bnx2.c 216 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2013 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/stringify.h>
  15. #include <linux/kernel.h>
  16. #include <linux/timer.h>
  17. #include <linux/errno.h>
  18. #include <linux/ioport.h>
  19. #include <linux/slab.h>
  20. #include <linux/vmalloc.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/pci.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/bitops.h>
  28. #include <asm/io.h>
  29. #include <asm/irq.h>
  30. #include <linux/delay.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/page.h>
  33. #include <linux/time.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/mii.h>
  36. #include <linux/if.h>
  37. #include <linux/if_vlan.h>
  38. #include <net/ip.h>
  39. #include <net/tcp.h>
  40. #include <net/checksum.h>
  41. #include <linux/workqueue.h>
  42. #include <linux/crc32.h>
  43. #include <linux/prefetch.h>
  44. #include <linux/cache.h>
  45. #include <linux/firmware.h>
  46. #include <linux/log2.h>
  47. #include <linux/aer.h>
  48. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  49. #define BCM_CNIC 1
  50. #include "cnic_if.h"
  51. #endif
  52. #include "bnx2.h"
  53. #include "bnx2_fw.h"
  54. #define DRV_MODULE_NAME "bnx2"
  55. #define DRV_MODULE_VERSION "2.2.5"
  56. #define DRV_MODULE_RELDATE "December 20, 2013"
  57. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
  58. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
  59. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
  60. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
  61. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
  62. #define RUN_AT(x) (jiffies + (x))
  63. /* Time in jiffies before concluding the transmitter is hung. */
  64. #define TX_TIMEOUT (5*HZ)
  65. static char version[] =
  66. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  67. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  68. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  69. MODULE_LICENSE("GPL");
  70. MODULE_VERSION(DRV_MODULE_VERSION);
  71. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  72. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  73. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  74. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  76. static int disable_msi = 0;
  77. module_param(disable_msi, int, S_IRUGO);
  78. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  79. typedef enum {
  80. BCM5706 = 0,
  81. NC370T,
  82. NC370I,
  83. BCM5706S,
  84. NC370F,
  85. BCM5708,
  86. BCM5708S,
  87. BCM5709,
  88. BCM5709S,
  89. BCM5716,
  90. BCM5716S,
  91. } board_t;
  92. /* indexed by board_t, above */
  93. static struct {
  94. char *name;
  95. } board_info[] = {
  96. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  97. { "HP NC370T Multifunction Gigabit Server Adapter" },
  98. { "HP NC370i Multifunction Gigabit Server Adapter" },
  99. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  100. { "HP NC370F Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  103. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  107. };
  108. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  109. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  110. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  118. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  127. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  131. { 0, }
  132. };
  133. static const struct flash_spec flash_table[] =
  134. {
  135. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  136. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  137. /* Slow EEPROM */
  138. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  139. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  140. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  141. "EEPROM - slow"},
  142. /* Expansion entry 0001 */
  143. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  144. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  145. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  146. "Entry 0001"},
  147. /* Saifun SA25F010 (non-buffered flash) */
  148. /* strap, cfg1, & write1 need updates */
  149. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  150. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  151. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  152. "Non-buffered flash (128kB)"},
  153. /* Saifun SA25F020 (non-buffered flash) */
  154. /* strap, cfg1, & write1 need updates */
  155. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  156. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  157. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  158. "Non-buffered flash (256kB)"},
  159. /* Expansion entry 0100 */
  160. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  161. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  162. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  163. "Entry 0100"},
  164. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  165. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  166. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  167. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  168. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  169. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  170. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  171. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  172. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  173. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  174. /* Saifun SA25F005 (non-buffered flash) */
  175. /* strap, cfg1, & write1 need updates */
  176. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  177. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  178. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  179. "Non-buffered flash (64kB)"},
  180. /* Fast EEPROM */
  181. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  182. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  183. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  184. "EEPROM - fast"},
  185. /* Expansion entry 1001 */
  186. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  187. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  188. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  189. "Entry 1001"},
  190. /* Expansion entry 1010 */
  191. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  192. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  193. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  194. "Entry 1010"},
  195. /* ATMEL AT45DB011B (buffered flash) */
  196. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  197. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  198. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  199. "Buffered flash (128kB)"},
  200. /* Expansion entry 1100 */
  201. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  202. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  203. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  204. "Entry 1100"},
  205. /* Expansion entry 1101 */
  206. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  207. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  208. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  209. "Entry 1101"},
  210. /* Ateml Expansion entry 1110 */
  211. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  212. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  213. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  214. "Entry 1110 (Atmel)"},
  215. /* ATMEL AT45DB021B (buffered flash) */
  216. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  217. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  218. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  219. "Buffered flash (256kB)"},
  220. };
  221. static const struct flash_spec flash_5709 = {
  222. .flags = BNX2_NV_BUFFERED,
  223. .page_bits = BCM5709_FLASH_PAGE_BITS,
  224. .page_size = BCM5709_FLASH_PAGE_SIZE,
  225. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  226. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  227. .name = "5709 Buffered flash (256kB)",
  228. };
  229. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  230. static void bnx2_init_napi(struct bnx2 *bp);
  231. static void bnx2_del_napi(struct bnx2 *bp);
  232. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  233. {
  234. u32 diff;
  235. /* Tell compiler to fetch tx_prod and tx_cons from memory. */
  236. barrier();
  237. /* The ring uses 256 indices for 255 entries, one of them
  238. * needs to be skipped.
  239. */
  240. diff = txr->tx_prod - txr->tx_cons;
  241. if (unlikely(diff >= BNX2_TX_DESC_CNT)) {
  242. diff &= 0xffff;
  243. if (diff == BNX2_TX_DESC_CNT)
  244. diff = BNX2_MAX_TX_DESC_CNT;
  245. }
  246. return bp->tx_ring_size - diff;
  247. }
  248. static u32
  249. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  250. {
  251. u32 val;
  252. spin_lock_bh(&bp->indirect_lock);
  253. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  254. val = BNX2_RD(bp, BNX2_PCICFG_REG_WINDOW);
  255. spin_unlock_bh(&bp->indirect_lock);
  256. return val;
  257. }
  258. static void
  259. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  260. {
  261. spin_lock_bh(&bp->indirect_lock);
  262. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  263. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  264. spin_unlock_bh(&bp->indirect_lock);
  265. }
  266. static void
  267. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  268. {
  269. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  270. }
  271. static u32
  272. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  273. {
  274. return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
  275. }
  276. static void
  277. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  278. {
  279. offset += cid_addr;
  280. spin_lock_bh(&bp->indirect_lock);
  281. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  282. int i;
  283. BNX2_WR(bp, BNX2_CTX_CTX_DATA, val);
  284. BNX2_WR(bp, BNX2_CTX_CTX_CTRL,
  285. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  286. for (i = 0; i < 5; i++) {
  287. val = BNX2_RD(bp, BNX2_CTX_CTX_CTRL);
  288. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  289. break;
  290. udelay(5);
  291. }
  292. } else {
  293. BNX2_WR(bp, BNX2_CTX_DATA_ADR, offset);
  294. BNX2_WR(bp, BNX2_CTX_DATA, val);
  295. }
  296. spin_unlock_bh(&bp->indirect_lock);
  297. }
  298. #ifdef BCM_CNIC
  299. static int
  300. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  301. {
  302. struct bnx2 *bp = netdev_priv(dev);
  303. struct drv_ctl_io *io = &info->data.io;
  304. switch (info->cmd) {
  305. case DRV_CTL_IO_WR_CMD:
  306. bnx2_reg_wr_ind(bp, io->offset, io->data);
  307. break;
  308. case DRV_CTL_IO_RD_CMD:
  309. io->data = bnx2_reg_rd_ind(bp, io->offset);
  310. break;
  311. case DRV_CTL_CTX_WR_CMD:
  312. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  313. break;
  314. default:
  315. return -EINVAL;
  316. }
  317. return 0;
  318. }
  319. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  320. {
  321. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  322. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  323. int sb_id;
  324. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  325. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  326. bnapi->cnic_present = 0;
  327. sb_id = bp->irq_nvecs;
  328. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  329. } else {
  330. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  331. bnapi->cnic_tag = bnapi->last_status_idx;
  332. bnapi->cnic_present = 1;
  333. sb_id = 0;
  334. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  335. }
  336. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  337. cp->irq_arr[0].status_blk = (void *)
  338. ((unsigned long) bnapi->status_blk.msi +
  339. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  340. cp->irq_arr[0].status_blk_num = sb_id;
  341. cp->num_irq = 1;
  342. }
  343. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  344. void *data)
  345. {
  346. struct bnx2 *bp = netdev_priv(dev);
  347. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  348. if (ops == NULL)
  349. return -EINVAL;
  350. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  351. return -EBUSY;
  352. if (!bnx2_reg_rd_ind(bp, BNX2_FW_MAX_ISCSI_CONN))
  353. return -ENODEV;
  354. bp->cnic_data = data;
  355. rcu_assign_pointer(bp->cnic_ops, ops);
  356. cp->num_irq = 0;
  357. cp->drv_state = CNIC_DRV_STATE_REGD;
  358. bnx2_setup_cnic_irq_info(bp);
  359. return 0;
  360. }
  361. static int bnx2_unregister_cnic(struct net_device *dev)
  362. {
  363. struct bnx2 *bp = netdev_priv(dev);
  364. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  365. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  366. mutex_lock(&bp->cnic_lock);
  367. cp->drv_state = 0;
  368. bnapi->cnic_present = 0;
  369. RCU_INIT_POINTER(bp->cnic_ops, NULL);
  370. mutex_unlock(&bp->cnic_lock);
  371. synchronize_rcu();
  372. return 0;
  373. }
  374. static struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  375. {
  376. struct bnx2 *bp = netdev_priv(dev);
  377. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  378. if (!cp->max_iscsi_conn)
  379. return NULL;
  380. cp->drv_owner = THIS_MODULE;
  381. cp->chip_id = bp->chip_id;
  382. cp->pdev = bp->pdev;
  383. cp->io_base = bp->regview;
  384. cp->drv_ctl = bnx2_drv_ctl;
  385. cp->drv_register_cnic = bnx2_register_cnic;
  386. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  387. return cp;
  388. }
  389. static void
  390. bnx2_cnic_stop(struct bnx2 *bp)
  391. {
  392. struct cnic_ops *c_ops;
  393. struct cnic_ctl_info info;
  394. mutex_lock(&bp->cnic_lock);
  395. c_ops = rcu_dereference_protected(bp->cnic_ops,
  396. lockdep_is_held(&bp->cnic_lock));
  397. if (c_ops) {
  398. info.cmd = CNIC_CTL_STOP_CMD;
  399. c_ops->cnic_ctl(bp->cnic_data, &info);
  400. }
  401. mutex_unlock(&bp->cnic_lock);
  402. }
  403. static void
  404. bnx2_cnic_start(struct bnx2 *bp)
  405. {
  406. struct cnic_ops *c_ops;
  407. struct cnic_ctl_info info;
  408. mutex_lock(&bp->cnic_lock);
  409. c_ops = rcu_dereference_protected(bp->cnic_ops,
  410. lockdep_is_held(&bp->cnic_lock));
  411. if (c_ops) {
  412. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  413. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  414. bnapi->cnic_tag = bnapi->last_status_idx;
  415. }
  416. info.cmd = CNIC_CTL_START_CMD;
  417. c_ops->cnic_ctl(bp->cnic_data, &info);
  418. }
  419. mutex_unlock(&bp->cnic_lock);
  420. }
  421. #else
  422. static void
  423. bnx2_cnic_stop(struct bnx2 *bp)
  424. {
  425. }
  426. static void
  427. bnx2_cnic_start(struct bnx2 *bp)
  428. {
  429. }
  430. #endif
  431. static int
  432. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  433. {
  434. u32 val1;
  435. int i, ret;
  436. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  437. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  438. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  439. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  440. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  441. udelay(40);
  442. }
  443. val1 = (bp->phy_addr << 21) | (reg << 16) |
  444. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  445. BNX2_EMAC_MDIO_COMM_START_BUSY;
  446. BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  447. for (i = 0; i < 50; i++) {
  448. udelay(10);
  449. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  450. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  451. udelay(5);
  452. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  453. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  454. break;
  455. }
  456. }
  457. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  458. *val = 0x0;
  459. ret = -EBUSY;
  460. }
  461. else {
  462. *val = val1;
  463. ret = 0;
  464. }
  465. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  466. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  467. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  468. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  469. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  470. udelay(40);
  471. }
  472. return ret;
  473. }
  474. static int
  475. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  476. {
  477. u32 val1;
  478. int i, ret;
  479. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  480. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  481. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  482. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  483. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  484. udelay(40);
  485. }
  486. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  487. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  488. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  489. BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  490. for (i = 0; i < 50; i++) {
  491. udelay(10);
  492. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  493. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  494. udelay(5);
  495. break;
  496. }
  497. }
  498. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  499. ret = -EBUSY;
  500. else
  501. ret = 0;
  502. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  503. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  504. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  505. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  506. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  507. udelay(40);
  508. }
  509. return ret;
  510. }
  511. static void
  512. bnx2_disable_int(struct bnx2 *bp)
  513. {
  514. int i;
  515. struct bnx2_napi *bnapi;
  516. for (i = 0; i < bp->irq_nvecs; i++) {
  517. bnapi = &bp->bnx2_napi[i];
  518. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  519. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  520. }
  521. BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  522. }
  523. static void
  524. bnx2_enable_int(struct bnx2 *bp)
  525. {
  526. int i;
  527. struct bnx2_napi *bnapi;
  528. for (i = 0; i < bp->irq_nvecs; i++) {
  529. bnapi = &bp->bnx2_napi[i];
  530. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  531. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  532. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  533. bnapi->last_status_idx);
  534. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  535. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  536. bnapi->last_status_idx);
  537. }
  538. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  539. }
  540. static void
  541. bnx2_disable_int_sync(struct bnx2 *bp)
  542. {
  543. int i;
  544. atomic_inc(&bp->intr_sem);
  545. if (!netif_running(bp->dev))
  546. return;
  547. bnx2_disable_int(bp);
  548. for (i = 0; i < bp->irq_nvecs; i++)
  549. synchronize_irq(bp->irq_tbl[i].vector);
  550. }
  551. static void
  552. bnx2_napi_disable(struct bnx2 *bp)
  553. {
  554. int i;
  555. for (i = 0; i < bp->irq_nvecs; i++)
  556. napi_disable(&bp->bnx2_napi[i].napi);
  557. }
  558. static void
  559. bnx2_napi_enable(struct bnx2 *bp)
  560. {
  561. int i;
  562. for (i = 0; i < bp->irq_nvecs; i++)
  563. napi_enable(&bp->bnx2_napi[i].napi);
  564. }
  565. static void
  566. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  567. {
  568. if (stop_cnic)
  569. bnx2_cnic_stop(bp);
  570. if (netif_running(bp->dev)) {
  571. bnx2_napi_disable(bp);
  572. netif_tx_disable(bp->dev);
  573. }
  574. bnx2_disable_int_sync(bp);
  575. netif_carrier_off(bp->dev); /* prevent tx timeout */
  576. }
  577. static void
  578. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  579. {
  580. if (atomic_dec_and_test(&bp->intr_sem)) {
  581. if (netif_running(bp->dev)) {
  582. netif_tx_wake_all_queues(bp->dev);
  583. spin_lock_bh(&bp->phy_lock);
  584. if (bp->link_up)
  585. netif_carrier_on(bp->dev);
  586. spin_unlock_bh(&bp->phy_lock);
  587. bnx2_napi_enable(bp);
  588. bnx2_enable_int(bp);
  589. if (start_cnic)
  590. bnx2_cnic_start(bp);
  591. }
  592. }
  593. }
  594. static void
  595. bnx2_free_tx_mem(struct bnx2 *bp)
  596. {
  597. int i;
  598. for (i = 0; i < bp->num_tx_rings; i++) {
  599. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  600. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  601. if (txr->tx_desc_ring) {
  602. dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  603. txr->tx_desc_ring,
  604. txr->tx_desc_mapping);
  605. txr->tx_desc_ring = NULL;
  606. }
  607. kfree(txr->tx_buf_ring);
  608. txr->tx_buf_ring = NULL;
  609. }
  610. }
  611. static void
  612. bnx2_free_rx_mem(struct bnx2 *bp)
  613. {
  614. int i;
  615. for (i = 0; i < bp->num_rx_rings; i++) {
  616. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  617. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  618. int j;
  619. for (j = 0; j < bp->rx_max_ring; j++) {
  620. if (rxr->rx_desc_ring[j])
  621. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  622. rxr->rx_desc_ring[j],
  623. rxr->rx_desc_mapping[j]);
  624. rxr->rx_desc_ring[j] = NULL;
  625. }
  626. vfree(rxr->rx_buf_ring);
  627. rxr->rx_buf_ring = NULL;
  628. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  629. if (rxr->rx_pg_desc_ring[j])
  630. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  631. rxr->rx_pg_desc_ring[j],
  632. rxr->rx_pg_desc_mapping[j]);
  633. rxr->rx_pg_desc_ring[j] = NULL;
  634. }
  635. vfree(rxr->rx_pg_ring);
  636. rxr->rx_pg_ring = NULL;
  637. }
  638. }
  639. static int
  640. bnx2_alloc_tx_mem(struct bnx2 *bp)
  641. {
  642. int i;
  643. for (i = 0; i < bp->num_tx_rings; i++) {
  644. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  645. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  646. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  647. if (txr->tx_buf_ring == NULL)
  648. return -ENOMEM;
  649. txr->tx_desc_ring =
  650. dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  651. &txr->tx_desc_mapping, GFP_KERNEL);
  652. if (txr->tx_desc_ring == NULL)
  653. return -ENOMEM;
  654. }
  655. return 0;
  656. }
  657. static int
  658. bnx2_alloc_rx_mem(struct bnx2 *bp)
  659. {
  660. int i;
  661. for (i = 0; i < bp->num_rx_rings; i++) {
  662. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  663. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  664. int j;
  665. rxr->rx_buf_ring =
  666. vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  667. if (rxr->rx_buf_ring == NULL)
  668. return -ENOMEM;
  669. for (j = 0; j < bp->rx_max_ring; j++) {
  670. rxr->rx_desc_ring[j] =
  671. dma_alloc_coherent(&bp->pdev->dev,
  672. RXBD_RING_SIZE,
  673. &rxr->rx_desc_mapping[j],
  674. GFP_KERNEL);
  675. if (rxr->rx_desc_ring[j] == NULL)
  676. return -ENOMEM;
  677. }
  678. if (bp->rx_pg_ring_size) {
  679. rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
  680. bp->rx_max_pg_ring);
  681. if (rxr->rx_pg_ring == NULL)
  682. return -ENOMEM;
  683. }
  684. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  685. rxr->rx_pg_desc_ring[j] =
  686. dma_alloc_coherent(&bp->pdev->dev,
  687. RXBD_RING_SIZE,
  688. &rxr->rx_pg_desc_mapping[j],
  689. GFP_KERNEL);
  690. if (rxr->rx_pg_desc_ring[j] == NULL)
  691. return -ENOMEM;
  692. }
  693. }
  694. return 0;
  695. }
  696. static void
  697. bnx2_free_mem(struct bnx2 *bp)
  698. {
  699. int i;
  700. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  701. bnx2_free_tx_mem(bp);
  702. bnx2_free_rx_mem(bp);
  703. for (i = 0; i < bp->ctx_pages; i++) {
  704. if (bp->ctx_blk[i]) {
  705. dma_free_coherent(&bp->pdev->dev, BNX2_PAGE_SIZE,
  706. bp->ctx_blk[i],
  707. bp->ctx_blk_mapping[i]);
  708. bp->ctx_blk[i] = NULL;
  709. }
  710. }
  711. if (bnapi->status_blk.msi) {
  712. dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
  713. bnapi->status_blk.msi,
  714. bp->status_blk_mapping);
  715. bnapi->status_blk.msi = NULL;
  716. bp->stats_blk = NULL;
  717. }
  718. }
  719. static int
  720. bnx2_alloc_mem(struct bnx2 *bp)
  721. {
  722. int i, status_blk_size, err;
  723. struct bnx2_napi *bnapi;
  724. void *status_blk;
  725. /* Combine status and statistics blocks into one allocation. */
  726. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  727. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  728. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  729. BNX2_SBLK_MSIX_ALIGN_SIZE);
  730. bp->status_stats_size = status_blk_size +
  731. sizeof(struct statistics_block);
  732. status_blk = dma_zalloc_coherent(&bp->pdev->dev, bp->status_stats_size,
  733. &bp->status_blk_mapping, GFP_KERNEL);
  734. if (status_blk == NULL)
  735. goto alloc_mem_err;
  736. bnapi = &bp->bnx2_napi[0];
  737. bnapi->status_blk.msi = status_blk;
  738. bnapi->hw_tx_cons_ptr =
  739. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  740. bnapi->hw_rx_cons_ptr =
  741. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  742. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  743. for (i = 1; i < bp->irq_nvecs; i++) {
  744. struct status_block_msix *sblk;
  745. bnapi = &bp->bnx2_napi[i];
  746. sblk = (status_blk + BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  747. bnapi->status_blk.msix = sblk;
  748. bnapi->hw_tx_cons_ptr =
  749. &sblk->status_tx_quick_consumer_index;
  750. bnapi->hw_rx_cons_ptr =
  751. &sblk->status_rx_quick_consumer_index;
  752. bnapi->int_num = i << 24;
  753. }
  754. }
  755. bp->stats_blk = status_blk + status_blk_size;
  756. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  757. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  758. bp->ctx_pages = 0x2000 / BNX2_PAGE_SIZE;
  759. if (bp->ctx_pages == 0)
  760. bp->ctx_pages = 1;
  761. for (i = 0; i < bp->ctx_pages; i++) {
  762. bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
  763. BNX2_PAGE_SIZE,
  764. &bp->ctx_blk_mapping[i],
  765. GFP_KERNEL);
  766. if (bp->ctx_blk[i] == NULL)
  767. goto alloc_mem_err;
  768. }
  769. }
  770. err = bnx2_alloc_rx_mem(bp);
  771. if (err)
  772. goto alloc_mem_err;
  773. err = bnx2_alloc_tx_mem(bp);
  774. if (err)
  775. goto alloc_mem_err;
  776. return 0;
  777. alloc_mem_err:
  778. bnx2_free_mem(bp);
  779. return -ENOMEM;
  780. }
  781. static void
  782. bnx2_report_fw_link(struct bnx2 *bp)
  783. {
  784. u32 fw_link_status = 0;
  785. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  786. return;
  787. if (bp->link_up) {
  788. u32 bmsr;
  789. switch (bp->line_speed) {
  790. case SPEED_10:
  791. if (bp->duplex == DUPLEX_HALF)
  792. fw_link_status = BNX2_LINK_STATUS_10HALF;
  793. else
  794. fw_link_status = BNX2_LINK_STATUS_10FULL;
  795. break;
  796. case SPEED_100:
  797. if (bp->duplex == DUPLEX_HALF)
  798. fw_link_status = BNX2_LINK_STATUS_100HALF;
  799. else
  800. fw_link_status = BNX2_LINK_STATUS_100FULL;
  801. break;
  802. case SPEED_1000:
  803. if (bp->duplex == DUPLEX_HALF)
  804. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  805. else
  806. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  807. break;
  808. case SPEED_2500:
  809. if (bp->duplex == DUPLEX_HALF)
  810. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  811. else
  812. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  813. break;
  814. }
  815. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  816. if (bp->autoneg) {
  817. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  818. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  819. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  820. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  821. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  822. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  823. else
  824. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  825. }
  826. }
  827. else
  828. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  829. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  830. }
  831. static char *
  832. bnx2_xceiver_str(struct bnx2 *bp)
  833. {
  834. return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
  835. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  836. "Copper");
  837. }
  838. static void
  839. bnx2_report_link(struct bnx2 *bp)
  840. {
  841. if (bp->link_up) {
  842. netif_carrier_on(bp->dev);
  843. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  844. bnx2_xceiver_str(bp),
  845. bp->line_speed,
  846. bp->duplex == DUPLEX_FULL ? "full" : "half");
  847. if (bp->flow_ctrl) {
  848. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  849. pr_cont(", receive ");
  850. if (bp->flow_ctrl & FLOW_CTRL_TX)
  851. pr_cont("& transmit ");
  852. }
  853. else {
  854. pr_cont(", transmit ");
  855. }
  856. pr_cont("flow control ON");
  857. }
  858. pr_cont("\n");
  859. } else {
  860. netif_carrier_off(bp->dev);
  861. netdev_err(bp->dev, "NIC %s Link is Down\n",
  862. bnx2_xceiver_str(bp));
  863. }
  864. bnx2_report_fw_link(bp);
  865. }
  866. static void
  867. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  868. {
  869. u32 local_adv, remote_adv;
  870. bp->flow_ctrl = 0;
  871. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  872. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  873. if (bp->duplex == DUPLEX_FULL) {
  874. bp->flow_ctrl = bp->req_flow_ctrl;
  875. }
  876. return;
  877. }
  878. if (bp->duplex != DUPLEX_FULL) {
  879. return;
  880. }
  881. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  882. (BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
  883. u32 val;
  884. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  885. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  886. bp->flow_ctrl |= FLOW_CTRL_TX;
  887. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  888. bp->flow_ctrl |= FLOW_CTRL_RX;
  889. return;
  890. }
  891. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  892. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  893. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  894. u32 new_local_adv = 0;
  895. u32 new_remote_adv = 0;
  896. if (local_adv & ADVERTISE_1000XPAUSE)
  897. new_local_adv |= ADVERTISE_PAUSE_CAP;
  898. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  899. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  900. if (remote_adv & ADVERTISE_1000XPAUSE)
  901. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  902. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  903. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  904. local_adv = new_local_adv;
  905. remote_adv = new_remote_adv;
  906. }
  907. /* See Table 28B-3 of 802.3ab-1999 spec. */
  908. if (local_adv & ADVERTISE_PAUSE_CAP) {
  909. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  910. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  911. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  912. }
  913. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  914. bp->flow_ctrl = FLOW_CTRL_RX;
  915. }
  916. }
  917. else {
  918. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  919. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  920. }
  921. }
  922. }
  923. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  924. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  925. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  926. bp->flow_ctrl = FLOW_CTRL_TX;
  927. }
  928. }
  929. }
  930. static int
