card_utils.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944
  1. /**
  2. * IBM Accelerator Family 'GenWQE'
  3. *
  4. * (C) Copyright IBM Corp. 2013
  5. *
  6. * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
  7. * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
  8. * Author: Michael Jung <mijung@de.ibm.com>
  9. * Author: Michael Ruettger <michael@ibmra.de>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License (version 2 only)
  13. * as published by the Free Software Foundation.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. */
  20. /*
  21. * Miscelanous functionality used in the other GenWQE driver parts.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/sched.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/page-flags.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/iommu.h>
  31. #include <linux/delay.h>
  32. #include <linux/pci.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/ctype.h>
  35. #include <linux/module.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/delay.h>
  38. #include <asm/pgtable.h>
  39. #include "genwqe_driver.h"
  40. #include "card_base.h"
  41. #include "card_ddcb.h"
  42. /**
  43. * __genwqe_writeq() - Write 64-bit register
  44. * @cd: genwqe device descriptor
  45. * @byte_offs: byte offset within BAR
  46. * @val: 64-bit value
  47. *
  48. * Return: 0 if success; < 0 if error
  49. */
  50. int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
  51. {
  52. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  53. return -EIO;
  54. if (cd->mmio == NULL)
  55. return -EIO;
  56. __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
  57. return 0;
  58. }
  59. /**
  60. * __genwqe_readq() - Read 64-bit register
  61. * @cd: genwqe device descriptor
  62. * @byte_offs: offset within BAR
  63. *
  64. * Return: value from register
  65. */
  66. u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
  67. {
  68. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  69. return 0xffffffffffffffffull;
  70. if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
  71. (byte_offs == IO_SLC_CFGREG_GFIR))
  72. return 0x000000000000ffffull;
  73. if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
  74. (byte_offs == IO_SLC_CFGREG_GFIR))
  75. return 0x00000000ffff0000ull;
  76. if (cd->mmio == NULL)
  77. return 0xffffffffffffffffull;
  78. return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
  79. }
  80. /**
  81. * __genwqe_writel() - Write 32-bit register
  82. * @cd: genwqe device descriptor
  83. * @byte_offs: byte offset within BAR
  84. * @val: 32-bit value
  85. *
  86. * Return: 0 if success; < 0 if error
  87. */
  88. int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
  89. {
  90. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  91. return -EIO;
  92. if (cd->mmio == NULL)
  93. return -EIO;
  94. __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
  95. return 0;
  96. }
  97. /**
  98. * __genwqe_readl() - Read 32-bit register
  99. * @cd: genwqe device descriptor
  100. * @byte_offs: offset within BAR
  101. *
  102. * Return: Value from register
  103. */
  104. u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
  105. {
  106. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  107. return 0xffffffff;
  108. if (cd->mmio == NULL)
  109. return 0xffffffff;
  110. return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
  111. }
  112. /**
  113. * genwqe_read_app_id() - Extract app_id
  114. *
  115. * app_unitcfg need to be filled with valid data first
  116. */
  117. int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
  118. {
  119. int i, j;
  120. u32 app_id = (u32)cd->app_unitcfg;
  121. memset(app_name, 0, len);
  122. for (i = 0, j = 0; j < min(len, 4); j++) {
  123. char ch = (char)((app_id >> (24 - j*8)) & 0xff);
  124. if (ch == ' ')
  125. continue;
  126. app_name[i++] = isprint(ch) ? ch : 'X';
  127. }
  128. return i;
  129. }
  130. /**
  131. * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
  132. *
  133. * Existing kernel functions seem to use a different polynom,
  134. * therefore we could not use them here.
  135. *
  136. * Genwqe's Polynomial = 0x20044009
  137. */
  138. #define CRC32_POLYNOMIAL 0x20044009
  139. static u32 crc32_tab[256]; /* crc32 lookup table */
  140. void genwqe_init_crc32(void)
  141. {
  142. int i, j;
  143. u32 crc;
  144. for (i = 0; i < 256; i++) {
  145. crc = i << 24;
  146. for (j = 0; j < 8; j++) {
  147. if (crc & 0x80000000)
  148. crc = (crc << 1) ^ CRC32_POLYNOMIAL;
  149. else
  150. crc = (crc << 1);
  151. }
  152. crc32_tab[i] = crc;
  153. }
  154. }
  155. /**
  156. * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
  157. * @buff: pointer to data buffer
  158. * @len: length of data for calculation
  159. * @init: initial crc (0xffffffff at start)
  160. *
  161. * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
  162. * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
  163. * result in a crc32 of 0xf33cb7d3.
