mvneta.c 79 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949
  1. /*
  2. * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
  3. *
  4. * Copyright (C) 2012 Marvell
  5. *
  6. * Rami Rosen <rosenr@marvell.com>
  7. * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
  8. *
  9. * This file is licensed under the terms of the GNU General Public
  10. * License version 2. This program is licensed "as is" without any
  11. * warranty of any kind, whether express or implied.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/inetdevice.h>
  19. #include <linux/mbus.h>
  20. #include <linux/module.h>
  21. #include <linux/interrupt.h>
  22. #include <net/ip.h>
  23. #include <net/ipv6.h>
  24. #include <linux/io.h>
  25. #include <linux/of.h>
  26. #include <linux/of_irq.h>
  27. #include <linux/of_mdio.h>
  28. #include <linux/of_net.h>
  29. #include <linux/of_address.h>
  30. #include <linux/phy.h>
  31. #include <linux/clk.h>
  32. /* Registers */
  33. #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
  34. #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
  35. #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
  36. #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
  37. #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
  38. #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
  39. #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
  40. #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
  41. #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
  42. #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
  43. #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
  44. #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
  45. #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
  46. #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
  47. #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
  48. #define MVNETA_PORT_RX_RESET 0x1cc0
  49. #define MVNETA_PORT_RX_DMA_RESET BIT(0)
  50. #define MVNETA_PHY_ADDR 0x2000
  51. #define MVNETA_PHY_ADDR_MASK 0x1f
  52. #define MVNETA_MBUS_RETRY 0x2010
  53. #define MVNETA_UNIT_INTR_CAUSE 0x2080
  54. #define MVNETA_UNIT_CONTROL 0x20B0
  55. #define MVNETA_PHY_POLLING_ENABLE BIT(1)
  56. #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
  57. #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
  58. #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
  59. #define MVNETA_BASE_ADDR_ENABLE 0x2290
  60. #define MVNETA_PORT_CONFIG 0x2400
  61. #define MVNETA_UNI_PROMISC_MODE BIT(0)
  62. #define MVNETA_DEF_RXQ(q) ((q) << 1)
  63. #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
  64. #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
  65. #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
  66. #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
  67. #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
  68. #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
  69. #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
  70. MVNETA_DEF_RXQ_ARP(q) | \
  71. MVNETA_DEF_RXQ_TCP(q) | \
  72. MVNETA_DEF_RXQ_UDP(q) | \
  73. MVNETA_DEF_RXQ_BPDU(q) | \
  74. MVNETA_TX_UNSET_ERR_SUM | \
  75. MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  76. #define MVNETA_PORT_CONFIG_EXTEND 0x2404
  77. #define MVNETA_MAC_ADDR_LOW 0x2414
  78. #define MVNETA_MAC_ADDR_HIGH 0x2418
  79. #define MVNETA_SDMA_CONFIG 0x241c
  80. #define MVNETA_SDMA_BRST_SIZE_16 4
  81. #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
  82. #define MVNETA_RX_NO_DATA_SWAP BIT(4)
  83. #define MVNETA_TX_NO_DATA_SWAP BIT(5)
  84. #define MVNETA_DESC_SWAP BIT(6)
  85. #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
  86. #define MVNETA_PORT_STATUS 0x2444
  87. #define MVNETA_TX_IN_PRGRS BIT(1)
  88. #define MVNETA_TX_FIFO_EMPTY BIT(8)
  89. #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
  90. #define MVNETA_SERDES_CFG 0x24A0
  91. #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
  92. #define MVNETA_RGMII_SERDES_PROTO 0x0667
  93. #define MVNETA_TYPE_PRIO 0x24bc
  94. #define MVNETA_FORCE_UNI BIT(21)
  95. #define MVNETA_TXQ_CMD_1 0x24e4
  96. #define MVNETA_TXQ_CMD 0x2448
  97. #define MVNETA_TXQ_DISABLE_SHIFT 8
  98. #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
  99. #define MVNETA_ACC_MODE 0x2500
  100. #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
  101. #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
  102. #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
  103. #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
  104. /* Exception Interrupt Port/Queue Cause register */
  105. #define MVNETA_INTR_NEW_CAUSE 0x25a0
  106. #define MVNETA_INTR_NEW_MASK 0x25a4
  107. /* bits 0..7 = TXQ SENT, one bit per queue.
  108. * bits 8..15 = RXQ OCCUP, one bit per queue.
  109. * bits 16..23 = RXQ FREE, one bit per queue.
  110. * bit 29 = OLD_REG_SUM, see old reg ?
  111. * bit 30 = TX_ERR_SUM, one bit for 4 ports
  112. * bit 31 = MISC_SUM, one bit for 4 ports
  113. */
  114. #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
  115. #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
  116. #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
  117. #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
  118. #define MVNETA_INTR_OLD_CAUSE 0x25a8
  119. #define MVNETA_INTR_OLD_MASK 0x25ac
  120. /* Data Path Port/Queue Cause Register */
  121. #define MVNETA_INTR_MISC_CAUSE 0x25b0
  122. #define MVNETA_INTR_MISC_MASK 0x25b4
  123. #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
  124. #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
  125. #define MVNETA_CAUSE_PTP BIT(4)
  126. #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
  127. #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
  128. #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
  129. #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
  130. #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
  131. #define MVNETA_CAUSE_PRBS_ERR BIT(12)
  132. #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
  133. #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
  134. #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
  135. #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
  136. #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
  137. #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
  138. #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
  139. #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
  140. #define MVNETA_INTR_ENABLE 0x25b8
  141. #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
  142. #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF
  143. #define MVNETA_RXQ_CMD 0x2680
  144. #define MVNETA_RXQ_DISABLE_SHIFT 8
  145. #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
  146. #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
  147. #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
  148. #define MVNETA_GMAC_CTRL_0 0x2c00
  149. #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
  150. #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
  151. #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
  152. #define MVNETA_GMAC_CTRL_2 0x2c08
  153. #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
  154. #define MVNETA_GMAC2_PORT_RGMII BIT(4)
  155. #define MVNETA_GMAC2_PORT_RESET BIT(6)
  156. #define MVNETA_GMAC_STATUS 0x2c10
  157. #define MVNETA_GMAC_LINK_UP BIT(0)
  158. #define MVNETA_GMAC_SPEED_1000 BIT(1)
  159. #define MVNETA_GMAC_SPEED_100 BIT(2)
  160. #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
  161. #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
  162. #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
  163. #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
  164. #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
  165. #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
  166. #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
  167. #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
  168. #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
  169. #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
  170. #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
  171. #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
  172. #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
  173. #define MVNETA_MIB_COUNTERS_BASE 0x3080
  174. #define MVNETA_MIB_LATE_COLLISION 0x7c
  175. #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
  176. #define MVNETA_DA_FILT_OTH_MCAST 0x3500
  177. #define MVNETA_DA_FILT_UCAST_BASE 0x3600
  178. #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
  179. #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
  180. #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
  181. #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
  182. #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
  183. #define MVNETA_TXQ_DEC_SENT_SHIFT 16
  184. #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
  185. #define MVNETA_TXQ_SENT_DESC_SHIFT 16
  186. #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
  187. #define MVNETA_PORT_TX_RESET 0x3cf0
  188. #define MVNETA_PORT_TX_DMA_RESET BIT(0)
  189. #define MVNETA_TX_MTU 0x3e0c
  190. #define MVNETA_TX_TOKEN_SIZE 0x3e14
  191. #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
  192. #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
  193. #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
  194. #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
  195. /* Descriptor ring Macros */
  196. #define MVNETA_QUEUE_NEXT_DESC(q, index) \
  197. (((index) < (q)->last_desc) ? ((index) + 1) : 0)
  198. /* Various constants */
  199. /* Coalescing */
  200. #define MVNETA_TXDONE_COAL_PKTS 16
  201. #define MVNETA_RX_COAL_PKTS 32
  202. #define MVNETA_RX_COAL_USEC 100
  203. /* Napi polling weight */
  204. #define MVNETA_RX_POLL_WEIGHT 64
  205. /* The two bytes Marvell header. Either contains a special value used
  206. * by Marvell switches when a specific hardware mode is enabled (not
  207. * supported by this driver) or is filled automatically by zeroes on
  208. * the RX side. Those two bytes being at the front of the Ethernet
  209. * header, they allow to have the IP header aligned on a 4 bytes
  210. * boundary automatically: the hardware skips those two bytes on its
  211. * own.