  931. bnx2_5709s_linkup(struct bnx2 *bp)
  932. {
  933. u32 val, speed;
  934. bp->link_up = 1;
  935. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  936. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  937. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  938. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  939. bp->line_speed = bp->req_line_speed;
  940. bp->duplex = bp->req_duplex;
  941. return 0;
  942. }
  943. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  944. switch (speed) {
  945. case MII_BNX2_GP_TOP_AN_SPEED_10:
  946. bp->line_speed = SPEED_10;
  947. break;
  948. case MII_BNX2_GP_TOP_AN_SPEED_100:
  949. bp->line_speed = SPEED_100;
  950. break;
  951. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  952. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  953. bp->line_speed = SPEED_1000;
  954. break;
  955. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  956. bp->line_speed = SPEED_2500;
  957. break;
  958. }
  959. if (val & MII_BNX2_GP_TOP_AN_FD)
  960. bp->duplex = DUPLEX_FULL;
  961. else
  962. bp->duplex = DUPLEX_HALF;
  963. return 0;
  964. }
  965. static int
  966. bnx2_5708s_linkup(struct bnx2 *bp)
  967. {
  968. u32 val;
  969. bp->link_up = 1;
  970. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  971. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  972. case BCM5708S_1000X_STAT1_SPEED_10:
  973. bp->line_speed = SPEED_10;
  974. break;
  975. case BCM5708S_1000X_STAT1_SPEED_100:
  976. bp->line_speed = SPEED_100;
  977. break;
  978. case BCM5708S_1000X_STAT1_SPEED_1G:
  979. bp->line_speed = SPEED_1000;
  980. break;
  981. case BCM5708S_1000X_STAT1_SPEED_2G5:
  982. bp->line_speed = SPEED_2500;
  983. break;
  984. }
  985. if (val & BCM5708S_1000X_STAT1_FD)
  986. bp->duplex = DUPLEX_FULL;
  987. else
  988. bp->duplex = DUPLEX_HALF;
  989. return 0;
  990. }
  991. static int
  992. bnx2_5706s_linkup(struct bnx2 *bp)
  993. {
  994. u32 bmcr, local_adv, remote_adv, common;
  995. bp->link_up = 1;
  996. bp->line_speed = SPEED_1000;
  997. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  998. if (bmcr & BMCR_FULLDPLX) {
  999. bp->duplex = DUPLEX_FULL;
  1000. }
  1001. else {
  1002. bp->duplex = DUPLEX_HALF;
  1003. }
  1004. if (!(bmcr & BMCR_ANENABLE)) {
  1005. return 0;
  1006. }
  1007. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1008. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1009. common = local_adv & remote_adv;
  1010. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1011. if (common & ADVERTISE_1000XFULL) {
  1012. bp->duplex = DUPLEX_FULL;
  1013. }
  1014. else {
  1015. bp->duplex = DUPLEX_HALF;
  1016. }
  1017. }
  1018. return 0;
  1019. }
  1020. static int
  1021. bnx2_copper_linkup(struct bnx2 *bp)
  1022. {
  1023. u32 bmcr;
  1024. bp->phy_flags &= ~BNX2_PHY_FLAG_MDIX;
  1025. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1026. if (bmcr & BMCR_ANENABLE) {
  1027. u32 local_adv, remote_adv, common;
  1028. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1029. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1030. common = local_adv & (remote_adv >> 2);
  1031. if (common & ADVERTISE_1000FULL) {
  1032. bp->line_speed = SPEED_1000;
  1033. bp->duplex = DUPLEX_FULL;
  1034. }
  1035. else if (common & ADVERTISE_1000HALF) {
  1036. bp->line_speed = SPEED_1000;
  1037. bp->duplex = DUPLEX_HALF;
  1038. }
  1039. else {
  1040. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1041. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1042. common = local_adv & remote_adv;
  1043. if (common & ADVERTISE_100FULL) {
  1044. bp->line_speed = SPEED_100;
  1045. bp->duplex = DUPLEX_FULL;
  1046. }
  1047. else if (common & ADVERTISE_100HALF) {
  1048. bp->line_speed = SPEED_100;
  1049. bp->duplex = DUPLEX_HALF;
  1050. }
  1051. else if (common & ADVERTISE_10FULL) {
  1052. bp->line_speed = SPEED_10;
  1053. bp->duplex = DUPLEX_FULL;
  1054. }
  1055. else if (common & ADVERTISE_10HALF) {
  1056. bp->line_speed = SPEED_10;
  1057. bp->duplex = DUPLEX_HALF;
  1058. }
  1059. else {
  1060. bp->line_speed = 0;
  1061. bp->link_up = 0;
  1062. }
  1063. }
  1064. }
  1065. else {
  1066. if (bmcr & BMCR_SPEED100) {
  1067. bp->line_speed = SPEED_100;
  1068. }
  1069. else {
  1070. bp->line_speed = SPEED_10;
  1071. }
  1072. if (bmcr & BMCR_FULLDPLX) {
  1073. bp->duplex = DUPLEX_FULL;
  1074. }
  1075. else {
  1076. bp->duplex = DUPLEX_HALF;
  1077. }
  1078. }
  1079. if (bp->link_up) {
  1080. u32 ext_status;
  1081. bnx2_read_phy(bp, MII_BNX2_EXT_STATUS, &ext_status);
  1082. if (ext_status & EXT_STATUS_MDIX)
  1083. bp->phy_flags |= BNX2_PHY_FLAG_MDIX;
  1084. }
  1085. return 0;
  1086. }
  1087. static void
  1088. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1089. {
  1090. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1091. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1092. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1093. val |= 0x02 << 8;
  1094. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1095. val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
  1096. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1097. }
  1098. static void
  1099. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1100. {
  1101. int i;
  1102. u32 cid;
  1103. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1104. if (i == 1)
  1105. cid = RX_RSS_CID;
  1106. bnx2_init_rx_context(bp, cid);
  1107. }
  1108. }
  1109. static void
  1110. bnx2_set_mac_link(struct bnx2 *bp)
  1111. {
  1112. u32 val;
  1113. BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1114. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1115. (bp->duplex == DUPLEX_HALF)) {
  1116. BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1117. }
  1118. /* Configure the EMAC mode register. */
  1119. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  1120. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1121. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1122. BNX2_EMAC_MODE_25G_MODE);
  1123. if (bp->link_up) {
  1124. switch (bp->line_speed) {
  1125. case SPEED_10:
  1126. if (BNX2_CHIP(bp) != BNX2_CHIP_5706) {
  1127. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1128. break;
  1129. }
  1130. /* fall through */
  1131. case SPEED_100:
  1132. val |= BNX2_EMAC_MODE_PORT_MII;
  1133. break;
  1134. case SPEED_2500:
  1135. val |= BNX2_EMAC_MODE_25G_MODE;
  1136. /* fall through */
  1137. case SPEED_1000:
  1138. val |= BNX2_EMAC_MODE_PORT_GMII;
  1139. break;
  1140. }
  1141. }
  1142. else {
  1143. val |= BNX2_EMAC_MODE_PORT_GMII;
  1144. }
  1145. /* Set the MAC to operate in the appropriate duplex mode. */
  1146. if (bp->duplex == DUPLEX_HALF)
  1147. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1148. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  1149. /* Enable/disable rx PAUSE. */
  1150. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1151. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1152. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1153. BNX2_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1154. /* Enable/disable tx PAUSE. */
  1155. val = BNX2_RD(bp, BNX2_EMAC_TX_MODE);
  1156. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1157. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1158. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1159. BNX2_WR(bp, BNX2_EMAC_TX_MODE, val);
  1160. /* Acknowledge the interrupt. */
  1161. BNX2_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1162. bnx2_init_all_rx_contexts(bp);
  1163. }
  1164. static void
  1165. bnx2_enable_bmsr1(struct bnx2 *bp)
  1166. {
  1167. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1168. (BNX2_CHIP(bp) == BNX2_CHIP_5709))
  1169. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1170. MII_BNX2_BLK_ADDR_GP_STATUS);
  1171. }
  1172. static void
  1173. bnx2_disable_bmsr1(struct bnx2 *bp)
  1174. {
  1175. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1176. (BNX2_CHIP(bp) == BNX2_CHIP_5709))
  1177. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1178. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1179. }
  1180. static int
  1181. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1182. {
  1183. u32 up1;
  1184. int ret = 1;
  1185. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1186. return 0;
  1187. if (bp->autoneg & AUTONEG_SPEED)
  1188. bp->advertising |= ADVERTISED_2500baseX_Full;
  1189. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1190. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1191. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1192. if (!(up1 & BCM5708S_UP1_2G5)) {
  1193. up1 |= BCM5708S_UP1_2G5;
  1194. bnx2_write_phy(bp, bp->mii_up1, up1);
  1195. ret = 0;
  1196. }
  1197. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1198. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1199. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1200. return ret;
  1201. }
  1202. static int
  1203. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1204. {
  1205. u32 up1;
  1206. int ret = 0;
  1207. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1208. return 0;
  1209. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1210. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1211. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1212. if (up1 & BCM5708S_UP1_2G5) {
  1213. up1 &= ~BCM5708S_UP1_2G5;
  1214. bnx2_write_phy(bp, bp->mii_up1, up1);
  1215. ret = 1;
  1216. }
  1217. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1218. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1219. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1220. return ret;
  1221. }
  1222. static void
  1223. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1224. {
  1225. u32 uninitialized_var(bmcr);
  1226. int err;
  1227. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1228. return;
  1229. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1230. u32 val;
  1231. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1232. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1233. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1234. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1235. val |= MII_BNX2_SD_MISC1_FORCE |
  1236. MII_BNX2_SD_MISC1_FORCE_2_5G;
  1237. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1238. }
  1239. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1240. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1241. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1242. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1243. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1244. if (!err)
  1245. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1246. } else {
  1247. return;
  1248. }
  1249. if (err)
  1250. return;
  1251. if (bp->autoneg & AUTONEG_SPEED) {
  1252. bmcr &= ~BMCR_ANENABLE;
  1253. if (bp->req_duplex == DUPLEX_FULL)
  1254. bmcr |= BMCR_FULLDPLX;
  1255. }
  1256. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1257. }
  1258. static void
  1259. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1260. {
  1261. u32 uninitialized_var(bmcr);
  1262. int err;
  1263. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1264. return;
  1265. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1266. u32 val;
  1267. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1268. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1269. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1270. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1271. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1272. }
  1273. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1274. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1275. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1276. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1277. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1278. if (!err)
  1279. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1280. } else {
  1281. return;
  1282. }
  1283. if (err)
  1284. return;
  1285. if (bp->autoneg & AUTONEG_SPEED)
  1286. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1287. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1288. }
  1289. static void
  1290. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1291. {
  1292. u32 val;
  1293. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1294. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1295. if (start)
  1296. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1297. else
  1298. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1299. }
  1300. static int
  1301. bnx2_set_link(struct bnx2 *bp)
  1302. {
  1303. u32 bmsr;
  1304. u8 link_up;
  1305. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1306. bp->link_up = 1;
  1307. return 0;
  1308. }
  1309. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1310. return 0;
  1311. link_up = bp->link_up;
  1312. bnx2_enable_bmsr1(bp);
  1313. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1314. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1315. bnx2_disable_bmsr1(bp);
  1316. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1317. (BNX2_CHIP(bp) == BNX2_CHIP_5706)) {
  1318. u32 val, an_dbg;
  1319. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1320. bnx2_5706s_force_link_dn(bp, 0);
  1321. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1322. }
  1323. val = BNX2_RD(bp, BNX2_EMAC_STATUS);
  1324. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1325. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1326. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1327. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1328. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1329. bmsr |= BMSR_LSTATUS;
  1330. else
  1331. bmsr &= ~BMSR_LSTATUS;
  1332. }
  1333. if (bmsr & BMSR_LSTATUS) {
  1334. bp->link_up = 1;
  1335. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1336. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  1337. bnx2_5706s_linkup(bp);
  1338. else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  1339. bnx2_5708s_linkup(bp);
  1340. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1341. bnx2_5709s_linkup(bp);
  1342. }
  1343. else {
  1344. bnx2_copper_linkup(bp);
  1345. }
  1346. bnx2_resolve_flow_ctrl(bp);
  1347. }
  1348. else {
  1349. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1350. (bp->autoneg & AUTONEG_SPEED))
  1351. bnx2_disable_forced_2g5(bp);
  1352. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1353. u32 bmcr;
  1354. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1355. bmcr |= BMCR_ANENABLE;
  1356. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1357. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1358. }
  1359. bp->link_up = 0;
  1360. }
  1361. if (bp->link_up != link_up) {
  1362. bnx2_report_link(bp);
  1363. }
  1364. bnx2_set_mac_link(bp);
  1365. return 0;
  1366. }
  1367. static int
  1368. bnx2_reset_phy(struct bnx2 *bp)
  1369. {
  1370. int i;
  1371. u32 reg;
  1372. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1373. #define PHY_RESET_MAX_WAIT 100
  1374. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1375. udelay(10);
  1376. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1377. if (!(reg & BMCR_RESET)) {
  1378. udelay(20);
  1379. break;
  1380. }
  1381. }
  1382. if (i == PHY_RESET_MAX_WAIT) {
  1383. return -EBUSY;
  1384. }
  1385. return 0;
  1386. }
  1387. static u32
  1388. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1389. {
  1390. u32 adv = 0;
  1391. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1392. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1393. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1394. adv = ADVERTISE_1000XPAUSE;
  1395. }
  1396. else {
  1397. adv = ADVERTISE_PAUSE_CAP;
  1398. }
  1399. }
  1400. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1401. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1402. adv = ADVERTISE_1000XPSE_ASYM;
  1403. }
  1404. else {
  1405. adv = ADVERTISE_PAUSE_ASYM;
  1406. }
  1407. }
  1408. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1409. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1410. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1411. }
  1412. else {
  1413. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1414. }
  1415. }
  1416. return adv;
  1417. }
  1418. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1419. static int
  1420. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1421. __releases(&bp->phy_lock)
  1422. __acquires(&bp->phy_lock)
  1423. {
  1424. u32 speed_arg = 0, pause_adv;
  1425. pause_adv = bnx2_phy_get_pause_adv(bp);
  1426. if (bp->autoneg & AUTONEG_SPEED) {
  1427. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1428. if (bp->advertising & ADVERTISED_10baseT_Half)
  1429. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1430. if (bp->advertising & ADVERTISED_10baseT_Full)
  1431. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1432. if (bp->advertising & ADVERTISED_100baseT_Half)
  1433. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1434. if (bp->advertising & ADVERTISED_100baseT_Full)
  1435. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1436. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1437. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1438. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1439. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1440. } else {
  1441. if (bp->req_line_speed == SPEED_2500)
  1442. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1443. else if (bp->req_line_speed == SPEED_1000)
  1444. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1445. else if (bp->req_line_speed == SPEED_100) {
  1446. if (bp->req_duplex == DUPLEX_FULL)
  1447. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1448. else
  1449. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1450. } else if (bp->req_line_speed == SPEED_10) {
  1451. if (bp->req_duplex == DUPLEX_FULL)
  1452. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1453. else
  1454. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1455. }
  1456. }
  1457. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1458. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1459. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1460. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1461. if (port == PORT_TP)
  1462. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1463. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1464. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1465. spin_unlock_bh(&bp->phy_lock);
  1466. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1467. spin_lock_bh(&bp->phy_lock);
  1468. return 0;
  1469. }
  1470. static int
  1471. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1472. __releases(&bp->phy_lock)
  1473. __acquires(&bp->phy_lock)
  1474. {
  1475. u32 adv, bmcr;
  1476. u32 new_adv = 0;
  1477. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1478. return bnx2_setup_remote_phy(bp, port);
  1479. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1480. u32 new_bmcr;
  1481. int force_link_down = 0;
  1482. if (bp->req_line_speed == SPEED_2500) {
  1483. if (!bnx2_test_and_enable_2g5(bp))
  1484. force_link_down = 1;
  1485. } else if (bp->req_line_speed == SPEED_1000) {
  1486. if (bnx2_test_and_disable_2g5(bp))
  1487. force_link_down = 1;
  1488. }
  1489. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1490. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1491. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1492. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1493. new_bmcr |= BMCR_SPEED1000;
  1494. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1495. if (bp->req_line_speed == SPEED_2500)
  1496. bnx2_enable_forced_2g5(bp);
  1497. else if (bp->req_line_speed == SPEED_1000) {
  1498. bnx2_disable_forced_2g5(bp);
  1499. new_bmcr &= ~0x2000;
  1500. }
  1501. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1502. if (bp->req_line_speed == SPEED_2500)
  1503. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1504. else
  1505. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1506. }
  1507. if (bp->req_duplex == DUPLEX_FULL) {
  1508. adv |= ADVERTISE_1000XFULL;
  1509. new_bmcr |= BMCR_FULLDPLX;
  1510. }
  1511. else {
  1512. adv |= ADVERTISE_1000XHALF;
  1513. new_bmcr &= ~BMCR_FULLDPLX;
  1514. }
  1515. if ((new_bmcr != bmcr) || (force_link_down)) {
  1516. /* Force a link down visible on the other side */
  1517. if (bp->link_up) {
  1518. bnx2_write_phy(bp, bp->mii_adv, adv &
  1519. ~(ADVERTISE_1000XFULL |
  1520. ADVERTISE_1000XHALF));
  1521. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1522. BMCR_ANRESTART | BMCR_ANENABLE);
  1523. bp->link_up = 0;
  1524. netif_carrier_off(bp->dev);
  1525. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1526. bnx2_report_link(bp);
  1527. }
  1528. bnx2_write_phy(bp, bp->mii_adv, adv);
  1529. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1530. } else {
  1531. bnx2_resolve_flow_ctrl(bp);
  1532. bnx2_set_mac_link(bp);
  1533. }
  1534. return 0;
  1535. }
  1536. bnx2_test_and_enable_2g5(bp);
  1537. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1538. new_adv |= ADVERTISE_1000XFULL;
  1539. new_adv |= bnx2_phy_get_pause_adv(bp);
  1540. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1541. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1542. bp->serdes_an_pending = 0;
  1543. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1544. /* Force a link down visible on the other side */
  1545. if (bp->link_up) {
  1546. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1547. spin_unlock_bh(&bp->phy_lock);
  1548. msleep(20);
  1549. spin_lock_bh(&bp->phy_lock);
  1550. }
  1551. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1552. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1553. BMCR_ANENABLE);
  1554. /* Speed up link-up time when the link partner
  1555. * does not autonegotiate which is very common
  1556. * in blade servers. Some blade servers use
  1557. * IPMI for kerboard input and it's important
  1558. * to minimize link disruptions. Autoneg. involves
  1559. * exchanging base pages plus 3 next pages and
  1560. * normally completes in about 120 msec.
  1561. */
  1562. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1563. bp->serdes_an_pending = 1;
  1564. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1565. } else {
  1566. bnx2_resolve_flow_ctrl(bp);
  1567. bnx2_set_mac_link(bp);
  1568. }
  1569. return 0;
  1570. }
  1571. #define ETHTOOL_ALL_FIBRE_SPEED \
  1572. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1573. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1574. (ADVERTISED_1000baseT_Full)
  1575. #define ETHTOOL_ALL_COPPER_SPEED \
  1576. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1577. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1578. ADVERTISED_1000baseT_Full)
  1579. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1580. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1581. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1582. static void
  1583. bnx2_set_default_remote_link(struct bnx2 *bp)
  1584. {
  1585. u32 link;
  1586. if (bp->phy_port == PORT_TP)
  1587. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1588. else
  1589. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1590. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1591. bp->req_line_speed = 0;
  1592. bp->autoneg |= AUTONEG_SPEED;
  1593. bp->advertising = ADVERTISED_Autoneg;
  1594. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1595. bp->advertising |= ADVERTISED_10baseT_Half;
  1596. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1597. bp->advertising |= ADVERTISED_10baseT_Full;
  1598. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1599. bp->advertising |= ADVERTISED_100baseT_Half;
  1600. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1601. bp->advertising |= ADVERTISED_100baseT_Full;
  1602. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1603. bp->advertising |= ADVERTISED_1000baseT_Full;
  1604. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1605. bp->advertising |= ADVERTISED_2500baseX_Full;
  1606. } else {
  1607. bp->autoneg = 0;
  1608. bp->advertising = 0;
  1609. bp->req_duplex = DUPLEX_FULL;
  1610. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1611. bp->req_line_speed = SPEED_10;
  1612. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1613. bp->req_duplex = DUPLEX_HALF;
  1614. }
  1615. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1616. bp->req_line_speed = SPEED_100;
  1617. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1618. bp->req_duplex = DUPLEX_HALF;
  1619. }
  1620. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1621. bp->req_line_speed = SPEED_1000;
  1622. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1623. bp->req_line_speed = SPEED_2500;
  1624. }
  1625. }
  1626. static void
  1627. bnx2_set_default_link(struct bnx2 *bp)
  1628. {
  1629. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1630. bnx2_set_default_remote_link(bp);
  1631. return;
  1632. }
  1633. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1634. bp->req_line_speed = 0;
  1635. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1636. u32 reg;
  1637. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1638. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1639. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1640. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1641. bp->autoneg = 0;
  1642. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1643. bp->req_duplex = DUPLEX_FULL;
  1644. }
  1645. } else
  1646. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1647. }
  1648. static void
  1649. bnx2_send_heart_beat(struct bnx2 *bp)
  1650. {
  1651. u32 msg;
  1652. u32 addr;
  1653. spin_lock(&bp->indirect_lock);
  1654. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1655. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1656. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1657. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1658. spin_unlock(&bp->indirect_lock);
  1659. }
  1660. static void
  1661. bnx2_remote_phy_event(struct bnx2 *bp)
  1662. {
  1663. u32 msg;
  1664. u8 link_up = bp->link_up;
  1665. u8 old_port;
  1666. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1667. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1668. bnx2_send_heart_beat(bp);
  1669. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1670. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1671. bp->link_up = 0;
  1672. else {
  1673. u32 speed;
  1674. bp->link_up = 1;
  1675. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1676. bp->duplex = DUPLEX_FULL;
  1677. switch (speed) {
  1678. case BNX2_LINK_STATUS_10HALF:
  1679. bp->duplex = DUPLEX_HALF;
  1680. /* fall through */
  1681. case BNX2_LINK_STATUS_10FULL:
  1682. bp->line_speed = SPEED_10;
  1683. break;
  1684. case BNX2_LINK_STATUS_100HALF:
  1685. bp->duplex = DUPLEX_HALF;
  1686. /* fall through */
  1687. case BNX2_LINK_STATUS_100BASE_T4:
  1688. case BNX2_LINK_STATUS_100FULL:
  1689. bp->line_speed = SPEED_100;
  1690. break;
  1691. case BNX2_LINK_STATUS_1000HALF:
  1692. bp->duplex = DUPLEX_HALF;
  1693. /* fall through */
  1694. case BNX2_LINK_STATUS_1000FULL:
  1695. bp->line_speed = SPEED_1000;
  1696. break;
  1697. case BNX2_LINK_STATUS_2500HALF:
  1698. bp->duplex = DUPLEX_HALF;
  1699. /* fall through */
  1700. case BNX2_LINK_STATUS_2500FULL:
  1701. bp->line_speed = SPEED_2500;
  1702. break;
  1703. default:
  1704. bp->line_speed = 0;
  1705. break;
  1706. }
  1707. bp->flow_ctrl = 0;
  1708. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1709. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1710. if (bp->duplex == DUPLEX_FULL)
  1711. bp->flow_ctrl = bp->req_flow_ctrl;
  1712. } else {
  1713. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1714. bp->flow_ctrl |= FLOW_CTRL_TX;
  1715. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1716. bp->flow_ctrl |= FLOW_CTRL_RX;
  1717. }
  1718. old_port = bp->phy_port;
  1719. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1720. bp->phy_port = PORT_FIBRE;
  1721. else
  1722. bp->phy_port = PORT_TP;
  1723. if (old_port != bp->phy_port)
  1724. bnx2_set_default_link(bp);
  1725. }
  1726. if (bp->link_up != link_up)
  1727. bnx2_report_link(bp);
  1728. bnx2_set_mac_link(bp);
  1729. }
  1730. static int
  1731. bnx2_set_remote_link(struct bnx2 *bp)
  1732. {
  1733. u32 evt_code;
  1734. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1735. switch (evt_code) {
  1736. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1737. bnx2_remote_phy_event(bp);
  1738. break;
  1739. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1740. default:
  1741. bnx2_send_heart_beat(bp);
  1742. break;
  1743. }
  1744. return 0;
  1745. }
  1746. static int
  1747. bnx2_setup_copper_phy(struct bnx2 *bp)
  1748. __releases(&bp->phy_lock)
  1749. __acquires(&bp->phy_lock)
  1750. {
  1751. u32 bmcr, adv_reg, new_adv = 0;
  1752. u32 new_bmcr;
  1753. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1754. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1755. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1756. ADVERTISE_PAUSE_ASYM);
  1757. new_adv = ADVERTISE_CSMA | ethtool_adv_to_mii_adv_t(bp->advertising);
  1758. if (bp->autoneg & AUTONEG_SPEED) {
  1759. u32 adv1000_reg;
  1760. u32 new_adv1000 = 0;
  1761. new_adv |= bnx2_phy_get_pause_adv(bp);
  1762. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1763. adv1000_reg &= PHY_ALL_1000_SPEED;
  1764. new_adv1000 |= ethtool_adv_to_mii_ctrl1000_t(bp->advertising);
  1765. if ((adv1000_reg != new_adv1000) ||
  1766. (adv_reg != new_adv) ||
  1767. ((bmcr & BMCR_ANENABLE) == 0)) {
  1768. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1769. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000);
  1770. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1771. BMCR_ANENABLE);
  1772. }
  1773. else if (bp->link_up) {
  1774. /* Flow ctrl may have changed from auto to forced */
  1775. /* or vice-versa. */
  1776. bnx2_resolve_flow_ctrl(bp);
  1777. bnx2_set_mac_link(bp);
  1778. }
  1779. return 0;
  1780. }
  1781. /* advertise nothing when forcing speed */
  1782. if (adv_reg != new_adv)
  1783. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1784. new_bmcr = 0;
  1785. if (bp->req_line_speed == SPEED_100) {
  1786. new_bmcr |= BMCR_SPEED100;
  1787. }
  1788. if (bp->req_duplex == DUPLEX_FULL) {
  1789. new_bmcr |= BMCR_FULLDPLX;
  1790. }
  1791. if (new_bmcr != bmcr) {
  1792. u32 bmsr;
  1793. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1794. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1795. if (bmsr & BMSR_LSTATUS) {
  1796. /* Force link down */
  1797. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1798. spin_unlock_bh(&bp->phy_lock);
  1799. msleep(50);
  1800. spin_lock_bh(&bp->phy_lock);
  1801. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1802. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1803. }
  1804. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1805. /* Normally, the new speed is setup after the link has
  1806. * gone down and up again. In some cases, link will not go
  1807. * down so we need to set up the new speed here.