  164. *
  165. * The existing kernel crc functions did not cover this polynom yet.
  166. *
  167. * Return: crc32 checksum.
  168. */
  169. u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
  170. {
  171. int i;
  172. u32 crc;
  173. crc = init;
  174. while (len--) {
  175. i = ((crc >> 24) ^ *buff++) & 0xFF;
  176. crc = (crc << 8) ^ crc32_tab[i];
  177. }
  178. return crc;
  179. }
  180. void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
  181. dma_addr_t *dma_handle)
  182. {
  183. if (get_order(size) > MAX_ORDER)
  184. return NULL;
  185. return pci_alloc_consistent(cd->pci_dev, size, dma_handle);
  186. }
  187. void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
  188. void *vaddr, dma_addr_t dma_handle)
  189. {
  190. if (vaddr == NULL)
  191. return;
  192. pci_free_consistent(cd->pci_dev, size, vaddr, dma_handle);
  193. }
  194. static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
  195. int num_pages)
  196. {
  197. int i;
  198. struct pci_dev *pci_dev = cd->pci_dev;
  199. for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
  200. pci_unmap_page(pci_dev, dma_list[i],
  201. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  202. dma_list[i] = 0x0;
  203. }
  204. }
  205. static int genwqe_map_pages(struct genwqe_dev *cd,
  206. struct page **page_list, int num_pages,
  207. dma_addr_t *dma_list)
  208. {
  209. int i;
  210. struct pci_dev *pci_dev = cd->pci_dev;
  211. /* establish DMA mapping for requested pages */
  212. for (i = 0; i < num_pages; i++) {
  213. dma_addr_t daddr;
  214. dma_list[i] = 0x0;
  215. daddr = pci_map_page(pci_dev, page_list[i],
  216. 0, /* map_offs */
  217. PAGE_SIZE,
  218. PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */
  219. if (pci_dma_mapping_error(pci_dev, daddr)) {
  220. dev_err(&pci_dev->dev,
  221. "[%s] err: no dma addr daddr=%016llx!\n",
  222. __func__, (long long)daddr);
  223. goto err;
  224. }
  225. dma_list[i] = daddr;
  226. }
  227. return 0;
  228. err:
  229. genwqe_unmap_pages(cd, dma_list, num_pages);
  230. return -EIO;
  231. }
  232. static int genwqe_sgl_size(int num_pages)
  233. {
  234. int len, num_tlb = num_pages / 7;
  235. len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
  236. return roundup(len, PAGE_SIZE);
  237. }
  238. struct sg_entry *genwqe_alloc_sgl(struct genwqe_dev *cd, int num_pages,
  239. dma_addr_t *dma_addr, size_t *sgl_size)
  240. {
  241. struct pci_dev *pci_dev = cd->pci_dev;
  242. struct sg_entry *sgl;
  243. *sgl_size = genwqe_sgl_size(num_pages);
  244. if (get_order(*sgl_size) > MAX_ORDER) {
  245. dev_err(&pci_dev->dev,
  246. "[%s] err: too much memory requested!\n", __func__);
  247. return NULL;
  248. }
  249. sgl = __genwqe_alloc_consistent(cd, *sgl_size, dma_addr);
  250. if (sgl == NULL) {
  251. dev_err(&pci_dev->dev,
  252. "[%s] err: no memory available!\n", __func__);
  253. return NULL;
  254. }
  255. return sgl;
  256. }
  257. int genwqe_setup_sgl(struct genwqe_dev *cd,
  258. unsigned long offs,
  259. unsigned long size,
  260. struct sg_entry *sgl,
  261. dma_addr_t dma_addr, size_t sgl_size,
  262. dma_addr_t *dma_list, int page_offs, int num_pages)
  263. {
  264. int i = 0, j = 0, p;
  265. unsigned long dma_offs, map_offs;
