gpio.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. /*
  2. * drivers/mtd/nand/gpio.c
  3. *
  4. * Updated, and converted to generic GPIO based driver by Russell King.
  5. *
  6. * Written by Ben Dooks <ben@simtec.co.uk>
  7. * Based on 2.4 version by Mark Whittaker
  8. *
  9. * © 2004 Simtec Electronics
  10. *
  11. * Device driver for NAND connected via GPIO
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License version 2 as
  15. * published by the Free Software Foundation.
  16. *
  17. */
  18. #include <linux/kernel.h>
  19. #include <linux/err.h>
  20. #include <linux/init.h>
  21. #include <linux/slab.h>
  22. #include <linux/module.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/gpio.h>
  25. #include <linux/io.h>
  26. #include <linux/mtd/mtd.h>
  27. #include <linux/mtd/nand.h>
  28. #include <linux/mtd/partitions.h>
  29. #include <linux/mtd/nand-gpio.h>
  30. #include <linux/of.h>
  31. #include <linux/of_address.h>
  32. #include <linux/of_gpio.h>
  33. struct gpiomtd {
  34. void __iomem *io_sync;
  35. struct mtd_info mtd_info;
  36. struct nand_chip nand_chip;
  37. struct gpio_nand_platdata plat;
  38. };
  39. #define gpio_nand_getpriv(x) container_of(x, struct gpiomtd, mtd_info)
  40. #ifdef CONFIG_ARM
  41. /* gpio_nand_dosync()
  42. *
  43. * Make sure the GPIO state changes occur in-order with writes to NAND
  44. * memory region.
  45. * Needed on PXA due to bus-reordering within the SoC itself (see section on
  46. * I/O ordering in PXA manual (section 2.3, p35)
  47. */
  48. static void gpio_nand_dosync(struct gpiomtd *gpiomtd)
  49. {
  50. unsigned long tmp;
  51. if (gpiomtd->io_sync) {
  52. /*
  53. * Linux memory barriers don't cater for what's required here.
  54. * What's required is what's here - a read from a separate
  55. * region with a dependency on that read.
  56. */
  57. tmp = readl(gpiomtd->io_sync);
  58. asm volatile("mov %1, %0\n" : "=r" (tmp) : "r" (tmp));
  59. }
  60. }
  61. #else
  62. static inline void gpio_nand_dosync(struct gpiomtd *gpiomtd) {}
  63. #endif
  64. static void gpio_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
  65. {
  66. struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd);
  67. gpio_nand_dosync(gpiomtd);
  68. if (ctrl & NAND_CTRL_CHANGE) {
  69. gpio_set_value(gpiomtd->plat.gpio_nce, !(ctrl & NAND_NCE));
  70. gpio_set_value(gpiomtd->plat.gpio_cle, !!(ctrl & NAND_CLE));
  71. gpio_set_value(gpiomtd->plat.gpio_ale, !!(ctrl & NAND_ALE));
  72. gpio_nand_dosync(gpiomtd);
  73. }
  74. if (cmd == NAND_CMD_NONE)
  75. return;
  76. writeb(cmd, gpiomtd->nand_chip.IO_ADDR_W);
  77. gpio_nand_dosync(gpiomtd);
  78. }
  79. static int gpio_nand_devready(struct mtd_info *mtd)
  80. {
  81. struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd);
  82. return gpio_get_value(gpiomtd->plat.gpio_rdy);
  83. }
  84. #ifdef CONFIG_OF
  85. static const struct of_device_id gpio_nand_id_table[] = {
  86. { .compatible = "gpio-control-nand" },
  87. {}
  88. };
  89. MODULE_DEVICE_TABLE(of, gpio_nand_id_table);
  90. static int gpio_nand_get_config_of(const struct device *dev,
  91. struct gpio_nand_platdata *plat)
  92. {
  93. u32 val;
  94. if (!dev->of_node)
  95. return -ENODEV;
  96. if (!of_property_read_u32(dev->of_node, "bank-width", &val)) {
  97. if (val == 2) {
  98. plat->options |= NAND_BUSWIDTH_16;
  99. } else if (val != 1) {
  100. dev_err(dev, "invalid bank-width %u\n", val);
  101. return -EINVAL;
  102. }
  103. }
  104. plat->gpio_rdy = of_get_gpio(dev->of_node, 0);
  105. plat->gpio_nce = of_get_gpio(dev->of_node, 1);
  106. plat->gpio_ale = of_get_gpio(dev->of_node, 2);
  107. plat->gpio_cle = of_get_gpio(dev->of_node, 3);
  108. plat->gpio_nwp = of_get_gpio(dev->of_node, 4);
  109. if (!of_property_read_u32(dev->of_node, "chip-delay", &val))
  110. plat->chip_delay = val;
  111. return 0;
  112. }
  113. static struct resource *gpio_nand_get_io_sync_of(struct platform_device *pdev)
  114. {
  115. struct resource *r;
  116. u64 addr;
  117. if (of_property_read_u64(pdev->dev.of_node,
  118. "gpio-control-nand,io-sync-reg", &addr))
  119. return NULL;
  120. r = devm_kzalloc(&pdev->dev, sizeof(*r), GFP_KERNEL);
  121. if (!r)
  122. return NULL;
  123. r->start = addr;
  124. r->end = r->start + 0x3;
  125. r->flags = IORESOURCE_MEM;
  126. return r;
  127. }
  128. #else /* CONFIG_OF */
  129. static inline int gpio_nand_get_config_of(const struct device *dev,
  130. struct gpio_nand_platdata *plat)
  131. {
  132. return -ENOSYS;
  133. }
  134. static inline struct resource *