  1808. */
  1809. if (bmsr & BMSR_LSTATUS) {
  1810. bp->line_speed = bp->req_line_speed;
  1811. bp->duplex = bp->req_duplex;
  1812. bnx2_resolve_flow_ctrl(bp);
  1813. bnx2_set_mac_link(bp);
  1814. }
  1815. } else {
  1816. bnx2_resolve_flow_ctrl(bp);
  1817. bnx2_set_mac_link(bp);
  1818. }
  1819. return 0;
  1820. }
  1821. static int
  1822. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1823. __releases(&bp->phy_lock)
  1824. __acquires(&bp->phy_lock)
  1825. {
  1826. if (bp->loopback == MAC_LOOPBACK)
  1827. return 0;
  1828. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1829. return bnx2_setup_serdes_phy(bp, port);
  1830. }
  1831. else {
  1832. return bnx2_setup_copper_phy(bp);
  1833. }
  1834. }
  1835. static int
  1836. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1837. {
  1838. u32 val;
  1839. bp->mii_bmcr = MII_BMCR + 0x10;
  1840. bp->mii_bmsr = MII_BMSR + 0x10;
  1841. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1842. bp->mii_adv = MII_ADVERTISE + 0x10;
  1843. bp->mii_lpa = MII_LPA + 0x10;
  1844. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1845. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1846. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1847. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1848. if (reset_phy)
  1849. bnx2_reset_phy(bp);
  1850. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1851. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1852. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1853. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1854. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1855. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1856. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1857. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1858. val |= BCM5708S_UP1_2G5;
  1859. else
  1860. val &= ~BCM5708S_UP1_2G5;
  1861. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1862. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1863. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1864. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1865. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1866. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1867. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1868. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1869. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1870. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1871. return 0;
  1872. }
  1873. static int
  1874. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1875. {
  1876. u32 val;
  1877. if (reset_phy)
  1878. bnx2_reset_phy(bp);
  1879. bp->mii_up1 = BCM5708S_UP1;
  1880. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1881. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1882. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1883. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1884. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1885. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1886. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1887. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1888. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1889. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1890. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1891. val |= BCM5708S_UP1_2G5;
  1892. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1893. }
  1894. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
  1895. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
  1896. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1)) {
  1897. /* increase tx signal amplitude */
  1898. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1899. BCM5708S_BLK_ADDR_TX_MISC);
  1900. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1901. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1902. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1903. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1904. }
  1905. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1906. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1907. if (val) {
  1908. u32 is_backplane;
  1909. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1910. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1911. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1912. BCM5708S_BLK_ADDR_TX_MISC);
  1913. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1914. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1915. BCM5708S_BLK_ADDR_DIG);
  1916. }
  1917. }
  1918. return 0;
  1919. }
  1920. static int
  1921. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1922. {
  1923. if (reset_phy)
  1924. bnx2_reset_phy(bp);
  1925. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1926. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  1927. BNX2_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1928. if (bp->dev->mtu > 1500) {
  1929. u32 val;
  1930. /* Set extended packet length bit */
  1931. bnx2_write_phy(bp, 0x18, 0x7);
  1932. bnx2_read_phy(bp, 0x18, &val);
  1933. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1934. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1935. bnx2_read_phy(bp, 0x1c, &val);
  1936. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1937. }
  1938. else {
  1939. u32 val;
  1940. bnx2_write_phy(bp, 0x18, 0x7);
  1941. bnx2_read_phy(bp, 0x18, &val);
  1942. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1943. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1944. bnx2_read_phy(bp, 0x1c, &val);
  1945. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1946. }
  1947. return 0;
  1948. }
  1949. static int
  1950. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1951. {
  1952. u32 val;
  1953. if (reset_phy)
  1954. bnx2_reset_phy(bp);
  1955. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1956. bnx2_write_phy(bp, 0x18, 0x0c00);
  1957. bnx2_write_phy(bp, 0x17, 0x000a);
  1958. bnx2_write_phy(bp, 0x15, 0x310b);
  1959. bnx2_write_phy(bp, 0x17, 0x201f);
  1960. bnx2_write_phy(bp, 0x15, 0x9506);
  1961. bnx2_write_phy(bp, 0x17, 0x401f);
  1962. bnx2_write_phy(bp, 0x15, 0x14e2);
  1963. bnx2_write_phy(bp, 0x18, 0x0400);
  1964. }
  1965. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1966. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1967. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1968. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1969. val &= ~(1 << 8);
  1970. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1971. }
  1972. if (bp->dev->mtu > 1500) {
  1973. /* Set extended packet length bit */
  1974. bnx2_write_phy(bp, 0x18, 0x7);
  1975. bnx2_read_phy(bp, 0x18, &val);
  1976. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1977. bnx2_read_phy(bp, 0x10, &val);
  1978. bnx2_write_phy(bp, 0x10, val | 0x1);
  1979. }
  1980. else {
  1981. bnx2_write_phy(bp, 0x18, 0x7);
  1982. bnx2_read_phy(bp, 0x18, &val);
  1983. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1984. bnx2_read_phy(bp, 0x10, &val);
  1985. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1986. }
  1987. /* ethernet@wirespeed */
  1988. bnx2_write_phy(bp, MII_BNX2_AUX_CTL, AUX_CTL_MISC_CTL);
  1989. bnx2_read_phy(bp, MII_BNX2_AUX_CTL, &val);
  1990. val |= AUX_CTL_MISC_CTL_WR | AUX_CTL_MISC_CTL_WIRESPEED;
  1991. /* auto-mdix */
  1992. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1993. val |= AUX_CTL_MISC_CTL_AUTOMDIX;
  1994. bnx2_write_phy(bp, MII_BNX2_AUX_CTL, val);
  1995. return 0;
  1996. }
  1997. static int
  1998. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1999. __releases(&bp->phy_lock)
  2000. __acquires(&bp->phy_lock)
  2001. {
  2002. u32 val;
  2003. int rc = 0;
  2004. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  2005. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  2006. bp->mii_bmcr = MII_BMCR;
  2007. bp->mii_bmsr = MII_BMSR;
  2008. bp->mii_bmsr1 = MII_BMSR;
  2009. bp->mii_adv = MII_ADVERTISE;
  2010. bp->mii_lpa = MII_LPA;
  2011. BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2012. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2013. goto setup_phy;
  2014. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2015. bp->phy_id = val << 16;
  2016. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2017. bp->phy_id |= val & 0xffff;
  2018. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2019. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  2020. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2021. else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  2022. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2023. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  2024. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2025. }
  2026. else {
  2027. rc = bnx2_init_copper_phy(bp, reset_phy);
  2028. }
  2029. setup_phy:
  2030. if (!rc)
  2031. rc = bnx2_setup_phy(bp, bp->phy_port);
  2032. return rc;
  2033. }
  2034. static int
  2035. bnx2_set_mac_loopback(struct bnx2 *bp)
  2036. {
  2037. u32 mac_mode;
  2038. mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
  2039. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2040. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2041. BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2042. bp->link_up = 1;
  2043. return 0;
  2044. }
  2045. static int bnx2_test_link(struct bnx2 *);
  2046. static int
  2047. bnx2_set_phy_loopback(struct bnx2 *bp)
  2048. {
  2049. u32 mac_mode;
  2050. int rc, i;
  2051. spin_lock_bh(&bp->phy_lock);
  2052. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2053. BMCR_SPEED1000);
  2054. spin_unlock_bh(&bp->phy_lock);
  2055. if (rc)
  2056. return rc;
  2057. for (i = 0; i < 10; i++) {
  2058. if (bnx2_test_link(bp) == 0)
  2059. break;
  2060. msleep(100);
  2061. }
  2062. mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
  2063. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2064. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2065. BNX2_EMAC_MODE_25G_MODE);
  2066. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2067. BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2068. bp->link_up = 1;
  2069. return 0;
  2070. }
  2071. static void
  2072. bnx2_dump_mcp_state(struct bnx2 *bp)
  2073. {
  2074. struct net_device *dev = bp->dev;
  2075. u32 mcp_p0, mcp_p1;
  2076. netdev_err(dev, "<--- start MCP states dump --->\n");
  2077. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  2078. mcp_p0 = BNX2_MCP_STATE_P0;
  2079. mcp_p1 = BNX2_MCP_STATE_P1;
  2080. } else {
  2081. mcp_p0 = BNX2_MCP_STATE_P0_5708;
  2082. mcp_p1 = BNX2_MCP_STATE_P1_5708;
  2083. }
  2084. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  2085. bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
  2086. netdev_err(dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
  2087. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_MODE),
  2088. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_STATE),
  2089. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_EVENT_MASK));
  2090. netdev_err(dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
  2091. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2092. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2093. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_INSTRUCTION));
  2094. netdev_err(dev, "DEBUG: shmem states:\n");
  2095. netdev_err(dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
  2096. bnx2_shmem_rd(bp, BNX2_DRV_MB),
  2097. bnx2_shmem_rd(bp, BNX2_FW_MB),
  2098. bnx2_shmem_rd(bp, BNX2_LINK_STATUS));
  2099. pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp, BNX2_DRV_PULSE_MB));
  2100. netdev_err(dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
  2101. bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE),
  2102. bnx2_shmem_rd(bp, BNX2_BC_STATE_RESET_TYPE));
  2103. pr_cont(" condition[%08x]\n",
  2104. bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION));
  2105. DP_SHMEM_LINE(bp, BNX2_BC_RESET_TYPE);
  2106. DP_SHMEM_LINE(bp, 0x3cc);
  2107. DP_SHMEM_LINE(bp, 0x3dc);
  2108. DP_SHMEM_LINE(bp, 0x3ec);
  2109. netdev_err(dev, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp, 0x3fc));
  2110. netdev_err(dev, "<--- end MCP states dump --->\n");
  2111. }
  2112. static int
  2113. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2114. {
  2115. int i;
  2116. u32 val;
  2117. bp->fw_wr_seq++;
  2118. msg_data |= bp->fw_wr_seq;
  2119. bp->fw_last_msg = msg_data;
  2120. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2121. if (!ack)
  2122. return 0;
  2123. /* wait for an acknowledgement. */
  2124. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2125. msleep(10);
  2126. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2127. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2128. break;
  2129. }
  2130. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2131. return 0;
  2132. /* If we timed out, inform the firmware that this is the case. */
  2133. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2134. msg_data &= ~BNX2_DRV_MSG_CODE;
  2135. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2136. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2137. if (!silent) {
  2138. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2139. bnx2_dump_mcp_state(bp);
  2140. }
  2141. return -EBUSY;
  2142. }
  2143. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2144. return -EIO;
  2145. return 0;
  2146. }
  2147. static int
  2148. bnx2_init_5709_context(struct bnx2 *bp)
  2149. {
  2150. int i, ret = 0;
  2151. u32 val;
  2152. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2153. val |= (BNX2_PAGE_BITS - 8) << 16;
  2154. BNX2_WR(bp, BNX2_CTX_COMMAND, val);
  2155. for (i = 0; i < 10; i++) {
  2156. val = BNX2_RD(bp, BNX2_CTX_COMMAND);
  2157. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2158. break;
  2159. udelay(2);
  2160. }
  2161. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2162. return -EBUSY;
  2163. for (i = 0; i < bp->ctx_pages; i++) {
  2164. int j;
  2165. if (bp->ctx_blk[i])
  2166. memset(bp->ctx_blk[i], 0, BNX2_PAGE_SIZE);
  2167. else
  2168. return -ENOMEM;
  2169. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2170. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2171. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2172. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2173. (u64) bp->ctx_blk_mapping[i] >> 32);
  2174. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2175. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2176. for (j = 0; j < 10; j++) {
  2177. val = BNX2_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2178. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2179. break;
  2180. udelay(5);
  2181. }
  2182. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2183. ret = -EBUSY;
  2184. break;
  2185. }
  2186. }
  2187. return ret;
  2188. }
  2189. static void
  2190. bnx2_init_context(struct bnx2 *bp)
  2191. {
  2192. u32 vcid;
  2193. vcid = 96;
  2194. while (vcid) {
  2195. u32 vcid_addr, pcid_addr, offset;
  2196. int i;
  2197. vcid--;
  2198. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  2199. u32 new_vcid;
  2200. vcid_addr = GET_PCID_ADDR(vcid);
  2201. if (vcid & 0x8) {
  2202. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2203. }
  2204. else {
  2205. new_vcid = vcid;
  2206. }
  2207. pcid_addr = GET_PCID_ADDR(new_vcid);
  2208. }
  2209. else {
  2210. vcid_addr = GET_CID_ADDR(vcid);
  2211. pcid_addr = vcid_addr;
  2212. }
  2213. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2214. vcid_addr += (i << PHY_CTX_SHIFT);
  2215. pcid_addr += (i << PHY_CTX_SHIFT);
  2216. BNX2_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2217. BNX2_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2218. /* Zero out the context. */
  2219. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2220. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2221. }
  2222. }
  2223. }
  2224. static int
  2225. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2226. {
  2227. u16 *good_mbuf;
  2228. u32 good_mbuf_cnt;
  2229. u32 val;
  2230. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2231. if (good_mbuf == NULL)
  2232. return -ENOMEM;
  2233. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2234. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2235. good_mbuf_cnt = 0;
  2236. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2237. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2238. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2239. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2240. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2241. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2242. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2243. /* The addresses with Bit 9 set are bad memory blocks. */
  2244. if (!(val & (1 << 9))) {
  2245. good_mbuf[good_mbuf_cnt] = (u16) val;
  2246. good_mbuf_cnt++;
  2247. }
  2248. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2249. }
  2250. /* Free the good ones back to the mbuf pool thus discarding
  2251. * all the bad ones. */
  2252. while (good_mbuf_cnt) {
  2253. good_mbuf_cnt--;
  2254. val = good_mbuf[good_mbuf_cnt];
  2255. val = (val << 9) | val | 1;
  2256. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2257. }
  2258. kfree(good_mbuf);
  2259. return 0;
  2260. }
  2261. static void
  2262. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2263. {
  2264. u32 val;
  2265. val = (mac_addr[0] << 8) | mac_addr[1];
  2266. BNX2_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2267. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2268. (mac_addr[4] << 8) | mac_addr[5];
  2269. BNX2_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2270. }
  2271. static inline int
  2272. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2273. {
  2274. dma_addr_t mapping;
  2275. struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2276. struct bnx2_rx_bd *rxbd =
  2277. &rxr->rx_pg_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
  2278. struct page *page = alloc_page(gfp);
  2279. if (!page)
  2280. return -ENOMEM;
  2281. mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
  2282. PCI_DMA_FROMDEVICE);
  2283. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2284. __free_page(page);
  2285. return -EIO;
  2286. }
  2287. rx_pg->page = page;
  2288. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2289. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2290. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2291. return 0;
  2292. }
  2293. static void
  2294. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2295. {
  2296. struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2297. struct page *page = rx_pg->page;
  2298. if (!page)
  2299. return;
  2300. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
  2301. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2302. __free_page(page);
  2303. rx_pg->page = NULL;
  2304. }
  2305. static inline int
  2306. bnx2_alloc_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2307. {
  2308. u8 *data;
  2309. struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2310. dma_addr_t mapping;
  2311. struct bnx2_rx_bd *rxbd =
  2312. &rxr->rx_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
  2313. data = kmalloc(bp->rx_buf_size, gfp);
  2314. if (!data)
  2315. return -ENOMEM;
  2316. mapping = dma_map_single(&bp->pdev->dev,
  2317. get_l2_fhdr(data),
  2318. bp->rx_buf_use_size,
  2319. PCI_DMA_FROMDEVICE);
  2320. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2321. kfree(data);
  2322. return -EIO;
  2323. }
  2324. rx_buf->data = data;
  2325. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2326. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2327. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2328. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2329. return 0;
  2330. }
  2331. static int
  2332. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2333. {
  2334. struct status_block *sblk = bnapi->status_blk.msi;
  2335. u32 new_link_state, old_link_state;
  2336. int is_set = 1;
  2337. new_link_state = sblk->status_attn_bits & event;
  2338. old_link_state = sblk->status_attn_bits_ack & event;
  2339. if (new_link_state != old_link_state) {
  2340. if (new_link_state)
  2341. BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2342. else
  2343. BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2344. } else
  2345. is_set = 0;
  2346. return is_set;
  2347. }
  2348. static void
  2349. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2350. {
  2351. spin_lock(&bp->phy_lock);
  2352. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2353. bnx2_set_link(bp);
  2354. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2355. bnx2_set_remote_link(bp);
  2356. spin_unlock(&bp->phy_lock);
  2357. }
  2358. static inline u16
  2359. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2360. {
  2361. u16 cons;
  2362. /* Tell compiler that status block fields can change. */
  2363. barrier();
  2364. cons = *bnapi->hw_tx_cons_ptr;
  2365. barrier();
  2366. if (unlikely((cons & BNX2_MAX_TX_DESC_CNT) == BNX2_MAX_TX_DESC_CNT))
  2367. cons++;
  2368. return cons;
  2369. }
  2370. static int
  2371. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2372. {
  2373. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2374. u16 hw_cons, sw_cons, sw_ring_cons;
  2375. int tx_pkt = 0, index;
  2376. unsigned int tx_bytes = 0;
  2377. struct netdev_queue *txq;
  2378. index = (bnapi - bp->bnx2_napi);
  2379. txq = netdev_get_tx_queue(bp->dev, index);
  2380. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2381. sw_cons = txr->tx_cons;
  2382. while (sw_cons != hw_cons) {
  2383. struct bnx2_sw_tx_bd *tx_buf;
  2384. struct sk_buff *skb;
  2385. int i, last;
  2386. sw_ring_cons = BNX2_TX_RING_IDX(sw_cons);
  2387. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2388. skb = tx_buf->skb;
  2389. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2390. prefetch(&skb->end);
  2391. /* partial BD completions possible with TSO packets */
  2392. if (tx_buf->is_gso) {
  2393. u16 last_idx, last_ring_idx;
  2394. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2395. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2396. if (unlikely(last_ring_idx >= BNX2_MAX_TX_DESC_CNT)) {
  2397. last_idx++;
  2398. }
  2399. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2400. break;
  2401. }
  2402. }
  2403. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  2404. skb_headlen(skb), PCI_DMA_TODEVICE);
  2405. tx_buf->skb = NULL;
  2406. last = tx_buf->nr_frags;
  2407. for (i = 0; i < last; i++) {
  2408. struct bnx2_sw_tx_bd *tx_buf;
  2409. sw_cons = BNX2_NEXT_TX_BD(sw_cons);
  2410. tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(sw_cons)];
  2411. dma_unmap_page(&bp->pdev->dev,
  2412. dma_unmap_addr(tx_buf, mapping),
  2413. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2414. PCI_DMA_TODEVICE);
  2415. }
  2416. sw_cons = BNX2_NEXT_TX_BD(sw_cons);
  2417. tx_bytes += skb->len;
  2418. dev_kfree_skb(skb);
  2419. tx_pkt++;
  2420. if (tx_pkt == budget)
  2421. break;
  2422. if (hw_cons == sw_cons)
  2423. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2424. }
  2425. netdev_tx_completed_queue(txq, tx_pkt, tx_bytes);
  2426. txr->hw_tx_cons = hw_cons;
  2427. txr->tx_cons = sw_cons;
  2428. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2429. * before checking for netif_tx_queue_stopped(). Without the
  2430. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2431. * will miss it and cause the queue to be stopped forever.
  2432. */
  2433. smp_mb();
  2434. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2435. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2436. __netif_tx_lock(txq, smp_processor_id());
  2437. if ((netif_tx_queue_stopped(txq)) &&
  2438. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2439. netif_tx_wake_queue(txq);
  2440. __netif_tx_unlock(txq);
  2441. }
  2442. return tx_pkt;
  2443. }
  2444. static void
  2445. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2446. struct sk_buff *skb, int count)
  2447. {
  2448. struct bnx2_sw_pg *cons_rx_pg, *prod_rx_pg;
  2449. struct bnx2_rx_bd *cons_bd, *prod_bd;
  2450. int i;
  2451. u16 hw_prod, prod;
  2452. u16 cons = rxr->rx_pg_cons;
  2453. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2454. /* The caller was unable to allocate a new page to replace the
  2455. * last one in the frags array, so we need to recycle that page
  2456. * and then free the skb.
  2457. */
  2458. if (skb) {
  2459. struct page *page;
  2460. struct skb_shared_info *shinfo;
  2461. shinfo = skb_shinfo(skb);
  2462. shinfo->nr_frags--;
  2463. page = skb_frag_page(&shinfo->frags[shinfo->nr_frags]);
  2464. __skb_frag_set_page(&shinfo->frags[shinfo->nr_frags], NULL);
  2465. cons_rx_pg->page = page;
  2466. dev_kfree_skb(skb);
  2467. }
  2468. hw_prod = rxr->rx_pg_prod;
  2469. for (i = 0; i < count; i++) {
  2470. prod = BNX2_RX_PG_RING_IDX(hw_prod);
  2471. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2472. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2473. cons_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(cons)]
  2474. [BNX2_RX_IDX(cons)];
  2475. prod_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(prod)]
  2476. [BNX2_RX_IDX(prod)];
  2477. if (prod != cons) {
  2478. prod_rx_pg->page = cons_rx_pg->page;
  2479. cons_rx_pg->page = NULL;
  2480. dma_unmap_addr_set(prod_rx_pg, mapping,
  2481. dma_unmap_addr(cons_rx_pg, mapping));
  2482. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2483. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2484. }
  2485. cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(cons));
  2486. hw_prod = BNX2_NEXT_RX_BD(hw_prod);
  2487. }
  2488. rxr->rx_pg_prod = hw_prod;
  2489. rxr->rx_pg_cons = cons;
  2490. }
  2491. static inline void
  2492. bnx2_reuse_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2493. u8 *data, u16 cons, u16 prod)
  2494. {
  2495. struct bnx2_sw_bd *cons_rx_buf, *prod_rx_buf;
  2496. struct bnx2_rx_bd *cons_bd, *prod_bd;
  2497. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2498. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2499. dma_sync_single_for_device(&bp->pdev->dev,
  2500. dma_unmap_addr(cons_rx_buf, mapping),
  2501. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2502. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2503. prod_rx_buf->data = data;
  2504. if (cons == prod)
  2505. return;
  2506. dma_unmap_addr_set(prod_rx_buf, mapping,
  2507. dma_unmap_addr(cons_rx_buf, mapping));
  2508. cons_bd = &rxr->rx_desc_ring[BNX2_RX_RING(cons)][BNX2_RX_IDX(cons)];
  2509. prod_bd = &rxr->rx_desc_ring[BNX2_RX_RING(prod)][BNX2_RX_IDX(prod)];
  2510. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2511. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2512. }
  2513. static struct sk_buff *
  2514. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u8 *data,
  2515. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2516. u32 ring_idx)
  2517. {
  2518. int err;
  2519. u16 prod = ring_idx & 0xffff;
  2520. struct sk_buff *skb;
  2521. err = bnx2_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
  2522. if (unlikely(err)) {
  2523. bnx2_reuse_rx_data(bp, rxr, data, (u16) (ring_idx >> 16), prod);
  2524. error:
  2525. if (hdr_len) {
  2526. unsigned int raw_len = len + 4;
  2527. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2528. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2529. }
  2530. return NULL;
  2531. }
  2532. dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  2533. PCI_DMA_FROMDEVICE);
  2534. skb = build_skb(data, 0);
  2535. if (!skb) {
  2536. kfree(data);
  2537. goto error;
  2538. }
  2539. skb_reserve(skb, ((u8 *)get_l2_fhdr(data) - data) + BNX2_RX_OFFSET);
  2540. if (hdr_len == 0) {
  2541. skb_put(skb, len);
  2542. return skb;
  2543. } else {
  2544. unsigned int i, frag_len, frag_size, pages;
  2545. struct bnx2_sw_pg *rx_pg;
  2546. u16 pg_cons = rxr->rx_pg_cons;
  2547. u16 pg_prod = rxr->rx_pg_prod;
  2548. frag_size = len + 4 - hdr_len;
  2549. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2550. skb_put(skb, hdr_len);
  2551. for (i = 0; i < pages; i++) {
  2552. dma_addr_t mapping_old;
  2553. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2554. if (unlikely(frag_len <= 4)) {
  2555. unsigned int tail = 4 - frag_len;
  2556. rxr->rx_pg_cons = pg_cons;
  2557. rxr->rx_pg_prod = pg_prod;
  2558. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2559. pages - i);
  2560. skb->len -= tail;
  2561. if (i == 0) {
  2562. skb->tail -= tail;
  2563. } else {
  2564. skb_frag_t *frag =
  2565. &skb_shinfo(skb)->frags[i - 1];
  2566. skb_frag_size_sub(frag, tail);
  2567. skb->data_len -= tail;
  2568. }
  2569. return skb;
  2570. }
  2571. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2572. /* Don't unmap yet. If we're unable to allocate a new
  2573. * page, we need to recycle the page and the DMA addr.
  2574. */
  2575. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2576. if (i == pages - 1)
  2577. frag_len -= 4;
  2578. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2579. rx_pg->page = NULL;
  2580. err = bnx2_alloc_rx_page(bp, rxr,
  2581. BNX2_RX_PG_RING_IDX(pg_prod),
  2582. GFP_ATOMIC);
  2583. if (unlikely(err)) {
  2584. rxr->rx_pg_cons = pg_cons;
  2585. rxr->rx_pg_prod = pg_prod;
  2586. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2587. pages - i);
  2588. return NULL;
  2589. }
  2590. dma_unmap_page(&bp->pdev->dev, mapping_old,
  2591. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2592. frag_size -= frag_len;
  2593. skb->data_len += frag_len;
  2594. skb->truesize += PAGE_SIZE;
  2595. skb->len += frag_len;
  2596. pg_prod = BNX2_NEXT_RX_BD(pg_prod);
  2597. pg_cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(pg_cons));
  2598. }
  2599. rxr->rx_pg_prod = pg_prod;
  2600. rxr->rx_pg_cons = pg_cons;
  2601. }
  2602. return skb;
  2603. }
  2604. static inline u16
  2605. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2606. {
  2607. u16 cons;
  2608. /* Tell compiler that status block fields can change. */
  2609. barrier();
  2610. cons = *bnapi->hw_rx_cons_ptr;
  2611. barrier();
  2612. if (unlikely((cons & BNX2_MAX_RX_DESC_CNT) == BNX2_MAX_RX_DESC_CNT))
  2613. cons++;
  2614. return cons;
  2615. }
  2616. static int
  2617. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2618. {
  2619. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2620. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2621. struct l2_fhdr *rx_hdr;
  2622. int rx_pkt = 0, pg_ring_used = 0;
  2623. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2624. sw_cons = rxr->rx_cons;
  2625. sw_prod = rxr->rx_prod;
  2626. /* Memory barrier necessary as speculative reads of the rx
  2627. * buffer can be ahead of the index in the status block
  2628. */
  2629. rmb();
  2630. while (sw_cons != hw_cons) {
  2631. unsigned int len, hdr_len;
  2632. u32 status;
  2633. struct bnx2_sw_bd *rx_buf, *next_rx_buf;
  2634. struct sk_buff *skb;
  2635. dma_addr_t dma_addr;
  2636. u8 *data;
  2637. u16 next_ring_idx;
  2638. sw_ring_cons = BNX2_RX_RING_IDX(sw_cons);
  2639. sw_ring_prod = BNX2_RX_RING_IDX(sw_prod);
  2640. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2641. data = rx_buf->data;
  2642. rx_buf->data = NULL;
  2643. rx_hdr = get_l2_fhdr(data);
  2644. prefetch(rx_hdr);
  2645. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2646. dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
  2647. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2648. PCI_DMA_FROMDEVICE);
  2649. next_ring_idx = BNX2_RX_RING_IDX(BNX2_NEXT_RX_BD(sw_cons));
  2650. next_rx_buf = &rxr->rx_buf_ring[next_ring_idx];
  2651. prefetch(get_l2_fhdr(next_rx_buf->data));
  2652. len = rx_hdr->l2_fhdr_pkt_len;
  2653. status = rx_hdr->l2_fhdr_status;
  2654. hdr_len = 0;
  2655. if (status & L2_FHDR_STATUS_SPLIT) {
  2656. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2657. pg_ring_used = 1;
  2658. } else if (len > bp->rx_jumbo_thresh) {
  2659. hdr_len = bp->rx_jumbo_thresh;
  2660. pg_ring_used = 1;
  2661. }
  2662. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2663. L2_FHDR_ERRORS_PHY_DECODE |
  2664. L2_FHDR_ERRORS_ALIGNMENT |
  2665. L2_FHDR_ERRORS_TOO_SHORT |
  2666. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2667. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2668. sw_ring_prod);
  2669. if (pg_ring_used) {
  2670. int pages;
  2671. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2672. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2673. }
  2674. goto next_rx;
  2675. }
  2676. len -= 4;
  2677. if (len <= bp->rx_copy_thresh) {
  2678. skb = netdev_alloc_skb(bp->dev, len + 6);
  2679. if (skb == NULL) {
  2680. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2681. sw_ring_prod);
  2682. goto next_rx;
  2683. }
  2684. /* aligned copy */
  2685. memcpy(skb->data,
  2686. (u8 *)rx_hdr + BNX2_RX_OFFSET - 6,
  2687. len + 6);
  2688. skb_reserve(skb, 6);
  2689. skb_put(skb, len);
  2690. bnx2_reuse_rx_data(bp, rxr, data,
  2691. sw_ring_cons, sw_ring_prod);
  2692. } else {
  2693. skb = bnx2_rx_skb(bp, rxr, data, len, hdr_len, dma_addr,
  2694. (sw_ring_cons << 16) | sw_ring_prod);
  2695. if (!skb)
  2696. goto next_rx;
  2697. }
  2698. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2699. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
  2700. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), rx_hdr->l2_fhdr_vlan_tag);
  2701. skb->protocol = eth_type_trans(skb, bp->dev);
  2702. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2703. (ntohs(skb->protocol) != 0x8100)) {
  2704. dev_kfree_skb(skb);
  2705. goto next_rx;
  2706. }
  2707. skb_checksum_none_assert(skb);
  2708. if ((bp->dev->features & NETIF_F_RXCSUM) &&
  2709. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2710. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2711. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2712. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2713. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2714. }
  2715. if ((bp->dev->features & NETIF_F_RXHASH) &&
  2716. ((status & L2_FHDR_STATUS_USE_RXHASH) ==
  2717. L2_FHDR_STATUS_USE_RXHASH))
  2718. skb_set_hash(skb, rx_hdr->l2_fhdr_hash,
  2719. PKT_HASH_TYPE_L3);
  2720. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2721. napi_gro_receive(&bnapi->napi, skb);
  2722. rx_pkt++;
  2723. next_rx:
  2724. sw_cons = BNX2_NEXT_RX_BD(sw_cons);
  2725. sw_prod = BNX2_NEXT_RX_BD(sw_prod);
  2726. if ((rx_pkt == budget))
  2727. break;
  2728. /* Refresh hw_cons to see if there is new work */
  2729. if (sw_cons == hw_cons) {
  2730. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2731. rmb();
  2732. }
  2733. }
  2734. rxr->rx_cons = sw_cons;
  2735. rxr->rx_prod = sw_prod;
  2736. if (pg_ring_used)
  2737. BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2738. BNX2_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2739. BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2740. mmiowb();
  2741. return rx_pkt;
  2742. }
  2743. /* MSI ISR - The only difference between this and the INTx ISR
  2744. * is that the MSI interrupt is always serviced.
  2745. */
  2746. static irqreturn_t
  2747. bnx2_msi(int irq, void *dev_instance)
  2748. {
  2749. struct bnx2_napi *bnapi = dev_instance;
  2750. struct bnx2 *bp = bnapi->bp;
  2751. prefetch(bnapi->status_blk.msi);
  2752. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2753. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2754. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2755. /* Return here if interrupt is disabled. */
  2756. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2757. return IRQ_HANDLED;
  2758. napi_schedule(&bnapi->napi);
  2759. return IRQ_HANDLED;
  2760. }
  2761. static irqreturn_t
  2762. bnx2_msi_1shot(int irq, void *dev_instance)
  2763. {
  2764. struct bnx2_napi *bnapi = dev_instance;
  2765. struct bnx2 *bp = bnapi->bp;
  2766. prefetch(bnapi->status_blk.msi);
  2767. /* Return here if interrupt is disabled. */
  2768. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2769. return IRQ_HANDLED;
  2770. napi_schedule(&bnapi->napi);
  2771. return IRQ_HANDLED;
  2772. }
  2773. static irqreturn_t
  2774. bnx2_interrupt(int irq, void *dev_instance)
  2775. {
  2776. struct bnx2_napi *bnapi = dev_instance;
  2777. struct bnx2 *bp = bnapi->bp;
  2778. struct status_block *sblk = bnapi->status_blk.msi;
  2779. /* When using INTx, it is possible for the interrupt to arrive
  2780. * at the CPU before the status block posted prior to the
  2781. * interrupt. Reading a register will flush the status block.
  2782. * When using MSI, the MSI message will always complete after
  2783. * the status block write.
  2784. */
  2785. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2786. (BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2787. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2788. return IRQ_NONE;
  2789. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2790. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2791. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2792. /* Read back to deassert IRQ immediately to avoid too many
  2793. * spurious interrupts.
  2794. */
  2795. BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2796. /* Return here if interrupt is shared and is disabled. */
  2797. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2798. return IRQ_HANDLED;
  2799. if (napi_schedule_prep(&bnapi->napi)) {
  2800. bnapi->last_status_idx = sblk->status_idx;
  2801. __napi_schedule(&bnapi->napi);
  2802. }
  2803. return IRQ_HANDLED;
  2804. }
  2805. static inline int
  2806. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2807. {
  2808. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2809. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2810. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2811. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2812. return 1;
  2813. return 0;
  2814. }
  2815. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2816. STATUS_ATTN_BITS_TIMER_ABORT)
  2817. static inline int
  2818. bnx2_has_work(struct bnx2_napi *bnapi)
  2819. {
  2820. struct status_block *sblk = bnapi->status_blk.msi;
  2821. if (bnx2_has_fast_work(bnapi))
  2822. return 1;
  2823. #ifdef BCM_CNIC
  2824. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2825. return 1;
  2826. #endif
  2827. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2828. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2829. return 1;
  2830. return 0;
  2831. }
  2832. static void
  2833. bnx2_chk_missed_msi(struct bnx2 *bp)
  2834. {
  2835. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2836. u32 msi_ctrl;
  2837. if (bnx2_has_work(bnapi)) {
  2838. msi_ctrl = BNX2_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2839. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2840. return;
  2841. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2842. BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2843. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2844. BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2845. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2846. }
  2847. }
  2848. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2849. }
  2850. #ifdef BCM_CNIC
  2851. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2852. {
  2853. struct cnic_ops *c_ops;
  2854. if (!bnapi->cnic_present)
  2855. return;
  2856. rcu_read_lock();
  2857. c_ops = rcu_dereference(bp->cnic_ops);
  2858. if (c_ops)
  2859. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2860. bnapi->status_blk.msi);
  2861. rcu_read_unlock();
  2862. }
  2863. #endif
  2864. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2865. {
  2866. struct status_block *sblk = bnapi->status_blk.msi;
  2867. u32 status_attn_bits = sblk->status_attn_bits;
  2868. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2869. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2870. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2871. bnx2_phy_int(bp, bnapi);
  2872. /* This is needed to take care of transient status
  2873. * during link changes.