  266. struct pci_dev *pci_dev = cd->pci_dev;
  267. dma_addr_t prev_daddr = 0;
  268. struct sg_entry *s, *last_s = NULL;
  269. /* sanity checks */
  270. if (offs > PAGE_SIZE) {
  271. dev_err(&pci_dev->dev,
  272. "[%s] too large start offs %08lx\n", __func__, offs);
  273. return -EFAULT;
  274. }
  275. if (sgl_size < genwqe_sgl_size(num_pages)) {
  276. dev_err(&pci_dev->dev,
  277. "[%s] sgl_size too small %08lx for %d pages\n",
  278. __func__, sgl_size, num_pages);
  279. return -EFAULT;
  280. }
  281. dma_offs = 128; /* next block if needed/dma_offset */
  282. map_offs = offs; /* offset in first page */
  283. s = &sgl[0]; /* first set of 8 entries */
  284. p = 0; /* page */
  285. while (p < num_pages) {
  286. dma_addr_t daddr;
  287. unsigned int size_to_map;
  288. /* always write the chaining entry, cleanup is done later */
  289. j = 0;
  290. s[j].target_addr = cpu_to_be64(dma_addr + dma_offs);
  291. s[j].len = cpu_to_be32(128);
  292. s[j].flags = cpu_to_be32(SG_CHAINED);
  293. j++;
  294. while (j < 8) {
  295. /* DMA mapping for requested page, offs, size */
  296. size_to_map = min(size, PAGE_SIZE - map_offs);
  297. daddr = dma_list[page_offs + p] + map_offs;
  298. size -= size_to_map;
  299. map_offs = 0;
  300. if (prev_daddr == daddr) {
  301. u32 prev_len = be32_to_cpu(last_s->len);
  302. /* pr_info("daddr combining: "
  303. "%016llx/%08x -> %016llx\n",
  304. prev_daddr, prev_len, daddr); */
  305. last_s->len = cpu_to_be32(prev_len +
  306. size_to_map);
  307. p++; /* process next page */
  308. if (p == num_pages)
  309. goto fixup; /* nothing to do */
  310. prev_daddr = daddr + size_to_map;
  311. continue;
  312. }
  313. /* start new entry */
  314. s[j].target_addr = cpu_to_be64(daddr);
  315. s[j].len = cpu_to_be32(size_to_map);
  316. s[j].flags = cpu_to_be32(SG_DATA);
  317. prev_daddr = daddr + size_to_map;
  318. last_s = &s[j];
  319. j++;
  320. p++; /* process next page */
  321. if (p == num_pages)
  322. goto fixup; /* nothing to do */
  323. }
  324. dma_offs += 128;
  325. s += 8; /* continue 8 elements further */
  326. }
  327. fixup:
  328. if (j == 1) { /* combining happend on last entry! */
  329. s -= 8; /* full shift needed on previous sgl block */
  330. j = 7; /* shift all elements */
  331. }
  332. for (i = 0; i < j; i++) /* move elements 1 up */
  333. s[i] = s[i + 1];
  334. s[i].target_addr = cpu_to_be64(0);
  335. s[i].len = cpu_to_be32(0);
  336. s[i].flags = cpu_to_be32(SG_END_LIST);
  337. return 0;
  338. }
  339. void genwqe_free_sgl(struct genwqe_dev *cd, struct sg_entry *sg_list,
  340. dma_addr_t dma_addr, size_t size)
  341. {
  342. __genwqe_free_consistent(cd, size, sg_list, dma_addr);
  343. }
  344. /**
  345. * free_user_pages() - Give pinned pages back
  346. *
  347. * Documentation of get_user_pages is in mm/memory.c:
  348. *
  349. * If the page is written to, set_page_dirty (or set_page_dirty_lock,
  350. * as appropriate) must be called after the page is finished with, and
  351. * before put_page is called.
  352. *
  353. * FIXME Could be of use to others and might belong in the generic
  354. * code, if others agree. E.g.
  355. * ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c
  356. * ceph_put_page_vector in net/ceph/pagevec.c
  357. * maybe more?
