l2t.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/skbuff.h>
  35. #include <linux/netdevice.h>
  36. #include <linux/if.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/jhash.h>
  39. #include <linux/module.h>
  40. #include <linux/debugfs.h>
  41. #include <linux/seq_file.h>
  42. #include <net/neighbour.h>
  43. #include "cxgb4.h"
  44. #include "l2t.h"
  45. #include "t4_msg.h"
  46. #include "t4fw_api.h"
  47. #include "t4_regs.h"
  48. #define VLAN_NONE 0xfff
  49. /* identifies sync vs async L2T_WRITE_REQs */
  50. #define F_SYNC_WR (1 << 12)
  51. enum {
  52. L2T_STATE_VALID, /* entry is up to date */
  53. L2T_STATE_STALE, /* entry may be used but needs revalidation */
  54. L2T_STATE_RESOLVING, /* entry needs address resolution */
  55. L2T_STATE_SYNC_WRITE, /* synchronous write of entry underway */
  56. /* when state is one of the below the entry is not hashed */
  57. L2T_STATE_SWITCHING, /* entry is being used by a switching filter */
  58. L2T_STATE_UNUSED /* entry not in use */
  59. };
  60. struct l2t_data {
  61. rwlock_t lock;
  62. atomic_t nfree; /* number of free entries */
  63. struct l2t_entry *rover; /* starting point for next allocation */
  64. struct l2t_entry l2tab[L2T_SIZE];
  65. };
  66. static inline unsigned int vlan_prio(const struct l2t_entry *e)
  67. {
  68. return e->vlan >> 13;
  69. }
  70. static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
  71. {
  72. if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */
  73. atomic_dec(&d->nfree);
  74. }
  75. /*
  76. * To avoid having to check address families we do not allow v4 and v6
  77. * neighbors to be on the same hash chain. We keep v4 entries in the first
  78. * half of available hash buckets and v6 in the second.
  79. */
  80. enum {
  81. L2T_SZ_HALF = L2T_SIZE / 2,
  82. L2T_HASH_MASK = L2T_SZ_HALF - 1
  83. };
  84. static inline unsigned int arp_hash(const u32 *key, int ifindex)
  85. {
  86. return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK;
  87. }
  88. static inline unsigned int ipv6_hash(const u32 *key, int ifindex)
  89. {
  90. u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];
  91. return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK);
  92. }
  93. static unsigned int addr_hash(const u32 *addr, int addr_len, int ifindex)
  94. {
  95. return addr_len == 4 ? arp_hash(addr, ifindex) :
  96. ipv6_hash(addr, ifindex);
  97. }
  98. /*
  99. * Checks if an L2T entry is for the given IP/IPv6 address. It does not check
  100. * whether the L2T entry and the address are of the same address family.
  101. * Callers ensure an address is only checked against L2T entries of the same
  102. * family, something made trivial by the separation of IP and IPv6 hash chains
  103. * mentioned above. Returns 0 if there's a match,
  104. */
  105. static int addreq(const struct l2t_entry *e, const u32 *addr)
  106. {
  107. if (e->v6)
  108. return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
  109. (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
  110. return e->addr[0] ^ addr[0];
  111. }
  112. static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
  113. {
  114. neigh_hold(n);
  115. if (e->neigh)
  116. neigh_release(e->neigh);
  117. e->neigh = n;
  118. }
  119. /*
  120. * Write an L2T entry. Must be called with the entry locked.
  121. * The write may be synchronous or asynchronous.
  122. */
  123. static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
  124. {
  125. struct sk_buff *skb;
  126. struct cpl_l2t_write_req *req;
  127. skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
  128. if (!skb)
  129. return -ENOMEM;
  130. req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
  131. INIT_TP_WR(req, 0);
  132. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
  133. e->idx | (sync ? F_SYNC_WR : 0) |
  134. TID_QID(adap->sge.fw_evtq.abs_id)));
  135. req->params = htons(L2T_W_PORT(e->lport) | L2T_W_NOREPLY(!sync));
  136. req->l2t_idx = htons(e->idx);
  137. req->vlan = htons(e->vlan);
  138. if (e->neigh)
  139. memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
  140. memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
  141. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  142. t4_ofld_send(adap, skb);
  143. if (sync && e->state != L2T_STATE_SWITCHING)
  144. e->state = L2T_STATE_SYNC_WRITE;
  145. return 0;
  146. }
  147. /*
  148. * Send packets waiting in an L2T entry's ARP queue. Must be called with the
  149. * entry locked.