  2874. */
  2875. BNX2_WR(bp, BNX2_HC_COMMAND,
  2876. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2877. BNX2_RD(bp, BNX2_HC_COMMAND);
  2878. }
  2879. }
  2880. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2881. int work_done, int budget)
  2882. {
  2883. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2884. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2885. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2886. bnx2_tx_int(bp, bnapi, 0);
  2887. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2888. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2889. return work_done;
  2890. }
  2891. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2892. {
  2893. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2894. struct bnx2 *bp = bnapi->bp;
  2895. int work_done = 0;
  2896. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2897. while (1) {
  2898. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2899. if (unlikely(work_done >= budget))
  2900. break;
  2901. bnapi->last_status_idx = sblk->status_idx;
  2902. /* status idx must be read before checking for more work. */
  2903. rmb();
  2904. if (likely(!bnx2_has_fast_work(bnapi))) {
  2905. napi_complete(napi);
  2906. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2907. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2908. bnapi->last_status_idx);
  2909. break;
  2910. }
  2911. }
  2912. return work_done;
  2913. }
  2914. static int bnx2_poll(struct napi_struct *napi, int budget)
  2915. {
  2916. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2917. struct bnx2 *bp = bnapi->bp;
  2918. int work_done = 0;
  2919. struct status_block *sblk = bnapi->status_blk.msi;
  2920. while (1) {
  2921. bnx2_poll_link(bp, bnapi);
  2922. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2923. #ifdef BCM_CNIC
  2924. bnx2_poll_cnic(bp, bnapi);
  2925. #endif
  2926. /* bnapi->last_status_idx is used below to tell the hw how
  2927. * much work has been processed, so we must read it before
  2928. * checking for more work.
  2929. */
  2930. bnapi->last_status_idx = sblk->status_idx;
  2931. if (unlikely(work_done >= budget))
  2932. break;
  2933. rmb();
  2934. if (likely(!bnx2_has_work(bnapi))) {
  2935. napi_complete(napi);
  2936. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2937. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2938. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2939. bnapi->last_status_idx);
  2940. break;
  2941. }
  2942. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2943. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2944. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2945. bnapi->last_status_idx);
  2946. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2947. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2948. bnapi->last_status_idx);
  2949. break;
  2950. }
  2951. }
  2952. return work_done;
  2953. }
  2954. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2955. * from set_multicast.
  2956. */
  2957. static void
  2958. bnx2_set_rx_mode(struct net_device *dev)
  2959. {
  2960. struct bnx2 *bp = netdev_priv(dev);
  2961. u32 rx_mode, sort_mode;
  2962. struct netdev_hw_addr *ha;
  2963. int i;
  2964. if (!netif_running(dev))
  2965. return;
  2966. spin_lock_bh(&bp->phy_lock);
  2967. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2968. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2969. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2970. if (!(dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
  2971. (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2972. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2973. if (dev->flags & IFF_PROMISC) {
  2974. /* Promiscuous mode. */
  2975. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2976. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2977. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2978. }
  2979. else if (dev->flags & IFF_ALLMULTI) {
  2980. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2981. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2982. 0xffffffff);
  2983. }
  2984. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2985. }
  2986. else {
  2987. /* Accept one or more multicast(s). */
  2988. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2989. u32 regidx;
  2990. u32 bit;
  2991. u32 crc;
  2992. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2993. netdev_for_each_mc_addr(ha, dev) {
  2994. crc = ether_crc_le(ETH_ALEN, ha->addr);
  2995. bit = crc & 0xff;
  2996. regidx = (bit & 0xe0) >> 5;
  2997. bit &= 0x1f;
  2998. mc_filter[regidx] |= (1 << bit);
  2999. }
  3000. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3001. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3002. mc_filter[i]);
  3003. }
  3004. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  3005. }
  3006. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  3007. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  3008. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  3009. BNX2_RPM_SORT_USER0_PROM_VLAN;
  3010. } else if (!(dev->flags & IFF_PROMISC)) {
  3011. /* Add all entries into to the match filter list */
  3012. i = 0;
  3013. netdev_for_each_uc_addr(ha, dev) {
  3014. bnx2_set_mac_addr(bp, ha->addr,
  3015. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  3016. sort_mode |= (1 <<
  3017. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  3018. i++;
  3019. }
  3020. }
  3021. if (rx_mode != bp->rx_mode) {
  3022. bp->rx_mode = rx_mode;
  3023. BNX2_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  3024. }
  3025. BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3026. BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  3027. BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  3028. spin_unlock_bh(&bp->phy_lock);
  3029. }
  3030. static int
  3031. check_fw_section(const struct firmware *fw,
  3032. const struct bnx2_fw_file_section *section,
  3033. u32 alignment, bool non_empty)
  3034. {
  3035. u32 offset = be32_to_cpu(section->offset);
  3036. u32 len = be32_to_cpu(section->len);
  3037. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  3038. return -EINVAL;
  3039. if ((non_empty && len == 0) || len > fw->size - offset ||
  3040. len & (alignment - 1))
  3041. return -EINVAL;
  3042. return 0;
  3043. }
  3044. static int
  3045. check_mips_fw_entry(const struct firmware *fw,
  3046. const struct bnx2_mips_fw_file_entry *entry)
  3047. {
  3048. if (check_fw_section(fw, &entry->text, 4, true) ||
  3049. check_fw_section(fw, &entry->data, 4, false) ||
  3050. check_fw_section(fw, &entry->rodata, 4, false))
  3051. return -EINVAL;
  3052. return 0;
  3053. }
  3054. static void bnx2_release_firmware(struct bnx2 *bp)
  3055. {
  3056. if (bp->rv2p_firmware) {
  3057. release_firmware(bp->mips_firmware);
  3058. release_firmware(bp->rv2p_firmware);
  3059. bp->rv2p_firmware = NULL;
  3060. }
  3061. }
  3062. static int bnx2_request_uncached_firmware(struct bnx2 *bp)
  3063. {
  3064. const char *mips_fw_file, *rv2p_fw_file;
  3065. const struct bnx2_mips_fw_file *mips_fw;
  3066. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3067. int rc;
  3068. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3069. mips_fw_file = FW_MIPS_FILE_09;
  3070. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A0) ||
  3071. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A1))
  3072. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3073. else
  3074. rv2p_fw_file = FW_RV2P_FILE_09;
  3075. } else {
  3076. mips_fw_file = FW_MIPS_FILE_06;
  3077. rv2p_fw_file = FW_RV2P_FILE_06;
  3078. }
  3079. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3080. if (rc) {
  3081. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3082. goto out;
  3083. }
  3084. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3085. if (rc) {
  3086. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3087. goto err_release_mips_firmware;
  3088. }
  3089. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3090. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3091. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3092. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3093. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3094. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3095. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3096. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3097. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3098. rc = -EINVAL;
  3099. goto err_release_firmware;
  3100. }
  3101. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3102. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3103. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3104. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3105. rc = -EINVAL;
  3106. goto err_release_firmware;
  3107. }
  3108. out:
  3109. return rc;
  3110. err_release_firmware:
  3111. release_firmware(bp->rv2p_firmware);
  3112. bp->rv2p_firmware = NULL;
  3113. err_release_mips_firmware:
  3114. release_firmware(bp->mips_firmware);
  3115. goto out;
  3116. }
  3117. static int bnx2_request_firmware(struct bnx2 *bp)
  3118. {
  3119. return bp->rv2p_firmware ? 0 : bnx2_request_uncached_firmware(bp);
  3120. }
  3121. static u32
  3122. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3123. {
  3124. switch (idx) {
  3125. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3126. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3127. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3128. break;
  3129. }
  3130. return rv2p_code;
  3131. }
  3132. static int
  3133. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3134. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3135. {
  3136. u32 rv2p_code_len, file_offset;
  3137. __be32 *rv2p_code;
  3138. int i;
  3139. u32 val, cmd, addr;
  3140. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3141. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3142. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3143. if (rv2p_proc == RV2P_PROC1) {
  3144. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3145. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3146. } else {
  3147. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3148. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3149. }
  3150. for (i = 0; i < rv2p_code_len; i += 8) {
  3151. BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3152. rv2p_code++;
  3153. BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3154. rv2p_code++;
  3155. val = (i / 8) | cmd;
  3156. BNX2_WR(bp, addr, val);
  3157. }
  3158. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3159. for (i = 0; i < 8; i++) {
  3160. u32 loc, code;
  3161. loc = be32_to_cpu(fw_entry->fixup[i]);
  3162. if (loc && ((loc * 4) < rv2p_code_len)) {
  3163. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3164. BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3165. code = be32_to_cpu(*(rv2p_code + loc));
  3166. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3167. BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3168. val = (loc / 2) | cmd;
  3169. BNX2_WR(bp, addr, val);
  3170. }
  3171. }
  3172. /* Reset the processor, un-stall is done later. */
  3173. if (rv2p_proc == RV2P_PROC1) {
  3174. BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3175. }
  3176. else {
  3177. BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3178. }
  3179. return 0;
  3180. }
  3181. static int
  3182. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3183. const struct bnx2_mips_fw_file_entry *fw_entry)
  3184. {
  3185. u32 addr, len, file_offset;
  3186. __be32 *data;
  3187. u32 offset;
  3188. u32 val;
  3189. /* Halt the CPU. */
  3190. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3191. val |= cpu_reg->mode_value_halt;
  3192. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3193. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3194. /* Load the Text area. */
  3195. addr = be32_to_cpu(fw_entry->text.addr);
  3196. len = be32_to_cpu(fw_entry->text.len);
  3197. file_offset = be32_to_cpu(fw_entry->text.offset);
  3198. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3199. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3200. if (len) {
  3201. int j;
  3202. for (j = 0; j < (len / 4); j++, offset += 4)
  3203. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3204. }
  3205. /* Load the Data area. */
  3206. addr = be32_to_cpu(fw_entry->data.addr);
  3207. len = be32_to_cpu(fw_entry->data.len);
  3208. file_offset = be32_to_cpu(fw_entry->data.offset);
  3209. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3210. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3211. if (len) {
  3212. int j;
  3213. for (j = 0; j < (len / 4); j++, offset += 4)
  3214. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3215. }
  3216. /* Load the Read-Only area. */
  3217. addr = be32_to_cpu(fw_entry->rodata.addr);
  3218. len = be32_to_cpu(fw_entry->rodata.len);
  3219. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3220. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3221. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3222. if (len) {
  3223. int j;
  3224. for (j = 0; j < (len / 4); j++, offset += 4)
  3225. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3226. }
  3227. /* Clear the pre-fetch instruction. */
  3228. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3229. val = be32_to_cpu(fw_entry->start_addr);
  3230. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3231. /* Start the CPU. */
  3232. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3233. val &= ~cpu_reg->mode_value_halt;
  3234. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3235. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3236. return 0;
  3237. }
  3238. static int
  3239. bnx2_init_cpus(struct bnx2 *bp)
  3240. {
  3241. const struct bnx2_mips_fw_file *mips_fw =
  3242. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3243. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3244. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3245. int rc;
  3246. /* Initialize the RV2P processor. */
  3247. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3248. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3249. /* Initialize the RX Processor. */
  3250. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3251. if (rc)
  3252. goto init_cpu_err;
  3253. /* Initialize the TX Processor. */
  3254. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3255. if (rc)
  3256. goto init_cpu_err;
  3257. /* Initialize the TX Patch-up Processor. */
  3258. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3259. if (rc)
  3260. goto init_cpu_err;
  3261. /* Initialize the Completion Processor. */
  3262. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3263. if (rc)
  3264. goto init_cpu_err;
  3265. /* Initialize the Command Processor. */
  3266. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3267. init_cpu_err:
  3268. return rc;
  3269. }
  3270. static void
  3271. bnx2_setup_wol(struct bnx2 *bp)
  3272. {
  3273. int i;
  3274. u32 val, wol_msg;
  3275. if (bp->wol) {
  3276. u32 advertising;
  3277. u8 autoneg;
  3278. autoneg = bp->autoneg;
  3279. advertising = bp->advertising;
  3280. if (bp->phy_port == PORT_TP) {
  3281. bp->autoneg = AUTONEG_SPEED;
  3282. bp->advertising = ADVERTISED_10baseT_Half |
  3283. ADVERTISED_10baseT_Full |
  3284. ADVERTISED_100baseT_Half |
  3285. ADVERTISED_100baseT_Full |
  3286. ADVERTISED_Autoneg;
  3287. }
  3288. spin_lock_bh(&bp->phy_lock);
  3289. bnx2_setup_phy(bp, bp->phy_port);
  3290. spin_unlock_bh(&bp->phy_lock);
  3291. bp->autoneg = autoneg;
  3292. bp->advertising = advertising;
  3293. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3294. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  3295. /* Enable port mode. */
  3296. val &= ~BNX2_EMAC_MODE_PORT;
  3297. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3298. BNX2_EMAC_MODE_ACPI_RCVD |
  3299. BNX2_EMAC_MODE_MPKT;
  3300. if (bp->phy_port == PORT_TP) {
  3301. val |= BNX2_EMAC_MODE_PORT_MII;
  3302. } else {
  3303. val |= BNX2_EMAC_MODE_PORT_GMII;
  3304. if (bp->line_speed == SPEED_2500)
  3305. val |= BNX2_EMAC_MODE_25G_MODE;
  3306. }
  3307. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  3308. /* receive all multicast */
  3309. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3310. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3311. 0xffffffff);
  3312. }
  3313. BNX2_WR(bp, BNX2_EMAC_RX_MODE, BNX2_EMAC_RX_MODE_SORT_MODE);
  3314. val = 1 | BNX2_RPM_SORT_USER0_BC_EN | BNX2_RPM_SORT_USER0_MC_EN;
  3315. BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3316. BNX2_WR(bp, BNX2_RPM_SORT_USER0, val);
  3317. BNX2_WR(bp, BNX2_RPM_SORT_USER0, val | BNX2_RPM_SORT_USER0_ENA);
  3318. /* Need to enable EMAC and RPM for WOL. */
  3319. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3320. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3321. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3322. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3323. val = BNX2_RD(bp, BNX2_RPM_CONFIG);
  3324. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3325. BNX2_WR(bp, BNX2_RPM_CONFIG, val);
  3326. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3327. } else {
  3328. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3329. }
  3330. if (!(bp->flags & BNX2_FLAG_NO_WOL)) {
  3331. u32 val;
  3332. wol_msg |= BNX2_DRV_MSG_DATA_WAIT3;
  3333. if (bp->fw_last_msg || BNX2_CHIP(bp) != BNX2_CHIP_5709) {
  3334. bnx2_fw_sync(bp, wol_msg, 1, 0);
  3335. return;
  3336. }
  3337. /* Tell firmware not to power down the PHY yet, otherwise
  3338. * the chip will take a long time to respond to MMIO reads.
  3339. */
  3340. val = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  3341. bnx2_shmem_wr(bp, BNX2_PORT_FEATURE,
  3342. val | BNX2_PORT_FEATURE_ASF_ENABLED);
  3343. bnx2_fw_sync(bp, wol_msg, 1, 0);
  3344. bnx2_shmem_wr(bp, BNX2_PORT_FEATURE, val);
  3345. }
  3346. }
  3347. static int
  3348. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3349. {
  3350. switch (state) {
  3351. case PCI_D0: {
  3352. u32 val;
  3353. pci_enable_wake(bp->pdev, PCI_D0, false);
  3354. pci_set_power_state(bp->pdev, PCI_D0);
  3355. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  3356. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3357. val &= ~BNX2_EMAC_MODE_MPKT;
  3358. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  3359. val = BNX2_RD(bp, BNX2_RPM_CONFIG);
  3360. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3361. BNX2_WR(bp, BNX2_RPM_CONFIG, val);
  3362. break;
  3363. }
  3364. case PCI_D3hot: {
  3365. bnx2_setup_wol(bp);
  3366. pci_wake_from_d3(bp->pdev, bp->wol);
  3367. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  3368. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)) {
  3369. if (bp->wol)
  3370. pci_set_power_state(bp->pdev, PCI_D3hot);
  3371. break;
  3372. }
  3373. if (!bp->fw_last_msg && BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3374. u32 val;
  3375. /* Tell firmware not to power down the PHY yet,
  3376. * otherwise the other port may not respond to
  3377. * MMIO reads.
  3378. */
  3379. val = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  3380. val &= ~BNX2_CONDITION_PM_STATE_MASK;
  3381. val |= BNX2_CONDITION_PM_STATE_UNPREP;
  3382. bnx2_shmem_wr(bp, BNX2_BC_STATE_CONDITION, val);
  3383. }
  3384. pci_set_power_state(bp->pdev, PCI_D3hot);
  3385. /* No more memory access after this point until
  3386. * device is brought back to D0.
  3387. */
  3388. break;
  3389. }
  3390. default:
  3391. return -EINVAL;
  3392. }
  3393. return 0;
  3394. }
  3395. static int
  3396. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3397. {
  3398. u32 val;
  3399. int j;
  3400. /* Request access to the flash interface. */
  3401. BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3402. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3403. val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
  3404. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3405. break;
  3406. udelay(5);
  3407. }
  3408. if (j >= NVRAM_TIMEOUT_COUNT)
  3409. return -EBUSY;
  3410. return 0;
  3411. }
  3412. static int
  3413. bnx2_release_nvram_lock(struct bnx2 *bp)
  3414. {
  3415. int j;
  3416. u32 val;
  3417. /* Relinquish nvram interface. */
  3418. BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3419. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3420. val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
  3421. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3422. break;
  3423. udelay(5);
  3424. }
  3425. if (j >= NVRAM_TIMEOUT_COUNT)
  3426. return -EBUSY;
  3427. return 0;
  3428. }
  3429. static int
  3430. bnx2_enable_nvram_write(struct bnx2 *bp)
  3431. {
  3432. u32 val;
  3433. val = BNX2_RD(bp, BNX2_MISC_CFG);
  3434. BNX2_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3435. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3436. int j;
  3437. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3438. BNX2_WR(bp, BNX2_NVM_COMMAND,
  3439. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3440. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3441. udelay(5);
  3442. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3443. if (val & BNX2_NVM_COMMAND_DONE)
  3444. break;
  3445. }
  3446. if (j >= NVRAM_TIMEOUT_COUNT)
  3447. return -EBUSY;
  3448. }
  3449. return 0;
  3450. }
  3451. static void
  3452. bnx2_disable_nvram_write(struct bnx2 *bp)
  3453. {
  3454. u32 val;
  3455. val = BNX2_RD(bp, BNX2_MISC_CFG);
  3456. BNX2_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3457. }
  3458. static void
  3459. bnx2_enable_nvram_access(struct bnx2 *bp)
  3460. {
  3461. u32 val;
  3462. val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3463. /* Enable both bits, even on read. */
  3464. BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3465. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3466. }
  3467. static void
  3468. bnx2_disable_nvram_access(struct bnx2 *bp)
  3469. {
  3470. u32 val;
  3471. val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3472. /* Disable both bits, even after read. */
  3473. BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3474. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3475. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3476. }
  3477. static int
  3478. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3479. {
  3480. u32 cmd;
  3481. int j;
  3482. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3483. /* Buffered flash, no erase needed */
  3484. return 0;
  3485. /* Build an erase command */
  3486. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3487. BNX2_NVM_COMMAND_DOIT;
  3488. /* Need to clear DONE bit separately. */
  3489. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3490. /* Address of the NVRAM to read from. */
  3491. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3492. /* Issue an erase command. */
  3493. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3494. /* Wait for completion. */
  3495. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3496. u32 val;
  3497. udelay(5);
  3498. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3499. if (val & BNX2_NVM_COMMAND_DONE)
  3500. break;
  3501. }
  3502. if (j >= NVRAM_TIMEOUT_COUNT)
  3503. return -EBUSY;
  3504. return 0;
  3505. }
  3506. static int
  3507. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3508. {
  3509. u32 cmd;
  3510. int j;
  3511. /* Build the command word. */
  3512. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3513. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3514. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3515. offset = ((offset / bp->flash_info->page_size) <<
  3516. bp->flash_info->page_bits) +
  3517. (offset % bp->flash_info->page_size);
  3518. }
  3519. /* Need to clear DONE bit separately. */
  3520. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3521. /* Address of the NVRAM to read from. */
  3522. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3523. /* Issue a read command. */
  3524. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3525. /* Wait for completion. */
  3526. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3527. u32 val;
  3528. udelay(5);
  3529. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3530. if (val & BNX2_NVM_COMMAND_DONE) {
  3531. __be32 v = cpu_to_be32(BNX2_RD(bp, BNX2_NVM_READ));
  3532. memcpy(ret_val, &v, 4);
  3533. break;
  3534. }
  3535. }
  3536. if (j >= NVRAM_TIMEOUT_COUNT)
  3537. return -EBUSY;
  3538. return 0;
  3539. }
  3540. static int
  3541. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3542. {
  3543. u32 cmd;
  3544. __be32 val32;
  3545. int j;
  3546. /* Build the command word. */
  3547. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3548. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3549. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3550. offset = ((offset / bp->flash_info->page_size) <<
  3551. bp->flash_info->page_bits) +
  3552. (offset % bp->flash_info->page_size);
  3553. }
  3554. /* Need to clear DONE bit separately. */
  3555. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3556. memcpy(&val32, val, 4);
  3557. /* Write the data. */
  3558. BNX2_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3559. /* Address of the NVRAM to write to. */
  3560. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3561. /* Issue the write command. */
  3562. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3563. /* Wait for completion. */
  3564. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3565. udelay(5);
  3566. if (BNX2_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3567. break;
  3568. }
  3569. if (j >= NVRAM_TIMEOUT_COUNT)
  3570. return -EBUSY;
  3571. return 0;
  3572. }
  3573. static int
  3574. bnx2_init_nvram(struct bnx2 *bp)
  3575. {
  3576. u32 val;
  3577. int j, entry_count, rc = 0;
  3578. const struct flash_spec *flash;
  3579. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3580. bp->flash_info = &flash_5709;
  3581. goto get_flash_size;
  3582. }
  3583. /* Determine the selected interface. */
  3584. val = BNX2_RD(bp, BNX2_NVM_CFG1);
  3585. entry_count = ARRAY_SIZE(flash_table);
  3586. if (val & 0x40000000) {
  3587. /* Flash interface has been reconfigured */
  3588. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3589. j++, flash++) {
  3590. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3591. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3592. bp->flash_info = flash;
  3593. break;
  3594. }
  3595. }
  3596. }
  3597. else {
  3598. u32 mask;
  3599. /* Not yet been reconfigured */
  3600. if (val & (1 << 23))
  3601. mask = FLASH_BACKUP_STRAP_MASK;
  3602. else
  3603. mask = FLASH_STRAP_MASK;
  3604. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3605. j++, flash++) {
  3606. if ((val & mask) == (flash->strapping & mask)) {
  3607. bp->flash_info = flash;
  3608. /* Request access to the flash interface. */
  3609. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3610. return rc;
  3611. /* Enable access to flash interface */
  3612. bnx2_enable_nvram_access(bp);
  3613. /* Reconfigure the flash interface */
  3614. BNX2_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3615. BNX2_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3616. BNX2_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3617. BNX2_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3618. /* Disable access to flash interface */
  3619. bnx2_disable_nvram_access(bp);
  3620. bnx2_release_nvram_lock(bp);
  3621. break;
  3622. }
  3623. }
  3624. } /* if (val & 0x40000000) */
  3625. if (j == entry_count) {
  3626. bp->flash_info = NULL;
  3627. pr_alert("Unknown flash/EEPROM type\n");
  3628. return -ENODEV;
  3629. }
  3630. get_flash_size:
  3631. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3632. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3633. if (val)
  3634. bp->flash_size = val;
  3635. else
  3636. bp->flash_size = bp->flash_info->total_size;
  3637. return rc;
  3638. }
  3639. static int
  3640. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3641. int buf_size)
  3642. {
  3643. int rc = 0;
  3644. u32 cmd_flags, offset32, len32, extra;
  3645. if (buf_size == 0)
  3646. return 0;
  3647. /* Request access to the flash interface. */
  3648. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3649. return rc;
  3650. /* Enable access to flash interface */
  3651. bnx2_enable_nvram_access(bp);
  3652. len32 = buf_size;
  3653. offset32 = offset;
  3654. extra = 0;
  3655. cmd_flags = 0;
  3656. if (offset32 & 3) {
  3657. u8 buf[4];
  3658. u32 pre_len;
  3659. offset32 &= ~3;
  3660. pre_len = 4 - (offset & 3);
  3661. if (pre_len >= len32) {
  3662. pre_len = len32;
  3663. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3664. BNX2_NVM_COMMAND_LAST;
  3665. }
  3666. else {
  3667. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3668. }
  3669. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3670. if (rc)
  3671. return rc;
  3672. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3673. offset32 += 4;
  3674. ret_buf += pre_len;
  3675. len32 -= pre_len;
  3676. }
  3677. if (len32 & 3) {
  3678. extra = 4 - (len32 & 3);
  3679. len32 = (len32 + 4) & ~3;
  3680. }
  3681. if (len32 == 4) {
  3682. u8 buf[4];
  3683. if (cmd_flags)
  3684. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3685. else
  3686. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3687. BNX2_NVM_COMMAND_LAST;
  3688. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3689. memcpy(ret_buf, buf, 4 - extra);
  3690. }
  3691. else if (len32 > 0) {
  3692. u8 buf[4];
  3693. /* Read the first word. */
  3694. if (cmd_flags)
  3695. cmd_flags = 0;
  3696. else
  3697. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3698. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3699. /* Advance to the next dword. */
  3700. offset32 += 4;
  3701. ret_buf += 4;
  3702. len32 -= 4;
  3703. while (len32 > 4 && rc == 0) {
  3704. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3705. /* Advance to the next dword. */
  3706. offset32 += 4;
  3707. ret_buf += 4;
  3708. len32 -= 4;
  3709. }
  3710. if (rc)
  3711. return rc;
  3712. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3713. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3714. memcpy(ret_buf, buf, 4 - extra);
  3715. }
  3716. /* Disable access to flash interface */
  3717. bnx2_disable_nvram_access(bp);
  3718. bnx2_release_nvram_lock(bp);
  3719. return rc;
  3720. }
  3721. static int
  3722. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3723. int buf_size)
  3724. {
  3725. u32 written, offset32, len32;
  3726. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3727. int rc = 0;
  3728. int align_start, align_end;
  3729. buf = data_buf;
  3730. offset32 = offset;
  3731. len32 = buf_size;
  3732. align_start = align_end = 0;
  3733. if ((align_start = (offset32 & 3))) {
  3734. offset32 &= ~3;
  3735. len32 += align_start;
  3736. if (len32 < 4)
  3737. len32 = 4;
  3738. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3739. return rc;
  3740. }
  3741. if (len32 & 3) {
  3742. align_end = 4 - (len32 & 3);
  3743. len32 += align_end;
  3744. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3745. return rc;
  3746. }
  3747. if (align_start || align_end) {
  3748. align_buf = kmalloc(len32, GFP_KERNEL);
  3749. if (align_buf == NULL)
  3750. return -ENOMEM;
  3751. if (align_start) {
  3752. memcpy(align_buf, start, 4);
  3753. }
  3754. if (align_end) {
  3755. memcpy(align_buf + len32 - 4, end, 4);
  3756. }
  3757. memcpy(align_buf + align_start, data_buf, buf_size);
  3758. buf = align_buf;
  3759. }
  3760. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3761. flash_buffer = kmalloc(264, GFP_KERNEL);
  3762. if (flash_buffer == NULL) {
  3763. rc = -ENOMEM;
  3764. goto nvram_write_end;
  3765. }
  3766. }
  3767. written = 0;
  3768. while ((written < len32) && (rc == 0)) {
  3769. u32 page_start, page_end, data_start, data_end;
  3770. u32 addr, cmd_flags;
  3771. int i;
  3772. /* Find the page_start addr */
  3773. page_start = offset32 + written;
  3774. page_start -= (page_start % bp->flash_info->page_size);
  3775. /* Find the page_end addr */
  3776. page_end = page_start + bp->flash_info->page_size;
  3777. /* Find the data_start addr */
  3778. data_start = (written == 0) ? offset32 : page_start;
  3779. /* Find the data_end addr */
  3780. data_end = (page_end > offset32 + len32) ?