  212. */
  213. #define MVNETA_MH_SIZE 2
  214. #define MVNETA_VLAN_TAG_LEN 4
  215. #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
  216. #define MVNETA_TX_CSUM_MAX_SIZE 9800
  217. #define MVNETA_ACC_MODE_EXT 1
  218. /* Timeout constants */
  219. #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
  220. #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
  221. #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
  222. #define MVNETA_TX_MTU_MAX 0x3ffff
  223. /* Max number of Rx descriptors */
  224. #define MVNETA_MAX_RXD 128
  225. /* Max number of Tx descriptors */
  226. #define MVNETA_MAX_TXD 532
  227. /* descriptor aligned size */
  228. #define MVNETA_DESC_ALIGNED_SIZE 32
  229. #define MVNETA_RX_PKT_SIZE(mtu) \
  230. ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
  231. ETH_HLEN + ETH_FCS_LEN, \
  232. MVNETA_CPU_D_CACHE_LINE_SIZE)
  233. #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
  234. struct mvneta_pcpu_stats {
  235. struct u64_stats_sync syncp;
  236. u64 rx_packets;
  237. u64 rx_bytes;
  238. u64 tx_packets;
  239. u64 tx_bytes;
  240. };
  241. struct mvneta_port {
  242. int pkt_size;
  243. unsigned int frag_size;
  244. void __iomem *base;
  245. struct mvneta_rx_queue *rxqs;
  246. struct mvneta_tx_queue *txqs;
  247. struct net_device *dev;
  248. u32 cause_rx_tx;
  249. struct napi_struct napi;
  250. /* Napi weight */
  251. int weight;
  252. /* Core clock */
  253. struct clk *clk;
  254. u8 mcast_count[256];
  255. u16 tx_ring_size;
  256. u16 rx_ring_size;
  257. struct mvneta_pcpu_stats *stats;
  258. struct mii_bus *mii_bus;
  259. struct phy_device *phy_dev;
  260. phy_interface_t phy_interface;
  261. struct device_node *phy_node;
  262. unsigned int link;
  263. unsigned int duplex;
  264. unsigned int speed;
  265. };
  266. /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
  267. * layout of the transmit and reception DMA descriptors, and their
  268. * layout is therefore defined by the hardware design
  269. */
  270. #define MVNETA_TX_L3_OFF_SHIFT 0
  271. #define MVNETA_TX_IP_HLEN_SHIFT 8
  272. #define MVNETA_TX_L4_UDP BIT(16)
  273. #define MVNETA_TX_L3_IP6 BIT(17)
  274. #define MVNETA_TXD_IP_CSUM BIT(18)
  275. #define MVNETA_TXD_Z_PAD BIT(19)
  276. #define MVNETA_TXD_L_DESC BIT(20)
  277. #define MVNETA_TXD_F_DESC BIT(21)
  278. #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
  279. MVNETA_TXD_L_DESC | \
  280. MVNETA_TXD_F_DESC)
  281. #define MVNETA_TX_L4_CSUM_FULL BIT(30)
  282. #define MVNETA_TX_L4_CSUM_NOT BIT(31)
  283. #define MVNETA_RXD_ERR_CRC 0x0
  284. #define MVNETA_RXD_ERR_SUMMARY BIT(16)
  285. #define MVNETA_RXD_ERR_OVERRUN BIT(17)
  286. #define MVNETA_RXD_ERR_LEN BIT(18)
  287. #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
  288. #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
  289. #define MVNETA_RXD_L3_IP4 BIT(25)
  290. #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
  291. #define MVNETA_RXD_L4_CSUM_OK BIT(30)
  292. #if defined(__LITTLE_ENDIAN)
  293. struct mvneta_tx_desc {
  294. u32 command; /* Options used by HW for packet transmitting.*/
  295. u16 reserverd1; /* csum_l4 (for future use) */
  296. u16 data_size; /* Data size of transmitted packet in bytes */
  297. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  298. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  299. u32 reserved3[4]; /* Reserved - (for future use) */
  300. };
  301. struct mvneta_rx_desc {
  302. u32 status; /* Info about received packet */
  303. u16 reserved1; /* pnc_info - (for future use, PnC) */
  304. u16 data_size; /* Size of received packet in bytes */
  305. u32 buf_phys_addr; /* Physical address of the buffer */
  306. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  307. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  308. u16 reserved3; /* prefetch_cmd, for future use */
  309. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  310. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  311. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  312. };
  313. #else
  314. struct mvneta_tx_desc {
  315. u16 data_size; /* Data size of transmitted packet in bytes */
  316. u16 reserverd1; /* csum_l4 (for future use) */
  317. u32 command; /* Options used by HW for packet transmitting.*/
  318. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  319. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  320. u32 reserved3[4]; /* Reserved - (for future use) */
  321. };
  322. struct mvneta_rx_desc {
  323. u16 data_size; /* Size of received packet in bytes */
  324. u16 reserved1; /* pnc_info - (for future use, PnC) */
  325. u32 status; /* Info about received packet */
  326. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  327. u32 buf_phys_addr; /* Physical address of the buffer */
  328. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  329. u16 reserved3; /* prefetch_cmd, for future use */
  330. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  331. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  332. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  333. };
  334. #endif
  335. struct mvneta_tx_queue {
  336. /* Number of this TX queue, in the range 0-7 */
  337. u8 id;
  338. /* Number of TX DMA descriptors in the descriptor ring */
  339. int size;
  340. /* Number of currently used TX DMA descriptor in the
  341. * descriptor ring
  342. */
  343. int count;
  344. /* Array of transmitted skb */
  345. struct sk_buff **tx_skb;
  346. /* Index of last TX DMA descriptor that was inserted */
  347. int txq_put_index;
  348. /* Index of the TX DMA descriptor to be cleaned up */
  349. int txq_get_index;
  350. u32 done_pkts_coal;
  351. /* Virtual address of the TX DMA descriptors array */
  352. struct mvneta_tx_desc *descs;
  353. /* DMA address of the TX DMA descriptors array */
  354. dma_addr_t descs_phys;
  355. /* Index of the last TX DMA descriptor */
  356. int last_desc;
  357. /* Index of the next TX DMA descriptor to process */
  358. int next_desc_to_proc;
  359. };
  360. struct mvneta_rx_queue {
  361. /* rx queue number, in the range 0-7 */
  362. u8 id;
  363. /* num of rx descriptors in the rx descriptor ring */
  364. int size;
  365. /* counter of times when mvneta_refill() failed */
  366. int missed;
  367. u32 pkts_coal;
  368. u32 time_coal;
  369. /* Virtual address of the RX DMA descriptors array */
  370. struct mvneta_rx_desc *descs;
  371. /* DMA address of the RX DMA descriptors array */
  372. dma_addr_t descs_phys;
  373. /* Index of the last RX DMA descriptor */
  374. int last_desc;
  375. /* Index of the next RX DMA descriptor to process */
  376. int next_desc_to_proc;
  377. };
  378. static int rxq_number = 8;
  379. static int txq_number = 8;
  380. static int rxq_def;
  381. static int rx_copybreak __read_mostly = 256;
  382. #define MVNETA_DRIVER_NAME "mvneta"
  383. #define MVNETA_DRIVER_VERSION "1.0"
  384. /* Utility/helper methods */
  385. /* Write helper method */
  386. static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
  387. {
  388. writel(data, pp->base + offset);
  389. }
  390. /* Read helper method */
  391. static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
  392. {
  393. return readl(pp->base + offset);
  394. }
  395. /* Increment txq get counter */
  396. static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
  397. {
  398. txq->txq_get_index++;
  399. if (txq->txq_get_index == txq->size)
  400. txq->txq_get_index = 0;
  401. }
  402. /* Increment txq put counter */
  403. static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
  404. {
  405. txq->txq_put_index++;
  406. if (txq->txq_put_index == txq->size)
  407. txq->txq_put_index = 0;
  408. }
  409. /* Clear all MIB counters */
  410. static void mvneta_mib_counters_clear(struct mvneta_port *pp)
  411. {
  412. int i;
  413. u32 dummy;
  414. /* Perform dummy reads from MIB counters */
  415. for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
  416. dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
  417. }
  418. /* Get System Network Statistics */
  419. struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
  420. struct rtnl_link_stats64 *stats)
  421. {
  422. struct mvneta_port *pp = netdev_priv(dev);
  423. unsigned int start;
  424. int cpu;
  425. for_each_possible_cpu(cpu) {
  426. struct mvneta_pcpu_stats *cpu_stats;
  427. u64 rx_packets;
  428. u64 rx_bytes;
  429. u64 tx_packets;
  430. u64 tx_bytes;
  431. cpu_stats = per_cpu_ptr(pp->stats, cpu);
  432. do {
  433. start = u64_stats_fetch_begin_bh(&cpu_stats->syncp);
  434. rx_packets = cpu_stats->rx_packets;
  435. rx_bytes = cpu_stats->rx_bytes;
  436. tx_packets = cpu_stats->tx_packets;
  437. tx_bytes = cpu_stats->tx_bytes;
  438. } while (u64_stats_fetch_retry_bh(&cpu_stats->syncp, start));
  439. stats->rx_packets += rx_packets;
  440. stats->rx_bytes += rx_bytes;
  441. stats->tx_packets += tx_packets;
  442. stats->tx_bytes += tx_bytes;
  443. }
  444. stats->rx_errors = dev->stats.rx_errors;
  445. stats->rx_dropped = dev->stats.rx_dropped;
  446. stats->tx_dropped = dev->stats.tx_dropped;
  447. return stats;
  448. }
  449. /* Rx descriptors helper methods */
  450. /* Checks whether the RX descriptor having this status is both the first
  451. * and the last descriptor for the RX packet. Each RX packet is currently
  452. * received through a single RX descriptor, so not having each RX
  453. * descriptor with its first and last bits set is an error
  454. */
  455. static int mvneta_rxq_desc_is_first_last(u32 status)
  456. {
  457. return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
  458. MVNETA_RXD_FIRST_LAST_DESC;
  459. }
  460. /* Add number of descriptors ready to receive new packets */
  461. static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
  462. struct mvneta_rx_queue *rxq,
  463. int ndescs)
  464. {
  465. /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
  466. * be added at once
  467. */
  468. while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
  469. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  470. (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
  471. MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  472. ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
  473. }
  474. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  475. (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  476. }
  477. /* Get number of RX descriptors occupied by received packets */
  478. static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
  479. struct mvneta_rx_queue *rxq)
  480. {
  481. u32 val;
  482. val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
  483. return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
  484. }
  485. /* Update num of rx desc called upon return from rx path or
  486. * from mvneta_rxq_drop_pkts().
  487. */
  488. static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
  489. struct mvneta_rx_queue *rxq,
  490. int rx_done, int rx_filled)
  491. {
  492. u32 val;
  493. if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
  494. val = rx_done |
  495. (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
  496. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  497. return;
  498. }
  499. /* Only 255 descriptors can be added at once */
  500. while ((rx_done > 0) || (rx_filled > 0)) {
  501. if (rx_done <= 0xff) {
  502. val = rx_done;
  503. rx_done = 0;
  504. } else {
  505. val = 0xff;
  506. rx_done -= 0xff;
  507. }
  508. if (rx_filled <= 0xff) {
  509. val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  510. rx_filled = 0;
  511. } else {
  512. val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  513. rx_filled -= 0xff;
  514. }
  515. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  516. }
  517. }
  518. /* Get pointer to next RX descriptor to be processed by SW */
  519. static struct mvneta_rx_desc *
  520. mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
  521. {
  522. int rx_desc = rxq->next_desc_to_proc;
  523. rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
  524. prefetch(rxq->descs + rxq->next_desc_to_proc);
  525. return rxq->descs + rx_desc;
  526. }
  527. /* Change maximum receive size of the port. */
  528. static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
  529. {
  530. u32 val;
  531. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  532. val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
  533. val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
  534. MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
  535. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  536. }
  537. /* Set rx queue offset */
  538. static void mvneta_rxq_offset_set(struct mvneta_port *pp,
  539. struct mvneta_rx_queue *rxq,
  540. int offset)
  541. {
  542. u32 val;
  543. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  544. val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
  545. /* Offset is in */
  546. val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
  547. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  548. }
  549. /* Tx descriptors helper methods */
  550. /* Update HW with number of TX descriptors to be sent */
  551. static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
  552. struct mvneta_tx_queue *txq,
  553. int pend_desc)
  554. {
  555. u32 val;
  556. /* Only 255 descriptors can be added at once ; Assume caller
  557. * process TX desriptors in quanta less than 256
  558. */
  559. val = pend_desc;
  560. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  561. }
  562. /* Get pointer to next TX descriptor to be processed (send) by HW */
  563. static struct mvneta_tx_desc *
  564. mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
  565. {
  566. int tx_desc = txq->next_desc_to_proc;
  567. txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
  568. return txq->descs + tx_desc;
  569. }
  570. /* Release the last allocated TX descriptor. Useful to handle DMA
  571. * mapping failures in the TX path.