  358. */
  359. static int free_user_pages(struct page **page_list, unsigned int nr_pages,
  360. int dirty)
  361. {
  362. unsigned int i;
  363. for (i = 0; i < nr_pages; i++) {
  364. if (page_list[i] != NULL) {
  365. if (dirty)
  366. set_page_dirty_lock(page_list[i]);
  367. put_page(page_list[i]);
  368. }
  369. }
  370. return 0;
  371. }
  372. /**
  373. * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
  374. * @cd: pointer to genwqe device
  375. * @m: mapping params
  376. * @uaddr: user virtual address
  377. * @size: size of memory to be mapped
  378. *
  379. * We need to think about how we could speed this up. Of course it is
  380. * not a good idea to do this over and over again, like we are
  381. * currently doing it. Nevertheless, I am curious where on the path
  382. * the performance is spend. Most probably within the memory
  383. * allocation functions, but maybe also in the DMA mapping code.
  384. *
  385. * Restrictions: The maximum size of the possible mapping currently depends
  386. * on the amount of memory we can get using kzalloc() for the
  387. * page_list and pci_alloc_consistent for the sg_list.
  388. * The sg_list is currently itself not scattered, which could
  389. * be fixed with some effort. The page_list must be split into
  390. * PAGE_SIZE chunks too. All that will make the complicated
  391. * code more complicated.
  392. *
  393. * Return: 0 if success
  394. */
  395. int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
  396. unsigned long size, struct ddcb_requ *req)
  397. {
  398. int rc = -EINVAL;
  399. unsigned long data, offs;
  400. struct pci_dev *pci_dev = cd->pci_dev;
  401. if ((uaddr == NULL) || (size == 0)) {
  402. m->size = 0; /* mark unused and not added */
  403. return -EINVAL;
  404. }
  405. m->u_vaddr = uaddr;
  406. m->size = size;
  407. /* determine space needed for page_list. */
  408. data = (unsigned long)uaddr;
  409. offs = offset_in_page(data);
  410. m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
  411. m->page_list = kcalloc(m->nr_pages,
  412. sizeof(struct page *) + sizeof(dma_addr_t),
  413. GFP_KERNEL);
  414. if (!m->page_list) {
  415. dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
  416. m->nr_pages = 0;
  417. m->u_vaddr = NULL;
  418. m->size = 0; /* mark unused and not added */
  419. return -ENOMEM;
  420. }
  421. m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
  422. /* pin user pages in memory */
  423. rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
  424. m->nr_pages,
  425. 1, /* write by caller */
  426. m->page_list); /* ptrs to pages */
  427. /* assumption: get_user_pages can be killed by signals. */
  428. if (rc < m->nr_pages) {
  429. free_user_pages(m->page_list, rc, 0);
  430. rc = -EFAULT;
  431. goto fail_get_user_pages;
  432. }
  433. rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
  434. if (rc != 0)
  435. goto fail_free_user_pages;
  436. return 0;
  437. fail_free_user_pages:
  438. free_user_pages(m->page_list, m->nr_pages, 0);
  439. fail_get_user_pages:
  440. kfree(m->page_list);
  441. m->page_list = NULL;
  442. m->dma_list = NULL;
  443. m->nr_pages = 0;
  444. m->u_vaddr = NULL;
  445. m->size = 0; /* mark unused and not added */
  446. return rc;
  447. }
  448. /**
  449. * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
  450. * memory
  451. * @cd: pointer to genwqe device
  452. * @m: mapping params
  453. */
  454. int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m,
  455. struct ddcb_requ *req)