  3781. (offset32 + len32) : page_end;
  3782. /* Request access to the flash interface. */
  3783. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3784. goto nvram_write_end;
  3785. /* Enable access to flash interface */
  3786. bnx2_enable_nvram_access(bp);
  3787. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3788. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3789. int j;
  3790. /* Read the whole page into the buffer
  3791. * (non-buffer flash only) */
  3792. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3793. if (j == (bp->flash_info->page_size - 4)) {
  3794. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3795. }
  3796. rc = bnx2_nvram_read_dword(bp,
  3797. page_start + j,
  3798. &flash_buffer[j],
  3799. cmd_flags);
  3800. if (rc)
  3801. goto nvram_write_end;
  3802. cmd_flags = 0;
  3803. }
  3804. }
  3805. /* Enable writes to flash interface (unlock write-protect) */
  3806. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3807. goto nvram_write_end;
  3808. /* Loop to write back the buffer data from page_start to
  3809. * data_start */
  3810. i = 0;
  3811. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3812. /* Erase the page */
  3813. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3814. goto nvram_write_end;
  3815. /* Re-enable the write again for the actual write */
  3816. bnx2_enable_nvram_write(bp);
  3817. for (addr = page_start; addr < data_start;
  3818. addr += 4, i += 4) {
  3819. rc = bnx2_nvram_write_dword(bp, addr,
  3820. &flash_buffer[i], cmd_flags);
  3821. if (rc != 0)
  3822. goto nvram_write_end;
  3823. cmd_flags = 0;
  3824. }
  3825. }
  3826. /* Loop to write the new data from data_start to data_end */
  3827. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3828. if ((addr == page_end - 4) ||
  3829. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3830. (addr == data_end - 4))) {
  3831. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3832. }
  3833. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3834. cmd_flags);
  3835. if (rc != 0)
  3836. goto nvram_write_end;
  3837. cmd_flags = 0;
  3838. buf += 4;
  3839. }
  3840. /* Loop to write back the buffer data from data_end
  3841. * to page_end */
  3842. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3843. for (addr = data_end; addr < page_end;
  3844. addr += 4, i += 4) {
  3845. if (addr == page_end-4) {
  3846. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3847. }
  3848. rc = bnx2_nvram_write_dword(bp, addr,
  3849. &flash_buffer[i], cmd_flags);
  3850. if (rc != 0)
  3851. goto nvram_write_end;
  3852. cmd_flags = 0;
  3853. }
  3854. }
  3855. /* Disable writes to flash interface (lock write-protect) */
  3856. bnx2_disable_nvram_write(bp);
  3857. /* Disable access to flash interface */
  3858. bnx2_disable_nvram_access(bp);
  3859. bnx2_release_nvram_lock(bp);
  3860. /* Increment written */
  3861. written += data_end - data_start;
  3862. }
  3863. nvram_write_end:
  3864. kfree(flash_buffer);
  3865. kfree(align_buf);
  3866. return rc;
  3867. }
  3868. static void
  3869. bnx2_init_fw_cap(struct bnx2 *bp)
  3870. {
  3871. u32 val, sig = 0;
  3872. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3873. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3874. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3875. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3876. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3877. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3878. return;
  3879. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3880. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3881. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3882. }
  3883. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3884. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3885. u32 link;
  3886. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3887. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3888. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3889. bp->phy_port = PORT_FIBRE;
  3890. else
  3891. bp->phy_port = PORT_TP;
  3892. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3893. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3894. }
  3895. if (netif_running(bp->dev) && sig)
  3896. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3897. }
  3898. static void
  3899. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3900. {
  3901. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3902. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3903. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3904. }
  3905. static int
  3906. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3907. {
  3908. u32 val;
  3909. int i, rc = 0;
  3910. u8 old_port;
  3911. /* Wait for the current PCI transaction to complete before
  3912. * issuing a reset. */
  3913. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
  3914. (BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
  3915. BNX2_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3916. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3917. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3918. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3919. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3920. val = BNX2_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3921. udelay(5);
  3922. } else { /* 5709 */
  3923. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3924. val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3925. BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3926. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3927. for (i = 0; i < 100; i++) {
  3928. msleep(1);
  3929. val = BNX2_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
  3930. if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
  3931. break;
  3932. }
  3933. }
  3934. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3935. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3936. /* Deposit a driver reset signature so the firmware knows that
  3937. * this is a soft reset. */
  3938. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3939. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3940. /* Do a dummy read to force the chip to complete all current transaction
  3941. * before we issue a reset. */
  3942. val = BNX2_RD(bp, BNX2_MISC_ID);
  3943. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3944. BNX2_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3945. BNX2_RD(bp, BNX2_MISC_COMMAND);
  3946. udelay(5);
  3947. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3948. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3949. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3950. } else {
  3951. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3952. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3953. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3954. /* Chip reset. */
  3955. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3956. /* Reading back any register after chip reset will hang the
  3957. * bus on 5706 A0 and A1. The msleep below provides plenty
  3958. * of margin for write posting.
  3959. */
  3960. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  3961. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1))
  3962. msleep(20);
  3963. /* Reset takes approximate 30 usec */
  3964. for (i = 0; i < 10; i++) {
  3965. val = BNX2_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3966. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3967. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3968. break;
  3969. udelay(10);
  3970. }
  3971. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3972. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3973. pr_err("Chip reset did not complete\n");
  3974. return -EBUSY;
  3975. }
  3976. }
  3977. /* Make sure byte swapping is properly configured. */
  3978. val = BNX2_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3979. if (val != 0x01020304) {
  3980. pr_err("Chip not in correct endian mode\n");
  3981. return -ENODEV;
  3982. }
  3983. /* Wait for the firmware to finish its initialization. */
  3984. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3985. if (rc)
  3986. return rc;
  3987. spin_lock_bh(&bp->phy_lock);
  3988. old_port = bp->phy_port;
  3989. bnx2_init_fw_cap(bp);
  3990. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3991. old_port != bp->phy_port)
  3992. bnx2_set_default_remote_link(bp);
  3993. spin_unlock_bh(&bp->phy_lock);
  3994. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  3995. /* Adjust the voltage regular to two steps lower. The default
  3996. * of this register is 0x0000000e. */
  3997. BNX2_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3998. /* Remove bad rbuf memory from the free pool. */
  3999. rc = bnx2_alloc_bad_rbuf(bp);
  4000. }
  4001. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4002. bnx2_setup_msix_tbl(bp);
  4003. /* Prevent MSIX table reads and write from timing out */
  4004. BNX2_WR(bp, BNX2_MISC_ECO_HW_CTL,
  4005. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  4006. }
  4007. return rc;
  4008. }
  4009. static int
  4010. bnx2_init_chip(struct bnx2 *bp)
  4011. {
  4012. u32 val, mtu;
  4013. int rc, i;
  4014. /* Make sure the interrupt is not active. */
  4015. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  4016. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  4017. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  4018. #ifdef __BIG_ENDIAN
  4019. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  4020. #endif
  4021. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  4022. DMA_READ_CHANS << 12 |
  4023. DMA_WRITE_CHANS << 16;
  4024. val |= (0x2 << 20) | (1 << 11);
  4025. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  4026. val |= (1 << 23);
  4027. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) &&
  4028. (BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0) &&
  4029. !(bp->flags & BNX2_FLAG_PCIX))
  4030. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  4031. BNX2_WR(bp, BNX2_DMA_CONFIG, val);
  4032. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  4033. val = BNX2_RD(bp, BNX2_TDMA_CONFIG);
  4034. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  4035. BNX2_WR(bp, BNX2_TDMA_CONFIG, val);
  4036. }
  4037. if (bp->flags & BNX2_FLAG_PCIX) {
  4038. u16 val16;
  4039. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4040. &val16);
  4041. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4042. val16 & ~PCI_X_CMD_ERO);
  4043. }
  4044. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  4045. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  4046. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  4047. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  4048. /* Initialize context mapping and zero out the quick contexts. The
  4049. * context block must have already been enabled. */
  4050. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4051. rc = bnx2_init_5709_context(bp);
  4052. if (rc)
  4053. return rc;
  4054. } else
  4055. bnx2_init_context(bp);
  4056. if ((rc = bnx2_init_cpus(bp)) != 0)
  4057. return rc;
  4058. bnx2_init_nvram(bp);
  4059. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  4060. val = BNX2_RD(bp, BNX2_MQ_CONFIG);
  4061. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  4062. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  4063. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4064. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  4065. if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
  4066. val |= BNX2_MQ_CONFIG_HALT_DIS;
  4067. }
  4068. BNX2_WR(bp, BNX2_MQ_CONFIG, val);
  4069. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  4070. BNX2_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  4071. BNX2_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  4072. val = (BNX2_PAGE_BITS - 8) << 24;
  4073. BNX2_WR(bp, BNX2_RV2P_CONFIG, val);
  4074. /* Configure page size. */
  4075. val = BNX2_RD(bp, BNX2_TBDR_CONFIG);
  4076. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  4077. val |= (BNX2_PAGE_BITS - 8) << 24 | 0x40;
  4078. BNX2_WR(bp, BNX2_TBDR_CONFIG, val);
  4079. val = bp->mac_addr[0] +
  4080. (bp->mac_addr[1] << 8) +
  4081. (bp->mac_addr[2] << 16) +
  4082. bp->mac_addr[3] +
  4083. (bp->mac_addr[4] << 8) +
  4084. (bp->mac_addr[5] << 16);
  4085. BNX2_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  4086. /* Program the MTU. Also include 4 bytes for CRC32. */
  4087. mtu = bp->dev->mtu;
  4088. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  4089. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  4090. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4091. BNX2_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4092. if (mtu < 1500)
  4093. mtu = 1500;
  4094. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4095. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4096. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4097. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4098. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4099. bp->bnx2_napi[i].last_status_idx = 0;
  4100. bp->idle_chk_status_idx = 0xffff;
  4101. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4102. /* Set up how to generate a link change interrupt. */
  4103. BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4104. BNX2_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4105. (u64) bp->status_blk_mapping & 0xffffffff);
  4106. BNX2_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4107. BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4108. (u64) bp->stats_blk_mapping & 0xffffffff);
  4109. BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4110. (u64) bp->stats_blk_mapping >> 32);
  4111. BNX2_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4112. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4113. BNX2_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4114. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4115. BNX2_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4116. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4117. BNX2_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4118. BNX2_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4119. BNX2_WR(bp, BNX2_HC_COM_TICKS,
  4120. (bp->com_ticks_int << 16) | bp->com_ticks);
  4121. BNX2_WR(bp, BNX2_HC_CMD_TICKS,
  4122. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4123. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4124. BNX2_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4125. else
  4126. BNX2_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4127. BNX2_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4128. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)
  4129. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4130. else {
  4131. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4132. BNX2_HC_CONFIG_COLLECT_STATS;
  4133. }
  4134. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4135. BNX2_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4136. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4137. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4138. }
  4139. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4140. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4141. BNX2_WR(bp, BNX2_HC_CONFIG, val);
  4142. if (bp->rx_ticks < 25)
  4143. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
  4144. else
  4145. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
  4146. for (i = 1; i < bp->irq_nvecs; i++) {
  4147. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4148. BNX2_HC_SB_CONFIG_1;
  4149. BNX2_WR(bp, base,
  4150. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4151. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4152. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4153. BNX2_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4154. (bp->tx_quick_cons_trip_int << 16) |
  4155. bp->tx_quick_cons_trip);
  4156. BNX2_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4157. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4158. BNX2_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4159. (bp->rx_quick_cons_trip_int << 16) |
  4160. bp->rx_quick_cons_trip);
  4161. BNX2_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4162. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4163. }
  4164. /* Clear internal stats counters. */
  4165. BNX2_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4166. BNX2_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4167. /* Initialize the receive filter. */
  4168. bnx2_set_rx_mode(bp->dev);
  4169. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4170. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4171. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4172. BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4173. }
  4174. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4175. 1, 0);
  4176. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4177. BNX2_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4178. udelay(20);
  4179. bp->hc_cmd = BNX2_RD(bp, BNX2_HC_COMMAND);
  4180. return rc;
  4181. }
  4182. static void
  4183. bnx2_clear_ring_states(struct bnx2 *bp)
  4184. {
  4185. struct bnx2_napi *bnapi;
  4186. struct bnx2_tx_ring_info *txr;
  4187. struct bnx2_rx_ring_info *rxr;
  4188. int i;
  4189. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4190. bnapi = &bp->bnx2_napi[i];
  4191. txr = &bnapi->tx_ring;
  4192. rxr = &bnapi->rx_ring;
  4193. txr->tx_cons = 0;
  4194. txr->hw_tx_cons = 0;
  4195. rxr->rx_prod_bseq = 0;
  4196. rxr->rx_prod = 0;
  4197. rxr->rx_cons = 0;
  4198. rxr->rx_pg_prod = 0;
  4199. rxr->rx_pg_cons = 0;
  4200. }
  4201. }
  4202. static void
  4203. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4204. {
  4205. u32 val, offset0, offset1, offset2, offset3;
  4206. u32 cid_addr = GET_CID_ADDR(cid);
  4207. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4208. offset0 = BNX2_L2CTX_TYPE_XI;
  4209. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4210. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4211. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4212. } else {
  4213. offset0 = BNX2_L2CTX_TYPE;
  4214. offset1 = BNX2_L2CTX_CMD_TYPE;
  4215. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4216. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4217. }
  4218. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4219. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4220. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4221. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4222. val = (u64) txr->tx_desc_mapping >> 32;
  4223. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4224. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4225. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4226. }
  4227. static void
  4228. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4229. {
  4230. struct bnx2_tx_bd *txbd;
  4231. u32 cid = TX_CID;
  4232. struct bnx2_napi *bnapi;
  4233. struct bnx2_tx_ring_info *txr;
  4234. bnapi = &bp->bnx2_napi[ring_num];
  4235. txr = &bnapi->tx_ring;
  4236. if (ring_num == 0)
  4237. cid = TX_CID;
  4238. else
  4239. cid = TX_TSS_CID + ring_num - 1;
  4240. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4241. txbd = &txr->tx_desc_ring[BNX2_MAX_TX_DESC_CNT];
  4242. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4243. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4244. txr->tx_prod = 0;
  4245. txr->tx_prod_bseq = 0;
  4246. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4247. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4248. bnx2_init_tx_context(bp, cid, txr);
  4249. }
  4250. static void
  4251. bnx2_init_rxbd_rings(struct bnx2_rx_bd *rx_ring[], dma_addr_t dma[],
  4252. u32 buf_size, int num_rings)
  4253. {
  4254. int i;
  4255. struct bnx2_rx_bd *rxbd;
  4256. for (i = 0; i < num_rings; i++) {
  4257. int j;
  4258. rxbd = &rx_ring[i][0];
  4259. for (j = 0; j < BNX2_MAX_RX_DESC_CNT; j++, rxbd++) {
  4260. rxbd->rx_bd_len = buf_size;
  4261. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4262. }
  4263. if (i == (num_rings - 1))
  4264. j = 0;
  4265. else
  4266. j = i + 1;
  4267. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4268. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4269. }
  4270. }
  4271. static void
  4272. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4273. {
  4274. int i;
  4275. u16 prod, ring_prod;
  4276. u32 cid, rx_cid_addr, val;
  4277. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4278. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4279. if (ring_num == 0)
  4280. cid = RX_CID;
  4281. else
  4282. cid = RX_RSS_CID + ring_num - 1;
  4283. rx_cid_addr = GET_CID_ADDR(cid);
  4284. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4285. bp->rx_buf_use_size, bp->rx_max_ring);
  4286. bnx2_init_rx_context(bp, cid);
  4287. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4288. val = BNX2_RD(bp, BNX2_MQ_MAP_L2_5);
  4289. BNX2_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4290. }
  4291. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4292. if (bp->rx_pg_ring_size) {
  4293. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4294. rxr->rx_pg_desc_mapping,
  4295. PAGE_SIZE, bp->rx_max_pg_ring);
  4296. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4297. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4298. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4299. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4300. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4301. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4302. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4303. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4304. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4305. BNX2_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4306. }
  4307. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4308. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4309. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4310. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4311. ring_prod = prod = rxr->rx_pg_prod;
  4312. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4313. if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4314. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4315. ring_num, i, bp->rx_pg_ring_size);
  4316. break;
  4317. }
  4318. prod = BNX2_NEXT_RX_BD(prod);
  4319. ring_prod = BNX2_RX_PG_RING_IDX(prod);
  4320. }
  4321. rxr->rx_pg_prod = prod;
  4322. ring_prod = prod = rxr->rx_prod;
  4323. for (i = 0; i < bp->rx_ring_size; i++) {
  4324. if (bnx2_alloc_rx_data(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4325. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4326. ring_num, i, bp->rx_ring_size);
  4327. break;
  4328. }
  4329. prod = BNX2_NEXT_RX_BD(prod);
  4330. ring_prod = BNX2_RX_RING_IDX(prod);
  4331. }
  4332. rxr->rx_prod = prod;
  4333. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4334. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4335. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4336. BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4337. BNX2_WR16(bp, rxr->rx_bidx_addr, prod);
  4338. BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4339. }
  4340. static void
  4341. bnx2_init_all_rings(struct bnx2 *bp)
  4342. {
  4343. int i;
  4344. u32 val;
  4345. bnx2_clear_ring_states(bp);
  4346. BNX2_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4347. for (i = 0; i < bp->num_tx_rings; i++)
  4348. bnx2_init_tx_ring(bp, i);
  4349. if (bp->num_tx_rings > 1)
  4350. BNX2_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4351. (TX_TSS_CID << 7));
  4352. BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4353. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4354. for (i = 0; i < bp->num_rx_rings; i++)
  4355. bnx2_init_rx_ring(bp, i);
  4356. if (bp->num_rx_rings > 1) {
  4357. u32 tbl_32 = 0;
  4358. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4359. int shift = (i % 8) << 2;
  4360. tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
  4361. if ((i % 8) == 7) {
  4362. BNX2_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
  4363. BNX2_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
  4364. BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
  4365. BNX2_RLUP_RSS_COMMAND_WRITE |
  4366. BNX2_RLUP_RSS_COMMAND_HASH_MASK);
  4367. tbl_32 = 0;
  4368. }
  4369. }
  4370. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4371. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4372. BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4373. }
  4374. }
  4375. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4376. {
  4377. u32 max, num_rings = 1;
  4378. while (ring_size > BNX2_MAX_RX_DESC_CNT) {
  4379. ring_size -= BNX2_MAX_RX_DESC_CNT;
  4380. num_rings++;
  4381. }
  4382. /* round to next power of 2 */
  4383. max = max_size;
  4384. while ((max & num_rings) == 0)
  4385. max >>= 1;
  4386. if (num_rings != max)
  4387. max <<= 1;
  4388. return max;
  4389. }
  4390. static void
  4391. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4392. {
  4393. u32 rx_size, rx_space, jumbo_size;
  4394. /* 8 for CRC and VLAN */
  4395. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4396. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4397. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4398. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4399. bp->rx_pg_ring_size = 0;
  4400. bp->rx_max_pg_ring = 0;
  4401. bp->rx_max_pg_ring_idx = 0;
  4402. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4403. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4404. jumbo_size = size * pages;
  4405. if (jumbo_size > BNX2_MAX_TOTAL_RX_PG_DESC_CNT)
  4406. jumbo_size = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
  4407. bp->rx_pg_ring_size = jumbo_size;
  4408. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4409. BNX2_MAX_RX_PG_RINGS);
  4410. bp->rx_max_pg_ring_idx =
  4411. (bp->rx_max_pg_ring * BNX2_RX_DESC_CNT) - 1;
  4412. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4413. bp->rx_copy_thresh = 0;
  4414. }
  4415. bp->rx_buf_use_size = rx_size;
  4416. /* hw alignment + build_skb() overhead*/
  4417. bp->rx_buf_size = SKB_DATA_ALIGN(bp->rx_buf_use_size + BNX2_RX_ALIGN) +
  4418. NET_SKB_PAD + SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4419. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4420. bp->rx_ring_size = size;
  4421. bp->rx_max_ring = bnx2_find_max_ring(size, BNX2_MAX_RX_RINGS);
  4422. bp->rx_max_ring_idx = (bp->rx_max_ring * BNX2_RX_DESC_CNT) - 1;
  4423. }
  4424. static void
  4425. bnx2_free_tx_skbs(struct bnx2 *bp)
  4426. {
  4427. int i;
  4428. for (i = 0; i < bp->num_tx_rings; i++) {
  4429. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4430. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4431. int j;
  4432. if (txr->tx_buf_ring == NULL)
  4433. continue;
  4434. for (j = 0; j < BNX2_TX_DESC_CNT; ) {
  4435. struct bnx2_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4436. struct sk_buff *skb = tx_buf->skb;
  4437. int k, last;
  4438. if (skb == NULL) {
  4439. j = BNX2_NEXT_TX_BD(j);
  4440. continue;
  4441. }
  4442. dma_unmap_single(&bp->pdev->dev,
  4443. dma_unmap_addr(tx_buf, mapping),
  4444. skb_headlen(skb),
  4445. PCI_DMA_TODEVICE);
  4446. tx_buf->skb = NULL;
  4447. last = tx_buf->nr_frags;
  4448. j = BNX2_NEXT_TX_BD(j);
  4449. for (k = 0; k < last; k++, j = BNX2_NEXT_TX_BD(j)) {
  4450. tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(j)];
  4451. dma_unmap_page(&bp->pdev->dev,
  4452. dma_unmap_addr(tx_buf, mapping),
  4453. skb_frag_size(&skb_shinfo(skb)->frags[k]),
  4454. PCI_DMA_TODEVICE);
  4455. }
  4456. dev_kfree_skb(skb);
  4457. }
  4458. netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
  4459. }
  4460. }
  4461. static void
  4462. bnx2_free_rx_skbs(struct bnx2 *bp)
  4463. {
  4464. int i;
  4465. for (i = 0; i < bp->num_rx_rings; i++) {
  4466. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4467. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4468. int j;
  4469. if (rxr->rx_buf_ring == NULL)
  4470. return;
  4471. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4472. struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4473. u8 *data = rx_buf->data;
  4474. if (data == NULL)
  4475. continue;
  4476. dma_unmap_single(&bp->pdev->dev,
  4477. dma_unmap_addr(rx_buf, mapping),
  4478. bp->rx_buf_use_size,
  4479. PCI_DMA_FROMDEVICE);
  4480. rx_buf->data = NULL;
  4481. kfree(data);
  4482. }
  4483. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4484. bnx2_free_rx_page(bp, rxr, j);
  4485. }
  4486. }
  4487. static void
  4488. bnx2_free_skbs(struct bnx2 *bp)
  4489. {
  4490. bnx2_free_tx_skbs(bp);
  4491. bnx2_free_rx_skbs(bp);
  4492. }
  4493. static int
  4494. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4495. {
  4496. int rc;
  4497. rc = bnx2_reset_chip(bp, reset_code);
  4498. bnx2_free_skbs(bp);
  4499. if (rc)
  4500. return rc;
  4501. if ((rc = bnx2_init_chip(bp)) != 0)
  4502. return rc;
  4503. bnx2_init_all_rings(bp);
  4504. return 0;
  4505. }
  4506. static int
  4507. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4508. {
  4509. int rc;
  4510. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4511. return rc;
  4512. spin_lock_bh(&bp->phy_lock);
  4513. bnx2_init_phy(bp, reset_phy);
  4514. bnx2_set_link(bp);
  4515. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4516. bnx2_remote_phy_event(bp);
  4517. spin_unlock_bh(&bp->phy_lock);
  4518. return 0;
  4519. }
  4520. static int
  4521. bnx2_shutdown_chip(struct bnx2 *bp)
  4522. {
  4523. u32 reset_code;
  4524. if (bp->flags & BNX2_FLAG_NO_WOL)
  4525. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4526. else if (bp->wol)
  4527. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4528. else
  4529. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4530. return bnx2_reset_chip(bp, reset_code);
  4531. }
  4532. static int
  4533. bnx2_test_registers(struct bnx2 *bp)
  4534. {
  4535. int ret;
  4536. int i, is_5709;
  4537. static const struct {
  4538. u16 offset;
  4539. u16 flags;
  4540. #define BNX2_FL_NOT_5709 1
  4541. u32 rw_mask;
  4542. u32 ro_mask;
  4543. } reg_tbl[] = {
  4544. { 0x006c, 0, 0x00000000, 0x0000003f },
  4545. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4546. { 0x0094, 0, 0x00000000, 0x00000000 },
  4547. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4548. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4549. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4550. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4551. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4552. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4553. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4554. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4555. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4556. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4557. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4558. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4559. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4560. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4561. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4562. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4563. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4564. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4565. { 0x1000, 0, 0x00000000, 0x00000001 },
  4566. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4567. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4568. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4569. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4570. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4571. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4572. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4573. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4574. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4575. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4576. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4577. { 0x1800, 0, 0x00000000, 0x00000001 },
  4578. { 0x1804, 0, 0x00000000, 0x00000003 },
  4579. { 0x2800, 0, 0x00000000, 0x00000001 },
  4580. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4581. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4582. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4583. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4584. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4585. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4586. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4587. { 0x2840, 0, 0x00000000, 0xffffffff },
  4588. { 0x2844, 0, 0x00000000, 0xffffffff },
