alloc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733
  1. /*
  2. * Primary bucket allocation code
  3. *
  4. * Copyright 2012 Google, Inc.
  5. *
  6. * Allocation in bcache is done in terms of buckets:
  7. *
  8. * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
  9. * btree pointers - they must match for the pointer to be considered valid.
  10. *
  11. * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
  12. * bucket simply by incrementing its gen.
  13. *
  14. * The gens (along with the priorities; it's really the gens are important but
  15. * the code is named as if it's the priorities) are written in an arbitrary list
  16. * of buckets on disk, with a pointer to them in the journal header.
  17. *
  18. * When we invalidate a bucket, we have to write its new gen to disk and wait
  19. * for that write to complete before we use it - otherwise after a crash we
  20. * could have pointers that appeared to be good but pointed to data that had
  21. * been overwritten.
  22. *
  23. * Since the gens and priorities are all stored contiguously on disk, we can
  24. * batch this up: We fill up the free_inc list with freshly invalidated buckets,
  25. * call prio_write(), and when prio_write() finishes we pull buckets off the
  26. * free_inc list and optionally discard them.
  27. *
  28. * free_inc isn't the only freelist - if it was, we'd often to sleep while
  29. * priorities and gens were being written before we could allocate. c->free is a
  30. * smaller freelist, and buckets on that list are always ready to be used.
  31. *
  32. * If we've got discards enabled, that happens when a bucket moves from the
  33. * free_inc list to the free list.
  34. *
  35. * There is another freelist, because sometimes we have buckets that we know
  36. * have nothing pointing into them - these we can reuse without waiting for
  37. * priorities to be rewritten. These come from freed btree nodes and buckets
  38. * that garbage collection discovered no longer had valid keys pointing into
  39. * them (because they were overwritten). That's the unused list - buckets on the
  40. * unused list move to the free list, optionally being discarded in the process.
  41. *
  42. * It's also important to ensure that gens don't wrap around - with respect to
  43. * either the oldest gen in the btree or the gen on disk. This is quite
  44. * difficult to do in practice, but we explicitly guard against it anyways - if
  45. * a bucket is in danger of wrapping around we simply skip invalidating it that
  46. * time around, and we garbage collect or rewrite the priorities sooner than we
  47. * would have otherwise.
  48. *
  49. * bch_bucket_alloc() allocates a single bucket from a specific cache.
  50. *
  51. * bch_bucket_alloc_set() allocates one or more buckets from different caches
  52. * out of a cache set.
  53. *
  54. * free_some_buckets() drives all the processes described above. It's called
  55. * from bch_bucket_alloc() and a few other places that need to make sure free
  56. * buckets are ready.
  57. *
  58. * invalidate_buckets_(lru|fifo)() find buckets that are available to be
  59. * invalidated, and then invalidate them and stick them on the free_inc list -
  60. * in either lru or fifo order.
  61. */
  62. #include "bcache.h"
  63. #include "btree.h"
  64. #include <linux/blkdev.h>
  65. #include <linux/freezer.h>
  66. #include <linux/kthread.h>
  67. #include <linux/random.h>
  68. #include <trace/events/bcache.h>
  69. /* Bucket heap / gen */
  70. uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
  71. {
  72. uint8_t ret = ++b->gen;
  73. ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
  74. WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
  75. if (CACHE_SYNC(&ca->set->sb)) {
  76. ca->need_save_prio = max(ca->need_save_prio,
  77. bucket_disk_gen(b));
  78. WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX);
  79. }
  80. return ret;
  81. }
  82. void bch_rescale_priorities(struct cache_set *c, int sectors)
  83. {
  84. struct cache *ca;
  85. struct bucket *b;
  86. unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
  87. unsigned i;
  88. int r;
  89. atomic_sub(sectors, &c->rescale);
  90. do {
  91. r = atomic_read(&c->rescale);
  92. if (r >= 0)
  93. return;
  94. } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