  572. */
  573. static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
  574. {
  575. if (txq->next_desc_to_proc == 0)
  576. txq->next_desc_to_proc = txq->last_desc - 1;
  577. else
  578. txq->next_desc_to_proc--;
  579. }
  580. /* Set rxq buf size */
  581. static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
  582. struct mvneta_rx_queue *rxq,
  583. int buf_size)
  584. {
  585. u32 val;
  586. val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
  587. val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
  588. val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
  589. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
  590. }
  591. /* Disable buffer management (BM) */
  592. static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
  593. struct mvneta_rx_queue *rxq)
  594. {
  595. u32 val;
  596. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  597. val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
  598. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  599. }
  600. /* Start the Ethernet port RX and TX activity */
  601. static void mvneta_port_up(struct mvneta_port *pp)
  602. {
  603. int queue;
  604. u32 q_map;
  605. /* Enable all initialized TXs. */
  606. mvneta_mib_counters_clear(pp);
  607. q_map = 0;
  608. for (queue = 0; queue < txq_number; queue++) {
  609. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  610. if (txq->descs != NULL)
  611. q_map |= (1 << queue);
  612. }
  613. mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
  614. /* Enable all initialized RXQs. */
  615. q_map = 0;
  616. for (queue = 0; queue < rxq_number; queue++) {
  617. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  618. if (rxq->descs != NULL)
  619. q_map |= (1 << queue);
  620. }
  621. mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
  622. }
  623. /* Stop the Ethernet port activity */
  624. static void mvneta_port_down(struct mvneta_port *pp)
  625. {
  626. u32 val;
  627. int count;
  628. /* Stop Rx port activity. Check port Rx activity. */
  629. val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
  630. /* Issue stop command for active channels only */
  631. if (val != 0)
  632. mvreg_write(pp, MVNETA_RXQ_CMD,
  633. val << MVNETA_RXQ_DISABLE_SHIFT);
  634. /* Wait for all Rx activity to terminate. */
  635. count = 0;
  636. do {
  637. if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
  638. netdev_warn(pp->dev,
  639. "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
  640. val);
  641. break;
  642. }
  643. mdelay(1);
  644. val = mvreg_read(pp, MVNETA_RXQ_CMD);
  645. } while (val & 0xff);
  646. /* Stop Tx port activity. Check port Tx activity. Issue stop
  647. * command for active channels only
  648. */
  649. val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
  650. if (val != 0)
  651. mvreg_write(pp, MVNETA_TXQ_CMD,
  652. (val << MVNETA_TXQ_DISABLE_SHIFT));
  653. /* Wait for all Tx activity to terminate. */
  654. count = 0;
  655. do {
  656. if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
  657. netdev_warn(pp->dev,
  658. "TIMEOUT for TX stopped status=0x%08x\n",
  659. val);
  660. break;
  661. }
  662. mdelay(1);
  663. /* Check TX Command reg that all Txqs are stopped */
  664. val = mvreg_read(pp, MVNETA_TXQ_CMD);
  665. } while (val & 0xff);
  666. /* Double check to verify that TX FIFO is empty */
  667. count = 0;
  668. do {
  669. if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
  670. netdev_warn(pp->dev,
  671. "TX FIFO empty timeout status=0x08%x\n",
  672. val);
  673. break;
  674. }
  675. mdelay(1);
  676. val = mvreg_read(pp, MVNETA_PORT_STATUS);
  677. } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
  678. (val & MVNETA_TX_IN_PRGRS));
  679. udelay(200);
  680. }
  681. /* Enable the port by setting the port enable bit of the MAC control register */
  682. static void mvneta_port_enable(struct mvneta_port *pp)
  683. {
  684. u32 val;
  685. /* Enable port */
  686. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  687. val |= MVNETA_GMAC0_PORT_ENABLE;
  688. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  689. }
  690. /* Disable the port and wait for about 200 usec before retuning */
  691. static void mvneta_port_disable(struct mvneta_port *pp)
  692. {
  693. u32 val;
  694. /* Reset the Enable bit in the Serial Control Register */
  695. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  696. val &= ~MVNETA_GMAC0_PORT_ENABLE;
  697. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  698. udelay(200);
  699. }
  700. /* Multicast tables methods */
  701. /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
  702. static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
  703. {
  704. int offset;
  705. u32 val;
  706. if (queue == -1) {
  707. val = 0;
  708. } else {
  709. val = 0x1 | (queue << 1);
  710. val |= (val << 24) | (val << 16) | (val << 8);
  711. }
  712. for (offset = 0; offset <= 0xc; offset += 4)
  713. mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
  714. }
  715. /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
  716. static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
  717. {
  718. int offset;
  719. u32 val;
  720. if (queue == -1) {
  721. val = 0;
  722. } else {
  723. val = 0x1 | (queue << 1);
  724. val |= (val << 24) | (val << 16) | (val << 8);
  725. }
  726. for (offset = 0; offset <= 0xfc; offset += 4)
  727. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
  728. }
  729. /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
  730. static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
  731. {
  732. int offset;
  733. u32 val;
  734. if (queue == -1) {
  735. memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
  736. val = 0;
  737. } else {
  738. memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
  739. val = 0x1 | (queue << 1);
  740. val |= (val << 24) | (val << 16) | (val << 8);
  741. }
  742. for (offset = 0; offset <= 0xfc; offset += 4)
  743. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
  744. }
  745. /* This method sets defaults to the NETA port:
  746. * Clears interrupt Cause and Mask registers.
  747. * Clears all MAC tables.
  748. * Sets defaults to all registers.
  749. * Resets RX and TX descriptor rings.
  750. * Resets PHY.
  751. * This method can be called after mvneta_port_down() to return the port
  752. * settings to defaults.
  753. */
  754. static void mvneta_defaults_set(struct mvneta_port *pp)
  755. {
  756. int cpu;
  757. int queue;
  758. u32 val;
  759. /* Clear all Cause registers */
  760. mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
  761. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  762. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  763. /* Mask all interrupts */
  764. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  765. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  766. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  767. mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
  768. /* Enable MBUS Retry bit16 */
  769. mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
  770. /* Set CPU queue access map - all CPUs have access to all RX
  771. * queues and to all TX queues
  772. */
  773. for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
  774. mvreg_write(pp, MVNETA_CPU_MAP(cpu),
  775. (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
  776. MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
  777. /* Reset RX and TX DMAs */
  778. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  779. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  780. /* Disable Legacy WRR, Disable EJP, Release from reset */
  781. mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
  782. for (queue = 0; queue < txq_number; queue++) {
  783. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
  784. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
  785. }
  786. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  787. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  788. /* Set Port Acceleration Mode */
  789. val = MVNETA_ACC_MODE_EXT;
  790. mvreg_write(pp, MVNETA_ACC_MODE, val);
  791. /* Update val of portCfg register accordingly with all RxQueue types */
  792. val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
  793. mvreg_write(pp, MVNETA_PORT_CONFIG, val);
  794. val = 0;
  795. mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
  796. mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
  797. /* Build PORT_SDMA_CONFIG_REG */
  798. val = 0;
  799. /* Default burst size */
  800. val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  801. val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  802. val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
  803. #if defined(__BIG_ENDIAN)
  804. val |= MVNETA_DESC_SWAP;
  805. #endif
  806. /* Assign port SDMA configuration */
  807. mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
  808. /* Disable PHY polling in hardware, since we're using the
  809. * kernel phylib to do this.
  810. */
  811. val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
  812. val &= ~MVNETA_PHY_POLLING_ENABLE;
  813. mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
  814. mvneta_set_ucast_table(pp, -1);
  815. mvneta_set_special_mcast_table(pp, -1);
  816. mvneta_set_other_mcast_table(pp, -1);
  817. /* Set port interrupt enable register - default enable all */
  818. mvreg_write(pp, MVNETA_INTR_ENABLE,
  819. (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
  820. | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
  821. }
  822. /* Set max sizes for tx queues */
  823. static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
  824. {
  825. u32 val, size, mtu;
  826. int queue;
  827. mtu = max_tx_size * 8;
  828. if (mtu > MVNETA_TX_MTU_MAX)
  829. mtu = MVNETA_TX_MTU_MAX;
  830. /* Set MTU */
  831. val = mvreg_read(pp, MVNETA_TX_MTU);
  832. val &= ~MVNETA_TX_MTU_MAX;
  833. val |= mtu;
  834. mvreg_write(pp, MVNETA_TX_MTU, val);
  835. /* TX token size and all TXQs token size must be larger that MTU */
  836. val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
  837. size = val & MVNETA_TX_TOKEN_SIZE_MAX;
  838. if (size < mtu) {
  839. size = mtu;
  840. val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
  841. val |= size;
  842. mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
  843. }
  844. for (queue = 0; queue < txq_number; queue++) {
  845. val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
  846. size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
  847. if (size < mtu) {
  848. size = mtu;
  849. val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
  850. val |= size;
  851. mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
  852. }
  853. }
  854. }
  855. /* Set unicast address */
  856. static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
  857. int queue)
  858. {
  859. unsigned int unicast_reg;
  860. unsigned int tbl_offset;
  861. unsigned int reg_offset;
  862. /* Locate the Unicast table entry */
  863. last_nibble = (0xf & last_nibble);
  864. /* offset from unicast tbl base */
  865. tbl_offset = (last_nibble / 4) * 4;
  866. /* offset within the above reg */
  867. reg_offset = last_nibble % 4;
  868. unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
  869. if (queue == -1) {
  870. /* Clear accepts frame bit at specified unicast DA tbl entry */
  871. unicast_reg &= ~(0xff << (8 * reg_offset));
  872. } else {
  873. unicast_reg &= ~(0xff << (8 * reg_offset));
  874. unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  875. }
  876. mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
  877. }
  878. /* Set mac address */
  879. static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
  880. int queue)
  881. {
  882. unsigned int mac_h;
  883. unsigned int mac_l;
  884. if (queue != -1) {
  885. mac_l = (addr[4] << 8) | (addr[5]);
  886. mac_h = (addr[0] << 24) | (addr[1] << 16) |
  887. (addr[2] << 8) | (addr[3] << 0);
  888. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
  889. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
  890. }
  891. /* Accept frames of this address */
  892. mvneta_set_ucast_addr(pp, addr[5], queue);
  893. }
  894. /* Set the number of packets that will be received before RX interrupt
  895. * will be generated by HW.
  896. */
  897. static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
  898. struct mvneta_rx_queue *rxq, u32 value)
  899. {
  900. mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
  901. value | MVNETA_RXQ_NON_OCCUPIED(0));
  902. rxq->pkts_coal = value;
  903. }
  904. /* Set the time delay in usec before RX interrupt will be generated by
  905. * HW.
  906. */
  907. static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
  908. struct mvneta_rx_queue *rxq, u32 value)
  909. {
  910. u32 val;
  911. unsigned long clk_rate;
  912. clk_rate = clk_get_rate(pp->clk);
  913. val = (clk_rate / 1000000) * value;
  914. mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
  915. rxq->time_coal = value;
  916. }
  917. /* Set threshold for TX_DONE pkts coalescing */
  918. static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
  919. struct mvneta_tx_queue *txq, u32 value)
  920. {
  921. u32 val;
  922. val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
  923. val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
  924. val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
  925. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
  926. txq->done_pkts_coal = value;
  927. }
  928. /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
  929. static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
  930. u32 phys_addr, u32 cookie)
  931. {
  932. rx_desc->buf_cookie = cookie;
  933. rx_desc->buf_phys_addr = phys_addr;
  934. }
  935. /* Decrement sent descriptors counter */
  936. static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
  937. struct mvneta_tx_queue *txq,
  938. int sent_desc)
  939. {
  940. u32 val;
  941. /* Only 255 TX descriptors can be updated at once */
  942. while (sent_desc > 0xff) {
  943. val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
  944. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  945. sent_desc = sent_desc - 0xff;
  946. }
  947. val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
  948. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  949. }
  950. /* Get number of TX descriptors already sent by HW */
  951. static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
  952. struct mvneta_tx_queue *txq)
  953. {
  954. u32 val;
  955. int sent_desc;
  956. val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
  957. sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
  958. MVNETA_TXQ_SENT_DESC_SHIFT;
  959. return sent_desc;
  960. }
  961. /* Get number of sent descriptors and decrement counter.