  456. {
  457. struct pci_dev *pci_dev = cd->pci_dev;
  458. if (!dma_mapping_used(m)) {
  459. dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
  460. __func__, m);
  461. return -EINVAL;
  462. }
  463. if (m->dma_list)
  464. genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
  465. if (m->page_list) {
  466. free_user_pages(m->page_list, m->nr_pages, 1);
  467. kfree(m->page_list);
  468. m->page_list = NULL;
  469. m->dma_list = NULL;
  470. m->nr_pages = 0;
  471. }
  472. m->u_vaddr = NULL;
  473. m->size = 0; /* mark as unused and not added */
  474. return 0;
  475. }
  476. /**
  477. * genwqe_card_type() - Get chip type SLU Configuration Register
  478. * @cd: pointer to the genwqe device descriptor
  479. * Return: 0: Altera Stratix-IV 230
  480. * 1: Altera Stratix-IV 530
  481. * 2: Altera Stratix-V A4
  482. * 3: Altera Stratix-V A7
  483. */
  484. u8 genwqe_card_type(struct genwqe_dev *cd)
  485. {
  486. u64 card_type = cd->slu_unitcfg;
  487. return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
  488. }
  489. /**
  490. * genwqe_card_reset() - Reset the card
  491. * @cd: pointer to the genwqe device descriptor
  492. */
  493. int genwqe_card_reset(struct genwqe_dev *cd)
  494. {
  495. u64 softrst;
  496. struct pci_dev *pci_dev = cd->pci_dev;
  497. if (!genwqe_is_privileged(cd))
  498. return -ENODEV;
  499. /* new SL */
  500. __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
  501. msleep(1000);
  502. __genwqe_readq(cd, IO_HSU_FIR_CLR);
  503. __genwqe_readq(cd, IO_APP_FIR_CLR);
  504. __genwqe_readq(cd, IO_SLU_FIR_CLR);
  505. /*
  506. * Read-modify-write to preserve the stealth bits
  507. *
  508. * For SL >= 039, Stealth WE bit allows removing
  509. * the read-modify-wrote.
  510. * r-m-w may require a mask 0x3C to avoid hitting hard
  511. * reset again for error reset (should be 0, chicken).
  512. */
  513. softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
  514. __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
  515. /* give ERRORRESET some time to finish */
  516. msleep(50);
  517. if (genwqe_need_err_masking(cd)) {
  518. dev_info(&pci_dev->dev,
  519. "[%s] masking errors for old bitstreams\n", __func__);
  520. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
  521. }
  522. return 0;
  523. }
  524. int genwqe_read_softreset(struct genwqe_dev *cd)
  525. {
  526. u64 bitstream;
  527. if (!genwqe_is_privileged(cd))
  528. return -ENODEV;
  529. bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
  530. cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
  531. return 0;
  532. }
  533. /**
  534. * genwqe_set_interrupt_capability() - Configure MSI capability structure
  535. * @cd: pointer to the device
  536. * Return: 0 if no error
  537. */
  538. int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
  539. {
  540. int rc;
  541. struct pci_dev *pci_dev = cd->pci_dev;
  542. rc = pci_enable_msi_block(pci_dev, count);
  543. if (rc == 0)
  544. cd->flags |= GENWQE_FLAG_MSI_ENABLED;
  545. return rc;
  546. }
  547. /**
  548. * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
  549. * @cd: pointer to the device
  550. */
  551. void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
  552. {
  553. struct pci_dev *pci_dev = cd->pci_dev;
  554. if (cd->flags & GENWQE_FLAG_MSI_ENABLED) {
  555. pci_disable_msi(pci_dev);
  556. cd->flags &= ~GENWQE_FLAG_MSI_ENABLED;
  557. }
  558. }
  559. /**
  560. * set_reg_idx() - Fill array with data. Ignore illegal offsets.