  150. */
  151. static void send_pending(struct adapter *adap, struct l2t_entry *e)
  152. {
  153. while (e->arpq_head) {
  154. struct sk_buff *skb = e->arpq_head;
  155. e->arpq_head = skb->next;
  156. skb->next = NULL;
  157. t4_ofld_send(adap, skb);
  158. }
  159. e->arpq_tail = NULL;
  160. }
  161. /*
  162. * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a
  163. * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T
  164. * index it refers to.
  165. */
  166. void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
  167. {
  168. unsigned int tid = GET_TID(rpl);
  169. unsigned int idx = tid & (L2T_SIZE - 1);
  170. if (unlikely(rpl->status != CPL_ERR_NONE)) {
  171. dev_err(adap->pdev_dev,
  172. "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
  173. rpl->status, idx);
  174. return;
  175. }
  176. if (tid & F_SYNC_WR) {
  177. struct l2t_entry *e = &adap->l2t->l2tab[idx];
  178. spin_lock(&e->lock);
  179. if (e->state != L2T_STATE_SWITCHING) {
  180. send_pending(adap, e);
  181. e->state = (e->neigh->nud_state & NUD_STALE) ?
  182. L2T_STATE_STALE : L2T_STATE_VALID;
  183. }
  184. spin_unlock(&e->lock);
  185. }
  186. }
  187. /*
  188. * Add a packet to an L2T entry's queue of packets awaiting resolution.
  189. * Must be called with the entry's lock held.
  190. */
  191. static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
  192. {
  193. skb->next = NULL;
  194. if (e->arpq_head)
  195. e->arpq_tail->next = skb;
  196. else
  197. e->arpq_head = skb;
  198. e->arpq_tail = skb;
  199. }
  200. int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
  201. struct l2t_entry *e)
  202. {
  203. struct adapter *adap = netdev2adap(dev);
  204. again:
  205. switch (e->state) {
  206. case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
  207. neigh_event_send(e->neigh, NULL);
  208. spin_lock_bh(&e->lock);
  209. if (e->state == L2T_STATE_STALE)
  210. e->state = L2T_STATE_VALID;
  211. spin_unlock_bh(&e->lock);
  212. case L2T_STATE_VALID: /* fast-path, send the packet on */
  213. return t4_ofld_send(adap, skb);
  214. case L2T_STATE_RESOLVING:
  215. case L2T_STATE_SYNC_WRITE:
  216. spin_lock_bh(&e->lock);
  217. if (e->state != L2T_STATE_SYNC_WRITE &&
  218. e->state != L2T_STATE_RESOLVING) {
  219. spin_unlock_bh(&e->lock);
  220. goto again;
  221. }
  222. arpq_enqueue(e, skb);
  223. spin_unlock_bh(&e->lock);
  224. if (e->state == L2T_STATE_RESOLVING &&
  225. !neigh_event_send(e->neigh, NULL)) {
  226. spin_lock_bh(&e->lock);
  227. if (e->state == L2T_STATE_RESOLVING && e->arpq_head)
  228. write_l2e(adap, e, 1);
  229. spin_unlock_bh(&e->lock);
  230. }
  231. }
  232. return 0;
  233. }
  234. EXPORT_SYMBOL(cxgb4_l2t_send);
  235. /*
  236. * Allocate a free L2T entry. Must be called with l2t_data.lock held.
  237. */
  238. static struct l2t_entry *alloc_l2e(struct l2t_data *d)
  239. {
  240. struct l2t_entry *end, *e, **p;
  241. if (!atomic_read(&d->nfree))
  242. return NULL;
  243. /* there's definitely a free entry */
  244. for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e)
  245. if (atomic_read(&e->refcnt) == 0)
  246. goto found;
  247. for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
  248. ;
  249. found:
  250. d->rover = e + 1;
  251. atomic_dec(&d->nfree);
  252. /*
  253. * The entry we found may be an inactive entry that is
  254. * presently in the hash table. We need to remove it.