  962. * The number of sent descriptors is returned.
  963. */
  964. static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
  965. struct mvneta_tx_queue *txq)
  966. {
  967. int sent_desc;
  968. /* Get number of sent descriptors */
  969. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  970. /* Decrement sent descriptors counter */
  971. if (sent_desc)
  972. mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
  973. return sent_desc;
  974. }
  975. /* Set TXQ descriptors fields relevant for CSUM calculation */
  976. static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
  977. int ip_hdr_len, int l4_proto)
  978. {
  979. u32 command;
  980. /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
  981. * G_L4_chk, L4_type; required only for checksum
  982. * calculation
  983. */
  984. command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
  985. command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
  986. if (l3_proto == swab16(ETH_P_IP))
  987. command |= MVNETA_TXD_IP_CSUM;
  988. else
  989. command |= MVNETA_TX_L3_IP6;
  990. if (l4_proto == IPPROTO_TCP)
  991. command |= MVNETA_TX_L4_CSUM_FULL;
  992. else if (l4_proto == IPPROTO_UDP)
  993. command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
  994. else
  995. command |= MVNETA_TX_L4_CSUM_NOT;
  996. return command;
  997. }
  998. /* Display more error info */
  999. static void mvneta_rx_error(struct mvneta_port *pp,
  1000. struct mvneta_rx_desc *rx_desc)
  1001. {
  1002. u32 status = rx_desc->status;
  1003. if (!mvneta_rxq_desc_is_first_last(status)) {
  1004. netdev_err(pp->dev,
  1005. "bad rx status %08x (buffer oversize), size=%d\n",
  1006. status, rx_desc->data_size);
  1007. return;
  1008. }
  1009. switch (status & MVNETA_RXD_ERR_CODE_MASK) {
  1010. case MVNETA_RXD_ERR_CRC:
  1011. netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
  1012. status, rx_desc->data_size);
  1013. break;
  1014. case MVNETA_RXD_ERR_OVERRUN:
  1015. netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
  1016. status, rx_desc->data_size);
  1017. break;
  1018. case MVNETA_RXD_ERR_LEN:
  1019. netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
  1020. status, rx_desc->data_size);
  1021. break;
  1022. case MVNETA_RXD_ERR_RESOURCE:
  1023. netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
  1024. status, rx_desc->data_size);
  1025. break;
  1026. }
  1027. }
  1028. /* Handle RX checksum offload based on the descriptor's status */
  1029. static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
  1030. struct sk_buff *skb)
  1031. {
  1032. if ((status & MVNETA_RXD_L3_IP4) &&
  1033. (status & MVNETA_RXD_L4_CSUM_OK)) {
  1034. skb->csum = 0;
  1035. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1036. return;
  1037. }
  1038. skb->ip_summed = CHECKSUM_NONE;
  1039. }
  1040. /* Return tx queue pointer (find last set bit) according to <cause> returned
  1041. * form tx_done reg. <cause> must not be null. The return value is always a
  1042. * valid queue for matching the first one found in <cause>.
  1043. */
  1044. static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
  1045. u32 cause)
  1046. {
  1047. int queue = fls(cause) - 1;
  1048. return &pp->txqs[queue];
  1049. }
  1050. /* Free tx queue skbuffs */
  1051. static void mvneta_txq_bufs_free(struct mvneta_port *pp,
  1052. struct mvneta_tx_queue *txq, int num)
  1053. {
  1054. int i;
  1055. for (i = 0; i < num; i++) {
  1056. struct mvneta_tx_desc *tx_desc = txq->descs +
  1057. txq->txq_get_index;
  1058. struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
  1059. mvneta_txq_inc_get(txq);
  1060. if (!skb)
  1061. continue;
  1062. dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
  1063. tx_desc->data_size, DMA_TO_DEVICE);
  1064. dev_kfree_skb_any(skb);
  1065. }
  1066. }
  1067. /* Handle end of transmission */
  1068. static void mvneta_txq_done(struct mvneta_port *pp,
  1069. struct mvneta_tx_queue *txq)
  1070. {
  1071. struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
  1072. int tx_done;
  1073. tx_done = mvneta_txq_sent_desc_proc(pp, txq);
  1074. if (!tx_done)
  1075. return;
  1076. mvneta_txq_bufs_free(pp, txq, tx_done);
  1077. txq->count -= tx_done;
  1078. if (netif_tx_queue_stopped(nq)) {
  1079. if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
  1080. netif_tx_wake_queue(nq);
  1081. }
  1082. }
  1083. static void *mvneta_frag_alloc(const struct mvneta_port *pp)
  1084. {
  1085. if (likely(pp->frag_size <= PAGE_SIZE))
  1086. return netdev_alloc_frag(pp->frag_size);
  1087. else
  1088. return kmalloc(pp->frag_size, GFP_ATOMIC);
  1089. }
  1090. static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
  1091. {
  1092. if (likely(pp->frag_size <= PAGE_SIZE))
  1093. put_page(virt_to_head_page(data));
  1094. else
  1095. kfree(data);
  1096. }
  1097. /* Refill processing */
  1098. static int mvneta_rx_refill(struct mvneta_port *pp,
  1099. struct mvneta_rx_desc *rx_desc)
  1100. {
  1101. dma_addr_t phys_addr;
  1102. void *data;
  1103. data = mvneta_frag_alloc(pp);
  1104. if (!data)
  1105. return -ENOMEM;
  1106. phys_addr = dma_map_single(pp->dev->dev.parent, data,
  1107. MVNETA_RX_BUF_SIZE(pp->pkt_size),
  1108. DMA_FROM_DEVICE);
  1109. if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
  1110. mvneta_frag_free(pp, data);
  1111. return -ENOMEM;
  1112. }
  1113. mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
  1114. return 0;
  1115. }
  1116. /* Handle tx checksum */
  1117. static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
  1118. {
  1119. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1120. int ip_hdr_len = 0;
  1121. u8 l4_proto;
  1122. if (skb->protocol == htons(ETH_P_IP)) {
  1123. struct iphdr *ip4h = ip_hdr(skb);
  1124. /* Calculate IPv4 checksum and L4 checksum */
  1125. ip_hdr_len = ip4h->ihl;
  1126. l4_proto = ip4h->protocol;
  1127. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1128. struct ipv6hdr *ip6h = ipv6_hdr(skb);
  1129. /* Read l4_protocol from one of IPv6 extra headers */
  1130. if (skb_network_header_len(skb) > 0)
  1131. ip_hdr_len = (skb_network_header_len(skb) >> 2);
  1132. l4_proto = ip6h->nexthdr;
  1133. } else
  1134. return MVNETA_TX_L4_CSUM_NOT;
  1135. return mvneta_txq_desc_csum(skb_network_offset(skb),
  1136. skb->protocol, ip_hdr_len, l4_proto);
  1137. }
  1138. return MVNETA_TX_L4_CSUM_NOT;
  1139. }
  1140. /* Returns rx queue pointer (find last set bit) according to causeRxTx
  1141. * value
  1142. */
  1143. static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
  1144. u32 cause)
  1145. {
  1146. int queue = fls(cause >> 8) - 1;
  1147. return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
  1148. }
  1149. /* Drop packets received by the RXQ and free buffers */
  1150. static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
  1151. struct mvneta_rx_queue *rxq)
  1152. {
  1153. int rx_done, i;
  1154. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1155. for (i = 0; i < rxq->size; i++) {
  1156. struct mvneta_rx_desc *rx_desc = rxq->descs + i;
  1157. void *data = (void *)rx_desc->buf_cookie;
  1158. mvneta_frag_free(pp, data);
  1159. dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
  1160. MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
  1161. }
  1162. if (rx_done)
  1163. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
  1164. }
  1165. /* Main rx processing */
  1166. static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
  1167. struct mvneta_rx_queue *rxq)
  1168. {
  1169. struct net_device *dev = pp->dev;
  1170. int rx_done, rx_filled;
  1171. u32 rcvd_pkts = 0;
  1172. u32 rcvd_bytes = 0;
  1173. /* Get number of received packets */
  1174. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1175. if (rx_todo > rx_done)
  1176. rx_todo = rx_done;
  1177. rx_done = 0;
  1178. rx_filled = 0;
  1179. /* Fairness NAPI loop */
  1180. while (rx_done < rx_todo) {
  1181. struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
  1182. struct sk_buff *skb;
  1183. unsigned char *data;
  1184. u32 rx_status;
  1185. int rx_bytes, err;
  1186. rx_done++;
  1187. rx_filled++;
  1188. rx_status = rx_desc->status;
  1189. rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
  1190. data = (unsigned char *)rx_desc->buf_cookie;
  1191. if (!mvneta_rxq_desc_is_first_last(rx_status) ||
  1192. (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
  1193. err_drop_frame:
  1194. dev->stats.rx_errors++;
  1195. mvneta_rx_error(pp, rx_desc);
  1196. /* leave the descriptor untouched */
  1197. continue;
  1198. }
  1199. if (rx_bytes <= rx_copybreak) {
  1200. /* better copy a small frame and not unmap the DMA region */
  1201. skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
  1202. if (unlikely(!skb))
  1203. goto err_drop_frame;
  1204. dma_sync_single_range_for_cpu(dev->dev.parent,
  1205. rx_desc->buf_phys_addr,
  1206. MVNETA_MH_SIZE + NET_SKB_PAD,
  1207. rx_bytes,
  1208. DMA_FROM_DEVICE);
  1209. memcpy(skb_put(skb, rx_bytes),
  1210. data + MVNETA_MH_SIZE + NET_SKB_PAD,
  1211. rx_bytes);
  1212. skb->protocol = eth_type_trans(skb, dev);
  1213. mvneta_rx_csum(pp, rx_status, skb);
  1214. napi_gro_receive(&pp->napi, skb);
  1215. rcvd_pkts++;
  1216. rcvd_bytes += rx_bytes;
  1217. /* leave the descriptor and buffer untouched */
  1218. continue;
  1219. }
  1220. skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
  1221. if (!skb)
  1222. goto err_drop_frame;
