t4_hw.c 117 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/delay.h>
  35. #include "cxgb4.h"
  36. #include "t4_regs.h"
  37. #include "t4fw_api.h"
  38. static int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
  39. const u8 *fw_data, unsigned int size, int force);
  40. /**
  41. * t4_wait_op_done_val - wait until an operation is completed
  42. * @adapter: the adapter performing the operation
  43. * @reg: the register to check for completion
  44. * @mask: a single-bit field within @reg that indicates completion
  45. * @polarity: the value of the field when the operation is completed
  46. * @attempts: number of check iterations
  47. * @delay: delay in usecs between iterations
  48. * @valp: where to store the value of the register at completion time
  49. *
  50. * Wait until an operation is completed by checking a bit in a register
  51. * up to @attempts times. If @valp is not NULL the value of the register
  52. * at the time it indicated completion is stored there. Returns 0 if the
  53. * operation completes and -EAGAIN otherwise.
  54. */
  55. static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  56. int polarity, int attempts, int delay, u32 *valp)
  57. {
  58. while (1) {
  59. u32 val = t4_read_reg(adapter, reg);
  60. if (!!(val & mask) == polarity) {
  61. if (valp)
  62. *valp = val;
  63. return 0;
  64. }
  65. if (--attempts == 0)
  66. return -EAGAIN;
  67. if (delay)
  68. udelay(delay);
  69. }
  70. }
  71. static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  72. int polarity, int attempts, int delay)
  73. {
  74. return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  75. delay, NULL);
  76. }
  77. /**
  78. * t4_set_reg_field - set a register field to a value
  79. * @adapter: the adapter to program
  80. * @addr: the register address
  81. * @mask: specifies the portion of the register to modify
  82. * @val: the new value for the register field
  83. *
  84. * Sets a register field specified by the supplied mask to the
  85. * given value.
  86. */
  87. void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  88. u32 val)
  89. {
  90. u32 v = t4_read_reg(adapter, addr) & ~mask;
  91. t4_write_reg(adapter, addr, v | val);
  92. (void) t4_read_reg(adapter, addr); /* flush */
  93. }
  94. /**
  95. * t4_read_indirect - read indirectly addressed registers
  96. * @adap: the adapter
  97. * @addr_reg: register holding the indirect address
  98. * @data_reg: register holding the value of the indirect register
  99. * @vals: where the read register values are stored
  100. * @nregs: how many indirect registers to read
  101. * @start_idx: index of first indirect register to read
  102. *
  103. * Reads registers that are accessed indirectly through an address/data
  104. * register pair.
  105. */
  106. void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
  107. unsigned int data_reg, u32 *vals,
  108. unsigned int nregs, unsigned int start_idx)
  109. {
  110. while (nregs--) {
  111. t4_write_reg(adap, addr_reg, start_idx);
  112. *vals++ = t4_read_reg(adap, data_reg);
  113. start_idx++;
  114. }
  115. }
  116. /**
  117. * t4_write_indirect - write indirectly addressed registers
  118. * @adap: the adapter
  119. * @addr_reg: register holding the indirect addresses
  120. * @data_reg: register holding the value for the indirect registers
  121. * @vals: values to write
  122. * @nregs: how many indirect registers to write
  123. * @start_idx: address of first indirect register to write
  124. *
  125. * Writes a sequential block of registers that are accessed indirectly
  126. * through an address/data register pair.
  127. */
  128. void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
  129. unsigned int data_reg, const u32 *vals,
  130. unsigned int nregs, unsigned int start_idx)
  131. {
  132. while (nregs--) {
  133. t4_write_reg(adap, addr_reg, start_idx++);
  134. t4_write_reg(adap, data_reg, *vals++);
  135. }
  136. }
  137. /*
  138. * Get the reply to a mailbox command and store it in @rpl in big-endian order.
  139. */
  140. static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
  141. u32 mbox_addr)
  142. {
  143. for ( ; nflit; nflit--, mbox_addr += 8)
  144. *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
  145. }
  146. /*
  147. * Handle a FW assertion reported in a mailbox.
  148. */
  149. static void fw_asrt(struct adapter *adap, u32 mbox_addr)
  150. {
  151. struct fw_debug_cmd asrt;
  152. get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
  153. dev_alert(adap->pdev_dev,
  154. "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
  155. asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
  156. ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
  157. }
  158. static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
  159. {
  160. dev_err(adap->pdev_dev,
  161. "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
  162. (unsigned long long)t4_read_reg64(adap, data_reg),
  163. (unsigned long long)t4_read_reg64(adap, data_reg + 8),
  164. (unsigned long long)t4_read_reg64(adap, data_reg + 16),
  165. (unsigned long long)t4_read_reg64(adap, data_reg + 24),
  166. (unsigned long long)t4_read_reg64(adap, data_reg + 32),
  167. (unsigned long long)t4_read_reg64(adap, data_reg + 40),
  168. (unsigned long long)t4_read_reg64(adap, data_reg + 48),
  169. (unsigned long long)t4_read_reg64(adap, data_reg + 56));
  170. }
  171. /**
  172. * t4_wr_mbox_meat - send a command to FW through the given mailbox
  173. * @adap: the adapter
  174. * @mbox: index of the mailbox to use
  175. * @cmd: the command to write
  176. * @size: command length in bytes
  177. * @rpl: where to optionally store the reply
  178. * @sleep_ok: if true we may sleep while awaiting command completion
  179. *
  180. * Sends the given command to FW through the selected mailbox and waits
  181. * for the FW to execute the command. If @rpl is not %NULL it is used to
  182. * store the FW's reply to the command. The command and its optional
  183. * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
  184. * to respond. @sleep_ok determines whether we may sleep while awaiting
  185. * the response. If sleeping is allowed we use progressive backoff
  186. * otherwise we spin.
  187. *
  188. * The return value is 0 on success or a negative errno on failure. A
  189. * failure can happen either because we are not able to execute the
  190. * command or FW executes it but signals an error. In the latter case
  191. * the return value is the error code indicated by FW (negated).
  192. */
  193. int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
  194. void *rpl, bool sleep_ok)
  195. {
  196. static const int delay[] = {
  197. 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
  198. };
  199. u32 v;
  200. u64 res;
  201. int i, ms, delay_idx;
  202. const __be64 *p = cmd;
  203. u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
  204. u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
  205. if ((size & 15) || size > MBOX_LEN)
  206. return -EINVAL;
  207. /*
  208. * If the device is off-line, as in EEH, commands will time out.
  209. * Fail them early so we don't waste time waiting.
  210. */
  211. if (adap->pdev->error_state != pci_channel_io_normal)
  212. return -EIO;
  213. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  214. for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
  215. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  216. if (v != MBOX_OWNER_DRV)
  217. return v ? -EBUSY : -ETIMEDOUT;
  218. for (i = 0; i < size; i += 8)
  219. t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
  220. t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
  221. t4_read_reg(adap, ctl_reg); /* flush write */
  222. delay_idx = 0;
  223. ms = delay[0];
  224. for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
  225. if (sleep_ok) {
  226. ms = delay[delay_idx]; /* last element may repeat */
  227. if (delay_idx < ARRAY_SIZE(delay) - 1)
  228. delay_idx++;
  229. msleep(ms);
  230. } else
  231. mdelay(ms);
  232. v = t4_read_reg(adap, ctl_reg);
  233. if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
  234. if (!(v & MBMSGVALID)) {
  235. t4_write_reg(adap, ctl_reg, 0);
  236. continue;
  237. }
  238. res = t4_read_reg64(adap, data_reg);
  239. if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
  240. fw_asrt(adap, data_reg);
  241. res = FW_CMD_RETVAL(EIO);
  242. } else if (rpl)
  243. get_mbox_rpl(adap, rpl, size / 8, data_reg);
  244. if (FW_CMD_RETVAL_GET((int)res))
  245. dump_mbox(adap, mbox, data_reg);
  246. t4_write_reg(adap, ctl_reg, 0);
  247. return -FW_CMD_RETVAL_GET((int)res);
  248. }
  249. }
  250. dump_mbox(adap, mbox, data_reg);
  251. dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
  252. *(const u8 *)cmd, mbox);
  253. return -ETIMEDOUT;
  254. }
  255. /**
  256. * t4_mc_read - read from MC through backdoor accesses
  257. * @adap: the adapter
  258. * @addr: address of first byte requested
  259. * @idx: which MC to access
  260. * @data: 64 bytes of data containing the requested address
  261. * @ecc: where to store the corresponding 64-bit ECC word
  262. *
  263. * Read 64 bytes of data from MC starting at a 64-byte-aligned address
  264. * that covers the requested address @addr. If @parity is not %NULL it
  265. * is assigned the 64-bit ECC word for the read data.
  266. */
  267. int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  268. {
  269. int i;
  270. u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len;
  271. u32 mc_bist_status_rdata, mc_bist_data_pattern;
  272. if (is_t4(adap->params.chip)) {
  273. mc_bist_cmd = MC_BIST_CMD;
  274. mc_bist_cmd_addr = MC_BIST_CMD_ADDR;
  275. mc_bist_cmd_len = MC_BIST_CMD_LEN;
  276. mc_bist_status_rdata = MC_BIST_STATUS_RDATA;
  277. mc_bist_data_pattern = MC_BIST_DATA_PATTERN;
  278. } else {
  279. mc_bist_cmd = MC_REG(MC_P_BIST_CMD, idx);
  280. mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR, idx);
  281. mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN, idx);
  282. mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA, idx);
  283. mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN, idx);
  284. }
  285. if (t4_read_reg(adap, mc_bist_cmd) & START_BIST)
  286. return -EBUSY;
  287. t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU);
  288. t4_write_reg(adap, mc_bist_cmd_len, 64);
  289. t4_write_reg(adap, mc_bist_data_pattern, 0xc);
  290. t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE(1) | START_BIST |
  291. BIST_CMD_GAP(1));
  292. i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST, 0, 10, 1);
  293. if (i)
  294. return i;
  295. #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i)
  296. for (i = 15; i >= 0; i--)
  297. *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
  298. if (ecc)
  299. *ecc = t4_read_reg64(adap, MC_DATA(16));
  300. #undef MC_DATA
  301. return 0;
  302. }
  303. /**
  304. * t4_edc_read - read from EDC through backdoor accesses
  305. * @adap: the adapter
  306. * @idx: which EDC to access
  307. * @addr: address of first byte requested
  308. * @data: 64 bytes of data containing the requested address
  309. * @ecc: where to store the corresponding 64-bit ECC word
  310. *
  311. * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
  312. * that covers the requested address @addr. If @parity is not %NULL it
  313. * is assigned the 64-bit ECC word for the read data.
  314. */
  315. int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  316. {
  317. int i;
  318. u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len;
  319. u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata;
  320. if (is_t4(adap->params.chip)) {
  321. edc_bist_cmd = EDC_REG(EDC_BIST_CMD, idx);
  322. edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR, idx);
  323. edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN, idx);
  324. edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN,
  325. idx);
  326. edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA,
  327. idx);
  328. } else {
  329. edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD, idx);
  330. edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR, idx);
  331. edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN, idx);
  332. edc_bist_cmd_data_pattern =
  333. EDC_REG_T5(EDC_H_BIST_DATA_PATTERN, idx);
  334. edc_bist_status_rdata =
  335. EDC_REG_T5(EDC_H_BIST_STATUS_RDATA, idx);
  336. }
  337. if (t4_read_reg(adap, edc_bist_cmd) & START_BIST)
  338. return -EBUSY;
  339. t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU);
  340. t4_write_reg(adap, edc_bist_cmd_len, 64);
  341. t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
  342. t4_write_reg(adap, edc_bist_cmd,
  343. BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
  344. i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST, 0, 10, 1);
  345. if (i)
  346. return i;
  347. #define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i))
  348. for (i = 15; i >= 0; i--)
  349. *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
  350. if (ecc)
  351. *ecc = t4_read_reg64(adap, EDC_DATA(16));
  352. #undef EDC_DATA
  353. return 0;
  354. }
  355. /*
  356. * t4_mem_win_rw - read/write memory through PCIE memory window
  357. * @adap: the adapter
  358. * @addr: address of first byte requested
  359. * @data: MEMWIN0_APERTURE bytes of data containing the requested address
  360. * @dir: direction of transfer 1 => read, 0 => write
  361. *
  362. * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
  363. * MEMWIN0_APERTURE-byte-aligned address that covers the requested
  364. * address @addr.
  365. */
  366. static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir)
  367. {
  368. int i;
  369. u32 win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn);
  370. /*
  371. * Setup offset into PCIE memory window. Address must be a
  372. * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to
  373. * ensure that changes propagate before we attempt to use the new
  374. * values.)
  375. */
  376. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
  377. (addr & ~(MEMWIN0_APERTURE - 1)) | win_pf);
  378. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  379. /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
  380. for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) {
  381. if (dir)
  382. *data++ = (__force __be32) t4_read_reg(adap,
  383. (MEMWIN0_BASE + i));
  384. else
  385. t4_write_reg(adap, (MEMWIN0_BASE + i),
  386. (__force u32) *data++);
  387. }
  388. return 0;
  389. }
  390. /**
  391. * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
  392. * @adap: the adapter
  393. * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
  394. * @addr: address within indicated memory type
  395. * @len: amount of memory to transfer
  396. * @buf: host memory buffer
  397. * @dir: direction of transfer 1 => read, 0 => write
  398. *
  399. * Reads/writes an [almost] arbitrary memory region in the firmware: the
  400. * firmware memory address, length and host buffer must be aligned on
  401. * 32-bit boudaries. The memory is transferred as a raw byte sequence
  402. * from/to the firmware's memory. If this memory contains data
  403. * structures which contain multi-byte integers, it's the callers
  404. * responsibility to perform appropriate byte order conversions.
  405. */
  406. static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len,
  407. __be32 *buf, int dir)
  408. {
  409. u32 pos, start, end, offset, memoffset;
  410. u32 edc_size, mc_size;
  411. int ret = 0;
  412. __be32 *data;
  413. /*
  414. * Argument sanity checks ...
  415. */
  416. if ((addr & 0x3) || (len & 0x3))
  417. return -EINVAL;
  418. data = vmalloc(MEMWIN0_APERTURE);
  419. if (!data)
  420. return -ENOMEM;
  421. /* Offset into the region of memory which is being accessed
  422. * MEM_EDC0 = 0
  423. * MEM_EDC1 = 1
  424. * MEM_MC = 2 -- T4
  425. * MEM_MC0 = 2 -- For T5
  426. * MEM_MC1 = 3 -- For T5
  427. */
  428. edc_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR));
  429. if (mtype != MEM_MC1)
  430. memoffset = (mtype * (edc_size * 1024 * 1024));
  431. else {
  432. mc_size = EXT_MEM_SIZE_GET(t4_read_reg(adap,
  433. MA_EXT_MEMORY_BAR));
  434. memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
  435. }
  436. /* Determine the PCIE_MEM_ACCESS_OFFSET */
  437. addr = addr + memoffset;
  438. /*
  439. * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes
  440. * at a time so we need to round down the start and round up the end.
  441. * We'll start copying out of the first line at (addr - start) a word
  442. * at a time.
  443. */
  444. start = addr & ~(MEMWIN0_APERTURE-1);
  445. end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1);
  446. offset = (addr - start)/sizeof(__be32);
  447. for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) {
  448. /*
  449. * If we're writing, copy the data from the caller's memory
  450. * buffer
  451. */
  452. if (!dir) {
  453. /*
  454. * If we're doing a partial write, then we need to do
  455. * a read-modify-write ...