  4589. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4590. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4591. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4592. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4593. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4594. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4595. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4596. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4597. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4598. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4599. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4600. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4601. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4602. { 0x5004, 0, 0x00000000, 0x0000007f },
  4603. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4604. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4605. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4606. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4607. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4608. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4609. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4610. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4611. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4612. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4613. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4614. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4615. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4616. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4617. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4618. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4619. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4620. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4621. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4622. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4623. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4624. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4625. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4626. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4627. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4628. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4629. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4630. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4631. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4632. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4633. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4634. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4635. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4636. { 0xffff, 0, 0x00000000, 0x00000000 },
  4637. };
  4638. ret = 0;
  4639. is_5709 = 0;
  4640. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4641. is_5709 = 1;
  4642. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4643. u32 offset, rw_mask, ro_mask, save_val, val;
  4644. u16 flags = reg_tbl[i].flags;
  4645. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4646. continue;
  4647. offset = (u32) reg_tbl[i].offset;
  4648. rw_mask = reg_tbl[i].rw_mask;
  4649. ro_mask = reg_tbl[i].ro_mask;
  4650. save_val = readl(bp->regview + offset);
  4651. writel(0, bp->regview + offset);
  4652. val = readl(bp->regview + offset);
  4653. if ((val & rw_mask) != 0) {
  4654. goto reg_test_err;
  4655. }
  4656. if ((val & ro_mask) != (save_val & ro_mask)) {
  4657. goto reg_test_err;
  4658. }
  4659. writel(0xffffffff, bp->regview + offset);
  4660. val = readl(bp->regview + offset);
  4661. if ((val & rw_mask) != rw_mask) {
  4662. goto reg_test_err;
  4663. }
  4664. if ((val & ro_mask) != (save_val & ro_mask)) {
  4665. goto reg_test_err;
  4666. }
  4667. writel(save_val, bp->regview + offset);
  4668. continue;
  4669. reg_test_err:
  4670. writel(save_val, bp->regview + offset);
  4671. ret = -ENODEV;
  4672. break;
  4673. }
  4674. return ret;
  4675. }
  4676. static int
  4677. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4678. {
  4679. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4680. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4681. int i;
  4682. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4683. u32 offset;
  4684. for (offset = 0; offset < size; offset += 4) {
  4685. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4686. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4687. test_pattern[i]) {
  4688. return -ENODEV;
  4689. }
  4690. }
  4691. }
  4692. return 0;
  4693. }
  4694. static int
  4695. bnx2_test_memory(struct bnx2 *bp)
  4696. {
  4697. int ret = 0;
  4698. int i;
  4699. static struct mem_entry {
  4700. u32 offset;
  4701. u32 len;
  4702. } mem_tbl_5706[] = {
  4703. { 0x60000, 0x4000 },
  4704. { 0xa0000, 0x3000 },
  4705. { 0xe0000, 0x4000 },
  4706. { 0x120000, 0x4000 },
  4707. { 0x1a0000, 0x4000 },
  4708. { 0x160000, 0x4000 },
  4709. { 0xffffffff, 0 },
  4710. },
  4711. mem_tbl_5709[] = {
  4712. { 0x60000, 0x4000 },
  4713. { 0xa0000, 0x3000 },
  4714. { 0xe0000, 0x4000 },
  4715. { 0x120000, 0x4000 },
  4716. { 0x1a0000, 0x4000 },
  4717. { 0xffffffff, 0 },
  4718. };
  4719. struct mem_entry *mem_tbl;
  4720. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4721. mem_tbl = mem_tbl_5709;
  4722. else
  4723. mem_tbl = mem_tbl_5706;
  4724. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4725. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4726. mem_tbl[i].len)) != 0) {
  4727. return ret;
  4728. }
  4729. }
  4730. return ret;
  4731. }
  4732. #define BNX2_MAC_LOOPBACK 0
  4733. #define BNX2_PHY_LOOPBACK 1
  4734. static int
  4735. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4736. {
  4737. unsigned int pkt_size, num_pkts, i;
  4738. struct sk_buff *skb;
  4739. u8 *data;
  4740. unsigned char *packet;
  4741. u16 rx_start_idx, rx_idx;
  4742. dma_addr_t map;
  4743. struct bnx2_tx_bd *txbd;
  4744. struct bnx2_sw_bd *rx_buf;
  4745. struct l2_fhdr *rx_hdr;
  4746. int ret = -ENODEV;
  4747. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4748. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4749. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4750. tx_napi = bnapi;
  4751. txr = &tx_napi->tx_ring;
  4752. rxr = &bnapi->rx_ring;
  4753. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4754. bp->loopback = MAC_LOOPBACK;
  4755. bnx2_set_mac_loopback(bp);
  4756. }
  4757. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4758. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4759. return 0;
  4760. bp->loopback = PHY_LOOPBACK;
  4761. bnx2_set_phy_loopback(bp);
  4762. }
  4763. else
  4764. return -EINVAL;
  4765. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4766. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4767. if (!skb)
  4768. return -ENOMEM;
  4769. packet = skb_put(skb, pkt_size);
  4770. memcpy(packet, bp->dev->dev_addr, ETH_ALEN);
  4771. memset(packet + ETH_ALEN, 0x0, 8);
  4772. for (i = 14; i < pkt_size; i++)
  4773. packet[i] = (unsigned char) (i & 0xff);
  4774. map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
  4775. PCI_DMA_TODEVICE);
  4776. if (dma_mapping_error(&bp->pdev->dev, map)) {
  4777. dev_kfree_skb(skb);
  4778. return -EIO;
  4779. }
  4780. BNX2_WR(bp, BNX2_HC_COMMAND,
  4781. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4782. BNX2_RD(bp, BNX2_HC_COMMAND);
  4783. udelay(5);
  4784. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4785. num_pkts = 0;
  4786. txbd = &txr->tx_desc_ring[BNX2_TX_RING_IDX(txr->tx_prod)];
  4787. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4788. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4789. txbd->tx_bd_mss_nbytes = pkt_size;
  4790. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4791. num_pkts++;
  4792. txr->tx_prod = BNX2_NEXT_TX_BD(txr->tx_prod);
  4793. txr->tx_prod_bseq += pkt_size;
  4794. BNX2_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4795. BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4796. udelay(100);
  4797. BNX2_WR(bp, BNX2_HC_COMMAND,
  4798. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4799. BNX2_RD(bp, BNX2_HC_COMMAND);
  4800. udelay(5);
  4801. dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
  4802. dev_kfree_skb(skb);
  4803. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4804. goto loopback_test_done;
  4805. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4806. if (rx_idx != rx_start_idx + num_pkts) {
  4807. goto loopback_test_done;
  4808. }
  4809. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4810. data = rx_buf->data;
  4811. rx_hdr = get_l2_fhdr(data);
  4812. data = (u8 *)rx_hdr + BNX2_RX_OFFSET;
  4813. dma_sync_single_for_cpu(&bp->pdev->dev,
  4814. dma_unmap_addr(rx_buf, mapping),
  4815. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  4816. if (rx_hdr->l2_fhdr_status &
  4817. (L2_FHDR_ERRORS_BAD_CRC |
  4818. L2_FHDR_ERRORS_PHY_DECODE |
  4819. L2_FHDR_ERRORS_ALIGNMENT |
  4820. L2_FHDR_ERRORS_TOO_SHORT |
  4821. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4822. goto loopback_test_done;
  4823. }
  4824. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4825. goto loopback_test_done;
  4826. }
  4827. for (i = 14; i < pkt_size; i++) {
  4828. if (*(data + i) != (unsigned char) (i & 0xff)) {
  4829. goto loopback_test_done;
  4830. }
  4831. }
  4832. ret = 0;
  4833. loopback_test_done:
  4834. bp->loopback = 0;
  4835. return ret;
  4836. }
  4837. #define BNX2_MAC_LOOPBACK_FAILED 1
  4838. #define BNX2_PHY_LOOPBACK_FAILED 2
  4839. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4840. BNX2_PHY_LOOPBACK_FAILED)
  4841. static int
  4842. bnx2_test_loopback(struct bnx2 *bp)
  4843. {
  4844. int rc = 0;
  4845. if (!netif_running(bp->dev))
  4846. return BNX2_LOOPBACK_FAILED;
  4847. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4848. spin_lock_bh(&bp->phy_lock);
  4849. bnx2_init_phy(bp, 1);
  4850. spin_unlock_bh(&bp->phy_lock);
  4851. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4852. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4853. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4854. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4855. return rc;
  4856. }
  4857. #define NVRAM_SIZE 0x200
  4858. #define CRC32_RESIDUAL 0xdebb20e3
  4859. static int
  4860. bnx2_test_nvram(struct bnx2 *bp)
  4861. {
  4862. __be32 buf[NVRAM_SIZE / 4];
  4863. u8 *data = (u8 *) buf;
  4864. int rc = 0;
  4865. u32 magic, csum;
  4866. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4867. goto test_nvram_done;
  4868. magic = be32_to_cpu(buf[0]);
  4869. if (magic != 0x669955aa) {
  4870. rc = -ENODEV;
  4871. goto test_nvram_done;
  4872. }
  4873. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4874. goto test_nvram_done;
  4875. csum = ether_crc_le(0x100, data);
  4876. if (csum != CRC32_RESIDUAL) {
  4877. rc = -ENODEV;
  4878. goto test_nvram_done;
  4879. }
  4880. csum = ether_crc_le(0x100, data + 0x100);
  4881. if (csum != CRC32_RESIDUAL) {
  4882. rc = -ENODEV;
  4883. }
  4884. test_nvram_done:
  4885. return rc;
  4886. }
  4887. static int
  4888. bnx2_test_link(struct bnx2 *bp)
  4889. {
  4890. u32 bmsr;
  4891. if (!netif_running(bp->dev))
  4892. return -ENODEV;
  4893. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4894. if (bp->link_up)
  4895. return 0;
  4896. return -ENODEV;
  4897. }
  4898. spin_lock_bh(&bp->phy_lock);
  4899. bnx2_enable_bmsr1(bp);
  4900. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4901. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4902. bnx2_disable_bmsr1(bp);
  4903. spin_unlock_bh(&bp->phy_lock);
  4904. if (bmsr & BMSR_LSTATUS) {
  4905. return 0;
  4906. }
  4907. return -ENODEV;
  4908. }
  4909. static int
  4910. bnx2_test_intr(struct bnx2 *bp)
  4911. {
  4912. int i;
  4913. u16 status_idx;
  4914. if (!netif_running(bp->dev))
  4915. return -ENODEV;
  4916. status_idx = BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4917. /* This register is not touched during run-time. */
  4918. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4919. BNX2_RD(bp, BNX2_HC_COMMAND);
  4920. for (i = 0; i < 10; i++) {
  4921. if ((BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4922. status_idx) {
  4923. break;
  4924. }
  4925. msleep_interruptible(10);
  4926. }
  4927. if (i < 10)
  4928. return 0;
  4929. return -ENODEV;
  4930. }
  4931. /* Determining link for parallel detection. */
  4932. static int
  4933. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4934. {
  4935. u32 mode_ctl, an_dbg, exp;
  4936. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4937. return 0;
  4938. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4939. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4940. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4941. return 0;
  4942. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4943. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4944. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4945. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4946. return 0;
  4947. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4948. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4949. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4950. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4951. return 0;
  4952. return 1;
  4953. }
  4954. static void
  4955. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4956. {
  4957. int check_link = 1;
  4958. spin_lock(&bp->phy_lock);
  4959. if (bp->serdes_an_pending) {
  4960. bp->serdes_an_pending--;
  4961. check_link = 0;
  4962. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4963. u32 bmcr;
  4964. bp->current_interval = BNX2_TIMER_INTERVAL;
  4965. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4966. if (bmcr & BMCR_ANENABLE) {
  4967. if (bnx2_5706_serdes_has_link(bp)) {
  4968. bmcr &= ~BMCR_ANENABLE;
  4969. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4970. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4971. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4972. }
  4973. }
  4974. }
  4975. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4976. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4977. u32 phy2;
  4978. bnx2_write_phy(bp, 0x17, 0x0f01);
  4979. bnx2_read_phy(bp, 0x15, &phy2);
  4980. if (phy2 & 0x20) {
  4981. u32 bmcr;
  4982. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4983. bmcr |= BMCR_ANENABLE;
  4984. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4985. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4986. }
  4987. } else
  4988. bp->current_interval = BNX2_TIMER_INTERVAL;
  4989. if (check_link) {
  4990. u32 val;
  4991. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4992. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4993. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4994. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4995. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4996. bnx2_5706s_force_link_dn(bp, 1);
  4997. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4998. } else
  4999. bnx2_set_link(bp);
  5000. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  5001. bnx2_set_link(bp);
  5002. }
  5003. spin_unlock(&bp->phy_lock);
  5004. }
  5005. static void
  5006. bnx2_5708_serdes_timer(struct bnx2 *bp)
  5007. {
  5008. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  5009. return;
  5010. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  5011. bp->serdes_an_pending = 0;
  5012. return;
  5013. }
  5014. spin_lock(&bp->phy_lock);
  5015. if (bp->serdes_an_pending)
  5016. bp->serdes_an_pending--;
  5017. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  5018. u32 bmcr;
  5019. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5020. if (bmcr & BMCR_ANENABLE) {
  5021. bnx2_enable_forced_2g5(bp);
  5022. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  5023. } else {
  5024. bnx2_disable_forced_2g5(bp);
  5025. bp->serdes_an_pending = 2;
  5026. bp->current_interval = BNX2_TIMER_INTERVAL;
  5027. }
  5028. } else
  5029. bp->current_interval = BNX2_TIMER_INTERVAL;
  5030. spin_unlock(&bp->phy_lock);
  5031. }
  5032. static void
  5033. bnx2_timer(unsigned long data)
  5034. {
  5035. struct bnx2 *bp = (struct bnx2 *) data;
  5036. if (!netif_running(bp->dev))
  5037. return;
  5038. if (atomic_read(&bp->intr_sem) != 0)
  5039. goto bnx2_restart_timer;
  5040. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  5041. BNX2_FLAG_USING_MSI)
  5042. bnx2_chk_missed_msi(bp);
  5043. bnx2_send_heart_beat(bp);
  5044. bp->stats_blk->stat_FwRxDrop =
  5045. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  5046. /* workaround occasional corrupted counters */
  5047. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  5048. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  5049. BNX2_HC_COMMAND_STATS_NOW);
  5050. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5051. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  5052. bnx2_5706_serdes_timer(bp);
  5053. else
  5054. bnx2_5708_serdes_timer(bp);
  5055. }
  5056. bnx2_restart_timer:
  5057. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5058. }
  5059. static int
  5060. bnx2_request_irq(struct bnx2 *bp)
  5061. {
  5062. unsigned long flags;
  5063. struct bnx2_irq *irq;
  5064. int rc = 0, i;
  5065. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  5066. flags = 0;
  5067. else
  5068. flags = IRQF_SHARED;
  5069. for (i = 0; i < bp->irq_nvecs; i++) {
  5070. irq = &bp->irq_tbl[i];
  5071. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  5072. &bp->bnx2_napi[i]);
  5073. if (rc)
  5074. break;
  5075. irq->requested = 1;
  5076. }
  5077. return rc;
  5078. }
  5079. static void
  5080. __bnx2_free_irq(struct bnx2 *bp)
  5081. {
  5082. struct bnx2_irq *irq;
  5083. int i;
  5084. for (i = 0; i < bp->irq_nvecs; i++) {
  5085. irq = &bp->irq_tbl[i];
  5086. if (irq->requested)
  5087. free_irq(irq->vector, &bp->bnx2_napi[i]);
  5088. irq->requested = 0;
  5089. }
  5090. }
  5091. static void
  5092. bnx2_free_irq(struct bnx2 *bp)
  5093. {
  5094. __bnx2_free_irq(bp);
  5095. if (bp->flags & BNX2_FLAG_USING_MSI)
  5096. pci_disable_msi(bp->pdev);
  5097. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5098. pci_disable_msix(bp->pdev);
  5099. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  5100. }
  5101. static void
  5102. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5103. {
  5104. int i, total_vecs, rc;
  5105. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5106. struct net_device *dev = bp->dev;
  5107. const int len = sizeof(bp->irq_tbl[0].name);
  5108. bnx2_setup_msix_tbl(bp);
  5109. BNX2_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5110. BNX2_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5111. BNX2_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5112. /* Need to flush the previous three writes to ensure MSI-X
  5113. * is setup properly */
  5114. BNX2_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5115. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5116. msix_ent[i].entry = i;
  5117. msix_ent[i].vector = 0;
  5118. }
  5119. total_vecs = msix_vecs;
  5120. #ifdef BCM_CNIC
  5121. total_vecs++;
  5122. #endif
  5123. rc = -ENOSPC;
  5124. while (total_vecs >= BNX2_MIN_MSIX_VEC) {
  5125. rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
  5126. if (rc <= 0)
  5127. break;
  5128. if (rc > 0)
  5129. total_vecs = rc;
  5130. }
  5131. if (rc != 0)
  5132. return;
  5133. msix_vecs = total_vecs;
  5134. #ifdef BCM_CNIC
  5135. msix_vecs--;
  5136. #endif
  5137. bp->irq_nvecs = msix_vecs;
  5138. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5139. for (i = 0; i < total_vecs; i++) {
  5140. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5141. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5142. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5143. }
  5144. }
  5145. static int
  5146. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5147. {
  5148. int cpus = netif_get_num_default_rss_queues();
  5149. int msix_vecs;
  5150. if (!bp->num_req_rx_rings)
  5151. msix_vecs = max(cpus + 1, bp->num_req_tx_rings);
  5152. else if (!bp->num_req_tx_rings)
  5153. msix_vecs = max(cpus, bp->num_req_rx_rings);
  5154. else
  5155. msix_vecs = max(bp->num_req_rx_rings, bp->num_req_tx_rings);
  5156. msix_vecs = min(msix_vecs, RX_MAX_RINGS);
  5157. bp->irq_tbl[0].handler = bnx2_interrupt;
  5158. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5159. bp->irq_nvecs = 1;
  5160. bp->irq_tbl[0].vector = bp->pdev->irq;
  5161. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  5162. bnx2_enable_msix(bp, msix_vecs);
  5163. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5164. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5165. if (pci_enable_msi(bp->pdev) == 0) {
  5166. bp->flags |= BNX2_FLAG_USING_MSI;
  5167. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  5168. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5169. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5170. } else
  5171. bp->irq_tbl[0].handler = bnx2_msi;
  5172. bp->irq_tbl[0].vector = bp->pdev->irq;
  5173. }
  5174. }
  5175. if (!bp->num_req_tx_rings)
  5176. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5177. else
  5178. bp->num_tx_rings = min(bp->irq_nvecs, bp->num_req_tx_rings);
  5179. if (!bp->num_req_rx_rings)
  5180. bp->num_rx_rings = bp->irq_nvecs;
  5181. else
  5182. bp->num_rx_rings = min(bp->irq_nvecs, bp->num_req_rx_rings);
  5183. netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
  5184. return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
  5185. }
  5186. /* Called with rtnl_lock */
  5187. static int
  5188. bnx2_open(struct net_device *dev)
  5189. {
  5190. struct bnx2 *bp = netdev_priv(dev);
  5191. int rc;
  5192. rc = bnx2_request_firmware(bp);
  5193. if (rc < 0)
  5194. goto out;
  5195. netif_carrier_off(dev);
  5196. bnx2_disable_int(bp);
  5197. rc = bnx2_setup_int_mode(bp, disable_msi);
  5198. if (rc)
  5199. goto open_err;
  5200. bnx2_init_napi(bp);
  5201. bnx2_napi_enable(bp);
  5202. rc = bnx2_alloc_mem(bp);
  5203. if (rc)
  5204. goto open_err;
  5205. rc = bnx2_request_irq(bp);
  5206. if (rc)
  5207. goto open_err;
  5208. rc = bnx2_init_nic(bp, 1);
  5209. if (rc)
  5210. goto open_err;
  5211. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5212. atomic_set(&bp->intr_sem, 0);
  5213. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5214. bnx2_enable_int(bp);
  5215. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5216. /* Test MSI to make sure it is working
  5217. * If MSI test fails, go back to INTx mode
  5218. */
  5219. if (bnx2_test_intr(bp) != 0) {
  5220. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5221. bnx2_disable_int(bp);
  5222. bnx2_free_irq(bp);
  5223. bnx2_setup_int_mode(bp, 1);
  5224. rc = bnx2_init_nic(bp, 0);
  5225. if (!rc)
  5226. rc = bnx2_request_irq(bp);
  5227. if (rc) {
  5228. del_timer_sync(&bp->timer);
  5229. goto open_err;
  5230. }
  5231. bnx2_enable_int(bp);
  5232. }
  5233. }
  5234. if (bp->flags & BNX2_FLAG_USING_MSI)
  5235. netdev_info(dev, "using MSI\n");
  5236. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5237. netdev_info(dev, "using MSIX\n");
  5238. netif_tx_start_all_queues(dev);
  5239. out:
  5240. return rc;
  5241. open_err:
  5242. bnx2_napi_disable(bp);
  5243. bnx2_free_skbs(bp);
  5244. bnx2_free_irq(bp);
  5245. bnx2_free_mem(bp);
  5246. bnx2_del_napi(bp);
  5247. bnx2_release_firmware(bp);
  5248. goto out;
  5249. }
  5250. static void
  5251. bnx2_reset_task(struct work_struct *work)
  5252. {
  5253. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5254. int rc;
  5255. u16 pcicmd;
  5256. rtnl_lock();
  5257. if (!netif_running(bp->dev)) {
  5258. rtnl_unlock();
  5259. return;
  5260. }
  5261. bnx2_netif_stop(bp, true);
  5262. pci_read_config_word(bp->pdev, PCI_COMMAND, &pcicmd);
  5263. if (!(pcicmd & PCI_COMMAND_MEMORY)) {
  5264. /* in case PCI block has reset */
  5265. pci_restore_state(bp->pdev);
  5266. pci_save_state(bp->pdev);
  5267. }
  5268. rc = bnx2_init_nic(bp, 1);
  5269. if (rc) {
  5270. netdev_err(bp->dev, "failed to reset NIC, closing\n");
  5271. bnx2_napi_enable(bp);
  5272. dev_close(bp->dev);
  5273. rtnl_unlock();
  5274. return;
  5275. }
  5276. atomic_set(&bp->intr_sem, 1);
  5277. bnx2_netif_start(bp, true);
  5278. rtnl_unlock();
  5279. }
  5280. #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
  5281. static void
  5282. bnx2_dump_ftq(struct bnx2 *bp)
  5283. {
  5284. int i;
  5285. u32 reg, bdidx, cid, valid;
  5286. struct net_device *dev = bp->dev;
  5287. static const struct ftq_reg {
  5288. char *name;
  5289. u32 off;
  5290. } ftq_arr[] = {
  5291. BNX2_FTQ_ENTRY(RV2P_P),
  5292. BNX2_FTQ_ENTRY(RV2P_T),
  5293. BNX2_FTQ_ENTRY(RV2P_M),
  5294. BNX2_FTQ_ENTRY(TBDR_),
  5295. BNX2_FTQ_ENTRY(TDMA_),
  5296. BNX2_FTQ_ENTRY(TXP_),
  5297. BNX2_FTQ_ENTRY(TXP_),
  5298. BNX2_FTQ_ENTRY(TPAT_),
  5299. BNX2_FTQ_ENTRY(RXP_C),
  5300. BNX2_FTQ_ENTRY(RXP_),
  5301. BNX2_FTQ_ENTRY(COM_COMXQ_),
  5302. BNX2_FTQ_ENTRY(COM_COMTQ_),
  5303. BNX2_FTQ_ENTRY(COM_COMQ_),
  5304. BNX2_FTQ_ENTRY(CP_CPQ_),
  5305. };
  5306. netdev_err(dev, "<--- start FTQ dump --->\n");
  5307. for (i = 0; i < ARRAY_SIZE(ftq_arr); i++)
  5308. netdev_err(dev, "%s %08x\n", ftq_arr[i].name,
  5309. bnx2_reg_rd_ind(bp, ftq_arr[i].off));
  5310. netdev_err(dev, "CPU states:\n");
  5311. for (reg = BNX2_TXP_CPU_MODE; reg <= BNX2_CP_CPU_MODE; reg += 0x40000)
  5312. netdev_err(dev, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
  5313. reg, bnx2_reg_rd_ind(bp, reg),
  5314. bnx2_reg_rd_ind(bp, reg + 4),
  5315. bnx2_reg_rd_ind(bp, reg + 8),
  5316. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5317. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5318. bnx2_reg_rd_ind(bp, reg + 0x20));
  5319. netdev_err(dev, "<--- end FTQ dump --->\n");
  5320. netdev_err(dev, "<--- start TBDC dump --->\n");
  5321. netdev_err(dev, "TBDC free cnt: %ld\n",
  5322. BNX2_RD(bp, BNX2_TBDC_STATUS) & BNX2_TBDC_STATUS_FREE_CNT);
  5323. netdev_err(dev, "LINE CID BIDX CMD VALIDS\n");
  5324. for (i = 0; i < 0x20; i++) {
  5325. int j = 0;
  5326. BNX2_WR(bp, BNX2_TBDC_BD_ADDR, i);
  5327. BNX2_WR(bp, BNX2_TBDC_CAM_OPCODE,
  5328. BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ);
  5329. BNX2_WR(bp, BNX2_TBDC_COMMAND, BNX2_TBDC_COMMAND_CMD_REG_ARB);
  5330. while ((BNX2_RD(bp, BNX2_TBDC_COMMAND) &
  5331. BNX2_TBDC_COMMAND_CMD_REG_ARB) && j < 100)
  5332. j++;
  5333. cid = BNX2_RD(bp, BNX2_TBDC_CID);
  5334. bdidx = BNX2_RD(bp, BNX2_TBDC_BIDX);
  5335. valid = BNX2_RD(bp, BNX2_TBDC_CAM_OPCODE);
  5336. netdev_err(dev, "%02x %06x %04lx %02x [%x]\n",
  5337. i, cid, bdidx & BNX2_TBDC_BDIDX_BDIDX,
  5338. bdidx >> 24, (valid >> 8) & 0x0ff);
  5339. }
  5340. netdev_err(dev, "<--- end TBDC dump --->\n");
  5341. }
  5342. static void
  5343. bnx2_dump_state(struct bnx2 *bp)
  5344. {
  5345. struct net_device *dev = bp->dev;
  5346. u32 val1, val2;
  5347. pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
  5348. netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
  5349. atomic_read(&bp->intr_sem), val1);
  5350. pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
  5351. pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
  5352. netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
  5353. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
  5354. BNX2_RD(bp, BNX2_EMAC_TX_STATUS),
  5355. BNX2_RD(bp, BNX2_EMAC_RX_STATUS));
  5356. netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
  5357. BNX2_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5358. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5359. BNX2_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5360. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5361. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5362. BNX2_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5363. }
  5364. static void
  5365. bnx2_tx_timeout(struct net_device *dev)
  5366. {
  5367. struct bnx2 *bp = netdev_priv(dev);
  5368. bnx2_dump_ftq(bp);
  5369. bnx2_dump_state(bp);
  5370. bnx2_dump_mcp_state(bp);
  5371. /* This allows the netif to be shutdown gracefully before resetting */
  5372. schedule_work(&bp->reset_task);
  5373. }
  5374. /* Called with netif_tx_lock.
  5375. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5376. * netif_wake_queue().
  5377. */
  5378. static netdev_tx_t
  5379. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5380. {
  5381. struct bnx2 *bp = netdev_priv(dev);
  5382. dma_addr_t mapping;
  5383. struct bnx2_tx_bd *txbd;
  5384. struct bnx2_sw_tx_bd *tx_buf;
  5385. u32 len, vlan_tag_flags, last_frag, mss;
  5386. u16 prod, ring_prod;
  5387. int i;
  5388. struct bnx2_napi *bnapi;
  5389. struct bnx2_tx_ring_info *txr;
  5390. struct netdev_queue *txq;
  5391. /* Determine which tx ring we will be placed on */
  5392. i = skb_get_queue_mapping(skb);
  5393. bnapi = &bp->bnx2_napi[i];
  5394. txr = &bnapi->tx_ring;
  5395. txq = netdev_get_tx_queue(dev, i);
  5396. if (unlikely(bnx2_tx_avail(bp, txr) <
  5397. (skb_shinfo(skb)->nr_frags + 1))) {
  5398. netif_tx_stop_queue(txq);
  5399. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5400. return NETDEV_TX_BUSY;
  5401. }
  5402. len = skb_headlen(skb);
  5403. prod = txr->tx_prod;
  5404. ring_prod = BNX2_TX_RING_IDX(prod);
  5405. vlan_tag_flags = 0;
  5406. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5407. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5408. }
  5409. if (vlan_tx_tag_present(skb)) {
  5410. vlan_tag_flags |=
  5411. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5412. }
  5413. if ((mss = skb_shinfo(skb)->gso_size)) {
  5414. u32 tcp_opt_len;
  5415. struct iphdr *iph;
  5416. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5417. tcp_opt_len = tcp_optlen(skb);
  5418. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5419. u32 tcp_off = skb_transport_offset(skb) -
  5420. sizeof(struct ipv6hdr) - ETH_HLEN;
  5421. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5422. TX_BD_FLAGS_SW_FLAGS;
  5423. if (likely(tcp_off == 0))
  5424. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5425. else {
  5426. tcp_off >>= 3;
  5427. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5428. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5429. ((tcp_off & 0x10) <<
  5430. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5431. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5432. }
  5433. } else {
  5434. iph = ip_hdr(skb);
  5435. if (tcp_opt_len || (iph->ihl > 5)) {
  5436. vlan_tag_flags |= ((iph->ihl - 5) +
  5437. (tcp_opt_len >> 2)) << 8;
  5438. }
  5439. }
  5440. } else
  5441. mss = 0;
  5442. mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
  5443. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  5444. dev_kfree_skb(skb);
  5445. return NETDEV_TX_OK;
  5446. }
  5447. tx_buf = &txr->tx_buf_ring[ring_prod];
  5448. tx_buf->skb = skb;
  5449. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5450. txbd = &txr->tx_desc_ring[ring_prod];
  5451. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5452. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5453. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5454. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5455. last_frag = skb_shinfo(skb)->nr_frags;
  5456. tx_buf->nr_frags = last_frag;
  5457. tx_buf->is_gso = skb_is_gso(skb);
  5458. for (i = 0; i < last_frag; i++) {
  5459. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5460. prod = BNX2_NEXT_TX_BD(prod);
  5461. ring_prod = BNX2_TX_RING_IDX(prod);
  5462. txbd = &txr->tx_desc_ring[ring_prod];
  5463. len = skb_frag_size(frag);
  5464. mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, len,
  5465. DMA_TO_DEVICE);
  5466. if (dma_mapping_error(&bp->pdev->dev, mapping))
  5467. goto dma_error;
  5468. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5469. mapping);
  5470. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5471. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5472. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5473. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5474. }
  5475. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5476. /* Sync BD data before updating TX mailbox */
  5477. wmb();
  5478. netdev_tx_sent_queue(txq, skb->len);
  5479. prod = BNX2_NEXT_TX_BD(prod);
  5480. txr->tx_prod_bseq += skb->len;
  5481. BNX2_WR16(bp, txr->tx_bidx_addr, prod);
  5482. BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5483. mmiowb();
  5484. txr->tx_prod = prod;
  5485. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5486. netif_tx_stop_queue(txq);
  5487. /* netif_tx_stop_queue() must be done before checking
  5488. * tx index in bnx2_tx_avail() below, because in
  5489. * bnx2_tx_int(), we update tx index before checking for
  5490. * netif_tx_queue_stopped().
