rtl8192ce_bt_var_init(struct ieee80211_hw *hw)
  1974. {
  1975. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  1976. rtlpcipriv->bt_coexist.bt_coexistence =
  1977. rtlpcipriv->bt_coexist.eeprom_bt_coexist;
  1978. rtlpcipriv->bt_coexist.bt_ant_num =
  1979. rtlpcipriv->bt_coexist.eeprom_bt_ant_num;
  1980. rtlpcipriv->bt_coexist.bt_coexist_type =
  1981. rtlpcipriv->bt_coexist.eeprom_bt_type;
  1982. if (rtlpcipriv->bt_coexist.reg_bt_iso == 2)
  1983. rtlpcipriv->bt_coexist.bt_ant_isolation =
  1984. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol;
  1985. else
  1986. rtlpcipriv->bt_coexist.bt_ant_isolation =
  1987. rtlpcipriv->bt_coexist.reg_bt_iso;
  1988. rtlpcipriv->bt_coexist.bt_radio_shared_type =
  1989. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared;
  1990. if (rtlpcipriv->bt_coexist.bt_coexistence) {
  1991. if (rtlpcipriv->bt_coexist.reg_bt_sco == 1)
  1992. rtlpcipriv->bt_coexist.bt_service = BT_OTHER_ACTION;
  1993. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 2)
  1994. rtlpcipriv->bt_coexist.bt_service = BT_SCO;
  1995. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 4)
  1996. rtlpcipriv->bt_coexist.bt_service = BT_BUSY;
  1997. else if (rtlpcipriv->bt_coexist.reg_bt_sco == 5)
  1998. rtlpcipriv->bt_coexist.bt_service = BT_OTHERBUSY;
  1999. else
  2000. rtlpcipriv->bt_coexist.bt_service = BT_IDLE;
  2001. rtlpcipriv->bt_coexist.bt_edca_ul = 0;
  2002. rtlpcipriv->bt_coexist.bt_edca_dl = 0;
  2003. rtlpcipriv->bt_coexist.bt_rssi_state = 0xff;
  2004. }
  2005. }
  2006. void rtl8192ce_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
  2007. bool auto_load_fail, u8 *hwinfo)
  2008. {
  2009. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  2010. u8 val;
  2011. if (!auto_load_fail) {
  2012. rtlpcipriv->bt_coexist.eeprom_bt_coexist =
  2013. ((hwinfo[RF_OPTION1] & 0xe0) >> 5);
  2014. val = hwinfo[RF_OPTION4];
  2015. rtlpcipriv->bt_coexist.eeprom_bt_type = ((val & 0xe) >> 1);
  2016. rtlpcipriv->bt_coexist.eeprom_bt_ant_num = (val & 0x1);
  2017. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = ((val & 0x10) >> 4);
  2018. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared =
  2019. ((val & 0x20) >> 5);
  2020. } else {
  2021. rtlpcipriv->bt_coexist.eeprom_bt_coexist = 0;
  2022. rtlpcipriv->bt_coexist.eeprom_bt_type = BT_2WIRE;
  2023. rtlpcipriv->bt_coexist.eeprom_bt_ant_num = ANT_X2;
  2024. rtlpcipriv->bt_coexist.eeprom_bt_ant_isol = 0;
  2025. rtlpcipriv->bt_coexist.eeprom_bt_radio_shared = BT_RADIO_SHARED;
  2026. }
  2027. rtl8192ce_bt_var_init(hw);
  2028. }
  2029. void rtl8192ce_bt_reg_init(struct ieee80211_hw *hw)
  2030. {
  2031. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  2032. /* 0:Low, 1:High, 2:From Efuse. */
  2033. rtlpcipriv->bt_coexist.reg_bt_iso = 2;
  2034. /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
  2035. rtlpcipriv->bt_coexist.reg_bt_sco = 3;
  2036. /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
  2037. rtlpcipriv->bt_coexist.reg_bt_sco = 0;
  2038. }
  2039. void rtl8192ce_bt_hw_init(struct ieee80211_hw *hw)
  2040. {
  2041. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2042. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2043. struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
  2044. u8 u1_tmp;
  2045. if (rtlpcipriv->bt_coexist.bt_coexistence &&
  2046. ((rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) ||
  2047. rtlpcipriv->bt_coexist.bt_coexist_type == BT_CSR_BC8)) {
  2048. if (rtlpcipriv->bt_coexist.bt_ant_isolation)
  2049. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG, 0xa0);
  2050. u1_tmp = rtl_read_byte(rtlpriv, 0x4fd) &
  2051. BIT_OFFSET_LEN_MASK_32(0, 1);
  2052. u1_tmp = u1_tmp |
  2053. ((rtlpcipriv->bt_coexist.bt_ant_isolation == 1) ?
  2054. 0 : BIT_OFFSET_LEN_MASK_32(1, 1)) |
  2055. ((rtlpcipriv->bt_coexist.bt_service == BT_SCO) ?
  2056. 0 : BIT_OFFSET_LEN_MASK_32(2, 1));
  2057. rtl_write_byte(rtlpriv, 0x4fd, u1_tmp);
  2058. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+4, 0xaaaa9aaa);
  2059. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+8, 0xffbd0040);
  2060. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+0xc, 0x40000010);
  2061. /* Config to 1T1R. */
  2062. if (rtlphy->rf_type == RF_1T1R) {
  2063. u1_tmp = rtl_read_byte(rtlpriv, ROFDM0_TRXPATHENABLE);
  2064. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2065. rtl_write_byte(rtlpriv, ROFDM0_TRXPATHENABLE, u1_tmp);
  2066. u1_tmp = rtl_read_byte(rtlpriv, ROFDM1_TRXPATHENABLE);
  2067. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2068. rtl_write_byte(rtlpriv, ROFDM1_TRXPATHENABLE, u1_tmp);
  2069. }
  2070. }
  2071. }
  2072. void rtl92ce_suspend(struct ieee80211_hw *hw)
  2073. {
  2074. }
  2075. void rtl92ce_resume(struct ieee80211_hw *hw)
  2076. {
  2077. }
  2078. /* Turn on AAP (RCR:bit 0) for promicuous mode. */
  2079. void rtl92ce_allow_all_destaddr(struct ieee80211_hw *hw,
  2080. bool allow_all_da, bool write_into_reg)
  2081. {
  2082. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2083. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2084. if (allow_all_da) {/* Set BIT0 */
  2085. rtlpci->receive_config |= RCR_AAP;
  2086. } else {/* Clear BIT0 */
  2087. rtlpci->receive_config &= ~RCR_AAP;
  2088. }
  2089. if (write_into_reg)
  2090. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  2091. RT_TRACE(rtlpriv, COMP_TURBO | COMP_INIT, DBG_LOUD,
  2092. "receive_config=0x%08X, write_into_reg=%d\n",
  2093. rtlpci->receive_config, write_into_reg);
  2094. }