  255. */
  256. if (e->state < L2T_STATE_SWITCHING)
  257. for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
  258. if (*p == e) {
  259. *p = e->next;
  260. e->next = NULL;
  261. break;
  262. }
  263. e->state = L2T_STATE_UNUSED;
  264. return e;
  265. }
  266. /*
  267. * Called when an L2T entry has no more users.
  268. */
  269. static void t4_l2e_free(struct l2t_entry *e)
  270. {
  271. struct l2t_data *d;
  272. spin_lock_bh(&e->lock);
  273. if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
  274. if (e->neigh) {
  275. neigh_release(e->neigh);
  276. e->neigh = NULL;
  277. }
  278. while (e->arpq_head) {
  279. struct sk_buff *skb = e->arpq_head;
  280. e->arpq_head = skb->next;
  281. kfree_skb(skb);
  282. }
  283. e->arpq_tail = NULL;
  284. }
  285. spin_unlock_bh(&e->lock);
  286. d = container_of(e, struct l2t_data, l2tab[e->idx]);
  287. atomic_inc(&d->nfree);
  288. }
  289. void cxgb4_l2t_release(struct l2t_entry *e)
  290. {
  291. if (atomic_dec_and_test(&e->refcnt))
  292. t4_l2e_free(e);
  293. }
  294. EXPORT_SYMBOL(cxgb4_l2t_release);
  295. /*
  296. * Update an L2T entry that was previously used for the same next hop as neigh.
  297. * Must be called with softirqs disabled.
  298. */
  299. static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
  300. {
  301. unsigned int nud_state;
  302. spin_lock(&e->lock); /* avoid race with t4_l2t_free */
  303. if (neigh != e->neigh)
  304. neigh_replace(e, neigh);
  305. nud_state = neigh->nud_state;
  306. if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
  307. !(nud_state & NUD_VALID))
  308. e->state = L2T_STATE_RESOLVING;
  309. else if (nud_state & NUD_CONNECTED)
  310. e->state = L2T_STATE_VALID;
  311. else
  312. e->state = L2T_STATE_STALE;
  313. spin_unlock(&e->lock);
  314. }
  315. struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
  316. const struct net_device *physdev,
  317. unsigned int priority)
  318. {
  319. u8 lport;
  320. u16 vlan;
  321. struct l2t_entry *e;
  322. int addr_len = neigh->tbl->key_len;
  323. u32 *addr = (u32 *)neigh->primary_key;
  324. int ifidx = neigh->dev->ifindex;
  325. int hash = addr_hash(addr, addr_len, ifidx);
  326. if (neigh->dev->flags & IFF_LOOPBACK)
  327. lport = netdev2pinfo(physdev)->tx_chan + 4;
  328. else
  329. lport = netdev2pinfo(physdev)->lport;
  330. if (neigh->dev->priv_flags & IFF_802_1Q_VLAN)
  331. vlan = vlan_dev_vlan_id(neigh->dev);
  332. else
  333. vlan = VLAN_NONE;
  334. write_lock_bh(&d->lock);
  335. for (e = d->l2tab[hash].first; e; e = e->next)
  336. if (!addreq(e, addr) && e->ifindex == ifidx &&
  337. e->vlan == vlan && e->lport == lport) {
  338. l2t_hold(d, e);
  339. if (atomic_read(&e->refcnt) == 1)
  340. reuse_entry(e, neigh);
  341. goto done;
  342. }
  343. /* Need to allocate a new entry */
  344. e = alloc_l2e(d);
  345. if (e) {
  346. spin_lock(&e->lock); /* avoid race with t4_l2t_free */
  347. e->state = L2T_STATE_RESOLVING;
  348. memcpy(e->addr, addr, addr_len);
  349. e->ifindex = ifidx;
  350. e->hash = hash;
  351. e->lport = lport;
  352. e->v6 = addr_len == 16;
  353. atomic_set(&e->refcnt, 1);
  354. neigh_replace(e, neigh);
  355. e->vlan = vlan;
  356. e->next = d->l2tab[hash].first;
  357. d->l2tab[hash].first = e;
  358. spin_unlock(&e->lock);
  359. }
  360. done:
  361. write_unlock_bh(&d->lock);
  362. return e;
  363. }
  364. EXPORT_SYMBOL(cxgb4_l2t_get);
  365. u64 cxgb4_select_ntuple(struct net_device *dev,
  366. const struct l2t_entry *l2t)
  367. {
  368. struct adapter *adap = netdev2adap(dev);
  369. struct tp_params *tp = &adap->params.tp;
  370. u64 ntuple = 0;
  371. /* Initialize each of the fields which we care about which are present
  372. * in the Compressed Filter Tuple.