  456. */
  457. if (offset || len < MEMWIN0_APERTURE) {
  458. ret = t4_mem_win_rw(adap, pos, data, 1);
  459. if (ret)
  460. break;
  461. }
  462. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  463. len > 0) {
  464. data[offset++] = *buf++;
  465. len -= sizeof(__be32);
  466. }
  467. }
  468. /*
  469. * Transfer a block of memory and bail if there's an error.
  470. */
  471. ret = t4_mem_win_rw(adap, pos, data, dir);
  472. if (ret)
  473. break;
  474. /*
  475. * If we're reading, copy the data into the caller's memory
  476. * buffer.
  477. */
  478. if (dir)
  479. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  480. len > 0) {
  481. *buf++ = data[offset++];
  482. len -= sizeof(__be32);
  483. }
  484. }
  485. vfree(data);
  486. return ret;
  487. }
  488. int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len,
  489. __be32 *buf)
  490. {
  491. return t4_memory_rw(adap, mtype, addr, len, buf, 0);
  492. }
  493. #define EEPROM_STAT_ADDR 0x7bfc
  494. #define VPD_BASE 0x400
  495. #define VPD_BASE_OLD 0
  496. #define VPD_LEN 1024
  497. /**
  498. * t4_seeprom_wp - enable/disable EEPROM write protection
  499. * @adapter: the adapter
  500. * @enable: whether to enable or disable write protection
  501. *
  502. * Enables or disables write protection on the serial EEPROM.
  503. */
  504. int t4_seeprom_wp(struct adapter *adapter, bool enable)
  505. {
  506. unsigned int v = enable ? 0xc : 0;
  507. int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
  508. return ret < 0 ? ret : 0;
  509. }
  510. /**
  511. * get_vpd_params - read VPD parameters from VPD EEPROM
  512. * @adapter: adapter to read
  513. * @p: where to store the parameters
  514. *
  515. * Reads card parameters stored in VPD EEPROM.
  516. */
  517. int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  518. {
  519. u32 cclk_param, cclk_val;
  520. int i, ret, addr;
  521. int ec, sn;
  522. u8 *vpd, csum;
  523. unsigned int vpdr_len, kw_offset, id_len;
  524. vpd = vmalloc(VPD_LEN);
  525. if (!vpd)
  526. return -ENOMEM;
  527. ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
  528. if (ret < 0)
  529. goto out;
  530. addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
  531. ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
  532. if (ret < 0)
  533. goto out;
  534. if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
  535. dev_err(adapter->pdev_dev, "missing VPD ID string\n");
  536. ret = -EINVAL;
  537. goto out;
  538. }
  539. id_len = pci_vpd_lrdt_size(vpd);
  540. if (id_len > ID_LEN)
  541. id_len = ID_LEN;
  542. i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  543. if (i < 0) {
  544. dev_err(adapter->pdev_dev, "missing VPD-R section\n");
  545. ret = -EINVAL;
  546. goto out;
  547. }
  548. vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
  549. kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
  550. if (vpdr_len + kw_offset > VPD_LEN) {
  551. dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
  552. ret = -EINVAL;
  553. goto out;
  554. }
  555. #define FIND_VPD_KW(var, name) do { \
  556. var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
  557. if (var < 0) { \
  558. dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
  559. ret = -EINVAL; \
  560. goto out; \
  561. } \
  562. var += PCI_VPD_INFO_FLD_HDR_SIZE; \
  563. } while (0)
  564. FIND_VPD_KW(i, "RV");
  565. for (csum = 0; i >= 0; i--)
  566. csum += vpd[i];
  567. if (csum) {
  568. dev_err(adapter->pdev_dev,
  569. "corrupted VPD EEPROM, actual csum %u\n", csum);
  570. ret = -EINVAL;
  571. goto out;
  572. }
  573. FIND_VPD_KW(ec, "EC");
  574. FIND_VPD_KW(sn, "SN");
  575. #undef FIND_VPD_KW
  576. memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
  577. strim(p->id);
  578. memcpy(p->ec, vpd + ec, EC_LEN);
  579. strim(p->ec);
  580. i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
  581. memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
  582. strim(p->sn);
  583. /*
  584. * Ask firmware for the Core Clock since it knows how to translate the
  585. * Reference Clock ('V2') VPD field into a Core Clock value ...
  586. */
  587. cclk_param = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
  588. FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
  589. ret = t4_query_params(adapter, adapter->mbox, 0, 0,
  590. 1, &cclk_param, &cclk_val);
  591. out:
  592. vfree(vpd);
  593. if (ret)
  594. return ret;
  595. p->cclk = cclk_val;
  596. return 0;
  597. }
  598. /* serial flash and firmware constants */
  599. enum {
  600. SF_ATTEMPTS = 10, /* max retries for SF operations */
  601. /* flash command opcodes */
  602. SF_PROG_PAGE = 2, /* program page */
  603. SF_WR_DISABLE = 4, /* disable writes */
  604. SF_RD_STATUS = 5, /* read status register */
  605. SF_WR_ENABLE = 6, /* enable writes */
  606. SF_RD_DATA_FAST = 0xb, /* read flash */
  607. SF_RD_ID = 0x9f, /* read ID */
  608. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  609. FW_MAX_SIZE = 512 * 1024,
  610. };
  611. /**
  612. * sf1_read - read data from the serial flash
  613. * @adapter: the adapter
  614. * @byte_cnt: number of bytes to read
  615. * @cont: whether another operation will be chained
  616. * @lock: whether to lock SF for PL access only
  617. * @valp: where to store the read data
  618. *
  619. * Reads up to 4 bytes of data from the serial flash. The location of
  620. * the read needs to be specified prior to calling this by issuing the
  621. * appropriate commands to the serial flash.
  622. */
  623. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  624. int lock, u32 *valp)
  625. {
  626. int ret;
  627. if (!byte_cnt || byte_cnt > 4)
  628. return -EINVAL;
  629. if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
  630. return -EBUSY;
  631. cont = cont ? SF_CONT : 0;
  632. lock = lock ? SF_LOCK : 0;
  633. t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
  634. ret = t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
  635. if (!ret)
  636. *valp = t4_read_reg(adapter, SF_DATA);
  637. return ret;
  638. }
  639. /**
  640. * sf1_write - write data to the serial flash
  641. * @adapter: the adapter
  642. * @byte_cnt: number of bytes to write
  643. * @cont: whether another operation will be chained
  644. * @lock: whether to lock SF for PL access only
  645. * @val: value to write
  646. *
  647. * Writes up to 4 bytes of data to the serial flash. The location of
  648. * the write needs to be specified prior to calling this by issuing the
  649. * appropriate commands to the serial flash.
  650. */
  651. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  652. int lock, u32 val)
  653. {
  654. if (!byte_cnt || byte_cnt > 4)
  655. return -EINVAL;
  656. if (t4_read_reg(adapter, SF_OP) & SF_BUSY)
  657. return -EBUSY;
  658. cont = cont ? SF_CONT : 0;
  659. lock = lock ? SF_LOCK : 0;
  660. t4_write_reg(adapter, SF_DATA, val);
  661. t4_write_reg(adapter, SF_OP, lock |
  662. cont | BYTECNT(byte_cnt - 1) | OP_WR);
  663. return t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5);
  664. }
  665. /**
  666. * flash_wait_op - wait for a flash operation to complete
  667. * @adapter: the adapter
  668. * @attempts: max number of polls of the status register
  669. * @delay: delay between polls in ms
  670. *
  671. * Wait for a flash operation to complete by polling the status register.
  672. */
  673. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  674. {
  675. int ret;
  676. u32 status;
  677. while (1) {
  678. if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
  679. (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
  680. return ret;
  681. if (!(status & 1))
  682. return 0;
  683. if (--attempts == 0)
  684. return -EAGAIN;
  685. if (delay)
  686. msleep(delay);
  687. }
  688. }
  689. /**
  690. * t4_read_flash - read words from serial flash
  691. * @adapter: the adapter
  692. * @addr: the start address for the read
  693. * @nwords: how many 32-bit words to read
  694. * @data: where to store the read data
  695. * @byte_oriented: whether to store data as bytes or as words
  696. *
  697. * Read the specified number of 32-bit words from the serial flash.
  698. * If @byte_oriented is set the read data is stored as a byte array
  699. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  700. * natural endianess.
  701. */
  702. static int t4_read_flash(struct adapter *adapter, unsigned int addr,
  703. unsigned int nwords, u32 *data, int byte_oriented)
  704. {
  705. int ret;
  706. if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
  707. return -EINVAL;
  708. addr = swab32(addr) | SF_RD_DATA_FAST;
  709. if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
  710. (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
  711. return ret;
  712. for ( ; nwords; nwords--, data++) {
  713. ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
  714. if (nwords == 1)
  715. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  716. if (ret)
  717. return ret;
  718. if (byte_oriented)
  719. *data = (__force __u32) (htonl(*data));
  720. }
  721. return 0;
  722. }
  723. /**
  724. * t4_write_flash - write up to a page of data to the serial flash
  725. * @adapter: the adapter
  726. * @addr: the start address to write
  727. * @n: length of data to write in bytes
  728. * @data: the data to write
  729. *
  730. * Writes up to a page of data (256 bytes) to the serial flash starting
  731. * at the given address. All the data must be written to the same page.
  732. */
  733. static int t4_write_flash(struct adapter *adapter, unsigned int addr,
  734. unsigned int n, const u8 *data)
  735. {
  736. int ret;
  737. u32 buf[64];
  738. unsigned int i, c, left, val, offset = addr & 0xff;
  739. if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
  740. return -EINVAL;
  741. val = swab32(addr) | SF_PROG_PAGE;
  742. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  743. (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
  744. goto unlock;
  745. for (left = n; left; left -= c) {
  746. c = min(left, 4U);
  747. for (val = 0, i = 0; i < c; ++i)
  748. val = (val << 8) + *data++;
  749. ret = sf1_write(adapter, c, c != left, 1, val);
  750. if (ret)
  751. goto unlock;
  752. }
  753. ret = flash_wait_op(adapter, 8, 1);
  754. if (ret)
  755. goto unlock;
  756. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  757. /* Read the page to verify the write succeeded */
  758. ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  759. if (ret)
  760. return ret;
  761. if (memcmp(data - n, (u8 *)buf + offset, n)) {
  762. dev_err(adapter->pdev_dev,
  763. "failed to correctly write the flash page at %#x\n",
  764. addr);
  765. return -EIO;
  766. }
  767. return 0;
  768. unlock:
  769. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  770. return ret;
  771. }
  772. /**
  773. * t4_get_fw_version - read the firmware version
  774. * @adapter: the adapter
  775. * @vers: where to place the version
  776. *
  777. * Reads the FW version from flash.
  778. */
  779. int t4_get_fw_version(struct adapter *adapter, u32 *vers)
  780. {
  781. return t4_read_flash(adapter, FLASH_FW_START +
  782. offsetof(struct fw_hdr, fw_ver), 1,
  783. vers, 0);
  784. }
  785. /**
  786. * t4_get_tp_version - read the TP microcode version
  787. * @adapter: the adapter
  788. * @vers: where to place the version
  789. *
  790. * Reads the TP microcode version from flash.
  791. */
  792. int t4_get_tp_version(struct adapter *adapter, u32 *vers)
  793. {
  794. return t4_read_flash(adapter, FLASH_FW_START +
  795. offsetof(struct fw_hdr, tp_microcode_ver),
  796. 1, vers, 0);
  797. }
  798. /* Is the given firmware API compatible with the one the driver was compiled
  799. * with?
  800. */
  801. static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
  802. {
  803. /* short circuit if it's the exact same firmware version */
  804. if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
  805. return 1;
  806. #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
  807. if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
  808. SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
  809. return 1;
  810. #undef SAME_INTF
  811. return 0;
  812. }
  813. /* The firmware in the filesystem is usable, but should it be installed?
  814. * This routine explains itself in detail if it indicates the filesystem
  815. * firmware should be installed.
  816. */
  817. static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
  818. int k, int c)
  819. {
  820. const char *reason;
  821. if (!card_fw_usable) {
  822. reason = "incompatible or unusable";
  823. goto install;
  824. }
  825. if (k > c) {
  826. reason = "older than the version supported with this driver";
  827. goto install;
  828. }
  829. return 0;
  830. install:
  831. dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
  832. "installing firmware %u.%u.%u.%u on card.\n",
  833. FW_HDR_FW_VER_MAJOR_GET(c), FW_HDR_FW_VER_MINOR_GET(c),
  834. FW_HDR_FW_VER_MICRO_GET(c), FW_HDR_FW_VER_BUILD_GET(c), reason,
  835. FW_HDR_FW_VER_MAJOR_GET(k), FW_HDR_FW_VER_MINOR_GET(k),
  836. FW_HDR_FW_VER_MICRO_GET(k), FW_HDR_FW_VER_BUILD_GET(k));
  837. return 1;
  838. }
  839. int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
  840. const u8 *fw_data, unsigned int fw_size,
  841. struct fw_hdr *card_fw, enum dev_state state,
  842. int *reset)
  843. {
  844. int ret, card_fw_usable, fs_fw_usable;
  845. const struct fw_hdr *fs_fw;
  846. const struct fw_hdr *drv_fw;
  847. drv_fw = &fw_info->fw_hdr;
  848. /* Read the header of the firmware on the card */
  849. ret = -t4_read_flash(adap, FLASH_FW_START,
  850. sizeof(*card_fw) / sizeof(uint32_t),
  851. (uint32_t *)card_fw, 1);
  852. if (ret == 0) {
  853. card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
  854. } else {
  855. dev_err(adap->pdev_dev,
  856. "Unable to read card's firmware header: %d\n", ret);
  857. card_fw_usable = 0;
  858. }
  859. if (fw_data != NULL) {
  860. fs_fw = (const void *)fw_data;
  861. fs_fw_usable = fw_compatible(drv_fw, fs_fw);
  862. } else {
  863. fs_fw = NULL;
  864. fs_fw_usable = 0;
  865. }
  866. if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
  867. (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
  868. /* Common case: the firmware on the card is an exact match and
  869. * the filesystem one is an exact match too, or the filesystem
  870. * one is absent/incompatible.