  1223. dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
  1224. MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
  1225. rcvd_pkts++;
  1226. rcvd_bytes += rx_bytes;
  1227. /* Linux processing */
  1228. skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
  1229. skb_put(skb, rx_bytes);
  1230. skb->protocol = eth_type_trans(skb, dev);
  1231. mvneta_rx_csum(pp, rx_status, skb);
  1232. napi_gro_receive(&pp->napi, skb);
  1233. /* Refill processing */
  1234. err = mvneta_rx_refill(pp, rx_desc);
  1235. if (err) {
  1236. netdev_err(dev, "Linux processing - Can't refill\n");
  1237. rxq->missed++;
  1238. rx_filled--;
  1239. }
  1240. }
  1241. if (rcvd_pkts) {
  1242. struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
  1243. u64_stats_update_begin(&stats->syncp);
  1244. stats->rx_packets += rcvd_pkts;
  1245. stats->rx_bytes += rcvd_bytes;
  1246. u64_stats_update_end(&stats->syncp);
  1247. }
  1248. /* Update rxq management counters */
  1249. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
  1250. return rx_done;
  1251. }
  1252. /* Handle tx fragmentation processing */
  1253. static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
  1254. struct mvneta_tx_queue *txq)
  1255. {
  1256. struct mvneta_tx_desc *tx_desc;
  1257. int i;
  1258. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1259. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1260. void *addr = page_address(frag->page.p) + frag->page_offset;
  1261. tx_desc = mvneta_txq_next_desc_get(txq);
  1262. tx_desc->data_size = frag->size;
  1263. tx_desc->buf_phys_addr =
  1264. dma_map_single(pp->dev->dev.parent, addr,
  1265. tx_desc->data_size, DMA_TO_DEVICE);
  1266. if (dma_mapping_error(pp->dev->dev.parent,
  1267. tx_desc->buf_phys_addr)) {
  1268. mvneta_txq_desc_put(txq);
  1269. goto error;
  1270. }
  1271. if (i == (skb_shinfo(skb)->nr_frags - 1)) {
  1272. /* Last descriptor */
  1273. tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
  1274. txq->tx_skb[txq->txq_put_index] = skb;
  1275. mvneta_txq_inc_put(txq);
  1276. } else {
  1277. /* Descriptor in the middle: Not First, Not Last */
  1278. tx_desc->command = 0;
  1279. txq->tx_skb[txq->txq_put_index] = NULL;
  1280. mvneta_txq_inc_put(txq);
  1281. }
  1282. }
  1283. return 0;
  1284. error:
  1285. /* Release all descriptors that were used to map fragments of
  1286. * this packet, as well as the corresponding DMA mappings
  1287. */
  1288. for (i = i - 1; i >= 0; i--) {
  1289. tx_desc = txq->descs + i;
  1290. dma_unmap_single(pp->dev->dev.parent,
  1291. tx_desc->buf_phys_addr,
  1292. tx_desc->data_size,
  1293. DMA_TO_DEVICE);
  1294. mvneta_txq_desc_put(txq);
  1295. }
  1296. return -ENOMEM;
  1297. }
  1298. /* Main tx processing */
  1299. static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
  1300. {
  1301. struct mvneta_port *pp = netdev_priv(dev);
  1302. u16 txq_id = skb_get_queue_mapping(skb);
  1303. struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
  1304. struct mvneta_tx_desc *tx_desc;
  1305. struct netdev_queue *nq;
  1306. int frags = 0;
  1307. u32 tx_cmd;
  1308. if (!netif_running(dev))
  1309. goto out;
  1310. frags = skb_shinfo(skb)->nr_frags + 1;
  1311. nq = netdev_get_tx_queue(dev, txq_id);
  1312. /* Get a descriptor for the first part of the packet */
  1313. tx_desc = mvneta_txq_next_desc_get(txq);
  1314. tx_cmd = mvneta_skb_tx_csum(pp, skb);
  1315. tx_desc->data_size = skb_headlen(skb);
  1316. tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
  1317. tx_desc->data_size,
  1318. DMA_TO_DEVICE);
  1319. if (unlikely(dma_mapping_error(dev->dev.parent,
  1320. tx_desc->buf_phys_addr))) {
  1321. mvneta_txq_desc_put(txq);
  1322. frags = 0;
  1323. goto out;
  1324. }
  1325. if (frags == 1) {
  1326. /* First and Last descriptor */
  1327. tx_cmd |= MVNETA_TXD_FLZ_DESC;
  1328. tx_desc->command = tx_cmd;
  1329. txq->tx_skb[txq->txq_put_index] = skb;
  1330. mvneta_txq_inc_put(txq);
  1331. } else {
  1332. /* First but not Last */
  1333. tx_cmd |= MVNETA_TXD_F_DESC;
  1334. txq->tx_skb[txq->txq_put_index] = NULL;
  1335. mvneta_txq_inc_put(txq);
  1336. tx_desc->command = tx_cmd;
  1337. /* Continue with other skb fragments */
  1338. if (mvneta_tx_frag_process(pp, skb, txq)) {
  1339. dma_unmap_single(dev->dev.parent,
  1340. tx_desc->buf_phys_addr,
  1341. tx_desc->data_size,
  1342. DMA_TO_DEVICE);
  1343. mvneta_txq_desc_put(txq);
  1344. frags = 0;
  1345. goto out;
  1346. }
  1347. }
  1348. txq->count += frags;
  1349. mvneta_txq_pend_desc_add(pp, txq, frags);
  1350. if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
  1351. netif_tx_stop_queue(nq);
  1352. out:
  1353. if (frags > 0) {
  1354. struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
  1355. u64_stats_update_begin(&stats->syncp);
  1356. stats->tx_packets++;
  1357. stats->tx_bytes += skb->len;
  1358. u64_stats_update_end(&stats->syncp);
  1359. } else {
  1360. dev->stats.tx_dropped++;
  1361. dev_kfree_skb_any(skb);
  1362. }
  1363. return NETDEV_TX_OK;
  1364. }
  1365. /* Free tx resources, when resetting a port */
  1366. static void mvneta_txq_done_force(struct mvneta_port *pp,
  1367. struct mvneta_tx_queue *txq)
  1368. {
  1369. int tx_done = txq->count;
  1370. mvneta_txq_bufs_free(pp, txq, tx_done);
  1371. /* reset txq */
  1372. txq->count = 0;
  1373. txq->txq_put_index = 0;
  1374. txq->txq_get_index = 0;
  1375. }
  1376. /* Handle tx done - called in softirq context. The <cause_tx_done> argument
  1377. * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
  1378. */
  1379. static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
  1380. {
  1381. struct mvneta_tx_queue *txq;
  1382. struct netdev_queue *nq;
  1383. while (cause_tx_done) {
  1384. txq = mvneta_tx_done_policy(pp, cause_tx_done);
  1385. nq = netdev_get_tx_queue(pp->dev, txq->id);
  1386. __netif_tx_lock(nq, smp_processor_id());
  1387. if (txq->count)
  1388. mvneta_txq_done(pp, txq);
  1389. __netif_tx_unlock(nq);
  1390. cause_tx_done &= ~((1 << txq->id));
  1391. }
  1392. }
  1393. /* Compute crc8 of the specified address, using a unique algorithm ,
  1394. * according to hw spec, different than generic crc8 algorithm
  1395. */
  1396. static int mvneta_addr_crc(unsigned char *addr)
  1397. {
  1398. int crc = 0;
  1399. int i;
  1400. for (i = 0; i < ETH_ALEN; i++) {
  1401. int j;
  1402. crc = (crc ^ addr[i]) << 8;
  1403. for (j = 7; j >= 0; j--) {
  1404. if (crc & (0x100 << j))
  1405. crc ^= 0x107 << j;
  1406. }
  1407. }
  1408. return crc;
  1409. }
  1410. /* This method controls the net device special MAC multicast support.
  1411. * The Special Multicast Table for MAC addresses supports MAC of the form
  1412. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1413. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1414. * Table entries in the DA-Filter table. This method set the Special
  1415. * Multicast Table appropriate entry.
  1416. */
  1417. static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
  1418. unsigned char last_byte,
  1419. int queue)
  1420. {
  1421. unsigned int smc_table_reg;
  1422. unsigned int tbl_offset;
  1423. unsigned int reg_offset;
  1424. /* Register offset from SMC table base */
  1425. tbl_offset = (last_byte / 4);
  1426. /* Entry offset within the above reg */
  1427. reg_offset = last_byte % 4;
  1428. smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
  1429. + tbl_offset * 4));
  1430. if (queue == -1)
  1431. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1432. else {
  1433. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1434. smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1435. }
  1436. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
  1437. smc_table_reg);
  1438. }
  1439. /* This method controls the network device Other MAC multicast support.
  1440. * The Other Multicast Table is used for multicast of another type.
  1441. * A CRC-8 is used as an index to the Other Multicast Table entries
  1442. * in the DA-Filter table.
  1443. * The method gets the CRC-8 value from the calling routine and
  1444. * sets the Other Multicast Table appropriate entry according to the
  1445. * specified CRC-8 .
  1446. */
  1447. static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
  1448. unsigned char crc8,
  1449. int queue)
  1450. {
  1451. unsigned int omc_table_reg;
  1452. unsigned int tbl_offset;
  1453. unsigned int reg_offset;
  1454. tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
  1455. reg_offset = crc8 % 4; /* Entry offset within the above reg */
  1456. omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
  1457. if (queue == -1) {
  1458. /* Clear accepts frame bit at specified Other DA table entry */
  1459. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1460. } else {
  1461. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1462. omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1463. }
  1464. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
  1465. }
  1466. /* The network device supports multicast using two tables:
  1467. * 1) Special Multicast Table for MAC addresses of the form
  1468. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1469. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1470. * Table entries in the DA-Filter table.
  1471. * 2) Other Multicast Table for multicast of another type. A CRC-8 value
  1472. * is used as an index to the Other Multicast Table entries in the
  1473. * DA-Filter table.