  373. */
  374. if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE)
  375. ntuple |= (u64)(F_FT_VLAN_VLD | l2t->vlan) << tp->vlan_shift;
  376. if (tp->port_shift >= 0)
  377. ntuple |= (u64)l2t->lport << tp->port_shift;
  378. if (tp->protocol_shift >= 0)
  379. ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;
  380. if (tp->vnic_shift >= 0) {
  381. u32 viid = cxgb4_port_viid(dev);
  382. u32 vf = FW_VIID_VIN_GET(viid);
  383. u32 pf = FW_VIID_PFN_GET(viid);
  384. u32 vld = FW_VIID_VIVLD_GET(viid);
  385. ntuple |= (u64)(V_FT_VNID_ID_VF(vf) |
  386. V_FT_VNID_ID_PF(pf) |
  387. V_FT_VNID_ID_VLD(vld)) << tp->vnic_shift;
  388. }
  389. return ntuple;
  390. }
  391. EXPORT_SYMBOL(cxgb4_select_ntuple);
  392. /*
  393. * Called when address resolution fails for an L2T entry to handle packets
  394. * on the arpq head. If a packet specifies a failure handler it is invoked,
  395. * otherwise the packet is sent to the device.
  396. */
  397. static void handle_failed_resolution(struct adapter *adap, struct sk_buff *arpq)
  398. {
  399. while (arpq) {
  400. struct sk_buff *skb = arpq;
  401. const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
  402. arpq = skb->next;
  403. skb->next = NULL;
  404. if (cb->arp_err_handler)
  405. cb->arp_err_handler(cb->handle, skb);
  406. else
  407. t4_ofld_send(adap, skb);
  408. }
  409. }
  410. /*
  411. * Called when the host's neighbor layer makes a change to some entry that is
  412. * loaded into the HW L2 table.
  413. */
  414. void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
  415. {
  416. struct l2t_entry *e;
  417. struct sk_buff *arpq = NULL;
  418. struct l2t_data *d = adap->l2t;
  419. int addr_len = neigh->tbl->key_len;
  420. u32 *addr = (u32 *) neigh->primary_key;
  421. int ifidx = neigh->dev->ifindex;
  422. int hash = addr_hash(addr, addr_len, ifidx);
  423. read_lock_bh(&d->lock);
  424. for (e = d->l2tab[hash].first; e; e = e->next)
  425. if (!addreq(e, addr) && e->ifindex == ifidx) {
  426. spin_lock(&e->lock);
  427. if (atomic_read(&e->refcnt))
  428. goto found;
  429. spin_unlock(&e->lock);
  430. break;
  431. }
  432. read_unlock_bh(&d->lock);
  433. return;
  434. found:
  435. read_unlock(&d->lock);
  436. if (neigh != e->neigh)
  437. neigh_replace(e, neigh);
  438. if (e->state == L2T_STATE_RESOLVING) {
  439. if (neigh->nud_state & NUD_FAILED) {
  440. arpq = e->arpq_head;
  441. e->arpq_head = e->arpq_tail = NULL;
  442. } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
  443. e->arpq_head) {
  444. write_l2e(adap, e, 1);
  445. }
  446. } else {
  447. e->state = neigh->nud_state & NUD_CONNECTED ?
  448. L2T_STATE_VALID : L2T_STATE_STALE;
  449. if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
  450. write_l2e(adap, e, 0);
  451. }
  452. spin_unlock_bh(&e->lock);
  453. if (arpq)
  454. handle_failed_resolution(adap, arpq);
  455. }
  456. /* Allocate an L2T entry for use by a switching rule. Such need to be
  457. * explicitly freed and while busy they are not on any hash chain, so normal
  458. * address resolution updates do not see them.