  871. */
  872. } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
  873. should_install_fs_fw(adap, card_fw_usable,
  874. be32_to_cpu(fs_fw->fw_ver),
  875. be32_to_cpu(card_fw->fw_ver))) {
  876. ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
  877. fw_size, 0);
  878. if (ret != 0) {
  879. dev_err(adap->pdev_dev,
  880. "failed to install firmware: %d\n", ret);
  881. goto bye;
  882. }
  883. /* Installed successfully, update the cached header too. */
  884. memcpy(card_fw, fs_fw, sizeof(*card_fw));
  885. card_fw_usable = 1;
  886. *reset = 0; /* already reset as part of load_fw */
  887. }
  888. if (!card_fw_usable) {
  889. uint32_t d, c, k;
  890. d = be32_to_cpu(drv_fw->fw_ver);
  891. c = be32_to_cpu(card_fw->fw_ver);
  892. k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
  893. dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
  894. "chip state %d, "
  895. "driver compiled with %d.%d.%d.%d, "
  896. "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
  897. state,
  898. FW_HDR_FW_VER_MAJOR_GET(d), FW_HDR_FW_VER_MINOR_GET(d),
  899. FW_HDR_FW_VER_MICRO_GET(d), FW_HDR_FW_VER_BUILD_GET(d),
  900. FW_HDR_FW_VER_MAJOR_GET(c), FW_HDR_FW_VER_MINOR_GET(c),
  901. FW_HDR_FW_VER_MICRO_GET(c), FW_HDR_FW_VER_BUILD_GET(c),
  902. FW_HDR_FW_VER_MAJOR_GET(k), FW_HDR_FW_VER_MINOR_GET(k),
  903. FW_HDR_FW_VER_MICRO_GET(k), FW_HDR_FW_VER_BUILD_GET(k));
  904. ret = EINVAL;
  905. goto bye;
  906. }
  907. /* We're using whatever's on the card and it's known to be good. */
  908. adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
  909. adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
  910. bye:
  911. return ret;
  912. }
  913. /**
  914. * t4_flash_erase_sectors - erase a range of flash sectors
  915. * @adapter: the adapter
  916. * @start: the first sector to erase
  917. * @end: the last sector to erase
  918. *
  919. * Erases the sectors in the given inclusive range.
  920. */
  921. static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
  922. {
  923. int ret = 0;
  924. while (start <= end) {
  925. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  926. (ret = sf1_write(adapter, 4, 0, 1,
  927. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  928. (ret = flash_wait_op(adapter, 14, 500)) != 0) {
  929. dev_err(adapter->pdev_dev,
  930. "erase of flash sector %d failed, error %d\n",
  931. start, ret);
  932. break;
  933. }
  934. start++;
  935. }
  936. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  937. return ret;
  938. }
  939. /**
  940. * t4_flash_cfg_addr - return the address of the flash configuration file
  941. * @adapter: the adapter
  942. *
  943. * Return the address within the flash where the Firmware Configuration
  944. * File is stored.
  945. */
  946. unsigned int t4_flash_cfg_addr(struct adapter *adapter)
  947. {
  948. if (adapter->params.sf_size == 0x100000)
  949. return FLASH_FPGA_CFG_START;
  950. else
  951. return FLASH_CFG_START;
  952. }
  953. /**
  954. * t4_load_fw - download firmware
  955. * @adap: the adapter
  956. * @fw_data: the firmware image to write
  957. * @size: image size
  958. *
  959. * Write the supplied firmware image to the card's serial flash.
  960. */
  961. int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
  962. {
  963. u32 csum;
  964. int ret, addr;
  965. unsigned int i;
  966. u8 first_page[SF_PAGE_SIZE];
  967. const __be32 *p = (const __be32 *)fw_data;
  968. const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
  969. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  970. unsigned int fw_img_start = adap->params.sf_fw_start;
  971. unsigned int fw_start_sec = fw_img_start / sf_sec_size;
  972. if (!size) {
  973. dev_err(adap->pdev_dev, "FW image has no data\n");
  974. return -EINVAL;
  975. }
  976. if (size & 511) {
  977. dev_err(adap->pdev_dev,
  978. "FW image size not multiple of 512 bytes\n");
  979. return -EINVAL;
  980. }
  981. if (ntohs(hdr->len512) * 512 != size) {
  982. dev_err(adap->pdev_dev,
  983. "FW image size differs from size in FW header\n");
  984. return -EINVAL;
  985. }
  986. if (size > FW_MAX_SIZE) {
  987. dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
  988. FW_MAX_SIZE);
  989. return -EFBIG;
  990. }
  991. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  992. csum += ntohl(p[i]);
  993. if (csum != 0xffffffff) {
  994. dev_err(adap->pdev_dev,
  995. "corrupted firmware image, checksum %#x\n", csum);
  996. return -EINVAL;
  997. }
  998. i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
  999. ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
  1000. if (ret)
  1001. goto out;
  1002. /*
  1003. * We write the correct version at the end so the driver can see a bad
  1004. * version if the FW write fails. Start by writing a copy of the
  1005. * first page with a bad version.
  1006. */
  1007. memcpy(first_page, fw_data, SF_PAGE_SIZE);
  1008. ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
  1009. ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
  1010. if (ret)
  1011. goto out;
  1012. addr = fw_img_start;
  1013. for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
  1014. addr += SF_PAGE_SIZE;
  1015. fw_data += SF_PAGE_SIZE;
  1016. ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
  1017. if (ret)
  1018. goto out;
  1019. }
  1020. ret = t4_write_flash(adap,
  1021. fw_img_start + offsetof(struct fw_hdr, fw_ver),
  1022. sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
  1023. out:
  1024. if (ret)
  1025. dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
  1026. ret);
  1027. return ret;
  1028. }
  1029. #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
  1030. FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
  1031. /**
  1032. * t4_link_start - apply link configuration to MAC/PHY
  1033. * @phy: the PHY to setup
  1034. * @mac: the MAC to setup
  1035. * @lc: the requested link configuration
  1036. *
  1037. * Set up a port's MAC and PHY according to a desired link configuration.
  1038. * - If the PHY can auto-negotiate first decide what to advertise, then
  1039. * enable/disable auto-negotiation as desired, and reset.
  1040. * - If the PHY does not auto-negotiate just reset it.
  1041. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1042. * otherwise do it later based on the outcome of auto-negotiation.
  1043. */
  1044. int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
  1045. struct link_config *lc)
  1046. {
  1047. struct fw_port_cmd c;
  1048. unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
  1049. lc->link_ok = 0;
  1050. if (lc->requested_fc & PAUSE_RX)
  1051. fc |= FW_PORT_CAP_FC_RX;
  1052. if (lc->requested_fc & PAUSE_TX)
  1053. fc |= FW_PORT_CAP_FC_TX;
  1054. memset(&c, 0, sizeof(c));
  1055. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  1056. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  1057. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  1058. FW_LEN16(c));
  1059. if (!(lc->supported & FW_PORT_CAP_ANEG)) {
  1060. c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
  1061. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1062. } else if (lc->autoneg == AUTONEG_DISABLE) {
  1063. c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
  1064. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1065. } else
  1066. c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
  1067. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1068. }
  1069. /**
  1070. * t4_restart_aneg - restart autonegotiation
  1071. * @adap: the adapter
  1072. * @mbox: mbox to use for the FW command
  1073. * @port: the port id
  1074. *
  1075. * Restarts autonegotiation for the selected port.
  1076. */
  1077. int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
  1078. {
  1079. struct fw_port_cmd c;
  1080. memset(&c, 0, sizeof(c));
  1081. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  1082. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  1083. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  1084. FW_LEN16(c));
  1085. c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
  1086. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  1087. }
  1088. typedef void (*int_handler_t)(struct adapter *adap);
  1089. struct intr_info {
  1090. unsigned int mask; /* bits to check in interrupt status */
  1091. const char *msg; /* message to print or NULL */
  1092. short stat_idx; /* stat counter to increment or -1 */
  1093. unsigned short fatal; /* whether the condition reported is fatal */
  1094. int_handler_t int_handler; /* platform-specific int handler */
  1095. };
  1096. /**
  1097. * t4_handle_intr_status - table driven interrupt handler
  1098. * @adapter: the adapter that generated the interrupt
  1099. * @reg: the interrupt status register to process
  1100. * @acts: table of interrupt actions
  1101. *
  1102. * A table driven interrupt handler that applies a set of masks to an
  1103. * interrupt status word and performs the corresponding actions if the
  1104. * interrupts described by the mask have occurred. The actions include
  1105. * optionally emitting a warning or alert message. The table is terminated
  1106. * by an entry specifying mask 0. Returns the number of fatal interrupt
  1107. * conditions.
  1108. */
  1109. static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1110. const struct intr_info *acts)
  1111. {
  1112. int fatal = 0;
  1113. unsigned int mask = 0;
  1114. unsigned int status = t4_read_reg(adapter, reg);
  1115. for ( ; acts->mask; ++acts) {
  1116. if (!(status & acts->mask))
  1117. continue;
  1118. if (acts->fatal) {
  1119. fatal++;
  1120. dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1121. status & acts->mask);
  1122. } else if (acts->msg && printk_ratelimit())
  1123. dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1124. status & acts->mask);
  1125. if (acts->int_handler)
  1126. acts->int_handler(adapter);
  1127. mask |= acts->mask;
  1128. }
  1129. status &= mask;
  1130. if (status) /* clear processed interrupts */
  1131. t4_write_reg(adapter, reg, status);
  1132. return fatal;
  1133. }
  1134. /*
  1135. * Interrupt handler for the PCIE module.
  1136. */
  1137. static void pcie_intr_handler(struct adapter *adapter)
  1138. {
  1139. static const struct intr_info sysbus_intr_info[] = {
  1140. { RNPP, "RXNP array parity error", -1, 1 },
  1141. { RPCP, "RXPC array parity error", -1, 1 },
  1142. { RCIP, "RXCIF array parity error", -1, 1 },
  1143. { RCCP, "Rx completions control array parity error", -1, 1 },
  1144. { RFTP, "RXFT array parity error", -1, 1 },
  1145. { 0 }
  1146. };
  1147. static const struct intr_info pcie_port_intr_info[] = {
  1148. { TPCP, "TXPC array parity error", -1, 1 },
  1149. { TNPP, "TXNP array parity error", -1, 1 },
  1150. { TFTP, "TXFT array parity error", -1, 1 },
  1151. { TCAP, "TXCA array parity error", -1, 1 },
  1152. { TCIP, "TXCIF array parity error", -1, 1 },
  1153. { RCAP, "RXCA array parity error", -1, 1 },
  1154. { OTDD, "outbound request TLP discarded", -1, 1 },
  1155. { RDPE, "Rx data parity error", -1, 1 },
  1156. { TDUE, "Tx uncorrectable data error", -1, 1 },
  1157. { 0 }
  1158. };
  1159. static const struct intr_info pcie_intr_info[] = {
  1160. { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
  1161. { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
  1162. { MSIDATAPERR, "MSI data parity error", -1, 1 },
  1163. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  1164. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  1165. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  1166. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  1167. { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
  1168. { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
  1169. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  1170. { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
  1171. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  1172. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  1173. { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
  1174. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  1175. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  1176. { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
  1177. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  1178. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  1179. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  1180. { FIDPERR, "PCI FID parity error", -1, 1 },
  1181. { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
  1182. { MATAGPERR, "PCI MA tag parity error", -1, 1 },
  1183. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  1184. { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
  1185. { RXWRPERR, "PCI Rx write parity error", -1, 1 },
  1186. { RPLPERR, "PCI replay buffer parity error", -1, 1 },
  1187. { PCIESINT, "PCI core secondary fault", -1, 1 },
  1188. { PCIEPINT, "PCI core primary fault", -1, 1 },
  1189. { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
  1190. { 0 }
  1191. };
  1192. static struct intr_info t5_pcie_intr_info[] = {
  1193. { MSTGRPPERR, "Master Response Read Queue parity error",
  1194. -1, 1 },
  1195. { MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
  1196. { MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
  1197. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  1198. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  1199. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  1200. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  1201. { PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
  1202. -1, 1 },
  1203. { PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
  1204. -1, 1 },
  1205. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  1206. { MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
  1207. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  1208. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  1209. { DREQWRPERR, "PCI DMA channel write request parity error",
  1210. -1, 1 },
  1211. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  1212. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  1213. { HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
  1214. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  1215. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  1216. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  1217. { FIDPERR, "PCI FID parity error", -1, 1 },
  1218. { VFIDPERR, "PCI INTx clear parity error", -1, 1 },
  1219. { MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
  1220. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  1221. { IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
  1222. -1, 1 },
  1223. { IPRXDATAGRPPERR, "PCI IP Rx data group parity error", -1, 1 },
  1224. { RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
  1225. { IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
  1226. { TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
  1227. { READRSPERR, "Outbound read error", -1, 0 },
  1228. { 0 }
  1229. };
  1230. int fat;
  1231. fat = t4_handle_intr_status(adapter,
  1232. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  1233. sysbus_intr_info) +
  1234. t4_handle_intr_status(adapter,
  1235. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  1236. pcie_port_intr_info) +
  1237. t4_handle_intr_status(adapter, PCIE_INT_CAUSE,
  1238. is_t4(adapter->params.chip) ?
  1239. pcie_intr_info : t5_pcie_intr_info);
  1240. if (fat)
  1241. t4_fatal_err(adapter);
  1242. }
  1243. /*
  1244. * TP interrupt handler.
  1245. */
  1246. static void tp_intr_handler(struct adapter *adapter)
  1247. {
  1248. static const struct intr_info tp_intr_info[] = {
  1249. { 0x3fffffff, "TP parity error", -1, 1 },
  1250. { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
  1251. { 0 }
  1252. };
  1253. if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
  1254. t4_fatal_err(adapter);
  1255. }
  1256. /*
  1257. * SGE interrupt handler.
  1258. */
  1259. static void sge_intr_handler(struct adapter *adapter)
  1260. {
  1261. u64 v;
  1262. static const struct intr_info sge_intr_info[] = {
  1263. { ERR_CPL_EXCEED_IQE_SIZE,
  1264. "SGE received CPL exceeding IQE size", -1, 1 },
  1265. { ERR_INVALID_CIDX_INC,
  1266. "SGE GTS CIDX increment too large", -1, 0 },
  1267. { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
  1268. { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
  1269. { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
  1270. { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
  1271. { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
  1272. "SGE IQID > 1023 received CPL for FL", -1, 0 },
  1273. { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
  1274. 0 },
  1275. { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
  1276. 0 },
  1277. { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
  1278. 0 },
  1279. { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
  1280. 0 },
  1281. { ERR_ING_CTXT_PRIO,
  1282. "SGE too many priority ingress contexts", -1, 0 },
  1283. { ERR_EGR_CTXT_PRIO,
  1284. "SGE too many priority egress contexts", -1, 0 },
  1285. { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
  1286. { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
  1287. { 0 }
  1288. };
  1289. v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
  1290. ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
  1291. if (v) {
  1292. dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
  1293. (unsigned long long)v);
  1294. t4_write_reg(adapter, SGE_INT_CAUSE1, v);
  1295. t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
  1296. }
  1297. if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
  1298. v != 0)
  1299. t4_fatal_err(adapter);
  1300. }
  1301. /*
  1302. * CIM interrupt handler.
  1303. */
  1304. static void cim_intr_handler(struct adapter *adapter)
  1305. {
  1306. static const struct intr_info cim_intr_info[] = {
  1307. { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
  1308. { OBQPARERR, "CIM OBQ parity error", -1, 1 },
  1309. { IBQPARERR, "CIM IBQ parity error", -1, 1 },
  1310. { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
  1311. { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
  1312. { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
  1313. { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
  1314. { 0 }
  1315. };
  1316. static const struct intr_info cim_upintr_info[] = {
  1317. { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
  1318. { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
  1319. { ILLWRINT, "CIM illegal write", -1, 1 },
  1320. { ILLRDINT, "CIM illegal read", -1, 1 },
  1321. { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
  1322. { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
  1323. { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
  1324. { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
  1325. { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
  1326. { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
  1327. { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
  1328. { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
  1329. { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
  1330. { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
  1331. { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
  1332. { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
  1333. { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
  1334. { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
  1335. { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
  1336. { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
  1337. { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
  1338. { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
  1339. { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
  1340. { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
  1341. { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
  1342. { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
  1343. { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
  1344. { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
  1345. { 0 }
  1346. };
  1347. int fat;
  1348. fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
  1349. cim_intr_info) +
  1350. t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
  1351. cim_upintr_info);
  1352. if (fat)
  1353. t4_fatal_err(adapter);
  1354. }
  1355. /*
  1356. * ULP RX interrupt handler.