  1474. */
  1475. static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
  1476. int queue)
  1477. {
  1478. unsigned char crc_result = 0;
  1479. if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
  1480. mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
  1481. return 0;
  1482. }
  1483. crc_result = mvneta_addr_crc(p_addr);
  1484. if (queue == -1) {
  1485. if (pp->mcast_count[crc_result] == 0) {
  1486. netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
  1487. crc_result);
  1488. return -EINVAL;
  1489. }
  1490. pp->mcast_count[crc_result]--;
  1491. if (pp->mcast_count[crc_result] != 0) {
  1492. netdev_info(pp->dev,
  1493. "After delete there are %d valid Mcast for crc8=0x%02x\n",
  1494. pp->mcast_count[crc_result], crc_result);
  1495. return -EINVAL;
  1496. }
  1497. } else
  1498. pp->mcast_count[crc_result]++;
  1499. mvneta_set_other_mcast_addr(pp, crc_result, queue);
  1500. return 0;
  1501. }
  1502. /* Configure Fitering mode of Ethernet port */
  1503. static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
  1504. int is_promisc)
  1505. {
  1506. u32 port_cfg_reg, val;
  1507. port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
  1508. val = mvreg_read(pp, MVNETA_TYPE_PRIO);
  1509. /* Set / Clear UPM bit in port configuration register */
  1510. if (is_promisc) {
  1511. /* Accept all Unicast addresses */
  1512. port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
  1513. val |= MVNETA_FORCE_UNI;
  1514. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
  1515. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
  1516. } else {
  1517. /* Reject all Unicast addresses */
  1518. port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
  1519. val &= ~MVNETA_FORCE_UNI;
  1520. }
  1521. mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
  1522. mvreg_write(pp, MVNETA_TYPE_PRIO, val);
  1523. }
  1524. /* register unicast and multicast addresses */
  1525. static void mvneta_set_rx_mode(struct net_device *dev)
  1526. {
  1527. struct mvneta_port *pp = netdev_priv(dev);
  1528. struct netdev_hw_addr *ha;
  1529. if (dev->flags & IFF_PROMISC) {
  1530. /* Accept all: Multicast + Unicast */
  1531. mvneta_rx_unicast_promisc_set(pp, 1);
  1532. mvneta_set_ucast_table(pp, rxq_def);
  1533. mvneta_set_special_mcast_table(pp, rxq_def);
  1534. mvneta_set_other_mcast_table(pp, rxq_def);
  1535. } else {
  1536. /* Accept single Unicast */
  1537. mvneta_rx_unicast_promisc_set(pp, 0);
  1538. mvneta_set_ucast_table(pp, -1);
  1539. mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
  1540. if (dev->flags & IFF_ALLMULTI) {
  1541. /* Accept all multicast */
  1542. mvneta_set_special_mcast_table(pp, rxq_def);
  1543. mvneta_set_other_mcast_table(pp, rxq_def);
  1544. } else {
  1545. /* Accept only initialized multicast */
  1546. mvneta_set_special_mcast_table(pp, -1);
  1547. mvneta_set_other_mcast_table(pp, -1);
  1548. if (!netdev_mc_empty(dev)) {
  1549. netdev_for_each_mc_addr(ha, dev) {
  1550. mvneta_mcast_addr_set(pp, ha->addr,
  1551. rxq_def);
  1552. }
  1553. }
  1554. }
  1555. }
  1556. }
  1557. /* Interrupt handling - the callback for request_irq() */
  1558. static irqreturn_t mvneta_isr(int irq, void *dev_id)
  1559. {
  1560. struct mvneta_port *pp = (struct mvneta_port *)dev_id;
  1561. /* Mask all interrupts */
  1562. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1563. napi_schedule(&pp->napi);
  1564. return IRQ_HANDLED;
  1565. }
  1566. /* NAPI handler
  1567. * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
  1568. * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
  1569. * Bits 8 -15 of the cause Rx Tx register indicate that are received
  1570. * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
  1571. * Each CPU has its own causeRxTx register
  1572. */
  1573. static int mvneta_poll(struct napi_struct *napi, int budget)
  1574. {
  1575. int rx_done = 0;
  1576. u32 cause_rx_tx;
  1577. unsigned long flags;
  1578. struct mvneta_port *pp = netdev_priv(napi->dev);
  1579. if (!netif_running(pp->dev)) {
  1580. napi_complete(napi);
  1581. return rx_done;
  1582. }
  1583. /* Read cause register */
  1584. cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
  1585. (MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
  1586. /* Release Tx descriptors */
  1587. if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
  1588. mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
  1589. cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
  1590. }
  1591. /* For the case where the last mvneta_poll did not process all
  1592. * RX packets
  1593. */
  1594. cause_rx_tx |= pp->cause_rx_tx;
  1595. if (rxq_number > 1) {
  1596. while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
  1597. int count;
  1598. struct mvneta_rx_queue *rxq;
  1599. /* get rx queue number from cause_rx_tx */
  1600. rxq = mvneta_rx_policy(pp, cause_rx_tx);
  1601. if (!rxq)
  1602. break;
  1603. /* process the packet in that rx queue */
  1604. count = mvneta_rx(pp, budget, rxq);
  1605. rx_done += count;
  1606. budget -= count;
  1607. if (budget > 0) {
  1608. /* set off the rx bit of the
  1609. * corresponding bit in the cause rx
  1610. * tx register, so that next iteration
  1611. * will find the next rx queue where
  1612. * packets are received on
  1613. */
  1614. cause_rx_tx &= ~((1 << rxq->id) << 8);
  1615. }
  1616. }
  1617. } else {
  1618. rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
  1619. budget -= rx_done;
  1620. }
  1621. if (budget > 0) {
  1622. cause_rx_tx = 0;
  1623. napi_complete(napi);
  1624. local_irq_save(flags);
  1625. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1626. MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
  1627. local_irq_restore(flags);
  1628. }
  1629. pp->cause_rx_tx = cause_rx_tx;
  1630. return rx_done;
  1631. }
  1632. /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
  1633. static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
  1634. int num)
  1635. {
  1636. int i;
  1637. for (i = 0; i < num; i++) {
  1638. memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
  1639. if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
  1640. netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
  1641. __func__, rxq->id, i, num);
  1642. break;
  1643. }
  1644. }
  1645. /* Add this number of RX descriptors as non occupied (ready to
  1646. * get packets)
  1647. */
  1648. mvneta_rxq_non_occup_desc_add(pp, rxq, i);
  1649. return i;
  1650. }
  1651. /* Free all packets pending transmit from all TXQs and reset TX port */
  1652. static void mvneta_tx_reset(struct mvneta_port *pp)
  1653. {
  1654. int queue;
  1655. /* free the skb's in the hal tx ring */
  1656. for (queue = 0; queue < txq_number; queue++)
  1657. mvneta_txq_done_force(pp, &pp->txqs[queue]);
  1658. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  1659. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  1660. }
  1661. static void mvneta_rx_reset(struct mvneta_port *pp)
  1662. {
  1663. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  1664. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  1665. }
  1666. /* Rx/Tx queue initialization/cleanup methods */
  1667. /* Create a specified RX queue */
  1668. static int mvneta_rxq_init(struct mvneta_port *pp,
  1669. struct mvneta_rx_queue *rxq)
  1670. {
  1671. rxq->size = pp->rx_ring_size;
  1672. /* Allocate memory for RX descriptors */
  1673. rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1674. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1675. &rxq->descs_phys, GFP_KERNEL);
  1676. if (rxq->descs == NULL)
  1677. return -ENOMEM;
  1678. BUG_ON(rxq->descs !=
  1679. PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1680. rxq->last_desc = rxq->size - 1;
  1681. /* Set Rx descriptors queue starting address */
  1682. mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
  1683. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
  1684. /* Set Offset */
  1685. mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
  1686. /* Set coalescing pkts and time */
  1687. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  1688. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  1689. /* Fill RXQ with buffers from RX pool */
  1690. mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
  1691. mvneta_rxq_bm_disable(pp, rxq);
  1692. mvneta_rxq_fill(pp, rxq, rxq->size);
  1693. return 0;
  1694. }
  1695. /* Cleanup Rx queue */
  1696. static void mvneta_rxq_deinit(struct mvneta_port *pp,
  1697. struct mvneta_rx_queue *rxq)
  1698. {
  1699. mvneta_rxq_drop_pkts(pp, rxq);
  1700. if (rxq->descs)
  1701. dma_free_coherent(pp->dev->dev.parent,
  1702. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1703. rxq->descs,
  1704. rxq->descs_phys);
  1705. rxq->descs = NULL;
  1706. rxq->last_desc = 0;
  1707. rxq->next_desc_to_proc = 0;
  1708. rxq->descs_phys = 0;
  1709. }
  1710. /* Create and initialize a tx queue */
  1711. static int mvneta_txq_init(struct mvneta_port *pp,
  1712. struct mvneta_tx_queue *txq)
  1713. {
  1714. txq->size = pp->tx_ring_size;
  1715. /* Allocate memory for TX descriptors */
  1716. txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1717. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1718. &txq->descs_phys, GFP_KERNEL);
  1719. if (txq->descs == NULL)
  1720. return -ENOMEM;
  1721. /* Make sure descriptor address is cache line size aligned */
  1722. BUG_ON(txq->descs !=
  1723. PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1724. txq->last_desc = txq->size - 1;
  1725. /* Set maximum bandwidth for enabled TXQs */
  1726. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
  1727. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
  1728. /* Set Tx descriptors queue starting address */
  1729. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
  1730. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
  1731. txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
  1732. if (txq->tx_skb == NULL) {
  1733. dma_free_coherent(pp->dev->dev.parent,
  1734. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1735. txq->descs, txq->descs_phys);
  1736. return -ENOMEM;
  1737. }
  1738. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  1739. return 0;
  1740. }
  1741. /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
  1742. static void mvneta_txq_deinit(struct mvneta_port *pp,
  1743. struct mvneta_tx_queue *txq)
  1744. {
  1745. kfree(txq->tx_skb);
  1746. if (txq->descs)
  1747. dma_free_coherent(pp->dev->dev.parent,
  1748. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1749. txq->descs, txq->descs_phys);
  1750. txq->descs = NULL;
  1751. txq->last_desc = 0;
  1752. txq->next_desc_to_proc = 0;
  1753. txq->descs_phys = 0;
  1754. /* Set minimum bandwidth for disabled TXQs */
  1755. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
  1756. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
  1757. /* Set Tx descriptors queue starting address and size */
  1758. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
  1759. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
  1760. }
  1761. /* Cleanup all Tx queues */
  1762. static void mvneta_cleanup_txqs(struct mvneta_port *pp)
  1763. {
  1764. int queue;
  1765. for (queue = 0; queue < txq_number; queue++)
  1766. mvneta_txq_deinit(pp, &pp->txqs[queue]);