  5491. */
  5492. smp_mb();
  5493. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5494. netif_tx_wake_queue(txq);
  5495. }
  5496. return NETDEV_TX_OK;
  5497. dma_error:
  5498. /* save value of frag that failed */
  5499. last_frag = i;
  5500. /* start back at beginning and unmap skb */
  5501. prod = txr->tx_prod;
  5502. ring_prod = BNX2_TX_RING_IDX(prod);
  5503. tx_buf = &txr->tx_buf_ring[ring_prod];
  5504. tx_buf->skb = NULL;
  5505. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5506. skb_headlen(skb), PCI_DMA_TODEVICE);
  5507. /* unmap remaining mapped pages */
  5508. for (i = 0; i < last_frag; i++) {
  5509. prod = BNX2_NEXT_TX_BD(prod);
  5510. ring_prod = BNX2_TX_RING_IDX(prod);
  5511. tx_buf = &txr->tx_buf_ring[ring_prod];
  5512. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5513. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  5514. PCI_DMA_TODEVICE);
  5515. }
  5516. dev_kfree_skb(skb);
  5517. return NETDEV_TX_OK;
  5518. }
  5519. /* Called with rtnl_lock */
  5520. static int
  5521. bnx2_close(struct net_device *dev)
  5522. {
  5523. struct bnx2 *bp = netdev_priv(dev);
  5524. bnx2_disable_int_sync(bp);
  5525. bnx2_napi_disable(bp);
  5526. netif_tx_disable(dev);
  5527. del_timer_sync(&bp->timer);
  5528. bnx2_shutdown_chip(bp);
  5529. bnx2_free_irq(bp);
  5530. bnx2_free_skbs(bp);
  5531. bnx2_free_mem(bp);
  5532. bnx2_del_napi(bp);
  5533. bp->link_up = 0;
  5534. netif_carrier_off(bp->dev);
  5535. return 0;
  5536. }
  5537. static void
  5538. bnx2_save_stats(struct bnx2 *bp)
  5539. {
  5540. u32 *hw_stats = (u32 *) bp->stats_blk;
  5541. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5542. int i;
  5543. /* The 1st 10 counters are 64-bit counters */
  5544. for (i = 0; i < 20; i += 2) {
  5545. u32 hi;
  5546. u64 lo;
  5547. hi = temp_stats[i] + hw_stats[i];
  5548. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5549. if (lo > 0xffffffff)
  5550. hi++;
  5551. temp_stats[i] = hi;
  5552. temp_stats[i + 1] = lo & 0xffffffff;
  5553. }
  5554. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5555. temp_stats[i] += hw_stats[i];
  5556. }
  5557. #define GET_64BIT_NET_STATS64(ctr) \
  5558. (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
  5559. #define GET_64BIT_NET_STATS(ctr) \
  5560. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5561. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5562. #define GET_32BIT_NET_STATS(ctr) \
  5563. (unsigned long) (bp->stats_blk->ctr + \
  5564. bp->temp_stats_blk->ctr)
  5565. static struct rtnl_link_stats64 *
  5566. bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
  5567. {
  5568. struct bnx2 *bp = netdev_priv(dev);
  5569. if (bp->stats_blk == NULL)
  5570. return net_stats;
  5571. net_stats->rx_packets =
  5572. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5573. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5574. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5575. net_stats->tx_packets =
  5576. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5577. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5578. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5579. net_stats->rx_bytes =
  5580. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5581. net_stats->tx_bytes =
  5582. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5583. net_stats->multicast =
  5584. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
  5585. net_stats->collisions =
  5586. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5587. net_stats->rx_length_errors =
  5588. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5589. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5590. net_stats->rx_over_errors =
  5591. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5592. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5593. net_stats->rx_frame_errors =
  5594. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5595. net_stats->rx_crc_errors =
  5596. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5597. net_stats->rx_errors = net_stats->rx_length_errors +
  5598. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5599. net_stats->rx_crc_errors;
  5600. net_stats->tx_aborted_errors =
  5601. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5602. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5603. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
  5604. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
  5605. net_stats->tx_carrier_errors = 0;
  5606. else {
  5607. net_stats->tx_carrier_errors =
  5608. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5609. }
  5610. net_stats->tx_errors =
  5611. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5612. net_stats->tx_aborted_errors +
  5613. net_stats->tx_carrier_errors;
  5614. net_stats->rx_missed_errors =
  5615. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5616. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5617. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5618. return net_stats;
  5619. }
  5620. /* All ethtool functions called with rtnl_lock */
  5621. static int
  5622. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5623. {
  5624. struct bnx2 *bp = netdev_priv(dev);
  5625. int support_serdes = 0, support_copper = 0;
  5626. cmd->supported = SUPPORTED_Autoneg;
  5627. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5628. support_serdes = 1;
  5629. support_copper = 1;
  5630. } else if (bp->phy_port == PORT_FIBRE)
  5631. support_serdes = 1;
  5632. else
  5633. support_copper = 1;
  5634. if (support_serdes) {
  5635. cmd->supported |= SUPPORTED_1000baseT_Full |
  5636. SUPPORTED_FIBRE;
  5637. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5638. cmd->supported |= SUPPORTED_2500baseX_Full;
  5639. }
  5640. if (support_copper) {
  5641. cmd->supported |= SUPPORTED_10baseT_Half |
  5642. SUPPORTED_10baseT_Full |
  5643. SUPPORTED_100baseT_Half |
  5644. SUPPORTED_100baseT_Full |
  5645. SUPPORTED_1000baseT_Full |
  5646. SUPPORTED_TP;
  5647. }
  5648. spin_lock_bh(&bp->phy_lock);
  5649. cmd->port = bp->phy_port;
  5650. cmd->advertising = bp->advertising;
  5651. if (bp->autoneg & AUTONEG_SPEED) {
  5652. cmd->autoneg = AUTONEG_ENABLE;
  5653. } else {
  5654. cmd->autoneg = AUTONEG_DISABLE;
  5655. }
  5656. if (netif_carrier_ok(dev)) {
  5657. ethtool_cmd_speed_set(cmd, bp->line_speed);
  5658. cmd->duplex = bp->duplex;
  5659. if (!(bp->phy_flags & BNX2_PHY_FLAG_SERDES)) {
  5660. if (bp->phy_flags & BNX2_PHY_FLAG_MDIX)
  5661. cmd->eth_tp_mdix = ETH_TP_MDI_X;
  5662. else
  5663. cmd->eth_tp_mdix = ETH_TP_MDI;
  5664. }
  5665. }
  5666. else {
  5667. ethtool_cmd_speed_set(cmd, -1);
  5668. cmd->duplex = -1;
  5669. }
  5670. spin_unlock_bh(&bp->phy_lock);
  5671. cmd->transceiver = XCVR_INTERNAL;
  5672. cmd->phy_address = bp->phy_addr;
  5673. return 0;
  5674. }
  5675. static int
  5676. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5677. {
  5678. struct bnx2 *bp = netdev_priv(dev);
  5679. u8 autoneg = bp->autoneg;
  5680. u8 req_duplex = bp->req_duplex;
  5681. u16 req_line_speed = bp->req_line_speed;
  5682. u32 advertising = bp->advertising;
  5683. int err = -EINVAL;
  5684. spin_lock_bh(&bp->phy_lock);
  5685. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5686. goto err_out_unlock;
  5687. if (cmd->port != bp->phy_port &&
  5688. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5689. goto err_out_unlock;
  5690. /* If device is down, we can store the settings only if the user
  5691. * is setting the currently active port.
  5692. */
  5693. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5694. goto err_out_unlock;
  5695. if (cmd->autoneg == AUTONEG_ENABLE) {
  5696. autoneg |= AUTONEG_SPEED;
  5697. advertising = cmd->advertising;
  5698. if (cmd->port == PORT_TP) {
  5699. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5700. if (!advertising)
  5701. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5702. } else {
  5703. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5704. if (!advertising)
  5705. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5706. }
  5707. advertising |= ADVERTISED_Autoneg;
  5708. }
  5709. else {
  5710. u32 speed = ethtool_cmd_speed(cmd);
  5711. if (cmd->port == PORT_FIBRE) {
  5712. if ((speed != SPEED_1000 &&
  5713. speed != SPEED_2500) ||
  5714. (cmd->duplex != DUPLEX_FULL))
  5715. goto err_out_unlock;
  5716. if (speed == SPEED_2500 &&
  5717. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5718. goto err_out_unlock;
  5719. } else if (speed == SPEED_1000 || speed == SPEED_2500)
  5720. goto err_out_unlock;
  5721. autoneg &= ~AUTONEG_SPEED;
  5722. req_line_speed = speed;
  5723. req_duplex = cmd->duplex;
  5724. advertising = 0;
  5725. }
  5726. bp->autoneg = autoneg;
  5727. bp->advertising = advertising;
  5728. bp->req_line_speed = req_line_speed;
  5729. bp->req_duplex = req_duplex;
  5730. err = 0;
  5731. /* If device is down, the new settings will be picked up when it is
  5732. * brought up.
  5733. */
  5734. if (netif_running(dev))
  5735. err = bnx2_setup_phy(bp, cmd->port);
  5736. err_out_unlock:
  5737. spin_unlock_bh(&bp->phy_lock);
  5738. return err;
  5739. }
  5740. static void
  5741. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5742. {
  5743. struct bnx2 *bp = netdev_priv(dev);
  5744. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5745. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5746. strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info));
  5747. strlcpy(info->fw_version, bp->fw_version, sizeof(info->fw_version));
  5748. }
  5749. #define BNX2_REGDUMP_LEN (32 * 1024)
  5750. static int
  5751. bnx2_get_regs_len(struct net_device *dev)
  5752. {
  5753. return BNX2_REGDUMP_LEN;
  5754. }
  5755. static void
  5756. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5757. {
  5758. u32 *p = _p, i, offset;
  5759. u8 *orig_p = _p;
  5760. struct bnx2 *bp = netdev_priv(dev);
  5761. static const u32 reg_boundaries[] = {
  5762. 0x0000, 0x0098, 0x0400, 0x045c,
  5763. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5764. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5765. 0x1040, 0x1048, 0x1080, 0x10a4,
  5766. 0x1400, 0x1490, 0x1498, 0x14f0,
  5767. 0x1500, 0x155c, 0x1580, 0x15dc,
  5768. 0x1600, 0x1658, 0x1680, 0x16d8,
  5769. 0x1800, 0x1820, 0x1840, 0x1854,
  5770. 0x1880, 0x1894, 0x1900, 0x1984,
  5771. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5772. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5773. 0x2000, 0x2030, 0x23c0, 0x2400,
  5774. 0x2800, 0x2820, 0x2830, 0x2850,
  5775. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5776. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5777. 0x4080, 0x4090, 0x43c0, 0x4458,
  5778. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5779. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5780. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5781. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5782. 0x6800, 0x6848, 0x684c, 0x6860,
  5783. 0x6888, 0x6910, 0x8000
  5784. };
  5785. regs->version = 0;
  5786. memset(p, 0, BNX2_REGDUMP_LEN);
  5787. if (!netif_running(bp->dev))
  5788. return;
  5789. i = 0;
  5790. offset = reg_boundaries[0];
  5791. p += offset;
  5792. while (offset < BNX2_REGDUMP_LEN) {
  5793. *p++ = BNX2_RD(bp, offset);
  5794. offset += 4;
  5795. if (offset == reg_boundaries[i + 1]) {
  5796. offset = reg_boundaries[i + 2];
  5797. p = (u32 *) (orig_p + offset);
  5798. i += 2;
  5799. }
  5800. }
  5801. }
  5802. static void
  5803. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5804. {
  5805. struct bnx2 *bp = netdev_priv(dev);
  5806. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5807. wol->supported = 0;
  5808. wol->wolopts = 0;
  5809. }
  5810. else {
  5811. wol->supported = WAKE_MAGIC;
  5812. if (bp->wol)
  5813. wol->wolopts = WAKE_MAGIC;
  5814. else
  5815. wol->wolopts = 0;
  5816. }
  5817. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5818. }
  5819. static int
  5820. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5821. {
  5822. struct bnx2 *bp = netdev_priv(dev);
  5823. if (wol->wolopts & ~WAKE_MAGIC)
  5824. return -EINVAL;
  5825. if (wol->wolopts & WAKE_MAGIC) {
  5826. if (bp->flags & BNX2_FLAG_NO_WOL)
  5827. return -EINVAL;
  5828. bp->wol = 1;
  5829. }
  5830. else {
  5831. bp->wol = 0;
  5832. }
  5833. device_set_wakeup_enable(&bp->pdev->dev, bp->wol);
  5834. return 0;
  5835. }
  5836. static int
  5837. bnx2_nway_reset(struct net_device *dev)
  5838. {
  5839. struct bnx2 *bp = netdev_priv(dev);
  5840. u32 bmcr;
  5841. if (!netif_running(dev))
  5842. return -EAGAIN;
  5843. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5844. return -EINVAL;
  5845. }
  5846. spin_lock_bh(&bp->phy_lock);
  5847. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5848. int rc;
  5849. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5850. spin_unlock_bh(&bp->phy_lock);
  5851. return rc;
  5852. }
  5853. /* Force a link down visible on the other side */
  5854. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5855. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5856. spin_unlock_bh(&bp->phy_lock);
  5857. msleep(20);
  5858. spin_lock_bh(&bp->phy_lock);
  5859. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5860. bp->serdes_an_pending = 1;
  5861. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5862. }
  5863. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5864. bmcr &= ~BMCR_LOOPBACK;
  5865. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5866. spin_unlock_bh(&bp->phy_lock);
  5867. return 0;
  5868. }
  5869. static u32
  5870. bnx2_get_link(struct net_device *dev)
  5871. {
  5872. struct bnx2 *bp = netdev_priv(dev);
  5873. return bp->link_up;
  5874. }
  5875. static int
  5876. bnx2_get_eeprom_len(struct net_device *dev)
  5877. {
  5878. struct bnx2 *bp = netdev_priv(dev);
  5879. if (bp->flash_info == NULL)
  5880. return 0;
  5881. return (int) bp->flash_size;
  5882. }
  5883. static int
  5884. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5885. u8 *eebuf)
  5886. {
  5887. struct bnx2 *bp = netdev_priv(dev);
  5888. int rc;
  5889. /* parameters already validated in ethtool_get_eeprom */
  5890. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5891. return rc;
  5892. }
  5893. static int
  5894. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5895. u8 *eebuf)
  5896. {
  5897. struct bnx2 *bp = netdev_priv(dev);
  5898. int rc;
  5899. /* parameters already validated in ethtool_set_eeprom */
  5900. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5901. return rc;
  5902. }
  5903. static int
  5904. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5905. {
  5906. struct bnx2 *bp = netdev_priv(dev);
  5907. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5908. coal->rx_coalesce_usecs = bp->rx_ticks;
  5909. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5910. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5911. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5912. coal->tx_coalesce_usecs = bp->tx_ticks;
  5913. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5914. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5915. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5916. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5917. return 0;
  5918. }
  5919. static int
  5920. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5921. {
  5922. struct bnx2 *bp = netdev_priv(dev);
  5923. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5924. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5925. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5926. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5927. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5928. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5929. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5930. if (bp->rx_quick_cons_trip_int > 0xff)
  5931. bp->rx_quick_cons_trip_int = 0xff;
  5932. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5933. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5934. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5935. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5936. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5937. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5938. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5939. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5940. 0xff;
  5941. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5942. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5943. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5944. bp->stats_ticks = USEC_PER_SEC;
  5945. }
  5946. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5947. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5948. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5949. if (netif_running(bp->dev)) {
  5950. bnx2_netif_stop(bp, true);
  5951. bnx2_init_nic(bp, 0);
  5952. bnx2_netif_start(bp, true);
  5953. }
  5954. return 0;
  5955. }
  5956. static void
  5957. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5958. {
  5959. struct bnx2 *bp = netdev_priv(dev);
  5960. ering->rx_max_pending = BNX2_MAX_TOTAL_RX_DESC_CNT;
  5961. ering->rx_jumbo_max_pending = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
  5962. ering->rx_pending = bp->rx_ring_size;
  5963. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5964. ering->tx_max_pending = BNX2_MAX_TX_DESC_CNT;
  5965. ering->tx_pending = bp->tx_ring_size;
  5966. }
  5967. static int
  5968. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx, bool reset_irq)
  5969. {
  5970. if (netif_running(bp->dev)) {
  5971. /* Reset will erase chipset stats; save them */
  5972. bnx2_save_stats(bp);
  5973. bnx2_netif_stop(bp, true);
  5974. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5975. if (reset_irq) {
  5976. bnx2_free_irq(bp);
  5977. bnx2_del_napi(bp);
  5978. } else {
  5979. __bnx2_free_irq(bp);
  5980. }
  5981. bnx2_free_skbs(bp);
  5982. bnx2_free_mem(bp);
  5983. }
  5984. bnx2_set_rx_ring_size(bp, rx);
  5985. bp->tx_ring_size = tx;
  5986. if (netif_running(bp->dev)) {
  5987. int rc = 0;
  5988. if (reset_irq) {
  5989. rc = bnx2_setup_int_mode(bp, disable_msi);
  5990. bnx2_init_napi(bp);
  5991. }
  5992. if (!rc)
  5993. rc = bnx2_alloc_mem(bp);
  5994. if (!rc)
  5995. rc = bnx2_request_irq(bp);
  5996. if (!rc)
  5997. rc = bnx2_init_nic(bp, 0);
  5998. if (rc) {
  5999. bnx2_napi_enable(bp);
  6000. dev_close(bp->dev);
  6001. return rc;
  6002. }
  6003. #ifdef BCM_CNIC
  6004. mutex_lock(&bp->cnic_lock);
  6005. /* Let cnic know about the new status block. */
  6006. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  6007. bnx2_setup_cnic_irq_info(bp);
  6008. mutex_unlock(&bp->cnic_lock);
  6009. #endif
  6010. bnx2_netif_start(bp, true);
  6011. }
  6012. return 0;
  6013. }
  6014. static int
  6015. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  6016. {
  6017. struct bnx2 *bp = netdev_priv(dev);
  6018. int rc;
  6019. if ((ering->rx_pending > BNX2_MAX_TOTAL_RX_DESC_CNT) ||
  6020. (ering->tx_pending > BNX2_MAX_TX_DESC_CNT) ||
  6021. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  6022. return -EINVAL;
  6023. }
  6024. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending,
  6025. false);
  6026. return rc;
  6027. }
  6028. static void
  6029. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  6030. {
  6031. struct bnx2 *bp = netdev_priv(dev);
  6032. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  6033. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  6034. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  6035. }
  6036. static int
  6037. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  6038. {
  6039. struct bnx2 *bp = netdev_priv(dev);
  6040. bp->req_flow_ctrl = 0;
  6041. if (epause->rx_pause)
  6042. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  6043. if (epause->tx_pause)
  6044. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  6045. if (epause->autoneg) {
  6046. bp->autoneg |= AUTONEG_FLOW_CTRL;
  6047. }
  6048. else {
  6049. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  6050. }
  6051. if (netif_running(dev)) {
  6052. spin_lock_bh(&bp->phy_lock);
  6053. bnx2_setup_phy(bp, bp->phy_port);
  6054. spin_unlock_bh(&bp->phy_lock);
  6055. }
  6056. return 0;
  6057. }
  6058. static struct {
  6059. char string[ETH_GSTRING_LEN];
  6060. } bnx2_stats_str_arr[] = {
  6061. { "rx_bytes" },
  6062. { "rx_error_bytes" },
  6063. { "tx_bytes" },
  6064. { "tx_error_bytes" },
  6065. { "rx_ucast_packets" },
  6066. { "rx_mcast_packets" },
  6067. { "rx_bcast_packets" },
  6068. { "tx_ucast_packets" },
  6069. { "tx_mcast_packets" },
  6070. { "tx_bcast_packets" },
  6071. { "tx_mac_errors" },
  6072. { "tx_carrier_errors" },
  6073. { "rx_crc_errors" },
  6074. { "rx_align_errors" },
  6075. { "tx_single_collisions" },
  6076. { "tx_multi_collisions" },
  6077. { "tx_deferred" },
  6078. { "tx_excess_collisions" },
  6079. { "tx_late_collisions" },
  6080. { "tx_total_collisions" },
  6081. { "rx_fragments" },
  6082. { "rx_jabbers" },
  6083. { "rx_undersize_packets" },
  6084. { "rx_oversize_packets" },
  6085. { "rx_64_byte_packets" },
  6086. { "rx_65_to_127_byte_packets" },
  6087. { "rx_128_to_255_byte_packets" },
  6088. { "rx_256_to_511_byte_packets" },
  6089. { "rx_512_to_1023_byte_packets" },
  6090. { "rx_1024_to_1522_byte_packets" },
  6091. { "rx_1523_to_9022_byte_packets" },
  6092. { "tx_64_byte_packets" },
  6093. { "tx_65_to_127_byte_packets" },
  6094. { "tx_128_to_255_byte_packets" },
  6095. { "tx_256_to_511_byte_packets" },
  6096. { "tx_512_to_1023_byte_packets" },
  6097. { "tx_1024_to_1522_byte_packets" },
  6098. { "tx_1523_to_9022_byte_packets" },
  6099. { "rx_xon_frames" },
  6100. { "rx_xoff_frames" },
  6101. { "tx_xon_frames" },
  6102. { "tx_xoff_frames" },
  6103. { "rx_mac_ctrl_frames" },
  6104. { "rx_filtered_packets" },
  6105. { "rx_ftq_discards" },
  6106. { "rx_discards" },
  6107. { "rx_fw_discards" },
  6108. };
  6109. #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
  6110. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  6111. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  6112. STATS_OFFSET32(stat_IfHCInOctets_hi),
  6113. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  6114. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  6115. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  6116. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  6117. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  6118. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  6119. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  6120. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  6121. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  6122. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  6123. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  6124. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  6125. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  6126. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  6127. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  6128. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  6129. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  6130. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  6131. STATS_OFFSET32(stat_EtherStatsCollisions),
  6132. STATS_OFFSET32(stat_EtherStatsFragments),
  6133. STATS_OFFSET32(stat_EtherStatsJabbers),
  6134. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  6135. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  6136. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  6137. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  6138. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  6139. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  6140. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  6141. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  6142. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  6143. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  6144. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  6145. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  6146. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  6147. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  6148. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  6149. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  6150. STATS_OFFSET32(stat_XonPauseFramesReceived),
  6151. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  6152. STATS_OFFSET32(stat_OutXonSent),
  6153. STATS_OFFSET32(stat_OutXoffSent),
  6154. STATS_OFFSET32(stat_MacControlFramesReceived),
  6155. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  6156. STATS_OFFSET32(stat_IfInFTQDiscards),
  6157. STATS_OFFSET32(stat_IfInMBUFDiscards),
  6158. STATS_OFFSET32(stat_FwRxDrop),
  6159. };
  6160. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  6161. * skipped because of errata.
  6162. */
  6163. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  6164. 8,0,8,8,8,8,8,8,8,8,
  6165. 4,0,4,4,4,4,4,4,4,4,
  6166. 4,4,4,4,4,4,4,4,4,4,
  6167. 4,4,4,4,4,4,4,4,4,4,
  6168. 4,4,4,4,4,4,4,
  6169. };
  6170. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  6171. 8,0,8,8,8,8,8,8,8,8,
  6172. 4,4,4,4,4,4,4,4,4,4,
  6173. 4,4,4,4,4,4,4,4,4,4,
  6174. 4,4,4,4,4,4,4,4,4,4,
  6175. 4,4,4,4,4,4,4,
  6176. };
  6177. #define BNX2_NUM_TESTS 6
  6178. static struct {
  6179. char string[ETH_GSTRING_LEN];
  6180. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6181. { "register_test (offline)" },
  6182. { "memory_test (offline)" },
  6183. { "loopback_test (offline)" },
  6184. { "nvram_test (online)" },
  6185. { "interrupt_test (online)" },
  6186. { "link_test (online)" },
  6187. };
  6188. static int
  6189. bnx2_get_sset_count(struct net_device *dev, int sset)
  6190. {
  6191. switch (sset) {
  6192. case ETH_SS_TEST:
  6193. return BNX2_NUM_TESTS;
  6194. case ETH_SS_STATS:
  6195. return BNX2_NUM_STATS;
  6196. default:
  6197. return -EOPNOTSUPP;
  6198. }
  6199. }
  6200. static void
  6201. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6202. {
  6203. struct bnx2 *bp = netdev_priv(dev);
  6204. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6205. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6206. int i;
  6207. bnx2_netif_stop(bp, true);
  6208. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6209. bnx2_free_skbs(bp);
  6210. if (bnx2_test_registers(bp) != 0) {
  6211. buf[0] = 1;
  6212. etest->flags |= ETH_TEST_FL_FAILED;
  6213. }
  6214. if (bnx2_test_memory(bp) != 0) {
  6215. buf[1] = 1;
  6216. etest->flags |= ETH_TEST_FL_FAILED;
  6217. }
  6218. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6219. etest->flags |= ETH_TEST_FL_FAILED;
  6220. if (!netif_running(bp->dev))
  6221. bnx2_shutdown_chip(bp);
  6222. else {
  6223. bnx2_init_nic(bp, 1);
  6224. bnx2_netif_start(bp, true);
  6225. }
  6226. /* wait for link up */
  6227. for (i = 0; i < 7; i++) {
  6228. if (bp->link_up)
  6229. break;
  6230. msleep_interruptible(1000);
  6231. }
  6232. }
  6233. if (bnx2_test_nvram(bp) != 0) {
  6234. buf[3] = 1;
  6235. etest->flags |= ETH_TEST_FL_FAILED;
  6236. }
  6237. if (bnx2_test_intr(bp) != 0) {
  6238. buf[4] = 1;
  6239. etest->flags |= ETH_TEST_FL_FAILED;
  6240. }
  6241. if (bnx2_test_link(bp) != 0) {
  6242. buf[5] = 1;
  6243. etest->flags |= ETH_TEST_FL_FAILED;
  6244. }
  6245. }
  6246. static void
  6247. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6248. {
  6249. switch (stringset) {
  6250. case ETH_SS_STATS:
  6251. memcpy(buf, bnx2_stats_str_arr,
  6252. sizeof(bnx2_stats_str_arr));
  6253. break;
  6254. case ETH_SS_TEST:
  6255. memcpy(buf, bnx2_tests_str_arr,
  6256. sizeof(bnx2_tests_str_arr));
  6257. break;
  6258. }
  6259. }
  6260. static void
  6261. bnx2_get_ethtool_stats(struct net_device *dev,
  6262. struct ethtool_stats *stats, u64 *buf)
  6263. {
  6264. struct bnx2 *bp = netdev_priv(dev);
  6265. int i;
  6266. u32 *hw_stats = (u32 *) bp->stats_blk;
  6267. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6268. u8 *stats_len_arr = NULL;
  6269. if (hw_stats == NULL) {
  6270. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6271. return;
  6272. }
  6273. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  6274. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) ||
  6275. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A2) ||
  6276. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
  6277. stats_len_arr = bnx2_5706_stats_len_arr;
  6278. else
  6279. stats_len_arr = bnx2_5708_stats_len_arr;
  6280. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6281. unsigned long offset;
  6282. if (stats_len_arr[i] == 0) {
  6283. /* skip this counter */
  6284. buf[i] = 0;
  6285. continue;
  6286. }
  6287. offset = bnx2_stats_offset_arr[i];
  6288. if (stats_len_arr[i] == 4) {
  6289. /* 4-byte counter */
  6290. buf[i] = (u64) *(hw_stats + offset) +
  6291. *(temp_stats + offset);
  6292. continue;
  6293. }
  6294. /* 8-byte counter */
  6295. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6296. *(hw_stats + offset + 1) +
  6297. (((u64) *(temp_stats + offset)) << 32) +
  6298. *(temp_stats + offset + 1);
  6299. }
  6300. }
  6301. static int
  6302. bnx2_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state)
  6303. {
  6304. struct bnx2 *bp = netdev_priv(dev);
  6305. switch (state) {
  6306. case ETHTOOL_ID_ACTIVE:
  6307. bp->leds_save = BNX2_RD(bp, BNX2_MISC_CFG);
  6308. BNX2_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6309. return 1; /* cycle on/off once per second */
  6310. case ETHTOOL_ID_ON:
  6311. BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6312. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6313. BNX2_EMAC_LED_100MB_OVERRIDE |
  6314. BNX2_EMAC_LED_10MB_OVERRIDE |
  6315. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6316. BNX2_EMAC_LED_TRAFFIC);
  6317. break;
  6318. case ETHTOOL_ID_OFF:
  6319. BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6320. break;
  6321. case ETHTOOL_ID_INACTIVE:
  6322. BNX2_WR(bp, BNX2_EMAC_LED, 0);
  6323. BNX2_WR(bp, BNX2_MISC_CFG, bp->leds_save);
  6324. break;
  6325. }
  6326. return 0;
  6327. }
  6328. static netdev_features_t
  6329. bnx2_fix_features(struct net_device *dev, netdev_features_t features)
  6330. {
  6331. struct bnx2 *bp = netdev_priv(dev);
  6332. if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  6333. features |= NETIF_F_HW_VLAN_CTAG_RX;
  6334. return features;
  6335. }
  6336. static int
  6337. bnx2_set_features(struct net_device *dev, netdev_features_t features)
  6338. {
  6339. struct bnx2 *bp = netdev_priv(dev);
  6340. /* TSO with VLAN tag won't work with current firmware */
  6341. if (features & NETIF_F_HW_VLAN_CTAG_TX)
  6342. dev->vlan_features |= (dev->hw_features & NETIF_F_ALL_TSO);
  6343. else
  6344. dev->vlan_features &= ~NETIF_F_ALL_TSO;
  6345. if ((!!(features & NETIF_F_HW_VLAN_CTAG_RX) !=
  6346. !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
  6347. netif_running(dev)) {
  6348. bnx2_netif_stop(bp, false);
  6349. dev->features = features;
  6350. bnx2_set_rx_mode(dev);
  6351. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  6352. bnx2_netif_start(bp, false);
  6353. return 1;
  6354. }
  6355. return 0;
  6356. }
  6357. static void bnx2_get_channels(struct net_device *dev,
  6358. struct ethtool_channels *channels)
  6359. {
  6360. struct bnx2 *bp = netdev_priv(dev);
  6361. u32 max_rx_rings = 1;
  6362. u32 max_tx_rings = 1;
  6363. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6364. max_rx_rings = RX_MAX_RINGS;
  6365. max_tx_rings = TX_MAX_RINGS;
  6366. }
  6367. channels->max_rx = max_rx_rings;
  6368. channels->max_tx = max_tx_rings;
  6369. channels->max_other = 0;
  6370. channels->max_combined = 0;
  6371. channels->rx_count = bp->num_rx_rings;
  6372. channels->tx_count = bp->num_tx_rings;
  6373. channels->other_count = 0;
  6374. channels->combined_count = 0;
  6375. }
  6376. static int bnx2_set_channels(struct net_device *dev,
  6377. struct ethtool_channels *channels)
  6378. {
  6379. struct bnx2 *bp = netdev_priv(dev);
  6380. u32 max_rx_rings = 1;
  6381. u32 max_tx_rings = 1;
  6382. int rc = 0;
  6383. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6384. max_rx_rings = RX_MAX_RINGS;
  6385. max_tx_rings = TX_MAX_RINGS;
  6386. }
  6387. if (channels->rx_count > max_rx_rings ||
  6388. channels->tx_count > max_tx_rings)
  6389. return -EINVAL;
  6390. bp->num_req_rx_rings = channels->rx_count;
  6391. bp->num_req_tx_rings = channels->tx_count;
  6392. if (netif_running(dev))
  6393. rc = bnx2_change_ring_size(bp, bp->rx_ring_size,
  6394. bp->tx_ring_size, true);
  6395. return rc;
  6396. }
  6397. static const struct ethtool_ops bnx2_ethtool_ops = {
  6398. .get_settings = bnx2_get_settings,
  6399. .set_settings = bnx2_set_settings,
  6400. .get_drvinfo = bnx2_get_drvinfo,
  6401. .get_regs_len = bnx2_get_regs_len,
  6402. .get_regs = bnx2_get_regs,
  6403. .get_wol = bnx2_get_wol,
  6404. .set_wol = bnx2_set_wol,
  6405. .nway_reset = bnx2_nway_reset,
  6406. .get_link = bnx2_get_link,
  6407. .get_eeprom_len = bnx2_get_eeprom_len,
  6408. .get_eeprom = bnx2_get_eeprom,
  6409. .set_eeprom = bnx2_set_eeprom,
  6410. .get_coalesce = bnx2_get_coalesce,
  6411. .set_coalesce = bnx2_set_coalesce,
  6412. .get_ringparam = bnx2_get_ringparam,
  6413. .set_ringparam = bnx2_set_ringparam,
  6414. .get_pauseparam = bnx2_get_pauseparam,
  6415. .set_pauseparam = bnx2_set_pauseparam,
  6416. .self_test = bnx2_self_test,
  6417. .get_strings = bnx2_get_strings,
  6418. .set_phys_id = bnx2_set_phys_id,
  6419. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6420. .get_sset_count = bnx2_get_sset_count,
  6421. .get_channels = bnx2_get_channels,
  6422. .set_channels = bnx2_set_channels,
  6423. };
  6424. /* Called with rtnl_lock */
  6425. static int
  6426. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6427. {
  6428. struct mii_ioctl_data *data = if_mii(ifr);
  6429. struct bnx2 *bp = netdev_priv(dev);
  6430. int err;
  6431. switch(cmd) {
  6432. case SIOCGMIIPHY:
  6433. data->phy_id = bp->phy_addr;
  6434. /* fallthru */
  6435. case SIOCGMIIREG: {
  6436. u32 mii_regval;
  6437. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6438. return -EOPNOTSUPP;
  6439. if (!netif_running(dev))
  6440. return -EAGAIN;
  6441. spin_lock_bh(&bp->phy_lock);
  6442. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6443. spin_unlock_bh(&bp->phy_lock);
  6444. data->val_out = mii_regval;
  6445. return err;
  6446. }
  6447. case SIOCSMIIREG:
  6448. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6449. return -EOPNOTSUPP;
  6450. if (!netif_running(dev))
  6451. return -EAGAIN;
  6452. spin_lock_bh(&bp->phy_lock);
  6453. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6454. spin_unlock_bh(&bp->phy_lock);
  6455. return err;
  6456. default:
  6457. /* do nothing */
  6458. break;
  6459. }
  6460. return -EOPNOTSUPP;
  6461. }
  6462. /* Called with rtnl_lock */
  6463. static int
  6464. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6465. {
  6466. struct sockaddr *addr = p;
  6467. struct bnx2 *bp = netdev_priv(dev);
  6468. if (!is_valid_ether_addr(addr->sa_data))
  6469. return -EADDRNOTAVAIL;
  6470. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6471. if (netif_running(dev))
  6472. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6473. return 0;
  6474. }
  6475. /* Called with rtnl_lock */
  6476. static int
  6477. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6478. {
  6479. struct bnx2 *bp = netdev_priv(dev);
  6480. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6481. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6482. return -EINVAL;
  6483. dev->mtu = new_mtu;
  6484. return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size,
  6485. false);
  6486. }
  6487. #ifdef CONFIG_NET_POLL_CONTROLLER
  6488. static void
  6489. poll_bnx2(struct net_device *dev)
  6490. {
  6491. struct bnx2 *bp = netdev_priv(dev);
  6492. int i;
  6493. for (i = 0; i < bp->irq_nvecs; i++) {
  6494. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6495. disable_irq(irq->vector);
  6496. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6497. enable_irq(irq->vector);
  6498. }
  6499. }
  6500. #endif
  6501. static void
  6502. bnx2_get_5709_media(struct bnx2 *bp)
  6503. {
  6504. u32 val = BNX2_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6505. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6506. u32 strap;
  6507. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6508. return;
  6509. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6510. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6511. return;
  6512. }
  6513. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6514. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6515. else
  6516. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6517. if (bp->func == 0) {
  6518. switch (strap) {
  6519. case 0x4:
  6520. case 0x5:
  6521. case 0x6:
  6522. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6523. return;
  6524. }
  6525. } else {
  6526. switch (strap) {
  6527. case 0x1:
  6528. case 0x2:
  6529. case 0x4:
  6530. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6531. return;
  6532. }
  6533. }
  6534. }
  6535. static void
  6536. bnx2_get_pci_speed(struct bnx2 *bp)
  6537. {
  6538. u32 reg;
  6539. reg = BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6540. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6541. u32 clkreg;
  6542. bp->flags |= BNX2_FLAG_PCIX;
  6543. clkreg = BNX2_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6544. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6545. switch (clkreg) {
  6546. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6547. bp->bus_speed_mhz = 133;
  6548. break;
  6549. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6550. bp->bus_speed_mhz = 100;
  6551. break;
  6552. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6553. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6554. bp->bus_speed_mhz = 66;
  6555. break;
  6556. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6557. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6558. bp->bus_speed_mhz = 50;
  6559. break;
  6560. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6561. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6562. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6563. bp->bus_speed_mhz = 33;
  6564. break;
  6565. }
  6566. }
  6567. else {
  6568. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6569. bp->bus_speed_mhz = 66;
  6570. else
  6571. bp->bus_speed_mhz = 33;
  6572. }
  6573. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6574. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6575. }
  6576. static void
  6577. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6578. {
  6579. int rc, i, j;
  6580. u8 *data;
  6581. unsigned int block_end, rosize, len;
  6582. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6583. #define BNX2_VPD_LEN 128
  6584. #define BNX2_MAX_VER_SLEN 30
  6585. data = kmalloc(256, GFP_KERNEL);
  6586. if (!data)
  6587. return;
  6588. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6589. BNX2_VPD_LEN);
  6590. if (rc)
  6591. goto vpd_done;
  6592. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6593. data[i] = data[i + BNX2_VPD_LEN + 3];
  6594. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6595. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6596. data[i + 3] = data[i + BNX2_VPD_LEN];
  6597. }
  6598. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6599. if (i < 0)
  6600. goto vpd_done;
  6601. rosize = pci_vpd_lrdt_size(&data[i]);
  6602. i += PCI_VPD_LRDT_TAG_SIZE;
  6603. block_end = i + rosize;
  6604. if (block_end > BNX2_VPD_LEN)
  6605. goto vpd_done;
  6606. j = pci_vpd_find_info_keyword(data, i, rosize,
  6607. PCI_VPD_RO_KEYWORD_MFR_ID);
  6608. if (j < 0)
  6609. goto vpd_done;
  6610. len = pci_vpd_info_field_size(&data[j]);
  6611. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6612. if (j + len > block_end || len != 4 ||
  6613. memcmp(&data[j], "1028", 4))
  6614. goto vpd_done;
  6615. j = pci_vpd_find_info_keyword(data, i, rosize,
  6616. PCI_VPD_RO_KEYWORD_VENDOR0);
  6617. if (j < 0)
  6618. goto vpd_done;
  6619. len = pci_vpd_info_field_size(&data[j]);
  6620. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6621. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6622. goto vpd_done;
  6623. memcpy(bp->fw_version, &data[j], len);
  6624. bp->fw_version[len] = ' ';
  6625. vpd_done:
  6626. kfree(data);
  6627. }
  6628. static int
  6629. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6630. {
  6631. struct bnx2 *bp;
  6632. int rc, i, j;
  6633. u32 reg;
  6634. u64 dma_mask, persist_dma_mask;
  6635. int err;
  6636. SET_NETDEV_DEV(dev, &pdev->dev);
  6637. bp = netdev_priv(dev);
  6638. bp->flags = 0;
  6639. bp->phy_flags = 0;
  6640. bp->temp_stats_blk =
  6641. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6642. if (bp->temp_stats_blk == NULL) {
  6643. rc = -ENOMEM;
  6644. goto err_out;
  6645. }
  6646. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6647. rc = pci_enable_device(pdev);
  6648. if (rc) {
  6649. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6650. goto err_out;
  6651. }
  6652. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6653. dev_err(&pdev->dev,
  6654. "Cannot find PCI device base address, aborting\n");
  6655. rc = -ENODEV;
  6656. goto err_out_disable;
  6657. }
  6658. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6659. if (rc) {
  6660. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6661. goto err_out_disable;
  6662. }
  6663. pci_set_master(pdev);
  6664. bp->pm_cap = pdev->pm_cap;
  6665. if (bp->pm_cap == 0) {
  6666. dev_err(&pdev->dev,
  6667. "Cannot find power management capability, aborting\n");
  6668. rc = -EIO;
  6669. goto err_out_release;
  6670. }
  6671. bp->dev = dev;
  6672. bp->pdev = pdev;
  6673. spin_lock_init(&bp->phy_lock);
  6674. spin_lock_init(&bp->indirect_lock);
  6675. #ifdef BCM_CNIC
  6676. mutex_init(&bp->cnic_lock);
  6677. #endif
  6678. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6679. bp->regview = pci_iomap(pdev, 0, MB_GET_CID_ADDR(TX_TSS_CID +
  6680. TX_MAX_TSS_RINGS + 1));
  6681. if (!bp->regview) {
  6682. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6683. rc = -ENOMEM;
  6684. goto err_out_release;
  6685. }
  6686. /* Configure byte swap and enable write to the reg_window registers.