  459. */
  460. struct l2t_entry *t4_l2t_alloc_switching(struct l2t_data *d)
  461. {
  462. struct l2t_entry *e;
  463. write_lock_bh(&d->lock);
  464. e = alloc_l2e(d);
  465. if (e) {
  466. spin_lock(&e->lock); /* avoid race with t4_l2t_free */
  467. e->state = L2T_STATE_SWITCHING;
  468. atomic_set(&e->refcnt, 1);
  469. spin_unlock(&e->lock);
  470. }
  471. write_unlock_bh(&d->lock);
  472. return e;
  473. }
  474. /* Sets/updates the contents of a switching L2T entry that has been allocated
  475. * with an earlier call to @t4_l2t_alloc_switching.
  476. */
  477. int t4_l2t_set_switching(struct adapter *adap, struct l2t_entry *e, u16 vlan,
  478. u8 port, u8 *eth_addr)
  479. {
  480. e->vlan = vlan;
  481. e->lport = port;
  482. memcpy(e->dmac, eth_addr, ETH_ALEN);
  483. return write_l2e(adap, e, 0);
  484. }
  485. struct l2t_data *t4_init_l2t(void)
  486. {
  487. int i;
  488. struct l2t_data *d;
  489. d = t4_alloc_mem(sizeof(*d));
  490. if (!d)
  491. return NULL;
  492. d->rover = d->l2tab;
  493. atomic_set(&d->nfree, L2T_SIZE);
  494. rwlock_init(&d->lock);
  495. for (i = 0; i < L2T_SIZE; ++i) {
  496. d->l2tab[i].idx = i;
  497. d->l2tab[i].state = L2T_STATE_UNUSED;
  498. spin_lock_init(&d->l2tab[i].lock);
  499. atomic_set(&d->l2tab[i].refcnt, 0);
  500. }
  501. return d;
  502. }
  503. static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
  504. {
  505. struct l2t_entry *l2tab = seq->private;
  506. return pos >= L2T_SIZE ? NULL : &l2tab[pos];
  507. }
  508. static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
  509. {
  510. return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
  511. }
  512. static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  513. {
  514. v = l2t_get_idx(seq, *pos);
  515. if (v)
  516. ++*pos;
  517. return v;
  518. }
  519. static void l2t_seq_stop(struct seq_file *seq, void *v)
  520. {
  521. }
  522. static char l2e_state(const struct l2t_entry *e)
  523. {
  524. switch (e->state) {
  525. case L2T_STATE_VALID: return 'V';
  526. case L2T_STATE_STALE: return 'S';
  527. case L2T_STATE_SYNC_WRITE: return 'W';
  528. case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R';
  529. case L2T_STATE_SWITCHING: return 'X';
  530. default:
  531. return 'U';
  532. }
  533. }
  534. static int l2t_seq_show(struct seq_file *seq, void *v)
  535. {
  536. if (v == SEQ_START_TOKEN)
  537. seq_puts(seq, " Idx IP address "
  538. "Ethernet address VLAN/P LP State Users Port\n");
  539. else {
  540. char ip[60];
  541. struct l2t_entry *e = v;
  542. spin_lock_bh(&e->lock);
  543. if (e->state == L2T_STATE_SWITCHING)
  544. ip[0] = '\0';
  545. else
  546. sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
  547. seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n",
  548. e->idx, ip, e->dmac,
  549. e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
  550. l2e_state(e), atomic_read(&e->refcnt),
  551. e->neigh ? e->neigh->dev->name : "");
  552. spin_unlock_bh(&e->lock);
  553. }
  554. return 0;
  555. }
  556. static const struct seq_operations l2t_seq_ops = {
  557. .start = l2t_seq_start,
  558. .next = l2t_seq_next,
  559. .stop = l2t_seq_stop,
  560. .show = l2t_seq_show
  561. };
  562. static int l2t_seq_open(struct inode *inode, struct file *file)
  563. {
  564. int rc = seq_open(file, &l2t_seq_ops);
  565. if (!rc) {
  566. struct adapter *adap = inode->i_private;
  567. struct seq_file *seq = file->private_data;
  568. seq->private = adap->l2t->l2tab;
  569. }
  570. return rc;
  571. }
  572. const struct file_operations t4_l2t_fops = {
  573. .owner = THIS_MODULE,
  574. .open = l2t_seq_open,
  575. .read = seq_read,
  576. .llseek = seq_lseek,
  577. .release = seq_release,
  578. };