  561. * @cd: card device
  562. * @r: debug register array
  563. * @i: index to desired entry
  564. * @m: maximum possible entries
  565. * @addr: addr which is read
  566. * @index: index in debug array
  567. * @val: read value
  568. */
  569. static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
  570. unsigned int *i, unsigned int m, u32 addr, u32 idx,
  571. u64 val)
  572. {
  573. if (WARN_ON_ONCE(*i >= m))
  574. return -EFAULT;
  575. r[*i].addr = addr;
  576. r[*i].idx = idx;
  577. r[*i].val = val;
  578. ++*i;
  579. return 0;
  580. }
  581. static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
  582. unsigned int *i, unsigned int m, u32 addr, u64 val)
  583. {
  584. return set_reg_idx(cd, r, i, m, addr, 0, val);
  585. }
  586. int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
  587. unsigned int max_regs, int all)
  588. {
  589. unsigned int i, j, idx = 0;
  590. u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
  591. u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
  592. /* Global FIR */
  593. gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
  594. set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
  595. /* UnitCfg for SLU */
  596. sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
  597. set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
  598. /* UnitCfg for APP */
  599. appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
  600. set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
  601. /* Check all chip Units */
  602. for (i = 0; i < GENWQE_MAX_UNITS; i++) {
  603. /* Unit FIR */
  604. ufir_addr = (i << 24) | 0x008;
  605. ufir = __genwqe_readq(cd, ufir_addr);
  606. set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
  607. /* Unit FEC */
  608. ufec_addr = (i << 24) | 0x018;
  609. ufec = __genwqe_readq(cd, ufec_addr);
  610. set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
  611. for (j = 0; j < 64; j++) {
  612. /* wherever there is a primary 1, read the 2ndary */
  613. if (!all && (!(ufir & (1ull << j))))
  614. continue;
  615. sfir_addr = (i << 24) | (0x100 + 8 * j);
  616. sfir = __genwqe_readq(cd, sfir_addr);
  617. set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
  618. sfec_addr = (i << 24) | (0x300 + 8 * j);
  619. sfec = __genwqe_readq(cd, sfec_addr);
  620. set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
  621. }
  622. }
  623. /* fill with invalid data until end */
  624. for (i = idx; i < max_regs; i++) {
  625. regs[i].addr = 0xffffffff;
  626. regs[i].val = 0xffffffffffffffffull;
  627. }
  628. return idx;
  629. }
  630. /**
  631. * genwqe_ffdc_buff_size() - Calculates the number of dump registers
  632. */
  633. int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
  634. {
  635. int entries = 0, ring, traps, traces, trace_entries;
  636. u32 eevptr_addr, l_addr, d_len, d_type;
  637. u64 eevptr, val, addr;
  638. eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
  639. eevptr = __genwqe_readq(cd, eevptr_addr);
  640. if ((eevptr != 0x0) && (eevptr != -1ull)) {
  641. l_addr = GENWQE_UID_OFFS(uid) | eevptr;
  642. while (1) {
  643. val = __genwqe_readq(cd, l_addr);
  644. if ((val == 0x0) || (val == -1ull))
  645. break;
  646. /* 38:24 */
  647. d_len = (val & 0x0000007fff000000ull) >> 24;
  648. /* 39 */
  649. d_type = (val & 0x0000008000000000ull) >> 36;
  650. if (d_type) { /* repeat */
  651. entries += d_len;
  652. } else { /* size in bytes! */
  653. entries += d_len >> 3;
  654. }
  655. l_addr += 8;
  656. }
  657. }
  658. for (ring = 0; ring < 8; ring++) {
  659. addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
  660. val = __genwqe_readq(cd, addr);
  661. if ((val == 0x0ull) || (val == -1ull))
  662. continue;
  663. traps = (val >> 24) & 0xff;
  664. traces = (val >> 16) & 0xff;
  665. trace_entries = val & 0xffff;
  666. entries += traps + (traces * trace_entries);
  667. }
  668. return entries;
  669. }
  670. /**
  671. * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
  672. */
  673. int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
  674. struct genwqe_reg *regs, unsigned int max_regs)
  675. {
  676. int i, traps, traces, trace, trace_entries, trace_entry, ring;
  677. unsigned int idx = 0;
  678. u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
  679. u64 eevptr, e, val, addr;
  680. eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
  681. eevptr = __genwqe_readq(cd, eevptr_addr);
  682. if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
  683. l_addr = GENWQE_UID_OFFS(uid) | eevptr;
  684. while (1) {
  685. e = __genwqe_readq(cd, l_addr);
  686. if ((e == 0x0) || (e == 0xffffffffffffffffull))
  687. break;
  688. d_addr = (e & 0x0000000000ffffffull); /* 23:0 */
  689. d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
  690. d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
  691. d_addr |= GENWQE_UID_OFFS(uid);
  692. if (d_type) {
  693. for (i = 0; i < (int)d_len; i++) {
  694. val = __genwqe_readq(cd, d_addr);
  695. set_reg_idx(cd, regs, &idx, max_regs,
  696. d_addr, i, val);
  697. }
  698. } else {
  699. d_len >>= 3; /* Size in bytes! */
  700. for (i = 0; i < (int)d_len; i++, d_addr += 8) {
  701. val = __genwqe_readq(cd, d_addr);
  702. set_reg_idx(cd, regs, &idx, max_regs,
  703. d_addr, 0, val);
  704. }
  705. }
  706. l_addr += 8;
  707. }
  708. }
  709. /*
  710. * To save time, there are only 6 traces poplulated on Uid=2,
  711. * Ring=1. each with iters=512.