  6687. * Rely on CPU to do target byte swapping on big endian systems
  6688. * The chip's target access swapping will not swap all accesses
  6689. */
  6690. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG,
  6691. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6692. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6693. bp->chip_id = BNX2_RD(bp, BNX2_MISC_ID);
  6694. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  6695. if (!pci_is_pcie(pdev)) {
  6696. dev_err(&pdev->dev, "Not PCIE, aborting\n");
  6697. rc = -EIO;
  6698. goto err_out_unmap;
  6699. }
  6700. bp->flags |= BNX2_FLAG_PCIE;
  6701. if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
  6702. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6703. /* AER (Advanced Error Reporting) hooks */
  6704. err = pci_enable_pcie_error_reporting(pdev);
  6705. if (!err)
  6706. bp->flags |= BNX2_FLAG_AER_ENABLED;
  6707. } else {
  6708. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6709. if (bp->pcix_cap == 0) {
  6710. dev_err(&pdev->dev,
  6711. "Cannot find PCIX capability, aborting\n");
  6712. rc = -EIO;
  6713. goto err_out_unmap;
  6714. }
  6715. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6716. }
  6717. if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
  6718. BNX2_CHIP_REV(bp) != BNX2_CHIP_REV_Ax) {
  6719. if (pdev->msix_cap)
  6720. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6721. }
  6722. if (BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0 &&
  6723. BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A1) {
  6724. if (pdev->msi_cap)
  6725. bp->flags |= BNX2_FLAG_MSI_CAP;
  6726. }
  6727. /* 5708 cannot support DMA addresses > 40-bit. */
  6728. if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  6729. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6730. else
  6731. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6732. /* Configure DMA attributes. */
  6733. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6734. dev->features |= NETIF_F_HIGHDMA;
  6735. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6736. if (rc) {
  6737. dev_err(&pdev->dev,
  6738. "pci_set_consistent_dma_mask failed, aborting\n");
  6739. goto err_out_unmap;
  6740. }
  6741. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6742. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6743. goto err_out_unmap;
  6744. }
  6745. if (!(bp->flags & BNX2_FLAG_PCIE))
  6746. bnx2_get_pci_speed(bp);
  6747. /* 5706A0 may falsely detect SERR and PERR. */
  6748. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  6749. reg = BNX2_RD(bp, PCI_COMMAND);
  6750. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6751. BNX2_WR(bp, PCI_COMMAND, reg);
  6752. } else if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) &&
  6753. !(bp->flags & BNX2_FLAG_PCIX)) {
  6754. dev_err(&pdev->dev,
  6755. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6756. goto err_out_unmap;
  6757. }
  6758. bnx2_init_nvram(bp);
  6759. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6760. if (bnx2_reg_rd_ind(bp, BNX2_MCP_TOE_ID) & BNX2_MCP_TOE_ID_FUNCTION_ID)
  6761. bp->func = 1;
  6762. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6763. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6764. u32 off = bp->func << 2;
  6765. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6766. } else
  6767. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6768. /* Get the permanent MAC address. First we need to make sure the
  6769. * firmware is actually running.
  6770. */
  6771. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6772. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6773. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6774. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6775. rc = -ENODEV;
  6776. goto err_out_unmap;
  6777. }
  6778. bnx2_read_vpd_fw_ver(bp);
  6779. j = strlen(bp->fw_version);
  6780. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6781. for (i = 0; i < 3 && j < 24; i++) {
  6782. u8 num, k, skip0;
  6783. if (i == 0) {
  6784. bp->fw_version[j++] = 'b';
  6785. bp->fw_version[j++] = 'c';
  6786. bp->fw_version[j++] = ' ';
  6787. }
  6788. num = (u8) (reg >> (24 - (i * 8)));
  6789. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6790. if (num >= k || !skip0 || k == 1) {
  6791. bp->fw_version[j++] = (num / k) + '0';
  6792. skip0 = 0;
  6793. }
  6794. }
  6795. if (i != 2)
  6796. bp->fw_version[j++] = '.';
  6797. }
  6798. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6799. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6800. bp->wol = 1;
  6801. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6802. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6803. for (i = 0; i < 30; i++) {
  6804. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6805. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6806. break;
  6807. msleep(10);
  6808. }
  6809. }
  6810. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6811. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6812. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6813. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6814. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6815. if (j < 32)
  6816. bp->fw_version[j++] = ' ';
  6817. for (i = 0; i < 3 && j < 28; i++) {
  6818. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6819. reg = be32_to_cpu(reg);
  6820. memcpy(&bp->fw_version[j], &reg, 4);
  6821. j += 4;
  6822. }
  6823. }
  6824. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6825. bp->mac_addr[0] = (u8) (reg >> 8);
  6826. bp->mac_addr[1] = (u8) reg;
  6827. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6828. bp->mac_addr[2] = (u8) (reg >> 24);
  6829. bp->mac_addr[3] = (u8) (reg >> 16);
  6830. bp->mac_addr[4] = (u8) (reg >> 8);
  6831. bp->mac_addr[5] = (u8) reg;
  6832. bp->tx_ring_size = BNX2_MAX_TX_DESC_CNT;
  6833. bnx2_set_rx_ring_size(bp, 255);
  6834. bp->tx_quick_cons_trip_int = 2;
  6835. bp->tx_quick_cons_trip = 20;
  6836. bp->tx_ticks_int = 18;
  6837. bp->tx_ticks = 80;
  6838. bp->rx_quick_cons_trip_int = 2;
  6839. bp->rx_quick_cons_trip = 12;
  6840. bp->rx_ticks_int = 18;
  6841. bp->rx_ticks = 18;
  6842. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6843. bp->current_interval = BNX2_TIMER_INTERVAL;
  6844. bp->phy_addr = 1;
  6845. /* Disable WOL support if we are running on a SERDES chip. */
  6846. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  6847. bnx2_get_5709_media(bp);
  6848. else if (BNX2_CHIP_BOND(bp) & BNX2_CHIP_BOND_SERDES_BIT)
  6849. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6850. bp->phy_port = PORT_TP;
  6851. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6852. bp->phy_port = PORT_FIBRE;
  6853. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6854. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6855. bp->flags |= BNX2_FLAG_NO_WOL;
  6856. bp->wol = 0;
  6857. }
  6858. if (BNX2_CHIP(bp) == BNX2_CHIP_5706) {
  6859. /* Don't do parallel detect on this board because of
  6860. * some board problems. The link will not go down
  6861. * if we do parallel detect.
  6862. */
  6863. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6864. pdev->subsystem_device == 0x310c)
  6865. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6866. } else {
  6867. bp->phy_addr = 2;
  6868. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6869. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6870. }
  6871. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5706 ||
  6872. BNX2_CHIP(bp) == BNX2_CHIP_5708)
  6873. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6874. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
  6875. (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax ||
  6876. BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Bx))
  6877. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6878. bnx2_init_fw_cap(bp);
  6879. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
  6880. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
  6881. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1) ||
  6882. !(BNX2_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6883. bp->flags |= BNX2_FLAG_NO_WOL;
  6884. bp->wol = 0;
  6885. }
  6886. if (bp->flags & BNX2_FLAG_NO_WOL)
  6887. device_set_wakeup_capable(&bp->pdev->dev, false);
  6888. else
  6889. device_set_wakeup_enable(&bp->pdev->dev, bp->wol);
  6890. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  6891. bp->tx_quick_cons_trip_int =
  6892. bp->tx_quick_cons_trip;
  6893. bp->tx_ticks_int = bp->tx_ticks;
  6894. bp->rx_quick_cons_trip_int =
  6895. bp->rx_quick_cons_trip;
  6896. bp->rx_ticks_int = bp->rx_ticks;
  6897. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6898. bp->com_ticks_int = bp->com_ticks;
  6899. bp->cmd_ticks_int = bp->cmd_ticks;
  6900. }
  6901. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6902. *
  6903. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6904. * with byte enables disabled on the unused 32-bit word. This is legal
  6905. * but causes problems on the AMD 8132 which will eventually stop
  6906. * responding after a while.
  6907. *
  6908. * AMD believes this incompatibility is unique to the 5706, and
  6909. * prefers to locally disable MSI rather than globally disabling it.
  6910. */
  6911. if (BNX2_CHIP(bp) == BNX2_CHIP_5706 && disable_msi == 0) {
  6912. struct pci_dev *amd_8132 = NULL;
  6913. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6914. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6915. amd_8132))) {
  6916. if (amd_8132->revision >= 0x10 &&
  6917. amd_8132->revision <= 0x13) {
  6918. disable_msi = 1;
  6919. pci_dev_put(amd_8132);
  6920. break;
  6921. }
  6922. }
  6923. }
  6924. bnx2_set_default_link(bp);
  6925. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6926. init_timer(&bp->timer);
  6927. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6928. bp->timer.data = (unsigned long) bp;
  6929. bp->timer.function = bnx2_timer;
  6930. #ifdef BCM_CNIC
  6931. if (bnx2_shmem_rd(bp, BNX2_ISCSI_INITIATOR) & BNX2_ISCSI_INITIATOR_EN)
  6932. bp->cnic_eth_dev.max_iscsi_conn =
  6933. (bnx2_shmem_rd(bp, BNX2_ISCSI_MAX_CONN) &
  6934. BNX2_ISCSI_MAX_CONN_MASK) >> BNX2_ISCSI_MAX_CONN_SHIFT;
  6935. bp->cnic_probe = bnx2_cnic_probe;
  6936. #endif
  6937. pci_save_state(pdev);
  6938. return 0;
  6939. err_out_unmap:
  6940. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  6941. pci_disable_pcie_error_reporting(pdev);
  6942. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  6943. }
  6944. pci_iounmap(pdev, bp->regview);
  6945. bp->regview = NULL;
  6946. err_out_release:
  6947. pci_release_regions(pdev);
  6948. err_out_disable:
  6949. pci_disable_device(pdev);
  6950. err_out:
  6951. return rc;
  6952. }
  6953. static char *
  6954. bnx2_bus_string(struct bnx2 *bp, char *str)
  6955. {
  6956. char *s = str;
  6957. if (bp->flags & BNX2_FLAG_PCIE) {
  6958. s += sprintf(s, "PCI Express");
  6959. } else {
  6960. s += sprintf(s, "PCI");
  6961. if (bp->flags & BNX2_FLAG_PCIX)
  6962. s += sprintf(s, "-X");
  6963. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6964. s += sprintf(s, " 32-bit");
  6965. else
  6966. s += sprintf(s, " 64-bit");
  6967. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6968. }
  6969. return str;
  6970. }
  6971. static void
  6972. bnx2_del_napi(struct bnx2 *bp)
  6973. {
  6974. int i;
  6975. for (i = 0; i < bp->irq_nvecs; i++)
  6976. netif_napi_del(&bp->bnx2_napi[i].napi);
  6977. }
  6978. static void
  6979. bnx2_init_napi(struct bnx2 *bp)
  6980. {
  6981. int i;
  6982. for (i = 0; i < bp->irq_nvecs; i++) {
  6983. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6984. int (*poll)(struct napi_struct *, int);
  6985. if (i == 0)
  6986. poll = bnx2_poll;
  6987. else
  6988. poll = bnx2_poll_msix;
  6989. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6990. bnapi->bp = bp;
  6991. }
  6992. }
  6993. static const struct net_device_ops bnx2_netdev_ops = {
  6994. .ndo_open = bnx2_open,
  6995. .ndo_start_xmit = bnx2_start_xmit,
  6996. .ndo_stop = bnx2_close,
  6997. .ndo_get_stats64 = bnx2_get_stats64,
  6998. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6999. .ndo_do_ioctl = bnx2_ioctl,
  7000. .ndo_validate_addr = eth_validate_addr,
  7001. .ndo_set_mac_address = bnx2_change_mac_addr,
  7002. .ndo_change_mtu = bnx2_change_mtu,
  7003. .ndo_fix_features = bnx2_fix_features,
  7004. .ndo_set_features = bnx2_set_features,
  7005. .ndo_tx_timeout = bnx2_tx_timeout,
  7006. #ifdef CONFIG_NET_POLL_CONTROLLER
  7007. .ndo_poll_controller = poll_bnx2,
  7008. #endif
  7009. };
  7010. static int
  7011. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  7012. {
  7013. static int version_printed = 0;
  7014. struct net_device *dev;
  7015. struct bnx2 *bp;
  7016. int rc;
  7017. char str[40];
  7018. if (version_printed++ == 0)
  7019. pr_info("%s", version);
  7020. /* dev zeroed in init_etherdev */
  7021. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  7022. if (!dev)
  7023. return -ENOMEM;
  7024. rc = bnx2_init_board(pdev, dev);
  7025. if (rc < 0)
  7026. goto err_free;
  7027. dev->netdev_ops = &bnx2_netdev_ops;
  7028. dev->watchdog_timeo = TX_TIMEOUT;
  7029. dev->ethtool_ops = &bnx2_ethtool_ops;
  7030. bp = netdev_priv(dev);
  7031. pci_set_drvdata(pdev, dev);
  7032. memcpy(dev->dev_addr, bp->mac_addr, ETH_ALEN);
  7033. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  7034. NETIF_F_TSO | NETIF_F_TSO_ECN |
  7035. NETIF_F_RXHASH | NETIF_F_RXCSUM;
  7036. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  7037. dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
  7038. dev->vlan_features = dev->hw_features;
  7039. dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
  7040. dev->features |= dev->hw_features;
  7041. dev->priv_flags |= IFF_UNICAST_FLT;
  7042. if ((rc = register_netdev(dev))) {
  7043. dev_err(&pdev->dev, "Cannot register net device\n");
  7044. goto error;
  7045. }
  7046. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, "
  7047. "node addr %pM\n", board_info[ent->driver_data].name,
  7048. ((BNX2_CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  7049. ((BNX2_CHIP_ID(bp) & 0x0ff0) >> 4),
  7050. bnx2_bus_string(bp, str), (long)pci_resource_start(pdev, 0),
  7051. pdev->irq, dev->dev_addr);
  7052. return 0;
  7053. error:
  7054. pci_iounmap(pdev, bp->regview);
  7055. pci_release_regions(pdev);
  7056. pci_disable_device(pdev);
  7057. err_free:
  7058. free_netdev(dev);
  7059. return rc;
  7060. }
  7061. static void
  7062. bnx2_remove_one(struct pci_dev *pdev)
  7063. {
  7064. struct net_device *dev = pci_get_drvdata(pdev);
  7065. struct bnx2 *bp = netdev_priv(dev);
  7066. unregister_netdev(dev);
  7067. del_timer_sync(&bp->timer);
  7068. cancel_work_sync(&bp->reset_task);
  7069. pci_iounmap(bp->pdev, bp->regview);
  7070. kfree(bp->temp_stats_blk);
  7071. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  7072. pci_disable_pcie_error_reporting(pdev);
  7073. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  7074. }
  7075. bnx2_release_firmware(bp);
  7076. free_netdev(dev);
  7077. pci_release_regions(pdev);
  7078. pci_disable_device(pdev);
  7079. }
  7080. static int
  7081. bnx2_suspend(struct device *device)
  7082. {
  7083. struct pci_dev *pdev = to_pci_dev(device);
  7084. struct net_device *dev = pci_get_drvdata(pdev);
  7085. struct bnx2 *bp = netdev_priv(dev);
  7086. if (netif_running(dev)) {
  7087. cancel_work_sync(&bp->reset_task);
  7088. bnx2_netif_stop(bp, true);
  7089. netif_device_detach(dev);
  7090. del_timer_sync(&bp->timer);
  7091. bnx2_shutdown_chip(bp);
  7092. __bnx2_free_irq(bp);
  7093. bnx2_free_skbs(bp);
  7094. }
  7095. bnx2_setup_wol(bp);
  7096. return 0;
  7097. }
  7098. static int
  7099. bnx2_resume(struct device *device)
  7100. {
  7101. struct pci_dev *pdev = to_pci_dev(device);
  7102. struct net_device *dev = pci_get_drvdata(pdev);
  7103. struct bnx2 *bp = netdev_priv(dev);
  7104. if (!netif_running(dev))
  7105. return 0;
  7106. bnx2_set_power_state(bp, PCI_D0);
  7107. netif_device_attach(dev);
  7108. bnx2_request_irq(bp);
  7109. bnx2_init_nic(bp, 1);
  7110. bnx2_netif_start(bp, true);
  7111. return 0;
  7112. }
  7113. #ifdef CONFIG_PM_SLEEP
  7114. static SIMPLE_DEV_PM_OPS(bnx2_pm_ops, bnx2_suspend, bnx2_resume);
  7115. #define BNX2_PM_OPS (&bnx2_pm_ops)
  7116. #else
  7117. #define BNX2_PM_OPS NULL
  7118. #endif /* CONFIG_PM_SLEEP */
  7119. /**
  7120. * bnx2_io_error_detected - called when PCI error is detected
  7121. * @pdev: Pointer to PCI device
  7122. * @state: The current pci connection state
  7123. *
  7124. * This function is called after a PCI bus error affecting
  7125. * this device has been detected.
  7126. */
  7127. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  7128. pci_channel_state_t state)
  7129. {
  7130. struct net_device *dev = pci_get_drvdata(pdev);
  7131. struct bnx2 *bp = netdev_priv(dev);
  7132. rtnl_lock();
  7133. netif_device_detach(dev);
  7134. if (state == pci_channel_io_perm_failure) {
  7135. rtnl_unlock();
  7136. return PCI_ERS_RESULT_DISCONNECT;
  7137. }
  7138. if (netif_running(dev)) {
  7139. bnx2_netif_stop(bp, true);
  7140. del_timer_sync(&bp->timer);
  7141. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  7142. }
  7143. pci_disable_device(pdev);
  7144. rtnl_unlock();
  7145. /* Request a slot slot reset. */
  7146. return PCI_ERS_RESULT_NEED_RESET;
  7147. }
  7148. /**
  7149. * bnx2_io_slot_reset - called after the pci bus has been reset.
  7150. * @pdev: Pointer to PCI device
  7151. *
  7152. * Restart the card from scratch, as if from a cold-boot.
  7153. */
  7154. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  7155. {
  7156. struct net_device *dev = pci_get_drvdata(pdev);
  7157. struct bnx2 *bp = netdev_priv(dev);
  7158. pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
  7159. int err = 0;
  7160. rtnl_lock();
  7161. if (pci_enable_device(pdev)) {
  7162. dev_err(&pdev->dev,
  7163. "Cannot re-enable PCI device after reset\n");
  7164. } else {
  7165. pci_set_master(pdev);
  7166. pci_restore_state(pdev);
  7167. pci_save_state(pdev);
  7168. if (netif_running(dev))
  7169. err = bnx2_init_nic(bp, 1);
  7170. if (!err)
  7171. result = PCI_ERS_RESULT_RECOVERED;
  7172. }
  7173. if (result != PCI_ERS_RESULT_RECOVERED && netif_running(dev)) {
  7174. bnx2_napi_enable(bp);
  7175. dev_close(dev);
  7176. }
  7177. rtnl_unlock();
  7178. if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
  7179. return result;
  7180. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  7181. if (err) {
  7182. dev_err(&pdev->dev,
  7183. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  7184. err); /* non-fatal, continue */
  7185. }
  7186. return result;
  7187. }
  7188. /**
  7189. * bnx2_io_resume - called when traffic can start flowing again.
  7190. * @pdev: Pointer to PCI device
  7191. *
  7192. * This callback is called when the error recovery driver tells us that
  7193. * its OK to resume normal operation.
  7194. */
  7195. static void bnx2_io_resume(struct pci_dev *pdev)
  7196. {
  7197. struct net_device *dev = pci_get_drvdata(pdev);
  7198. struct bnx2 *bp = netdev_priv(dev);
  7199. rtnl_lock();
  7200. if (netif_running(dev))
  7201. bnx2_netif_start(bp, true);
  7202. netif_device_attach(dev);
  7203. rtnl_unlock();
  7204. }
  7205. static void bnx2_shutdown(struct pci_dev *pdev)
  7206. {
  7207. struct net_device *dev = pci_get_drvdata(pdev);
  7208. struct bnx2 *bp;
  7209. if (!dev)
  7210. return;
  7211. bp = netdev_priv(dev);
  7212. if (!bp)
  7213. return;
  7214. rtnl_lock();
  7215. if (netif_running(dev))
  7216. dev_close(bp->dev);
  7217. if (system_state == SYSTEM_POWER_OFF)
  7218. bnx2_set_power_state(bp, PCI_D3hot);
  7219. rtnl_unlock();
  7220. }
  7221. static const struct pci_error_handlers bnx2_err_handler = {
  7222. .error_detected = bnx2_io_error_detected,
  7223. .slot_reset = bnx2_io_slot_reset,
  7224. .resume = bnx2_io_resume,
  7225. };
  7226. static struct pci_driver bnx2_pci_driver = {
  7227. .name = DRV_MODULE_NAME,
  7228. .id_table = bnx2_pci_tbl,
  7229. .probe = bnx2_init_one,
  7230. .remove = bnx2_remove_one,
  7231. .driver.pm = BNX2_PM_OPS,
  7232. .err_handler = &bnx2_err_handler,
  7233. .shutdown = bnx2_shutdown,
  7234. };
  7235. module_pci_driver(bnx2_pci_driver);