  1357. */
  1358. static void ulprx_intr_handler(struct adapter *adapter)
  1359. {
  1360. static const struct intr_info ulprx_intr_info[] = {
  1361. { 0x1800000, "ULPRX context error", -1, 1 },
  1362. { 0x7fffff, "ULPRX parity error", -1, 1 },
  1363. { 0 }
  1364. };
  1365. if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
  1366. t4_fatal_err(adapter);
  1367. }
  1368. /*
  1369. * ULP TX interrupt handler.
  1370. */
  1371. static void ulptx_intr_handler(struct adapter *adapter)
  1372. {
  1373. static const struct intr_info ulptx_intr_info[] = {
  1374. { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
  1375. 0 },
  1376. { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
  1377. 0 },
  1378. { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
  1379. 0 },
  1380. { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
  1381. 0 },
  1382. { 0xfffffff, "ULPTX parity error", -1, 1 },
  1383. { 0 }
  1384. };
  1385. if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
  1386. t4_fatal_err(adapter);
  1387. }
  1388. /*
  1389. * PM TX interrupt handler.
  1390. */
  1391. static void pmtx_intr_handler(struct adapter *adapter)
  1392. {
  1393. static const struct intr_info pmtx_intr_info[] = {
  1394. { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
  1395. { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
  1396. { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
  1397. { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
  1398. { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
  1399. { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
  1400. { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
  1401. { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
  1402. { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
  1403. { 0 }
  1404. };
  1405. if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
  1406. t4_fatal_err(adapter);
  1407. }
  1408. /*
  1409. * PM RX interrupt handler.
  1410. */
  1411. static void pmrx_intr_handler(struct adapter *adapter)
  1412. {
  1413. static const struct intr_info pmrx_intr_info[] = {
  1414. { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
  1415. { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
  1416. { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
  1417. { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
  1418. { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
  1419. { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
  1420. { 0 }
  1421. };
  1422. if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
  1423. t4_fatal_err(adapter);
  1424. }
  1425. /*
  1426. * CPL switch interrupt handler.
  1427. */
  1428. static void cplsw_intr_handler(struct adapter *adapter)
  1429. {
  1430. static const struct intr_info cplsw_intr_info[] = {
  1431. { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
  1432. { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
  1433. { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
  1434. { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
  1435. { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
  1436. { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
  1437. { 0 }
  1438. };
  1439. if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
  1440. t4_fatal_err(adapter);
  1441. }
  1442. /*
  1443. * LE interrupt handler.
  1444. */
  1445. static void le_intr_handler(struct adapter *adap)
  1446. {
  1447. static const struct intr_info le_intr_info[] = {
  1448. { LIPMISS, "LE LIP miss", -1, 0 },
  1449. { LIP0, "LE 0 LIP error", -1, 0 },
  1450. { PARITYERR, "LE parity error", -1, 1 },
  1451. { UNKNOWNCMD, "LE unknown command", -1, 1 },
  1452. { REQQPARERR, "LE request queue parity error", -1, 1 },
  1453. { 0 }
  1454. };
  1455. if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
  1456. t4_fatal_err(adap);
  1457. }
  1458. /*
  1459. * MPS interrupt handler.
  1460. */
  1461. static void mps_intr_handler(struct adapter *adapter)
  1462. {
  1463. static const struct intr_info mps_rx_intr_info[] = {
  1464. { 0xffffff, "MPS Rx parity error", -1, 1 },
  1465. { 0 }
  1466. };
  1467. static const struct intr_info mps_tx_intr_info[] = {
  1468. { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
  1469. { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
  1470. { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
  1471. { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
  1472. { BUBBLE, "MPS Tx underflow", -1, 1 },
  1473. { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
  1474. { FRMERR, "MPS Tx framing error", -1, 1 },
  1475. { 0 }
  1476. };
  1477. static const struct intr_info mps_trc_intr_info[] = {
  1478. { FILTMEM, "MPS TRC filter parity error", -1, 1 },
  1479. { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
  1480. { MISCPERR, "MPS TRC misc parity error", -1, 1 },
  1481. { 0 }
  1482. };
  1483. static const struct intr_info mps_stat_sram_intr_info[] = {
  1484. { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
  1485. { 0 }
  1486. };
  1487. static const struct intr_info mps_stat_tx_intr_info[] = {
  1488. { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
  1489. { 0 }
  1490. };
  1491. static const struct intr_info mps_stat_rx_intr_info[] = {
  1492. { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
  1493. { 0 }
  1494. };
  1495. static const struct intr_info mps_cls_intr_info[] = {
  1496. { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
  1497. { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
  1498. { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
  1499. { 0 }
  1500. };
  1501. int fat;
  1502. fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
  1503. mps_rx_intr_info) +
  1504. t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
  1505. mps_tx_intr_info) +
  1506. t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
  1507. mps_trc_intr_info) +
  1508. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
  1509. mps_stat_sram_intr_info) +
  1510. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
  1511. mps_stat_tx_intr_info) +
  1512. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
  1513. mps_stat_rx_intr_info) +
  1514. t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
  1515. mps_cls_intr_info);
  1516. t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
  1517. RXINT | TXINT | STATINT);
  1518. t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
  1519. if (fat)
  1520. t4_fatal_err(adapter);
  1521. }
  1522. #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
  1523. /*
  1524. * EDC/MC interrupt handler.
  1525. */
  1526. static void mem_intr_handler(struct adapter *adapter, int idx)
  1527. {
  1528. static const char name[3][5] = { "EDC0", "EDC1", "MC" };
  1529. unsigned int addr, cnt_addr, v;
  1530. if (idx <= MEM_EDC1) {
  1531. addr = EDC_REG(EDC_INT_CAUSE, idx);
  1532. cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
  1533. } else {
  1534. addr = MC_INT_CAUSE;
  1535. cnt_addr = MC_ECC_STATUS;
  1536. }
  1537. v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
  1538. if (v & PERR_INT_CAUSE)
  1539. dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
  1540. name[idx]);
  1541. if (v & ECC_CE_INT_CAUSE) {
  1542. u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
  1543. t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
  1544. if (printk_ratelimit())
  1545. dev_warn(adapter->pdev_dev,
  1546. "%u %s correctable ECC data error%s\n",
  1547. cnt, name[idx], cnt > 1 ? "s" : "");
  1548. }
  1549. if (v & ECC_UE_INT_CAUSE)
  1550. dev_alert(adapter->pdev_dev,
  1551. "%s uncorrectable ECC data error\n", name[idx]);
  1552. t4_write_reg(adapter, addr, v);
  1553. if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
  1554. t4_fatal_err(adapter);
  1555. }
  1556. /*
  1557. * MA interrupt handler.
  1558. */
  1559. static void ma_intr_handler(struct adapter *adap)
  1560. {
  1561. u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
  1562. if (status & MEM_PERR_INT_CAUSE)
  1563. dev_alert(adap->pdev_dev,
  1564. "MA parity error, parity status %#x\n",
  1565. t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
  1566. if (status & MEM_WRAP_INT_CAUSE) {
  1567. v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
  1568. dev_alert(adap->pdev_dev, "MA address wrap-around error by "
  1569. "client %u to address %#x\n",
  1570. MEM_WRAP_CLIENT_NUM_GET(v),
  1571. MEM_WRAP_ADDRESS_GET(v) << 4);
  1572. }
  1573. t4_write_reg(adap, MA_INT_CAUSE, status);
  1574. t4_fatal_err(adap);
  1575. }
  1576. /*
  1577. * SMB interrupt handler.
  1578. */
  1579. static void smb_intr_handler(struct adapter *adap)
  1580. {
  1581. static const struct intr_info smb_intr_info[] = {
  1582. { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
  1583. { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
  1584. { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
  1585. { 0 }
  1586. };
  1587. if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
  1588. t4_fatal_err(adap);
  1589. }
  1590. /*
  1591. * NC-SI interrupt handler.
  1592. */
  1593. static void ncsi_intr_handler(struct adapter *adap)
  1594. {
  1595. static const struct intr_info ncsi_intr_info[] = {
  1596. { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
  1597. { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
  1598. { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
  1599. { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
  1600. { 0 }
  1601. };
  1602. if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
  1603. t4_fatal_err(adap);
  1604. }
  1605. /*
  1606. * XGMAC interrupt handler.
  1607. */
  1608. static void xgmac_intr_handler(struct adapter *adap, int port)
  1609. {
  1610. u32 v, int_cause_reg;
  1611. if (is_t4(adap->params.chip))
  1612. int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE);
  1613. else
  1614. int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE);
  1615. v = t4_read_reg(adap, int_cause_reg);
  1616. v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
  1617. if (!v)
  1618. return;
  1619. if (v & TXFIFO_PRTY_ERR)
  1620. dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
  1621. port);
  1622. if (v & RXFIFO_PRTY_ERR)
  1623. dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
  1624. port);
  1625. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
  1626. t4_fatal_err(adap);
  1627. }
  1628. /*
  1629. * PL interrupt handler.
  1630. */
  1631. static void pl_intr_handler(struct adapter *adap)
  1632. {
  1633. static const struct intr_info pl_intr_info[] = {
  1634. { FATALPERR, "T4 fatal parity error", -1, 1 },
  1635. { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
  1636. { 0 }
  1637. };
  1638. if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
  1639. t4_fatal_err(adap);
  1640. }
  1641. #define PF_INTR_MASK (PFSW)
  1642. #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
  1643. EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
  1644. CPL_SWITCH | SGE | ULP_TX)
  1645. /**
  1646. * t4_slow_intr_handler - control path interrupt handler
  1647. * @adapter: the adapter
  1648. *
  1649. * T4 interrupt handler for non-data global interrupt events, e.g., errors.
  1650. * The designation 'slow' is because it involves register reads, while
  1651. * data interrupts typically don't involve any MMIOs.
  1652. */
  1653. int t4_slow_intr_handler(struct adapter *adapter)
  1654. {
  1655. u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
  1656. if (!(cause & GLBL_INTR_MASK))
  1657. return 0;
  1658. if (cause & CIM)
  1659. cim_intr_handler(adapter);
  1660. if (cause & MPS)
  1661. mps_intr_handler(adapter);
  1662. if (cause & NCSI)
  1663. ncsi_intr_handler(adapter);
  1664. if (cause & PL)
  1665. pl_intr_handler(adapter);
  1666. if (cause & SMB)
  1667. smb_intr_handler(adapter);
  1668. if (cause & XGMAC0)
  1669. xgmac_intr_handler(adapter, 0);
  1670. if (cause & XGMAC1)
  1671. xgmac_intr_handler(adapter, 1);
  1672. if (cause & XGMAC_KR0)
  1673. xgmac_intr_handler(adapter, 2);
  1674. if (cause & XGMAC_KR1)
  1675. xgmac_intr_handler(adapter, 3);
  1676. if (cause & PCIE)
  1677. pcie_intr_handler(adapter);
  1678. if (cause & MC)
  1679. mem_intr_handler(adapter, MEM_MC);
  1680. if (cause & EDC0)
  1681. mem_intr_handler(adapter, MEM_EDC0);
  1682. if (cause & EDC1)
  1683. mem_intr_handler(adapter, MEM_EDC1);
  1684. if (cause & LE)
  1685. le_intr_handler(adapter);
  1686. if (cause & TP)
  1687. tp_intr_handler(adapter);
  1688. if (cause & MA)
  1689. ma_intr_handler(adapter);
  1690. if (cause & PM_TX)
  1691. pmtx_intr_handler(adapter);
  1692. if (cause & PM_RX)
  1693. pmrx_intr_handler(adapter);
  1694. if (cause & ULP_RX)
  1695. ulprx_intr_handler(adapter);
  1696. if (cause & CPL_SWITCH)
  1697. cplsw_intr_handler(adapter);
  1698. if (cause & SGE)
  1699. sge_intr_handler(adapter);
  1700. if (cause & ULP_TX)
  1701. ulptx_intr_handler(adapter);
  1702. /* Clear the interrupts just processed for which we are the master. */
  1703. t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
  1704. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1705. return 1;
  1706. }
  1707. /**
  1708. * t4_intr_enable - enable interrupts
  1709. * @adapter: the adapter whose interrupts should be enabled
  1710. *
  1711. * Enable PF-specific interrupts for the calling function and the top-level
  1712. * interrupt concentrator for global interrupts. Interrupts are already
  1713. * enabled at each module, here we just enable the roots of the interrupt
  1714. * hierarchies.
  1715. *
  1716. * Note: this function should be called only when the driver manages
  1717. * non PF-specific interrupts from the various HW modules. Only one PCI
  1718. * function at a time should be doing this.
  1719. */
  1720. void t4_intr_enable(struct adapter *adapter)
  1721. {
  1722. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1723. t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
  1724. ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
  1725. ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
  1726. ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
  1727. ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
  1728. ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
  1729. ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
  1730. DBFIFO_HP_INT | DBFIFO_LP_INT |
  1731. EGRESS_SIZE_ERR);
  1732. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
  1733. t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
  1734. }
  1735. /**
  1736. * t4_intr_disable - disable interrupts
  1737. * @adapter: the adapter whose interrupts should be disabled
  1738. *
  1739. * Disable interrupts. We only disable the top-level interrupt
  1740. * concentrators. The caller must be a PCI function managing global
  1741. * interrupts.
  1742. */
  1743. void t4_intr_disable(struct adapter *adapter)
  1744. {
  1745. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1746. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
  1747. t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
  1748. }
  1749. /**
  1750. * hash_mac_addr - return the hash value of a MAC address
  1751. * @addr: the 48-bit Ethernet MAC address
  1752. *
  1753. * Hashes a MAC address according to the hash function used by HW inexact
  1754. * (hash) address matching.
  1755. */
  1756. static int hash_mac_addr(const u8 *addr)
  1757. {
  1758. u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
  1759. u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
  1760. a ^= b;
  1761. a ^= (a >> 12);
  1762. a ^= (a >> 6);
  1763. return a & 0x3f;
  1764. }
  1765. /**
  1766. * t4_config_rss_range - configure a portion of the RSS mapping table
  1767. * @adapter: the adapter
  1768. * @mbox: mbox to use for the FW command
  1769. * @viid: virtual interface whose RSS subtable is to be written
  1770. * @start: start entry in the table to write
  1771. * @n: how many table entries to write
  1772. * @rspq: values for the response queue lookup table
  1773. * @nrspq: number of values in @rspq
  1774. *
  1775. * Programs the selected part of the VI's RSS mapping table with the
  1776. * provided values. If @nrspq < @n the supplied values are used repeatedly
  1777. * until the full table range is populated.
  1778. *
  1779. * The caller must ensure the values in @rspq are in the range allowed for
  1780. * @viid.