  135. gpio_nand_get_io_sync_of(struct platform_device *pdev)
  136. {
  137. return NULL;
  138. }
  139. #endif /* CONFIG_OF */
  140. static inline int gpio_nand_get_config(const struct device *dev,
  141. struct gpio_nand_platdata *plat)
  142. {
  143. int ret = gpio_nand_get_config_of(dev, plat);
  144. if (!ret)
  145. return ret;
  146. if (dev_get_platdata(dev)) {
  147. memcpy(plat, dev_get_platdata(dev), sizeof(*plat));
  148. return 0;
  149. }
  150. return -EINVAL;
  151. }
  152. static inline struct resource *
  153. gpio_nand_get_io_sync(struct platform_device *pdev)
  154. {
  155. struct resource *r = gpio_nand_get_io_sync_of(pdev);
  156. if (r)
  157. return r;
  158. return platform_get_resource(pdev, IORESOURCE_MEM, 1);
  159. }
  160. static int gpio_nand_remove(struct platform_device *pdev)
  161. {
  162. struct gpiomtd *gpiomtd = platform_get_drvdata(pdev);
  163. nand_release(&gpiomtd->mtd_info);
  164. if (gpio_is_valid(gpiomtd->plat.gpio_nwp))
  165. gpio_set_value(gpiomtd->plat.gpio_nwp, 0);
  166. gpio_set_value(gpiomtd->plat.gpio_nce, 1);
  167. return 0;
  168. }
  169. static int gpio_nand_probe(struct platform_device *pdev)
  170. {
  171. struct gpiomtd *gpiomtd;
  172. struct nand_chip *chip;
  173. struct resource *res;
  174. struct mtd_part_parser_data ppdata = {};
  175. int ret = 0;
  176. if (!pdev->dev.of_node && !dev_get_platdata(&pdev->dev))
  177. return -EINVAL;
  178. gpiomtd = devm_kzalloc(&pdev->dev, sizeof(*gpiomtd), GFP_KERNEL);
  179. if (!gpiomtd)
  180. return -ENOMEM;
  181. chip = &gpiomtd->nand_chip;
  182. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  183. chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
  184. if (IS_ERR(chip->IO_ADDR_R))
  185. return PTR_ERR(chip->IO_ADDR_R);
  186. res = gpio_nand_get_io_sync(pdev);
  187. if (res) {
  188. gpiomtd->io_sync = devm_ioremap_resource(&pdev->dev, res);
  189. if (IS_ERR(gpiomtd->io_sync))
  190. return PTR_ERR(gpiomtd->io_sync);
  191. }
  192. ret = gpio_nand_get_config(&pdev->dev, &gpiomtd->plat);
  193. if (ret)
  194. return ret;
  195. ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nce, "NAND NCE");
  196. if (ret)
  197. return ret;
  198. gpio_direction_output(gpiomtd->plat.gpio_nce, 1);
  199. if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) {
  200. ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nwp,
  201. "NAND NWP");
  202. if (ret)
  203. return ret;
  204. }
  205. ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_ale, "NAND ALE");
  206. if (ret)
  207. return ret;
  208. gpio_direction_output(gpiomtd->plat.gpio_ale, 0);
  209. ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_cle, "NAND CLE");
  210. if (ret)
  211. return ret;
  212. gpio_direction_output(gpiomtd->plat.gpio_cle, 0);
  213. if (gpio_is_valid(gpiomtd->plat.gpio_rdy)) {
  214. ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_rdy,
  215. "NAND RDY");
  216. if (ret)
  217. return ret;
  218. gpio_direction_input(gpiomtd->plat.gpio_rdy);
  219. chip->dev_ready = gpio_nand_devready;
  220. }
  221. chip->IO_ADDR_W = chip->IO_ADDR_R;
  222. chip->ecc.mode = NAND_ECC_SOFT;
  223. chip->options = gpiomtd->plat.options;
  224. chip->chip_delay = gpiomtd->plat.chip_delay;
  225. chip->cmd_ctrl = gpio_nand_cmd_ctrl;
  226. gpiomtd->mtd_info.priv = chip;
  227. gpiomtd->mtd_info.owner = THIS_MODULE;
  228. platform_set_drvdata(pdev, gpiomtd);
  229. if (gpio_is_valid(gpiomtd->plat.gpio_nwp))
  230. gpio_direction_output(gpiomtd->plat.gpio_nwp, 1);
  231. if (nand_scan(&gpiomtd->mtd_info, 1)) {
  232. ret = -ENXIO;
  233. goto err_wp;
  234. }
  235. if (gpiomtd->plat.adjust_parts)
  236. gpiomtd->plat.adjust_parts(&gpiomtd->plat,
  237. gpiomtd->mtd_info.size);
  238. ppdata.of_node = pdev->dev.of_node;
  239. ret = mtd_device_parse_register(&gpiomtd->mtd_info, NULL, &ppdata,
  240. gpiomtd->plat.parts,
  241. gpiomtd->plat.num_parts);
  242. if (!ret)
  243. return 0;
  244. err_wp:
  245. if (gpio_is_valid(gpiomtd->plat.gpio_nwp))
  246. gpio_set_value(gpiomtd->plat.gpio_nwp, 0);
  247. return ret;
  248. }
  249. static struct platform_driver gpio_nand_driver = {
  250. .probe = gpio_nand_probe,
  251. .remove = gpio_nand_remove,
  252. .driver = {
  253. .name = "gpio-nand",
  254. .owner = THIS_MODULE,
  255. .of_match_table = of_match_ptr(gpio_nand_id_table),
  256. },
  257. };
  258. module_platform_driver(gpio_nand_driver);
  259. MODULE_LICENSE("GPL");
  260. MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
  261. MODULE_DESCRIPTION("GPIO NAND Driver");