  1767. }
  1768. /* Cleanup all Rx queues */
  1769. static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
  1770. {
  1771. int queue;
  1772. for (queue = 0; queue < rxq_number; queue++)
  1773. mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
  1774. }
  1775. /* Init all Rx queues */
  1776. static int mvneta_setup_rxqs(struct mvneta_port *pp)
  1777. {
  1778. int queue;
  1779. for (queue = 0; queue < rxq_number; queue++) {
  1780. int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
  1781. if (err) {
  1782. netdev_err(pp->dev, "%s: can't create rxq=%d\n",
  1783. __func__, queue);
  1784. mvneta_cleanup_rxqs(pp);
  1785. return err;
  1786. }
  1787. }
  1788. return 0;
  1789. }
  1790. /* Init all tx queues */
  1791. static int mvneta_setup_txqs(struct mvneta_port *pp)
  1792. {
  1793. int queue;
  1794. for (queue = 0; queue < txq_number; queue++) {
  1795. int err = mvneta_txq_init(pp, &pp->txqs[queue]);
  1796. if (err) {
  1797. netdev_err(pp->dev, "%s: can't create txq=%d\n",
  1798. __func__, queue);
  1799. mvneta_cleanup_txqs(pp);
  1800. return err;
  1801. }
  1802. }
  1803. return 0;
  1804. }
  1805. static void mvneta_start_dev(struct mvneta_port *pp)
  1806. {
  1807. mvneta_max_rx_size_set(pp, pp->pkt_size);
  1808. mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
  1809. /* start the Rx/Tx activity */
  1810. mvneta_port_enable(pp);
  1811. /* Enable polling on the port */
  1812. napi_enable(&pp->napi);
  1813. /* Unmask interrupts */
  1814. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1815. MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
  1816. phy_start(pp->phy_dev);
  1817. netif_tx_start_all_queues(pp->dev);
  1818. }
  1819. static void mvneta_stop_dev(struct mvneta_port *pp)
  1820. {
  1821. phy_stop(pp->phy_dev);
  1822. napi_disable(&pp->napi);
  1823. netif_carrier_off(pp->dev);
  1824. mvneta_port_down(pp);
  1825. netif_tx_stop_all_queues(pp->dev);
  1826. /* Stop the port activity */
  1827. mvneta_port_disable(pp);
  1828. /* Clear all ethernet port interrupts */
  1829. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  1830. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  1831. /* Mask all ethernet port interrupts */
  1832. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1833. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  1834. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  1835. mvneta_tx_reset(pp);
  1836. mvneta_rx_reset(pp);
  1837. }
  1838. /* Return positive if MTU is valid */
  1839. static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
  1840. {
  1841. if (mtu < 68) {
  1842. netdev_err(dev, "cannot change mtu to less than 68\n");
  1843. return -EINVAL;
  1844. }
  1845. /* 9676 == 9700 - 20 and rounding to 8 */
  1846. if (mtu > 9676) {
  1847. netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
  1848. mtu = 9676;
  1849. }
  1850. if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
  1851. netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
  1852. mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
  1853. mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
  1854. }
  1855. return mtu;
  1856. }
  1857. /* Change the device mtu */
  1858. static int mvneta_change_mtu(struct net_device *dev, int mtu)
  1859. {
  1860. struct mvneta_port *pp = netdev_priv(dev);
  1861. int ret;
  1862. mtu = mvneta_check_mtu_valid(dev, mtu);
  1863. if (mtu < 0)
  1864. return -EINVAL;
  1865. dev->mtu = mtu;
  1866. if (!netif_running(dev))
  1867. return 0;
  1868. /* The interface is running, so we have to force a
  1869. * reallocation of the RXQs
  1870. */
  1871. mvneta_stop_dev(pp);
  1872. mvneta_cleanup_txqs(pp);
  1873. mvneta_cleanup_rxqs(pp);
  1874. pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
  1875. pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
  1876. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  1877. ret = mvneta_setup_rxqs(pp);
  1878. if (ret) {
  1879. netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
  1880. return ret;
  1881. }
  1882. mvneta_setup_txqs(pp);
  1883. mvneta_start_dev(pp);
  1884. mvneta_port_up(pp);
  1885. return 0;
  1886. }
  1887. /* Get mac address */
  1888. static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
  1889. {
  1890. u32 mac_addr_l, mac_addr_h;
  1891. mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
  1892. mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
  1893. addr[0] = (mac_addr_h >> 24) & 0xFF;
  1894. addr[1] = (mac_addr_h >> 16) & 0xFF;
  1895. addr[2] = (mac_addr_h >> 8) & 0xFF;
  1896. addr[3] = mac_addr_h & 0xFF;
  1897. addr[4] = (mac_addr_l >> 8) & 0xFF;
  1898. addr[5] = mac_addr_l & 0xFF;
  1899. }
  1900. /* Handle setting mac address */
  1901. static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
  1902. {
  1903. struct mvneta_port *pp = netdev_priv(dev);
  1904. u8 *mac = addr + 2;
  1905. int i;
  1906. if (netif_running(dev))
  1907. return -EBUSY;
  1908. /* Remove previous address table entry */
  1909. mvneta_mac_addr_set(pp, dev->dev_addr, -1);
  1910. /* Set new addr in hw */
  1911. mvneta_mac_addr_set(pp, mac, rxq_def);
  1912. /* Set addr in the device */
  1913. for (i = 0; i < ETH_ALEN; i++)
  1914. dev->dev_addr[i] = mac[i];
  1915. return 0;
  1916. }
  1917. static void mvneta_adjust_link(struct net_device *ndev)
  1918. {
  1919. struct mvneta_port *pp = netdev_priv(ndev);
  1920. struct phy_device *phydev = pp->phy_dev;
  1921. int status_change = 0;
  1922. if (phydev->link) {
  1923. if ((pp->speed != phydev->speed) ||
  1924. (pp->duplex != phydev->duplex)) {
  1925. u32 val;
  1926. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  1927. val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
  1928. MVNETA_GMAC_CONFIG_GMII_SPEED |
  1929. MVNETA_GMAC_CONFIG_FULL_DUPLEX |
  1930. MVNETA_GMAC_AN_SPEED_EN |
  1931. MVNETA_GMAC_AN_DUPLEX_EN);
  1932. if (phydev->duplex)
  1933. val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
  1934. if (phydev->speed == SPEED_1000)
  1935. val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
  1936. else
  1937. val |= MVNETA_GMAC_CONFIG_MII_SPEED;
  1938. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  1939. pp->duplex = phydev->duplex;
  1940. pp->speed = phydev->speed;
  1941. }
  1942. }
  1943. if (phydev->link != pp->link) {
  1944. if (!phydev->link) {
  1945. pp->duplex = -1;
  1946. pp->speed = 0;
  1947. }
  1948. pp->link = phydev->link;
  1949. status_change = 1;
  1950. }
  1951. if (status_change) {
  1952. if (phydev->link) {
  1953. u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  1954. val |= (MVNETA_GMAC_FORCE_LINK_PASS |
  1955. MVNETA_GMAC_FORCE_LINK_DOWN);
  1956. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  1957. mvneta_port_up(pp);
  1958. netdev_info(pp->dev, "link up\n");
  1959. } else {
  1960. mvneta_port_down(pp);
  1961. netdev_info(pp->dev, "link down\n");
  1962. }
  1963. }
  1964. }
  1965. static int mvneta_mdio_probe(struct mvneta_port *pp)
  1966. {
  1967. struct phy_device *phy_dev;
  1968. phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
  1969. pp->phy_interface);
  1970. if (!phy_dev) {
  1971. netdev_err(pp->dev, "could not find the PHY\n");
  1972. return -ENODEV;
  1973. }
  1974. phy_dev->supported &= PHY_GBIT_FEATURES;
  1975. phy_dev->advertising = phy_dev->supported;
  1976. pp->phy_dev = phy_dev;
  1977. pp->link = 0;
  1978. pp->duplex = 0;
  1979. pp->speed = 0;
  1980. return 0;
  1981. }
  1982. static void mvneta_mdio_remove(struct mvneta_port *pp)
  1983. {
  1984. phy_disconnect(pp->phy_dev);
  1985. pp->phy_dev = NULL;
  1986. }
  1987. static int mvneta_open(struct net_device *dev)
  1988. {
  1989. struct mvneta_port *pp = netdev_priv(dev);
  1990. int ret;
  1991. mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
  1992. pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
  1993. pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
  1994. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  1995. ret = mvneta_setup_rxqs(pp);
  1996. if (ret)
  1997. return ret;
  1998. ret = mvneta_setup_txqs(pp);
  1999. if (ret)
  2000. goto err_cleanup_rxqs;
  2001. /* Connect to port interrupt line */
  2002. ret = request_irq(pp->dev->irq, mvneta_isr, 0,
  2003. MVNETA_DRIVER_NAME, pp);
  2004. if (ret) {
  2005. netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
  2006. goto err_cleanup_txqs;
  2007. }
  2008. /* In default link is down */
  2009. netif_carrier_off(pp->dev);
  2010. ret = mvneta_mdio_probe(pp);
  2011. if (ret < 0) {
  2012. netdev_err(dev, "cannot probe MDIO bus\n");
  2013. goto err_free_irq;
  2014. }
  2015. mvneta_start_dev(pp);
  2016. return 0;
  2017. err_free_irq:
  2018. free_irq(pp->dev->irq, pp);
  2019. err_cleanup_txqs:
  2020. mvneta_cleanup_txqs(pp);
  2021. err_cleanup_rxqs:
  2022. mvneta_cleanup_rxqs(pp);
  2023. return ret;
  2024. }
  2025. /* Stop the port, free port interrupt line */
  2026. static int mvneta_stop(struct net_device *dev)
  2027. {
  2028. struct mvneta_port *pp = netdev_priv(dev);
  2029. mvneta_stop_dev(pp);
  2030. mvneta_mdio_remove(pp);
  2031. free_irq(dev->irq, pp);
  2032. mvneta_cleanup_rxqs(pp);
  2033. mvneta_cleanup_txqs(pp);
  2034. return 0;
  2035. }
  2036. static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2037. {
  2038. struct mvneta_port *pp = netdev_priv(dev);
  2039. int ret;
  2040. if (!pp->phy_dev)
  2041. return -ENOTSUPP;
  2042. ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd);
  2043. if (!ret)
  2044. mvneta_adjust_link(dev);
  2045. return ret;
  2046. }
  2047. /* Ethtool methods */
  2048. /* Get settings (phy address, speed) for ethtools */
  2049. int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2050. {
  2051. struct mvneta_port *pp = netdev_priv(dev);
  2052. if (!pp->phy_dev)
  2053. return -ENODEV;
  2054. return phy_ethtool_gset(pp->phy_dev, cmd);
  2055. }
  2056. /* Set settings (phy address, speed) for ethtools */
  2057. int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2058. {
  2059. struct mvneta_port *pp = netdev_priv(dev);
  2060. if (!pp->phy_dev)
  2061. return -ENODEV;
  2062. return phy_ethtool_sset(pp->phy_dev, cmd);
  2063. }
  2064. /* Set interrupt coalescing for ethtools */
  2065. static int mvneta_ethtool_set_coalesce(struct net_device *dev,
  2066. struct ethtool_coalesce *c)
  2067. {
  2068. struct mvneta_port *pp = netdev_priv(dev);
  2069. int queue;
  2070. for (queue = 0; queue < rxq_number; queue++) {
  2071. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2072. rxq->time_coal = c->rx_coalesce_usecs;
  2073. rxq->pkts_coal = c->rx_max_coalesced_frames;
  2074. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  2075. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  2076. }
  2077. for (queue = 0; queue < txq_number; queue++) {
  2078. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2079. txq->done_pkts_coal = c->tx_max_coalesced_frames;
  2080. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  2081. }
  2082. return 0;
  2083. }
  2084. /* get coalescing for ethtools */
  2085. static int mvneta_ethtool_get_coalesce(struct net_device *dev,
  2086. struct ethtool_coalesce *c)
  2087. {
  2088. struct mvneta_port *pp = netdev_priv(dev);
  2089. c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