  1781. */
  1782. int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
  1783. int start, int n, const u16 *rspq, unsigned int nrspq)
  1784. {
  1785. int ret;
  1786. const u16 *rsp = rspq;
  1787. const u16 *rsp_end = rspq + nrspq;
  1788. struct fw_rss_ind_tbl_cmd cmd;
  1789. memset(&cmd, 0, sizeof(cmd));
  1790. cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
  1791. FW_CMD_REQUEST | FW_CMD_WRITE |
  1792. FW_RSS_IND_TBL_CMD_VIID(viid));
  1793. cmd.retval_len16 = htonl(FW_LEN16(cmd));
  1794. /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
  1795. while (n > 0) {
  1796. int nq = min(n, 32);
  1797. __be32 *qp = &cmd.iq0_to_iq2;
  1798. cmd.niqid = htons(nq);
  1799. cmd.startidx = htons(start);
  1800. start += nq;
  1801. n -= nq;
  1802. while (nq > 0) {
  1803. unsigned int v;
  1804. v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
  1805. if (++rsp >= rsp_end)
  1806. rsp = rspq;
  1807. v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
  1808. if (++rsp >= rsp_end)
  1809. rsp = rspq;
  1810. v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
  1811. if (++rsp >= rsp_end)
  1812. rsp = rspq;
  1813. *qp++ = htonl(v);
  1814. nq -= 3;
  1815. }
  1816. ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
  1817. if (ret)
  1818. return ret;
  1819. }
  1820. return 0;
  1821. }
  1822. /**
  1823. * t4_config_glbl_rss - configure the global RSS mode
  1824. * @adapter: the adapter
  1825. * @mbox: mbox to use for the FW command
  1826. * @mode: global RSS mode
  1827. * @flags: mode-specific flags
  1828. *
  1829. * Sets the global RSS mode.
  1830. */
  1831. int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
  1832. unsigned int flags)
  1833. {
  1834. struct fw_rss_glb_config_cmd c;
  1835. memset(&c, 0, sizeof(c));
  1836. c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
  1837. FW_CMD_REQUEST | FW_CMD_WRITE);
  1838. c.retval_len16 = htonl(FW_LEN16(c));
  1839. if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
  1840. c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1841. } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
  1842. c.u.basicvirtual.mode_pkd =
  1843. htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1844. c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
  1845. } else
  1846. return -EINVAL;
  1847. return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
  1848. }
  1849. /**
  1850. * t4_tp_get_tcp_stats - read TP's TCP MIB counters
  1851. * @adap: the adapter
  1852. * @v4: holds the TCP/IP counter values
  1853. * @v6: holds the TCP/IPv6 counter values
  1854. *
  1855. * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
  1856. * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
  1857. */
  1858. void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
  1859. struct tp_tcp_stats *v6)
  1860. {
  1861. u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
  1862. #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
  1863. #define STAT(x) val[STAT_IDX(x)]
  1864. #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
  1865. if (v4) {
  1866. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1867. ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
  1868. v4->tcpOutRsts = STAT(OUT_RST);
  1869. v4->tcpInSegs = STAT64(IN_SEG);
  1870. v4->tcpOutSegs = STAT64(OUT_SEG);
  1871. v4->tcpRetransSegs = STAT64(RXT_SEG);
  1872. }
  1873. if (v6) {
  1874. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1875. ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
  1876. v6->tcpOutRsts = STAT(OUT_RST);
  1877. v6->tcpInSegs = STAT64(IN_SEG);
  1878. v6->tcpOutSegs = STAT64(OUT_SEG);
  1879. v6->tcpRetransSegs = STAT64(RXT_SEG);
  1880. }
  1881. #undef STAT64
  1882. #undef STAT
  1883. #undef STAT_IDX
  1884. }
  1885. /**
  1886. * t4_read_mtu_tbl - returns the values in the HW path MTU table
  1887. * @adap: the adapter
  1888. * @mtus: where to store the MTU values
  1889. * @mtu_log: where to store the MTU base-2 log (may be %NULL)
  1890. *
  1891. * Reads the HW path MTU table.
  1892. */
  1893. void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
  1894. {
  1895. u32 v;
  1896. int i;
  1897. for (i = 0; i < NMTUS; ++i) {
  1898. t4_write_reg(adap, TP_MTU_TABLE,
  1899. MTUINDEX(0xff) | MTUVALUE(i));
  1900. v = t4_read_reg(adap, TP_MTU_TABLE);
  1901. mtus[i] = MTUVALUE_GET(v);
  1902. if (mtu_log)
  1903. mtu_log[i] = MTUWIDTH_GET(v);
  1904. }
  1905. }
  1906. /**
  1907. * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
  1908. * @adap: the adapter
  1909. * @addr: the indirect TP register address
  1910. * @mask: specifies the field within the register to modify
  1911. * @val: new value for the field
  1912. *
  1913. * Sets a field of an indirect TP register to the given value.
  1914. */
  1915. void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
  1916. unsigned int mask, unsigned int val)
  1917. {
  1918. t4_write_reg(adap, TP_PIO_ADDR, addr);
  1919. val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask;
  1920. t4_write_reg(adap, TP_PIO_DATA, val);
  1921. }
  1922. /**
  1923. * init_cong_ctrl - initialize congestion control parameters
  1924. * @a: the alpha values for congestion control
  1925. * @b: the beta values for congestion control
  1926. *
  1927. * Initialize the congestion control parameters.
  1928. */
  1929. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  1930. {
  1931. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  1932. a[9] = 2;
  1933. a[10] = 3;
  1934. a[11] = 4;
  1935. a[12] = 5;
  1936. a[13] = 6;
  1937. a[14] = 7;
  1938. a[15] = 8;
  1939. a[16] = 9;
  1940. a[17] = 10;
  1941. a[18] = 14;
  1942. a[19] = 17;
  1943. a[20] = 21;
  1944. a[21] = 25;
  1945. a[22] = 30;
  1946. a[23] = 35;
  1947. a[24] = 45;
  1948. a[25] = 60;
  1949. a[26] = 80;
  1950. a[27] = 100;
  1951. a[28] = 200;
  1952. a[29] = 300;
  1953. a[30] = 400;
  1954. a[31] = 500;
  1955. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  1956. b[9] = b[10] = 1;
  1957. b[11] = b[12] = 2;
  1958. b[13] = b[14] = b[15] = b[16] = 3;
  1959. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  1960. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  1961. b[28] = b[29] = 6;
  1962. b[30] = b[31] = 7;
  1963. }
  1964. /* The minimum additive increment value for the congestion control table */
  1965. #define CC_MIN_INCR 2U
  1966. /**
  1967. * t4_load_mtus - write the MTU and congestion control HW tables
  1968. * @adap: the adapter
  1969. * @mtus: the values for the MTU table
  1970. * @alpha: the values for the congestion control alpha parameter
  1971. * @beta: the values for the congestion control beta parameter
  1972. *
  1973. * Write the HW MTU table with the supplied MTUs and the high-speed
  1974. * congestion control table with the supplied alpha, beta, and MTUs.
  1975. * We write the two tables together because the additive increments
  1976. * depend on the MTUs.
  1977. */
  1978. void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
  1979. const unsigned short *alpha, const unsigned short *beta)
  1980. {
  1981. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  1982. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  1983. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  1984. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  1985. };
  1986. unsigned int i, w;
  1987. for (i = 0; i < NMTUS; ++i) {
  1988. unsigned int mtu = mtus[i];
  1989. unsigned int log2 = fls(mtu);
  1990. if (!(mtu & ((1 << log2) >> 2))) /* round */
  1991. log2--;
  1992. t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
  1993. MTUWIDTH(log2) | MTUVALUE(mtu));
  1994. for (w = 0; w < NCCTRL_WIN; ++w) {
  1995. unsigned int inc;
  1996. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  1997. CC_MIN_INCR);
  1998. t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
  1999. (w << 16) | (beta[w] << 13) | inc);
  2000. }
  2001. }
  2002. }
  2003. /**
  2004. * get_mps_bg_map - return the buffer groups associated with a port
  2005. * @adap: the adapter
  2006. * @idx: the port index
  2007. *
  2008. * Returns a bitmap indicating which MPS buffer groups are associated
  2009. * with the given port. Bit i is set if buffer group i is used by the
  2010. * port.
  2011. */
  2012. static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
  2013. {
  2014. u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
  2015. if (n == 0)
  2016. return idx == 0 ? 0xf : 0;
  2017. if (n == 1)
  2018. return idx < 2 ? (3 << (2 * idx)) : 0;
  2019. return 1 << idx;
  2020. }
  2021. /**
  2022. * t4_get_port_stats - collect port statistics
  2023. * @adap: the adapter
  2024. * @idx: the port index
  2025. * @p: the stats structure to fill
  2026. *
  2027. * Collect statistics related to the given port from HW.
  2028. */
  2029. void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
  2030. {
  2031. u32 bgmap = get_mps_bg_map(adap, idx);
  2032. #define GET_STAT(name) \
  2033. t4_read_reg64(adap, \
  2034. (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
  2035. T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
  2036. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  2037. p->tx_octets = GET_STAT(TX_PORT_BYTES);
  2038. p->tx_frames = GET_STAT(TX_PORT_FRAMES);
  2039. p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
  2040. p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
  2041. p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
  2042. p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
  2043. p->tx_frames_64 = GET_STAT(TX_PORT_64B);
  2044. p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
  2045. p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
  2046. p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
  2047. p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
  2048. p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
  2049. p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
  2050. p->tx_drop = GET_STAT(TX_PORT_DROP);
  2051. p->tx_pause = GET_STAT(TX_PORT_PAUSE);
  2052. p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
  2053. p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
  2054. p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
  2055. p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
  2056. p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
  2057. p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
  2058. p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
  2059. p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
  2060. p->rx_octets = GET_STAT(RX_PORT_BYTES);
  2061. p->rx_frames = GET_STAT(RX_PORT_FRAMES);
  2062. p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
  2063. p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
  2064. p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
  2065. p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
  2066. p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
  2067. p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
  2068. p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
  2069. p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
  2070. p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
  2071. p->rx_frames_64 = GET_STAT(RX_PORT_64B);
  2072. p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
  2073. p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
  2074. p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
  2075. p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
  2076. p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
  2077. p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
  2078. p->rx_pause = GET_STAT(RX_PORT_PAUSE);
  2079. p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
  2080. p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
  2081. p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
  2082. p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
  2083. p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
  2084. p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
  2085. p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
  2086. p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
  2087. p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
  2088. p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
  2089. p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
  2090. p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
  2091. p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
  2092. p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
  2093. p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
  2094. p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
  2095. #undef GET_STAT
  2096. #undef GET_STAT_COM
  2097. }
  2098. /**
  2099. * t4_wol_magic_enable - enable/disable magic packet WoL
  2100. * @adap: the adapter
  2101. * @port: the physical port index
  2102. * @addr: MAC address expected in magic packets, %NULL to disable
  2103. *
  2104. * Enables/disables magic packet wake-on-LAN for the selected port.
  2105. */
  2106. void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
  2107. const u8 *addr)
  2108. {
  2109. u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
  2110. if (is_t4(adap->params.chip)) {
  2111. mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO);
  2112. mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI);
  2113. port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
  2114. } else {
  2115. mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO);
  2116. mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI);
  2117. port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
  2118. }
  2119. if (addr) {
  2120. t4_write_reg(adap, mag_id_reg_l,
  2121. (addr[2] << 24) | (addr[3] << 16) |
  2122. (addr[4] << 8) | addr[5]);
  2123. t4_write_reg(adap, mag_id_reg_h,
  2124. (addr[0] << 8) | addr[1]);
  2125. }
  2126. t4_set_reg_field(adap, port_cfg_reg, MAGICEN,
  2127. addr ? MAGICEN : 0);
  2128. }
  2129. /**
  2130. * t4_wol_pat_enable - enable/disable pattern-based WoL
  2131. * @adap: the adapter
  2132. * @port: the physical port index
  2133. * @map: bitmap of which HW pattern filters to set
  2134. * @mask0: byte mask for bytes 0-63 of a packet
  2135. * @mask1: byte mask for bytes 64-127 of a packet
  2136. * @crc: Ethernet CRC for selected bytes
  2137. * @enable: enable/disable switch
  2138. *
  2139. * Sets the pattern filters indicated in @map to mask out the bytes
  2140. * specified in @mask0/@mask1 in received packets and compare the CRC of
  2141. * the resulting packet against @crc. If @enable is %true pattern-based
  2142. * WoL is enabled, otherwise disabled.
  2143. */
  2144. int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
  2145. u64 mask0, u64 mask1, unsigned int crc, bool enable)
  2146. {
  2147. int i;
  2148. u32 port_cfg_reg;
  2149. if (is_t4(adap->params.chip))
  2150. port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2);
  2151. else
  2152. port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2);
  2153. if (!enable) {
  2154. t4_set_reg_field(adap, port_cfg_reg, PATEN, 0);
  2155. return 0;
  2156. }
  2157. if (map > 0xff)
  2158. return -EINVAL;
  2159. #define EPIO_REG(name) \
  2160. (is_t4(adap->params.chip) ? PORT_REG(port, XGMAC_PORT_EPIO_##name) : \
  2161. T5_PORT_REG(port, MAC_PORT_EPIO_##name))
  2162. t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
  2163. t4_write_reg(adap, EPIO_REG(DATA2), mask1);
  2164. t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
  2165. for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
  2166. if (!(map & 1))
  2167. continue;
  2168. /* write byte masks */
  2169. t4_write_reg(adap, EPIO_REG(DATA0), mask0);
  2170. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
  2171. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2172. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
  2173. return -ETIMEDOUT;
  2174. /* write CRC */
  2175. t4_write_reg(adap, EPIO_REG(DATA0), crc);
  2176. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
  2177. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  2178. if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY)
  2179. return -ETIMEDOUT;
  2180. }
  2181. #undef EPIO_REG
  2182. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
  2183. return 0;
  2184. }
  2185. /* t4_mk_filtdelwr - create a delete filter WR
  2186. * @ftid: the filter ID
  2187. * @wr: the filter work request to populate
  2188. * @qid: ingress queue to receive the delete notification
  2189. *
  2190. * Creates a filter work request to delete the supplied filter. If @qid is
  2191. * negative the delete notification is suppressed.
  2192. */
  2193. void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
  2194. {
  2195. memset(wr, 0, sizeof(*wr));
  2196. wr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
  2197. wr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*wr) / 16));
  2198. wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
  2199. V_FW_FILTER_WR_NOREPLY(qid < 0));
  2200. wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
  2201. if (qid >= 0)
  2202. wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
  2203. }
  2204. #define INIT_CMD(var, cmd, rd_wr) do { \
  2205. (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
  2206. FW_CMD_REQUEST | FW_CMD_##rd_wr); \
  2207. (var).retval_len16 = htonl(FW_LEN16(var)); \
  2208. } while (0)
  2209. int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
  2210. u32 addr, u32 val)
  2211. {
  2212. struct fw_ldst_cmd c;
  2213. memset(&c, 0, sizeof(c));
  2214. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2215. FW_CMD_WRITE |
  2216. FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
  2217. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2218. c.u.addrval.addr = htonl(addr);
  2219. c.u.addrval.val = htonl(val);
  2220. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2221. }
  2222. /**
  2223. * t4_mem_win_read_len - read memory through PCIE memory window
  2224. * @adap: the adapter
  2225. * @addr: address of first byte requested aligned on 32b.
  2226. * @data: len bytes to hold the data read
  2227. * @len: amount of data to read from window. Must be <=
  2228. * MEMWIN0_APERATURE after adjusting for 16B for T4 and
  2229. * 128B for T5 alignment requirements of the the memory window.
  2230. *
  2231. * Read len bytes of data from MC starting at @addr.