  712. */
  713. for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
  714. 2...7 are ASI rings */
  715. addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
  716. val = __genwqe_readq(cd, addr);
  717. if ((val == 0x0ull) || (val == -1ull))
  718. continue;
  719. traps = (val >> 24) & 0xff; /* Number of Traps */
  720. traces = (val >> 16) & 0xff; /* Number of Traces */
  721. trace_entries = val & 0xffff; /* Entries per trace */
  722. /* Note: This is a combined loop that dumps both the traps */
  723. /* (for the trace == 0 case) as well as the traces 1 to */
  724. /* 'traces'. */
  725. for (trace = 0; trace <= traces; trace++) {
  726. u32 diag_sel =
  727. GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
  728. addr = (GENWQE_UID_OFFS(uid) |
  729. IO_EXTENDED_DIAG_SELECTOR);
  730. __genwqe_writeq(cd, addr, diag_sel);
  731. for (trace_entry = 0;
  732. trace_entry < (trace ? trace_entries : traps);
  733. trace_entry++) {
  734. addr = (GENWQE_UID_OFFS(uid) |
  735. IO_EXTENDED_DIAG_READ_MBX);
  736. val = __genwqe_readq(cd, addr);
  737. set_reg_idx(cd, regs, &idx, max_regs, addr,
  738. (diag_sel<<16) | trace_entry, val);
  739. }
  740. }
  741. }
  742. return 0;
  743. }
  744. /**
  745. * genwqe_write_vreg() - Write register in virtual window
  746. *
  747. * Note, these registers are only accessible to the PF through the
  748. * VF-window. It is not intended for the VF to access.
  749. */
  750. int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
  751. {
  752. __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
  753. __genwqe_writeq(cd, reg, val);
  754. return 0;
  755. }
  756. /**
  757. * genwqe_read_vreg() - Read register in virtual window
  758. *
  759. * Note, these registers are only accessible to the PF through the
  760. * VF-window. It is not intended for the VF to access.
  761. */
  762. u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
  763. {
  764. __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
  765. return __genwqe_readq(cd, reg);
  766. }
  767. /**
  768. * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
  769. *
  770. * Note: From a design perspective it turned out to be a bad idea to
  771. * use codes here to specifiy the frequency/speed values. An old
  772. * driver cannot understand new codes and is therefore always a
  773. * problem. Better is to measure out the value or put the
  774. * speed/frequency directly into a register which is always a valid
  775. * value for old as well as for new software.
  776. *
  777. * Return: Card clock in MHz
  778. */
  779. int genwqe_base_clock_frequency(struct genwqe_dev *cd)
  780. {
  781. u16 speed; /* MHz MHz MHz MHz */
  782. static const int speed_grade[] = { 250, 200, 166, 175 };
  783. speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
  784. if (speed >= ARRAY_SIZE(speed_grade))
  785. return 0; /* illegal value */
  786. return speed_grade[speed];
  787. }
  788. /**
  789. * genwqe_stop_traps() - Stop traps
  790. *
  791. * Before reading out the analysis data, we need to stop the traps.
  792. */
  793. void genwqe_stop_traps(struct genwqe_dev *cd)
  794. {
  795. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
  796. }
  797. /**
  798. * genwqe_start_traps() - Start traps
  799. *
  800. * After having read the data, we can/must enable the traps again.
  801. */
  802. void genwqe_start_traps(struct genwqe_dev *cd)
  803. {
  804. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
  805. if (genwqe_need_err_masking(cd))
  806. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
  807. }