  2090. c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
  2091. c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
  2092. return 0;
  2093. }
  2094. static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
  2095. struct ethtool_drvinfo *drvinfo)
  2096. {
  2097. strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
  2098. sizeof(drvinfo->driver));
  2099. strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
  2100. sizeof(drvinfo->version));
  2101. strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
  2102. sizeof(drvinfo->bus_info));
  2103. }
  2104. static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
  2105. struct ethtool_ringparam *ring)
  2106. {
  2107. struct mvneta_port *pp = netdev_priv(netdev);
  2108. ring->rx_max_pending = MVNETA_MAX_RXD;
  2109. ring->tx_max_pending = MVNETA_MAX_TXD;
  2110. ring->rx_pending = pp->rx_ring_size;
  2111. ring->tx_pending = pp->tx_ring_size;
  2112. }
  2113. static int mvneta_ethtool_set_ringparam(struct net_device *dev,
  2114. struct ethtool_ringparam *ring)
  2115. {
  2116. struct mvneta_port *pp = netdev_priv(dev);
  2117. if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
  2118. return -EINVAL;
  2119. pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
  2120. ring->rx_pending : MVNETA_MAX_RXD;
  2121. pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
  2122. ring->tx_pending : MVNETA_MAX_TXD;
  2123. if (netif_running(dev)) {
  2124. mvneta_stop(dev);
  2125. if (mvneta_open(dev)) {
  2126. netdev_err(dev,
  2127. "error on opening device after ring param change\n");
  2128. return -ENOMEM;
  2129. }
  2130. }
  2131. return 0;
  2132. }
  2133. static const struct net_device_ops mvneta_netdev_ops = {
  2134. .ndo_open = mvneta_open,
  2135. .ndo_stop = mvneta_stop,
  2136. .ndo_start_xmit = mvneta_tx,
  2137. .ndo_set_rx_mode = mvneta_set_rx_mode,
  2138. .ndo_set_mac_address = mvneta_set_mac_addr,
  2139. .ndo_change_mtu = mvneta_change_mtu,
  2140. .ndo_get_stats64 = mvneta_get_stats64,
  2141. .ndo_do_ioctl = mvneta_ioctl,
  2142. };
  2143. const struct ethtool_ops mvneta_eth_tool_ops = {
  2144. .get_link = ethtool_op_get_link,
  2145. .get_settings = mvneta_ethtool_get_settings,
  2146. .set_settings = mvneta_ethtool_set_settings,
  2147. .set_coalesce = mvneta_ethtool_set_coalesce,
  2148. .get_coalesce = mvneta_ethtool_get_coalesce,
  2149. .get_drvinfo = mvneta_ethtool_get_drvinfo,
  2150. .get_ringparam = mvneta_ethtool_get_ringparam,
  2151. .set_ringparam = mvneta_ethtool_set_ringparam,
  2152. };
  2153. /* Initialize hw */
  2154. static int mvneta_init(struct mvneta_port *pp, int phy_addr)
  2155. {
  2156. int queue;
  2157. /* Disable port */
  2158. mvneta_port_disable(pp);
  2159. /* Set port default values */
  2160. mvneta_defaults_set(pp);
  2161. pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
  2162. GFP_KERNEL);
  2163. if (!pp->txqs)
  2164. return -ENOMEM;
  2165. /* Initialize TX descriptor rings */
  2166. for (queue = 0; queue < txq_number; queue++) {
  2167. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2168. txq->id = queue;
  2169. txq->size = pp->tx_ring_size;
  2170. txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
  2171. }
  2172. pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
  2173. GFP_KERNEL);
  2174. if (!pp->rxqs) {
  2175. kfree(pp->txqs);
  2176. return -ENOMEM;
  2177. }
  2178. /* Create Rx descriptor rings */
  2179. for (queue = 0; queue < rxq_number; queue++) {
  2180. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2181. rxq->id = queue;
  2182. rxq->size = pp->rx_ring_size;
  2183. rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
  2184. rxq->time_coal = MVNETA_RX_COAL_USEC;
  2185. }
  2186. return 0;
  2187. }
  2188. static void mvneta_deinit(struct mvneta_port *pp)
  2189. {
  2190. kfree(pp->txqs);
  2191. kfree(pp->rxqs);
  2192. }
  2193. /* platform glue : initialize decoding windows */
  2194. static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
  2195. const struct mbus_dram_target_info *dram)
  2196. {
  2197. u32 win_enable;
  2198. u32 win_protect;
  2199. int i;
  2200. for (i = 0; i < 6; i++) {
  2201. mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
  2202. mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
  2203. if (i < 4)
  2204. mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
  2205. }
  2206. win_enable = 0x3f;
  2207. win_protect = 0;
  2208. for (i = 0; i < dram->num_cs; i++) {
  2209. const struct mbus_dram_window *cs = dram->cs + i;
  2210. mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
  2211. (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
  2212. mvreg_write(pp, MVNETA_WIN_SIZE(i),
  2213. (cs->size - 1) & 0xffff0000);
  2214. win_enable &= ~(1 << i);
  2215. win_protect |= 3 << (2 * i);
  2216. }
  2217. mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
  2218. }
  2219. /* Power up the port */
  2220. static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
  2221. {
  2222. u32 val;
  2223. /* MAC Cause register should be cleared */
  2224. mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
  2225. if (phy_mode == PHY_INTERFACE_MODE_SGMII)
  2226. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
  2227. else
  2228. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_RGMII_SERDES_PROTO);
  2229. val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  2230. val |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  2231. /* Cancel Port Reset */
  2232. val &= ~MVNETA_GMAC2_PORT_RESET;
  2233. mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
  2234. while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
  2235. MVNETA_GMAC2_PORT_RESET) != 0)
  2236. continue;
  2237. }
  2238. /* Device initialization routine */
  2239. static int mvneta_probe(struct platform_device *pdev)
  2240. {
  2241. const struct mbus_dram_target_info *dram_target_info;
  2242. struct resource *res;
  2243. struct device_node *dn = pdev->dev.of_node;
  2244. struct device_node *phy_node;
  2245. u32 phy_addr;
  2246. struct mvneta_port *pp;
  2247. struct net_device *dev;
  2248. const char *dt_mac_addr;
  2249. char hw_mac_addr[ETH_ALEN];
  2250. const char *mac_from;
  2251. int phy_mode;
  2252. int err;
  2253. int cpu;
  2254. /* Our multiqueue support is not complete, so for now, only
  2255. * allow the usage of the first RX queue
  2256. */
  2257. if (rxq_def != 0) {
  2258. dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
  2259. return -EINVAL;
  2260. }
  2261. dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
  2262. if (!dev)
  2263. return -ENOMEM;
  2264. dev->irq = irq_of_parse_and_map(dn, 0);
  2265. if (dev->irq == 0) {
  2266. err = -EINVAL;
  2267. goto err_free_netdev;
  2268. }
  2269. phy_node = of_parse_phandle(dn, "phy", 0);
  2270. if (!phy_node) {
  2271. dev_err(&pdev->dev, "no associated PHY\n");
  2272. err = -ENODEV;
  2273. goto err_free_irq;
  2274. }
  2275. phy_mode = of_get_phy_mode(dn);
  2276. if (phy_mode < 0) {
  2277. dev_err(&pdev->dev, "incorrect phy-mode\n");
  2278. err = -EINVAL;
  2279. goto err_free_irq;
  2280. }
  2281. dev->tx_queue_len = MVNETA_MAX_TXD;
  2282. dev->watchdog_timeo = 5 * HZ;
  2283. dev->netdev_ops = &mvneta_netdev_ops;
  2284. SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
  2285. pp = netdev_priv(dev);
  2286. pp->weight = MVNETA_RX_POLL_WEIGHT;
  2287. pp->phy_node = phy_node;
  2288. pp->phy_interface = phy_mode;
  2289. pp->clk = devm_clk_get(&pdev->dev, NULL);
  2290. if (IS_ERR(pp->clk)) {
  2291. err = PTR_ERR(pp->clk);
  2292. goto err_free_irq;
  2293. }
  2294. clk_prepare_enable(pp->clk);
  2295. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2296. if (!res) {
  2297. err = -ENODEV;
  2298. goto err_clk;
  2299. }
  2300. pp->base = devm_ioremap_resource(&pdev->dev, res);
  2301. if (pp->base == NULL) {
  2302. err = PTR_ERR(pp->base);
  2303. goto err_clk;
  2304. }
  2305. /* Alloc per-cpu stats */
  2306. pp->stats = alloc_percpu(struct mvneta_pcpu_stats);
  2307. if (!pp->stats) {
  2308. err = -ENOMEM;
  2309. goto err_clk;
  2310. }
  2311. for_each_possible_cpu(cpu) {
  2312. struct mvneta_pcpu_stats *stats;
  2313. stats = per_cpu_ptr(pp->stats, cpu);
  2314. u64_stats_init(&stats->syncp);
  2315. }
  2316. dt_mac_addr = of_get_mac_address(dn);
  2317. if (dt_mac_addr) {
  2318. mac_from = "device tree";
  2319. memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
  2320. } else {
  2321. mvneta_get_mac_addr(pp, hw_mac_addr);
  2322. if (is_valid_ether_addr(hw_mac_addr)) {
  2323. mac_from = "hardware";
  2324. memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
  2325. } else {
  2326. mac_from = "random";
  2327. eth_hw_addr_random(dev);
  2328. }
  2329. }
  2330. pp->tx_ring_size = MVNETA_MAX_TXD;
  2331. pp->rx_ring_size = MVNETA_MAX_RXD;
  2332. pp->dev = dev;
  2333. SET_NETDEV_DEV(dev, &pdev->dev);
  2334. err = mvneta_init(pp, phy_addr);
  2335. if (err < 0) {
  2336. dev_err(&pdev->dev, "can't init eth hal\n");
  2337. goto err_free_stats;
  2338. }
  2339. mvneta_port_power_up(pp, phy_mode);
  2340. dram_target_info = mv_mbus_dram_info();
  2341. if (dram_target_info)
  2342. mvneta_conf_mbus_windows(pp, dram_target_info);
  2343. netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
  2344. dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
  2345. dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  2346. dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  2347. dev->priv_flags |= IFF_UNICAST_FLT;
  2348. err = register_netdev(dev);
  2349. if (err < 0) {
  2350. dev_err(&pdev->dev, "failed to register\n");
  2351. goto err_deinit;
  2352. }
  2353. netdev_info(dev, "Using %s mac address %pM\n", mac_from,
  2354. dev->dev_addr);
  2355. platform_set_drvdata(pdev, pp->dev);
  2356. return 0;
  2357. err_deinit:
  2358. mvneta_deinit(pp);
  2359. err_free_stats:
  2360. free_percpu(pp->stats);
  2361. err_clk:
  2362. clk_disable_unprepare(pp->clk);
  2363. err_free_irq:
  2364. irq_dispose_mapping(dev->irq);
  2365. err_free_netdev:
  2366. free_netdev(dev);
  2367. return err;
  2368. }
  2369. /* Device removal routine */
  2370. static int mvneta_remove(struct platform_device *pdev)
  2371. {
  2372. struct net_device *dev = platform_get_drvdata(pdev);
  2373. struct mvneta_port *pp = netdev_priv(dev);
  2374. unregister_netdev(dev);
  2375. mvneta_deinit(pp);
  2376. clk_disable_unprepare(pp->clk);
  2377. free_percpu(pp->stats);
  2378. irq_dispose_mapping(dev->irq);
  2379. free_netdev(dev);
  2380. return 0;
  2381. }
  2382. static const struct of_device_id mvneta_match[] = {
  2383. { .compatible = "marvell,armada-370-neta" },
  2384. { }
  2385. };
  2386. MODULE_DEVICE_TABLE(of, mvneta_match);
  2387. static struct platform_driver mvneta_driver = {
  2388. .probe = mvneta_probe,
  2389. .remove = mvneta_remove,
  2390. .driver = {
  2391. .name = MVNETA_DRIVER_NAME,
  2392. .of_match_table = mvneta_match,
  2393. },
  2394. };
  2395. module_platform_driver(mvneta_driver);
  2396. MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
  2397. MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
  2398. MODULE_LICENSE("GPL");
  2399. module_param(rxq_number, int, S_IRUGO);
  2400. module_param(txq_number, int, S_IRUGO);
  2401. module_param(rxq_def, int, S_IRUGO);
  2402. module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);