  2232. */
  2233. int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len)
  2234. {
  2235. int i, off;
  2236. u32 win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn);
  2237. /* Align on a 2KB boundary.
  2238. */
  2239. off = addr & MEMWIN0_APERTURE;
  2240. if ((addr & 3) || (len + off) > MEMWIN0_APERTURE)
  2241. return -EINVAL;
  2242. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
  2243. (addr & ~MEMWIN0_APERTURE) | win_pf);
  2244. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  2245. for (i = 0; i < len; i += 4)
  2246. *data++ = (__force __be32) t4_read_reg(adap,
  2247. (MEMWIN0_BASE + off + i));
  2248. return 0;
  2249. }
  2250. /**
  2251. * t4_mdio_rd - read a PHY register through MDIO
  2252. * @adap: the adapter
  2253. * @mbox: mailbox to use for the FW command
  2254. * @phy_addr: the PHY address
  2255. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2256. * @reg: the register to read
  2257. * @valp: where to store the value
  2258. *
  2259. * Issues a FW command through the given mailbox to read a PHY register.
  2260. */
  2261. int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2262. unsigned int mmd, unsigned int reg, u16 *valp)
  2263. {
  2264. int ret;
  2265. struct fw_ldst_cmd c;
  2266. memset(&c, 0, sizeof(c));
  2267. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2268. FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2269. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2270. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2271. FW_LDST_CMD_MMD(mmd));
  2272. c.u.mdio.raddr = htons(reg);
  2273. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2274. if (ret == 0)
  2275. *valp = ntohs(c.u.mdio.rval);
  2276. return ret;
  2277. }
  2278. /**
  2279. * t4_mdio_wr - write a PHY register through MDIO
  2280. * @adap: the adapter
  2281. * @mbox: mailbox to use for the FW command
  2282. * @phy_addr: the PHY address
  2283. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2284. * @reg: the register to write
  2285. * @valp: value to write
  2286. *
  2287. * Issues a FW command through the given mailbox to write a PHY register.
  2288. */
  2289. int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2290. unsigned int mmd, unsigned int reg, u16 val)
  2291. {
  2292. struct fw_ldst_cmd c;
  2293. memset(&c, 0, sizeof(c));
  2294. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2295. FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2296. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2297. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2298. FW_LDST_CMD_MMD(mmd));
  2299. c.u.mdio.raddr = htons(reg);
  2300. c.u.mdio.rval = htons(val);
  2301. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2302. }
  2303. /**
  2304. * t4_fw_hello - establish communication with FW
  2305. * @adap: the adapter
  2306. * @mbox: mailbox to use for the FW command
  2307. * @evt_mbox: mailbox to receive async FW events
  2308. * @master: specifies the caller's willingness to be the device master
  2309. * @state: returns the current device state (if non-NULL)
  2310. *
  2311. * Issues a command to establish communication with FW. Returns either
  2312. * an error (negative integer) or the mailbox of the Master PF.
  2313. */
  2314. int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
  2315. enum dev_master master, enum dev_state *state)
  2316. {
  2317. int ret;
  2318. struct fw_hello_cmd c;
  2319. u32 v;
  2320. unsigned int master_mbox;
  2321. int retries = FW_CMD_HELLO_RETRIES;
  2322. retry:
  2323. memset(&c, 0, sizeof(c));
  2324. INIT_CMD(c, HELLO, WRITE);
  2325. c.err_to_clearinit = htonl(
  2326. FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
  2327. FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
  2328. FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
  2329. FW_HELLO_CMD_MBMASTER_MASK) |
  2330. FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
  2331. FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os) |
  2332. FW_HELLO_CMD_CLEARINIT);
  2333. /*
  2334. * Issue the HELLO command to the firmware. If it's not successful
  2335. * but indicates that we got a "busy" or "timeout" condition, retry
  2336. * the HELLO until we exhaust our retry limit.
  2337. */
  2338. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2339. if (ret < 0) {
  2340. if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
  2341. goto retry;
  2342. return ret;
  2343. }
  2344. v = ntohl(c.err_to_clearinit);
  2345. master_mbox = FW_HELLO_CMD_MBMASTER_GET(v);
  2346. if (state) {
  2347. if (v & FW_HELLO_CMD_ERR)
  2348. *state = DEV_STATE_ERR;
  2349. else if (v & FW_HELLO_CMD_INIT)
  2350. *state = DEV_STATE_INIT;
  2351. else
  2352. *state = DEV_STATE_UNINIT;
  2353. }
  2354. /*
  2355. * If we're not the Master PF then we need to wait around for the
  2356. * Master PF Driver to finish setting up the adapter.
  2357. *
  2358. * Note that we also do this wait if we're a non-Master-capable PF and
  2359. * there is no current Master PF; a Master PF may show up momentarily
  2360. * and we wouldn't want to fail pointlessly. (This can happen when an
  2361. * OS loads lots of different drivers rapidly at the same time). In
  2362. * this case, the Master PF returned by the firmware will be
  2363. * FW_PCIE_FW_MASTER_MASK so the test below will work ...
  2364. */
  2365. if ((v & (FW_HELLO_CMD_ERR|FW_HELLO_CMD_INIT)) == 0 &&
  2366. master_mbox != mbox) {
  2367. int waiting = FW_CMD_HELLO_TIMEOUT;
  2368. /*
  2369. * Wait for the firmware to either indicate an error or
  2370. * initialized state. If we see either of these we bail out
  2371. * and report the issue to the caller. If we exhaust the
  2372. * "hello timeout" and we haven't exhausted our retries, try
  2373. * again. Otherwise bail with a timeout error.
  2374. */
  2375. for (;;) {
  2376. u32 pcie_fw;
  2377. msleep(50);
  2378. waiting -= 50;
  2379. /*
  2380. * If neither Error nor Initialialized are indicated
  2381. * by the firmware keep waiting till we exaust our
  2382. * timeout ... and then retry if we haven't exhausted
  2383. * our retries ...
  2384. */
  2385. pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
  2386. if (!(pcie_fw & (FW_PCIE_FW_ERR|FW_PCIE_FW_INIT))) {
  2387. if (waiting <= 0) {
  2388. if (retries-- > 0)
  2389. goto retry;
  2390. return -ETIMEDOUT;
  2391. }
  2392. continue;
  2393. }
  2394. /*
  2395. * We either have an Error or Initialized condition
  2396. * report errors preferentially.
  2397. */
  2398. if (state) {
  2399. if (pcie_fw & FW_PCIE_FW_ERR)
  2400. *state = DEV_STATE_ERR;
  2401. else if (pcie_fw & FW_PCIE_FW_INIT)
  2402. *state = DEV_STATE_INIT;
  2403. }
  2404. /*
  2405. * If we arrived before a Master PF was selected and
  2406. * there's not a valid Master PF, grab its identity
  2407. * for our caller.
  2408. */
  2409. if (master_mbox == FW_PCIE_FW_MASTER_MASK &&
  2410. (pcie_fw & FW_PCIE_FW_MASTER_VLD))
  2411. master_mbox = FW_PCIE_FW_MASTER_GET(pcie_fw);
  2412. break;
  2413. }
  2414. }
  2415. return master_mbox;
  2416. }
  2417. /**
  2418. * t4_fw_bye - end communication with FW
  2419. * @adap: the adapter
  2420. * @mbox: mailbox to use for the FW command
  2421. *
  2422. * Issues a command to terminate communication with FW.
  2423. */
  2424. int t4_fw_bye(struct adapter *adap, unsigned int mbox)
  2425. {
  2426. struct fw_bye_cmd c;
  2427. memset(&c, 0, sizeof(c));
  2428. INIT_CMD(c, BYE, WRITE);
  2429. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2430. }
  2431. /**
  2432. * t4_init_cmd - ask FW to initialize the device
  2433. * @adap: the adapter
  2434. * @mbox: mailbox to use for the FW command
  2435. *
  2436. * Issues a command to FW to partially initialize the device. This
  2437. * performs initialization that generally doesn't depend on user input.
  2438. */
  2439. int t4_early_init(struct adapter *adap, unsigned int mbox)
  2440. {
  2441. struct fw_initialize_cmd c;
  2442. memset(&c, 0, sizeof(c));
  2443. INIT_CMD(c, INITIALIZE, WRITE);
  2444. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2445. }
  2446. /**
  2447. * t4_fw_reset - issue a reset to FW
  2448. * @adap: the adapter
  2449. * @mbox: mailbox to use for the FW command
  2450. * @reset: specifies the type of reset to perform
  2451. *
  2452. * Issues a reset command of the specified type to FW.
  2453. */
  2454. int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
  2455. {
  2456. struct fw_reset_cmd c;
  2457. memset(&c, 0, sizeof(c));
  2458. INIT_CMD(c, RESET, WRITE);
  2459. c.val = htonl(reset);
  2460. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2461. }
  2462. /**
  2463. * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
  2464. * @adap: the adapter
  2465. * @mbox: mailbox to use for the FW RESET command (if desired)
  2466. * @force: force uP into RESET even if FW RESET command fails
  2467. *
  2468. * Issues a RESET command to firmware (if desired) with a HALT indication
  2469. * and then puts the microprocessor into RESET state. The RESET command
  2470. * will only be issued if a legitimate mailbox is provided (mbox <=
  2471. * FW_PCIE_FW_MASTER_MASK).
  2472. *
  2473. * This is generally used in order for the host to safely manipulate the
  2474. * adapter without fear of conflicting with whatever the firmware might
  2475. * be doing. The only way out of this state is to RESTART the firmware
  2476. * ...
  2477. */
  2478. static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
  2479. {
  2480. int ret = 0;
  2481. /*
  2482. * If a legitimate mailbox is provided, issue a RESET command
  2483. * with a HALT indication.
  2484. */
  2485. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2486. struct fw_reset_cmd c;
  2487. memset(&c, 0, sizeof(c));
  2488. INIT_CMD(c, RESET, WRITE);
  2489. c.val = htonl(PIORST | PIORSTMODE);
  2490. c.halt_pkd = htonl(FW_RESET_CMD_HALT(1U));
  2491. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2492. }
  2493. /*
  2494. * Normally we won't complete the operation if the firmware RESET
  2495. * command fails but if our caller insists we'll go ahead and put the
  2496. * uP into RESET. This can be useful if the firmware is hung or even
  2497. * missing ... We'll have to take the risk of putting the uP into
  2498. * RESET without the cooperation of firmware in that case.
  2499. *
  2500. * We also force the firmware's HALT flag to be on in case we bypassed
  2501. * the firmware RESET command above or we're dealing with old firmware
  2502. * which doesn't have the HALT capability. This will serve as a flag
  2503. * for the incoming firmware to know that it's coming out of a HALT
  2504. * rather than a RESET ... if it's new enough to understand that ...
  2505. */
  2506. if (ret == 0 || force) {
  2507. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST);
  2508. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT,
  2509. FW_PCIE_FW_HALT);
  2510. }
  2511. /*
  2512. * And we always return the result of the firmware RESET command
  2513. * even when we force the uP into RESET ...
  2514. */
  2515. return ret;
  2516. }
  2517. /**
  2518. * t4_fw_restart - restart the firmware by taking the uP out of RESET
  2519. * @adap: the adapter
  2520. * @reset: if we want to do a RESET to restart things
  2521. *
  2522. * Restart firmware previously halted by t4_fw_halt(). On successful
  2523. * return the previous PF Master remains as the new PF Master and there
  2524. * is no need to issue a new HELLO command, etc.
  2525. *
  2526. * We do this in two ways:
  2527. *
  2528. * 1. If we're dealing with newer firmware we'll simply want to take
  2529. * the chip's microprocessor out of RESET. This will cause the
  2530. * firmware to start up from its start vector. And then we'll loop
  2531. * until the firmware indicates it's started again (PCIE_FW.HALT
  2532. * reset to 0) or we timeout.
  2533. *
  2534. * 2. If we're dealing with older firmware then we'll need to RESET
  2535. * the chip since older firmware won't recognize the PCIE_FW.HALT
  2536. * flag and automatically RESET itself on startup.
  2537. */
  2538. static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
  2539. {
  2540. if (reset) {
  2541. /*
  2542. * Since we're directing the RESET instead of the firmware
  2543. * doing it automatically, we need to clear the PCIE_FW.HALT
  2544. * bit.
  2545. */
  2546. t4_set_reg_field(adap, PCIE_FW, FW_PCIE_FW_HALT, 0);
  2547. /*
  2548. * If we've been given a valid mailbox, first try to get the
  2549. * firmware to do the RESET. If that works, great and we can
  2550. * return success. Otherwise, if we haven't been given a
  2551. * valid mailbox or the RESET command failed, fall back to
  2552. * hitting the chip with a hammer.
  2553. */
  2554. if (mbox <= FW_PCIE_FW_MASTER_MASK) {
  2555. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2556. msleep(100);
  2557. if (t4_fw_reset(adap, mbox,
  2558. PIORST | PIORSTMODE) == 0)
  2559. return 0;
  2560. }
  2561. t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE);
  2562. msleep(2000);
  2563. } else {
  2564. int ms;
  2565. t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0);
  2566. for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
  2567. if (!(t4_read_reg(adap, PCIE_FW) & FW_PCIE_FW_HALT))
  2568. return 0;
  2569. msleep(100);
  2570. ms += 100;
  2571. }
  2572. return -ETIMEDOUT;
  2573. }
  2574. return 0;
  2575. }
  2576. /**
  2577. * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
  2578. * @adap: the adapter
  2579. * @mbox: mailbox to use for the FW RESET command (if desired)
  2580. * @fw_data: the firmware image to write
  2581. * @size: image size
  2582. * @force: force upgrade even if firmware doesn't cooperate
  2583. *
  2584. * Perform all of the steps necessary for upgrading an adapter's
  2585. * firmware image. Normally this requires the cooperation of the
  2586. * existing firmware in order to halt all existing activities
  2587. * but if an invalid mailbox token is passed in we skip that step
  2588. * (though we'll still put the adapter microprocessor into RESET in
  2589. * that case).
  2590. *
  2591. * On successful return the new firmware will have been loaded and
  2592. * the adapter will have been fully RESET losing all previous setup
  2593. * state. On unsuccessful return the adapter may be completely hosed ...
  2594. * positive errno indicates that the adapter is ~probably~ intact, a
  2595. * negative errno indicates that things are looking bad ...
  2596. */
  2597. static int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
  2598. const u8 *fw_data, unsigned int size, int force)
  2599. {
  2600. const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
  2601. int reset, ret;
  2602. ret = t4_fw_halt(adap, mbox, force);
  2603. if (ret < 0 && !force)
  2604. return ret;
  2605. ret = t4_load_fw(adap, fw_data, size);
  2606. if (ret < 0)
  2607. return ret;
  2608. /*
  2609. * Older versions of the firmware don't understand the new
  2610. * PCIE_FW.HALT flag and so won't know to perform a RESET when they
  2611. * restart. So for newly loaded older firmware we'll have to do the
  2612. * RESET for it so it starts up on a clean slate. We can tell if
  2613. * the newly loaded firmware will handle this right by checking
  2614. * its header flags to see if it advertises the capability.
  2615. */
  2616. reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
  2617. return t4_fw_restart(adap, mbox, reset);
  2618. }
  2619. /**
  2620. * t4_fixup_host_params - fix up host-dependent parameters
  2621. * @adap: the adapter
  2622. * @page_size: the host's Base Page Size
  2623. * @cache_line_size: the host's Cache Line Size
  2624. *
  2625. * Various registers in T4 contain values which are dependent on the
  2626. * host's Base Page and Cache Line Sizes. This function will fix all of
  2627. * those registers with the appropriate values as passed in ...
  2628. */
  2629. int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
  2630. unsigned int cache_line_size)
  2631. {
  2632. unsigned int page_shift = fls(page_size) - 1;
  2633. unsigned int sge_hps = page_shift - 10;
  2634. unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
  2635. unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
  2636. unsigned int fl_align_log = fls(fl_align) - 1;
  2637. t4_write_reg(adap, SGE_HOST_PAGE_SIZE,
  2638. HOSTPAGESIZEPF0(sge_hps) |
  2639. HOSTPAGESIZEPF1(sge_hps) |
  2640. HOSTPAGESIZEPF2(sge_hps) |
  2641. HOSTPAGESIZEPF3(sge_hps) |
  2642. HOSTPAGESIZEPF4(sge_hps) |
  2643. HOSTPAGESIZEPF5(sge_hps) |
  2644. HOSTPAGESIZEPF6(sge_hps) |
  2645. HOSTPAGESIZEPF7(sge_hps));
  2646. t4_set_reg_field(adap, SGE_CONTROL,
  2647. INGPADBOUNDARY_MASK |
  2648. EGRSTATUSPAGESIZE_MASK,
  2649. INGPADBOUNDARY(fl_align_log - 5) |
  2650. EGRSTATUSPAGESIZE(stat_len != 64));
  2651. /*
  2652. * Adjust various SGE Free List Host Buffer Sizes.
  2653. *
  2654. * This is something of a crock since we're using fixed indices into
  2655. * the array which are also known by the sge.c code and the T4
  2656. * Firmware Configuration File. We need to come up with a much better
  2657. * approach to managing this array. For now, the first four entries
  2658. * are:
  2659. *
  2660. * 0: Host Page Size
  2661. * 1: 64KB
  2662. * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
  2663. * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
  2664. *
  2665. * For the single-MTU buffers in unpacked mode we need to include
  2666. * space for the SGE Control Packet Shift, 14 byte Ethernet header,
  2667. * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
  2668. * Padding boundry. All of these are accommodated in the Factory
  2669. * Default Firmware Configuration File but we need to adjust it for
  2670. * this host's cache line size.
  2671. */
  2672. t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size);
  2673. t4_write_reg(adap, SGE_FL_BUFFER_SIZE2,
  2674. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1)
  2675. & ~(fl_align-1));
  2676. t4_write_reg(adap, SGE_FL_BUFFER_SIZE3,
  2677. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1)
  2678. & ~(fl_align-1));
  2679. t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12));
  2680. return 0;
  2681. }
  2682. /**
  2683. * t4_fw_initialize - ask FW to initialize the device
  2684. * @adap: the adapter
  2685. * @mbox: mailbox to use for the FW command
  2686. *
  2687. * Issues a command to FW to partially initialize the device. This
  2688. * performs initialization that generally doesn't depend on user input.
  2689. */
  2690. int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
  2691. {
  2692. struct fw_initialize_cmd c;
  2693. memset(&c, 0, sizeof(c));
  2694. INIT_CMD(c, INITIALIZE, WRITE);
  2695. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2696. }
  2697. /**
  2698. * t4_query_params - query FW or device parameters
  2699. * @adap: the adapter
  2700. * @mbox: mailbox to use for the FW command
  2701. * @pf: the PF
  2702. * @vf: the VF
  2703. * @nparams: the number of parameters
  2704. * @params: the parameter names
  2705. * @val: the parameter values
  2706. *
  2707. * Reads the value of FW or device parameters. Up to 7 parameters can be
  2708. * queried at once.
  2709. */
  2710. int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2711. unsigned int vf, unsigned int nparams, const u32 *params,
  2712. u32 *val)
  2713. {
  2714. int i, ret;
  2715. struct fw_params_cmd c;
  2716. __be32 *p = &c.param[0].mnem;
  2717. if (nparams > 7)
  2718. return -EINVAL;
  2719. memset(&c, 0, sizeof(c));
  2720. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2721. FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
  2722. FW_PARAMS_CMD_VFN(vf));
  2723. c.retval_len16 = htonl(FW_LEN16(c));
  2724. for (i = 0; i < nparams; i++, p += 2)
  2725. *p = htonl(*params++);
  2726. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2727. if (ret == 0)
  2728. for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
  2729. *val++ = ntohl(*p);
  2730. return ret;
  2731. }
  2732. /**
  2733. * t4_set_params - sets FW or device parameters
  2734. * @adap: the adapter
  2735. * @mbox: mailbox to use for the FW command
  2736. * @pf: the PF
  2737. * @vf: the VF
  2738. * @nparams: the number of parameters
  2739. * @params: the parameter names
  2740. * @val: the parameter values
  2741. *
  2742. * Sets the value of FW or device parameters. Up to 7 parameters can be
  2743. * specified at once.
  2744. */
  2745. int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2746. unsigned int vf, unsigned int nparams, const u32 *params,
  2747. const u32 *val)
  2748. {
  2749. struct fw_params_cmd c;
  2750. __be32 *p = &c.param[0].mnem;
  2751. if (nparams > 7)
  2752. return -EINVAL;
  2753. memset(&c, 0, sizeof(c));
  2754. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2755. FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
  2756. FW_PARAMS_CMD_VFN(vf));
  2757. c.retval_len16 = htonl(FW_LEN16(c));
  2758. while (nparams--) {
  2759. *p++ = htonl(*params++);
  2760. *p++ = htonl(*val++);
  2761. }
  2762. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2763. }
  2764. /**
  2765. * t4_cfg_pfvf - configure PF/VF resource limits
  2766. * @adap: the adapter
  2767. * @mbox: mailbox to use for the FW command
  2768. * @pf: the PF being configured
  2769. * @vf: the VF being configured
  2770. * @txq: the max number of egress queues
  2771. * @txq_eth_ctrl: the max number of egress Ethernet or control queues
  2772. * @rxqi: the max number of interrupt-capable ingress queues
  2773. * @rxq: the max number of interruptless ingress queues
  2774. * @tc: the PCI traffic class
  2775. * @vi: the max number of virtual interfaces
  2776. * @cmask: the channel access rights mask for the PF/VF
  2777. * @pmask: the port access rights mask for the PF/VF
  2778. * @nexact: the maximum number of exact MPS filters
  2779. * @rcaps: read capabilities
  2780. * @wxcaps: write/execute capabilities
  2781. *
  2782. * Configures resource limits and capabilities for a physical or virtual
  2783. * function.
  2784. */
  2785. int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2786. unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
  2787. unsigned int rxqi, unsigned int rxq, unsigned int tc,
  2788. unsigned int vi, unsigned int cmask, unsigned int pmask,
  2789. unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
  2790. {
  2791. struct fw_pfvf_cmd c;
  2792. memset(&c, 0, sizeof(c));
  2793. c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
  2794. FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
  2795. FW_PFVF_CMD_VFN(vf));
  2796. c.retval_len16 = htonl(FW_LEN16(c));
  2797. c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
  2798. FW_PFVF_CMD_NIQ(rxq));
  2799. c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
  2800. FW_PFVF_CMD_PMASK(pmask) |
  2801. FW_PFVF_CMD_NEQ(txq));
  2802. c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
  2803. FW_PFVF_CMD_NEXACTF(nexact));
  2804. c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
  2805. FW_PFVF_CMD_WX_CAPS(wxcaps) |
  2806. FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
  2807. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2808. }
  2809. /**
  2810. * t4_alloc_vi - allocate a virtual interface
  2811. * @adap: the adapter
  2812. * @mbox: mailbox to use for the FW command
  2813. * @port: physical port associated with the VI
  2814. * @pf: the PF owning the VI
  2815. * @vf: the VF owning the VI
  2816. * @nmac: number of MAC addresses needed (1 to 5)
  2817. * @mac: the MAC addresses of the VI
  2818. * @rss_size: size of RSS table slice associated with this VI
  2819. *
  2820. * Allocates a virtual interface for the given physical port. If @mac is
  2821. * not %NULL it contains the MAC addresses of the VI as assigned by FW.
  2822. * @mac should be large enough to hold @nmac Ethernet addresses, they are
  2823. * stored consecutively so the space needed is @nmac * 6 bytes.
  2824. * Returns a negative error number or the non-negative VI id.
  2825. */
  2826. int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
  2827. unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
  2828. unsigned int *rss_size)
  2829. {
  2830. int ret;
  2831. struct fw_vi_cmd c;
  2832. memset(&c, 0, sizeof(c));
  2833. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  2834. FW_CMD_WRITE | FW_CMD_EXEC |
  2835. FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
  2836. c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
  2837. c.portid_pkd = FW_VI_CMD_PORTID(port);
  2838. c.nmac = nmac - 1;
  2839. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2840. if (ret)
  2841. return ret;
  2842. if (mac) {
  2843. memcpy(mac, c.mac, sizeof(c.mac));
  2844. switch (nmac) {
  2845. case 5:
  2846. memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
  2847. case 4:
  2848. memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
  2849. case 3:
  2850. memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
  2851. case 2:
  2852. memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
  2853. }
  2854. }
  2855. if (rss_size)
  2856. *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
  2857. return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
  2858. }
  2859. /**
  2860. * t4_set_rxmode - set Rx properties of a virtual interface
  2861. * @adap: the adapter
  2862. * @mbox: mailbox to use for the FW command
  2863. * @viid: the VI id
  2864. * @mtu: the new MTU or -1
  2865. * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
  2866. * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
  2867. * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
  2868. * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
  2869. * @sleep_ok: if true we may sleep while awaiting command completion
  2870. *
  2871. * Sets Rx properties of a virtual interface.
  2872. */
  2873. int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2874. int mtu, int promisc, int all_multi, int bcast, int vlanex,
  2875. bool sleep_ok)
  2876. {
  2877. struct fw_vi_rxmode_cmd c;
  2878. /* convert to FW values */
  2879. if (mtu < 0)
  2880. mtu = FW_RXMODE_MTU_NO_CHG;
  2881. if (promisc < 0)
  2882. promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
  2883. if (all_multi < 0)
  2884. all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
  2885. if (bcast < 0)
  2886. bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
  2887. if (vlanex < 0)
  2888. vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
  2889. memset(&c, 0, sizeof(c));
  2890. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
  2891. FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
  2892. c.retval_len16 = htonl(FW_LEN16(c));
  2893. c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
  2894. FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
  2895. FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
  2896. FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
  2897. FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
  2898. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2899. }
  2900. /**
  2901. * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
  2902. * @adap: the adapter
  2903. * @mbox: mailbox to use for the FW command
  2904. * @viid: the VI id
  2905. * @free: if true any existing filters for this VI id are first removed
  2906. * @naddr: the number of MAC addresses to allocate filters for (up to 7)
  2907. * @addr: the MAC address(es)
  2908. * @idx: where to store the index of each allocated filter
  2909. * @hash: pointer to hash address filter bitmap
  2910. * @sleep_ok: call is allowed to sleep
  2911. *
  2912. * Allocates an exact-match filter for each of the supplied addresses and
  2913. * sets it to the corresponding address. If @idx is not %NULL it should
  2914. * have at least @naddr entries, each of which will be set to the index of
  2915. * the filter allocated for the corresponding MAC address. If a filter
  2916. * could not be allocated for an address its index is set to 0xffff.
  2917. * If @hash is not %NULL addresses that fail to allocate an exact filter
  2918. * are hashed and update the hash filter bitmap pointed at by @hash.
  2919. *
  2920. * Returns a negative error number or the number of filters allocated.
  2921. */
  2922. int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
  2923. unsigned int viid, bool free, unsigned int naddr,
  2924. const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
  2925. {
  2926. int i, ret;
  2927. struct fw_vi_mac_cmd c;
  2928. struct fw_vi_mac_exact *p;
  2929. unsigned int max_naddr = is_t4(adap->params.chip) ?
  2930. NUM_MPS_CLS_SRAM_L_INSTANCES :
  2931. NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
  2932. if (naddr > 7)
  2933. return -EINVAL;
  2934. memset(&c, 0, sizeof(c));
  2935. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2936. FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
  2937. FW_VI_MAC_CMD_VIID(viid));
  2938. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
  2939. FW_CMD_LEN16((naddr + 2) / 2));
  2940. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2941. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2942. FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
  2943. memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
  2944. }
  2945. ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
  2946. if (ret)
  2947. return ret;
  2948. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2949. u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2950. if (idx)
  2951. idx[i] = index >= max_naddr ? 0xffff : index;
  2952. if (index < max_naddr)
  2953. ret++;
  2954. else if (hash)
  2955. *hash |= (1ULL << hash_mac_addr(addr[i]));
  2956. }
  2957. return ret;
  2958. }
  2959. /**
  2960. * t4_change_mac - modifies the exact-match filter for a MAC address
  2961. * @adap: the adapter
  2962. * @mbox: mailbox to use for the FW command
  2963. * @viid: the VI id
  2964. * @idx: index of existing filter for old value of MAC address, or -1
  2965. * @addr: the new MAC address value
  2966. * @persist: whether a new MAC allocation should be persistent
  2967. * @add_smt: if true also add the address to the HW SMT
  2968. *
  2969. * Modifies an exact-match filter and sets it to the new MAC address.
  2970. * Note that in general it is not possible to modify the value of a given
  2971. * filter so the generic way to modify an address filter is to free the one
  2972. * being used by the old address value and allocate a new filter for the
  2973. * new address value. @idx can be -1 if the address is a new addition.
  2974. *
  2975. * Returns a negative error number or the index of the filter with the new
  2976. * MAC value.
  2977. */
  2978. int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2979. int idx, const u8 *addr, bool persist, bool add_smt)
  2980. {
  2981. int ret, mode;
  2982. struct fw_vi_mac_cmd c;
  2983. struct fw_vi_mac_exact *p = c.u.exact;
  2984. unsigned int max_mac_addr = is_t4(adap->params.chip) ?
  2985. NUM_MPS_CLS_SRAM_L_INSTANCES :
  2986. NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
  2987. if (idx < 0) /* new allocation */
  2988. idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
  2989. mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
  2990. memset(&c, 0, sizeof(c));
  2991. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2992. FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
  2993. c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
  2994. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2995. FW_VI_MAC_CMD_SMAC_RESULT(mode) |
  2996. FW_VI_MAC_CMD_IDX(idx));
  2997. memcpy(p->macaddr, addr, sizeof(p->macaddr));
  2998. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2999. if (ret == 0) {
  3000. ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  3001. if (ret >= max_mac_addr)
  3002. ret = -ENOMEM;
  3003. }
  3004. return ret;
  3005. }
  3006. /**
  3007. * t4_set_addr_hash - program the MAC inexact-match hash filter
  3008. * @adap: the adapter
  3009. * @mbox: mailbox to use for the FW command
  3010. * @viid: the VI id
  3011. * @ucast: whether the hash filter should also match unicast addresses
  3012. * @vec: the value to be written to the hash filter
  3013. * @sleep_ok: call is allowed to sleep
  3014. *
  3015. * Sets the 64-bit inexact-match hash filter for a virtual interface.
  3016. */
  3017. int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3018. bool ucast, u64 vec, bool sleep_ok)
  3019. {
  3020. struct fw_vi_mac_cmd c;
  3021. memset(&c, 0, sizeof(c));
  3022. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  3023. FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
  3024. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
  3025. FW_VI_MAC_CMD_HASHUNIEN(ucast) |
  3026. FW_CMD_LEN16(1));
  3027. c.u.hash.hashvec = cpu_to_be64(vec);
  3028. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  3029. }
  3030. /**
  3031. * t4_enable_vi - enable/disable a virtual interface
  3032. * @adap: the adapter
  3033. * @mbox: mailbox to use for the FW command
  3034. * @viid: the VI id
  3035. * @rx_en: 1=enable Rx, 0=disable Rx
  3036. * @tx_en: 1=enable Tx, 0=disable Tx
  3037. *
  3038. * Enables/disables a virtual interface.
  3039. */
  3040. int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3041. bool rx_en, bool tx_en)
  3042. {
  3043. struct fw_vi_enable_cmd c;
  3044. memset(&c, 0, sizeof(c));
  3045. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  3046. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  3047. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
  3048. FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
  3049. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3050. }
  3051. /**
  3052. * t4_identify_port - identify a VI's port by blinking its LED
  3053. * @adap: the adapter
  3054. * @mbox: mailbox to use for the FW command
  3055. * @viid: the VI id
  3056. * @nblinks: how many times to blink LED at 2.5 Hz
  3057. *
  3058. * Identifies a VI's port by blinking its LED.
  3059. */
  3060. int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
  3061. unsigned int nblinks)
  3062. {
  3063. struct fw_vi_enable_cmd c;
  3064. memset(&c, 0, sizeof(c));
  3065. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  3066. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  3067. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
  3068. c.blinkdur = htons(nblinks);
  3069. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3070. }
  3071. /**
  3072. * t4_iq_free - free an ingress queue and its FLs
  3073. * @adap: the adapter
  3074. * @mbox: mailbox to use for the FW command
  3075. * @pf: the PF owning the queues
  3076. * @vf: the VF owning the queues
  3077. * @iqtype: the ingress queue type
  3078. * @iqid: ingress queue id
  3079. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  3080. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  3081. *
  3082. * Frees an ingress queue and its associated FLs, if any.
  3083. */
  3084. int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3085. unsigned int vf, unsigned int iqtype, unsigned int iqid,
  3086. unsigned int fl0id, unsigned int fl1id)
  3087. {
  3088. struct fw_iq_cmd c;
  3089. memset(&c, 0, sizeof(c));
  3090. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  3091. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  3092. FW_IQ_CMD_VFN(vf));
  3093. c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
  3094. c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
  3095. c.iqid = htons(iqid);
  3096. c.fl0id = htons(fl0id);
  3097. c.fl1id = htons(fl1id);
  3098. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3099. }
  3100. /**
  3101. * t4_eth_eq_free - free an Ethernet egress queue
  3102. * @adap: the adapter
  3103. * @mbox: mailbox to use for the FW command
  3104. * @pf: the PF owning the queue
  3105. * @vf: the VF owning the queue
  3106. * @eqid: egress queue id
  3107. *
  3108. * Frees an Ethernet egress queue.
  3109. */
  3110. int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3111. unsigned int vf, unsigned int eqid)
  3112. {
  3113. struct fw_eq_eth_cmd c;
  3114. memset(&c, 0, sizeof(c));
  3115. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
  3116. FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
  3117. FW_EQ_ETH_CMD_VFN(vf));
  3118. c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
  3119. c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
  3120. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3121. }
  3122. /**
  3123. * t4_ctrl_eq_free - free a control egress queue
  3124. * @adap: the adapter
  3125. * @mbox: mailbox to use for the FW command
  3126. * @pf: the PF owning the queue
  3127. * @vf: the VF owning the queue
  3128. * @eqid: egress queue id
  3129. *
  3130. * Frees a control egress queue.
  3131. */
  3132. int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3133. unsigned int vf, unsigned int eqid)
  3134. {
  3135. struct fw_eq_ctrl_cmd c;
  3136. memset(&c, 0, sizeof(c));
  3137. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
  3138. FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
  3139. FW_EQ_CTRL_CMD_VFN(vf));
  3140. c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
  3141. c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
  3142. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3143. }
  3144. /**
  3145. * t4_ofld_eq_free - free an offload egress queue
  3146. * @adap: the adapter
  3147. * @mbox: mailbox to use for the FW command
  3148. * @pf: the PF owning the queue
  3149. * @vf: the VF owning the queue
  3150. * @eqid: egress queue id
  3151. *
  3152. * Frees a control egress queue.
  3153. */
  3154. int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  3155. unsigned int vf, unsigned int eqid)
  3156. {
  3157. struct fw_eq_ofld_cmd c;
  3158. memset(&c, 0, sizeof(c));
  3159. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
  3160. FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
  3161. FW_EQ_OFLD_CMD_VFN(vf));
  3162. c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
  3163. c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
  3164. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  3165. }
  3166. /**
  3167. * t4_handle_fw_rpl - process a FW reply message
  3168. * @adap: the adapter
  3169. * @rpl: start of the FW message
  3170. *
  3171. * Processes a FW message, such as link state change messages.
  3172. */
  3173. int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
  3174. {
  3175. u8 opcode = *(const u8 *)rpl;
  3176. if (opcode == FW_PORT_CMD) { /* link/module state change message */
  3177. int speed = 0, fc = 0;
  3178. const struct fw_port_cmd *p = (void *)rpl;
  3179. int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
  3180. int port = adap->chan_map[chan];
  3181. struct port_info *pi = adap2pinfo(adap, port);
  3182. struct link_config *lc = &pi->link_cfg;
  3183. u32 stat = ntohl(p->u.info.lstatus_to_modtype);
  3184. int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
  3185. u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
  3186. if (stat & FW_PORT_CMD_RXPAUSE)
  3187. fc |= PAUSE_RX;
  3188. if (stat & FW_PORT_CMD_TXPAUSE)
  3189. fc |= PAUSE_TX;
  3190. if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
  3191. speed = SPEED_100;
  3192. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
  3193. speed = SPEED_1000;
  3194. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
  3195. speed = SPEED_10000;
  3196. if (link_ok != lc->link_ok || speed != lc->speed ||
  3197. fc != lc->fc) { /* something changed */
  3198. lc->link_ok = link_ok;
  3199. lc->speed = speed;
  3200. lc->fc = fc;
  3201. t4_os_link_changed(adap, port, link_ok);
  3202. }
  3203. if (mod != pi->mod_type) {
  3204. pi->mod_type = mod;
  3205. t4_os_portmod_changed(adap, port);
  3206. }
  3207. }
  3208. return 0;
  3209. }
  3210. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3211. {
  3212. u16 val;
  3213. if (pci_is_pcie(adapter->pdev)) {
  3214. pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
  3215. p->speed = val & PCI_EXP_LNKSTA_CLS;
  3216. p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
  3217. }
  3218. }
  3219. /**
  3220. * init_link_config - initialize a link's SW state
  3221. * @lc: structure holding the link state
  3222. * @caps: link capabilities
  3223. *
  3224. * Initializes the SW state maintained for each link, including the link's
  3225. * capabilities and default speed/flow-control/autonegotiation settings.
  3226. */
  3227. static void init_link_config(struct link_config *lc, unsigned int caps)
  3228. {
  3229. lc->supported = caps;
  3230. lc->requested_speed = 0;
  3231. lc->speed = 0;
  3232. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3233. if (lc->supported & FW_PORT_CAP_ANEG) {
  3234. lc->advertising = lc->supported & ADVERT_MASK;
  3235. lc->autoneg = AUTONEG_ENABLE;
  3236. lc->requested_fc |= PAUSE_AUTONEG;
  3237. } else {
  3238. lc->advertising = 0;
  3239. lc->autoneg = AUTONEG_DISABLE;
  3240. }
  3241. }
  3242. int t4_wait_dev_ready(struct adapter *adap)
  3243. {
  3244. if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
  3245. return 0;
  3246. msleep(500);
  3247. return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
  3248. }
  3249. static int get_flash_params(struct adapter *adap)
  3250. {
  3251. int ret;
  3252. u32 info;
  3253. ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
  3254. if (!ret)
  3255. ret = sf1_read(adap, 3, 0, 1, &info);
  3256. t4_write_reg(adap, SF_OP, 0); /* unlock SF */
  3257. if (ret)
  3258. return ret;
  3259. if ((info & 0xff) != 0x20) /* not a Numonix flash */
  3260. return -EINVAL;
  3261. info >>= 16; /* log2 of size */
  3262. if (info >= 0x14 && info < 0x18)
  3263. adap->params.sf_nsec = 1 << (info - 16);
  3264. else if (info == 0x18)
  3265. adap->params.sf_nsec = 64;
  3266. else
  3267. return -EINVAL;
  3268. adap->params.sf_size = 1 << info;
  3269. adap->params.sf_fw_start =
  3270. t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
  3271. return 0;
  3272. }
  3273. /**
  3274. * t4_prep_adapter - prepare SW and HW for operation
  3275. * @adapter: the adapter
  3276. * @reset: if true perform a HW reset
  3277. *
  3278. * Initialize adapter SW state for the various HW modules, set initial
  3279. * values for some adapter tunables, take PHYs out of reset, and
  3280. * initialize the MDIO interface.
  3281. */
  3282. int t4_prep_adapter(struct adapter *adapter)
  3283. {
  3284. int ret, ver;
  3285. uint16_t device_id;
  3286. u32 pl_rev;
  3287. ret = t4_wait_dev_ready(adapter);
  3288. if (ret < 0)
  3289. return ret;
  3290. get_pci_mode(adapter, &adapter->params.pci);
  3291. pl_rev = G_REV(t4_read_reg(adapter, PL_REV));
  3292. ret = get_flash_params(adapter);
  3293. if (ret < 0) {
  3294. dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
  3295. return ret;
  3296. }
  3297. /* Retrieve adapter's device ID
  3298. */
  3299. pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
  3300. ver = device_id >> 12;
  3301. adapter->params.chip = 0;
  3302. switch (ver) {
  3303. case CHELSIO_T4:
  3304. adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
  3305. break;
  3306. case CHELSIO_T5:
  3307. adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
  3308. break;
  3309. default:
  3310. dev_err(adapter->pdev_dev, "Device %d is not supported\n",
  3311. device_id);
  3312. return -EINVAL;
  3313. }
  3314. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3315. /*
  3316. * Default port for debugging in case we can't reach FW.
  3317. */
  3318. adapter->params.nports = 1;
  3319. adapter->params.portvec = 1;
  3320. adapter->params.vpd.cclk = 50000;
  3321. return 0;
  3322. }
  3323. /**
  3324. * t4_init_tp_params - initialize adap->params.tp
  3325. * @adap: the adapter
  3326. *
  3327. * Initialize various fields of the adapter's TP Parameters structure.
  3328. */
  3329. int t4_init_tp_params(struct adapter *adap)
  3330. {
  3331. int chan;
  3332. u32 v;
  3333. v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
  3334. adap->params.tp.tre = TIMERRESOLUTION_GET(v);
  3335. adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v);
  3336. /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
  3337. for (chan = 0; chan < NCHAN; chan++)
  3338. adap->params.tp.tx_modq[chan] = chan;
  3339. /* Cache the adapter's Compressed Filter Mode and global Incress
  3340. * Configuration.
  3341. */
  3342. t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
  3343. &adap->params.tp.vlan_pri_map, 1,
  3344. TP_VLAN_PRI_MAP);
  3345. t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
  3346. &adap->params.tp.ingress_config, 1,
  3347. TP_INGRESS_CONFIG);
  3348. /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
  3349. * shift positions of several elements of the Compressed Filter Tuple
  3350. * for this adapter which we need frequently ...
  3351. */
  3352. adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
  3353. adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
  3354. adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
  3355. adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
  3356. F_PROTOCOL);
  3357. /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
  3358. * represents the presense of an Outer VLAN instead of a VNIC ID.
  3359. */
  3360. if ((adap->params.tp.ingress_config & F_VNIC) == 0)
  3361. adap->params.tp.vnic_shift = -1;
  3362. return 0;
  3363. }
  3364. /**
  3365. * t4_filter_field_shift - calculate filter field shift
  3366. * @adap: the adapter
  3367. * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
  3368. *
  3369. * Return the shift position of a filter field within the Compressed
  3370. * Filter Tuple. The filter field is specified via its selection bit
  3371. * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
  3372. */
  3373. int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
  3374. {
  3375. unsigned int filter_mode = adap->params.tp.vlan_pri_map;
  3376. unsigned int sel;
  3377. int field_shift;
  3378. if ((filter_mode & filter_sel) == 0)
  3379. return -1;
  3380. for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
  3381. switch (filter_mode & sel) {
  3382. case F_FCOE:
  3383. field_shift += W_FT_FCOE;
  3384. break;
  3385. case F_PORT:
  3386. field_shift += W_FT_PORT;
  3387. break;
  3388. case F_VNIC_ID:
  3389. field_shift += W_FT_VNIC_ID;
  3390. break;
  3391. case F_VLAN:
  3392. field_shift += W_FT_VLAN;
  3393. break;
  3394. case F_TOS:
  3395. field_shift += W_FT_TOS;
  3396. break;
  3397. case F_PROTOCOL:
  3398. field_shift += W_FT_PROTOCOL;
  3399. break;
  3400. case F_ETHERTYPE:
  3401. field_shift += W_FT_ETHERTYPE;
  3402. break;
  3403. case F_MACMATCH:
  3404. field_shift += W_FT_MACMATCH;
  3405. break;
  3406. case F_MPSHITTYPE:
  3407. field_shift += W_FT_MPSHITTYPE;
  3408. break;
  3409. case F_FRAGMENTATION:
  3410. field_shift += W_FT_FRAGMENTATION;
  3411. break;
  3412. }
  3413. }
  3414. return field_shift;
  3415. }
  3416. int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
  3417. {
  3418. u8 addr[6];
  3419. int ret, i, j = 0;
  3420. struct fw_port_cmd c;
  3421. struct fw_rss_vi_config_cmd rvc;
  3422. memset(&c, 0, sizeof(c));
  3423. memset(&rvc, 0, sizeof(rvc));
  3424. for_each_port(adap, i) {
  3425. unsigned int rss_size;
  3426. struct port_info *p = adap2pinfo(adap, i);
  3427. while ((adap->params.portvec & (1 << j)) == 0)
  3428. j++;
  3429. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
  3430. FW_CMD_REQUEST | FW_CMD_READ |
  3431. FW_PORT_CMD_PORTID(j));
  3432. c.action_to_len16 = htonl(
  3433. FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
  3434. FW_LEN16(c));
  3435. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3436. if (ret)
  3437. return ret;
  3438. ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
  3439. if (ret < 0)
  3440. return ret;
  3441. p->viid = ret;
  3442. p->tx_chan = j;
  3443. p->lport = j;
  3444. p->rss_size = rss_size;
  3445. memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
  3446. ret = ntohl(c.u.info.lstatus_to_modtype);
  3447. p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
  3448. FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
  3449. p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
  3450. p->mod_type = FW_PORT_MOD_TYPE_NA;
  3451. rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
  3452. FW_CMD_REQUEST | FW_CMD_READ |
  3453. FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
  3454. rvc.retval_len16 = htonl(FW_LEN16(rvc));
  3455. ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
  3456. if (ret)
  3457. return ret;
  3458. p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
  3459. init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
  3460. j++;
  3461. }
  3462. return 0;
  3463. }