  95. mutex_lock(&c->bucket_lock);
  96. c->min_prio = USHRT_MAX;
  97. for_each_cache(ca, c, i)
  98. for_each_bucket(b, ca)
  99. if (b->prio &&
  100. b->prio != BTREE_PRIO &&
  101. !atomic_read(&b->pin)) {
  102. b->prio--;
  103. c->min_prio = min(c->min_prio, b->prio);
  104. }
  105. mutex_unlock(&c->bucket_lock);
  106. }
  107. /* Allocation */
  108. static inline bool can_inc_bucket_gen(struct bucket *b)
  109. {
  110. return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX &&
  111. bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX;
  112. }
  113. bool bch_bucket_add_unused(struct cache *ca, struct bucket *b)
  114. {
  115. BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b));
  116. if (CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO) {
  117. unsigned i;
  118. for (i = 0; i < RESERVE_NONE; i++)
  119. if (!fifo_full(&ca->free[i]))
  120. goto add;
  121. return false;
  122. }
  123. add:
  124. b->prio = 0;
  125. if (can_inc_bucket_gen(b) &&
  126. fifo_push(&ca->unused, b - ca->buckets)) {
  127. atomic_inc(&b->pin);
  128. return true;
  129. }
  130. return false;
  131. }
  132. static bool can_invalidate_bucket(struct cache *ca, struct bucket *b)
  133. {
  134. return GC_MARK(b) == GC_MARK_RECLAIMABLE &&
  135. !atomic_read(&b->pin) &&
  136. can_inc_bucket_gen(b);
  137. }
  138. static void invalidate_one_bucket(struct cache *ca, struct bucket *b)
  139. {
  140. bch_inc_gen(ca, b);
  141. b->prio = INITIAL_PRIO;
  142. atomic_inc(&b->pin);
  143. fifo_push(&ca->free_inc, b - ca->buckets);
  144. }
  145. /*
  146. * Determines what order we're going to reuse buckets, smallest bucket_prio()
  147. * first: we also take into account the number of sectors of live data in that
  148. * bucket, and in order for that multiply to make sense we have to scale bucket
  149. *
  150. * Thus, we scale the bucket priorities so that the bucket with the smallest
  151. * prio is worth 1/8th of what INITIAL_PRIO is worth.
  152. */
  153. #define bucket_prio(b) \
  154. ({ \
  155. unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \
  156. \
  157. (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \
  158. })
  159. #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
  160. #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
  161. static void invalidate_buckets_lru(struct cache *ca)
  162. {
  163. struct bucket *b;
  164. ssize_t i;
  165. ca->heap.used = 0;
  166. for_each_bucket(b, ca) {
  167. /*
  168. * If we fill up the unused list, if we then return before
  169. * adding anything to the free_inc list we'll skip writing
  170. * prios/gens and just go back to allocating from the unused
  171. * list:
  172. */
  173. if (fifo_full(&ca->unused))
  174. return;
  175. if (!can_invalidate_bucket(ca, b))
  176. continue;
  177. if (!GC_SECTORS_USED(b) &&
  178. bch_bucket_add_unused(ca, b))
  179. continue;
  180. if (!heap_full(&ca->heap))
  181. heap_add(&ca->heap, b, bucket_max_cmp);
  182. else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
  183. ca->heap.data[0] = b;
  184. heap_sift(&ca->heap, 0, bucket_max_cmp);
  185. }
  186. }
  187. for (i = ca->heap.used / 2 - 1; i >= 0; --i)
  188. heap_sift(&ca->heap, i, bucket_min_cmp);
  189. while (!fifo_full(&ca->free_inc)) {
  190. if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
  191. /*
  192. * We don't want to be calling invalidate_buckets()
  193. * multiple times when it can't do anything
  194. */
  195. ca->invalidate_needs_gc = 1;
  196. wake_up_gc(ca->set);
  197. return;
  198. }
  199. invalidate_one_bucket(ca, b);
  200. }
  201. }
  202. static void invalidate_buckets_fifo(struct cache *ca)
  203. {
  204. struct bucket *b;
  205. size_t checked = 0;
  206. while (!fifo_full(&ca->free_inc)) {
  207. if (ca->fifo_last_bucket < ca->sb.first_bucket ||
  208. ca->fifo_last_bucket >= ca->sb.nbuckets)
  209. ca->fifo_last_bucket = ca->sb.first_bucket;
  210. b = ca->buckets + ca->fifo_last_bucket++;
  211. if (can_invalidate_bucket(ca, b))
  212. invalidate_one_bucket(ca, b);
  213. if (++checked >= ca->sb.nbuckets) {
  214. ca->invalidate_needs_gc = 1;
  215. wake_up_gc(ca->set);
  216. return;
  217. }
  218. }
  219. }
  220. static void invalidate_buckets_random(struct cache *ca)
  221. {
  222. struct bucket *b;
  223. size_t checked = 0;
  224. while (!fifo_full(&ca->free_inc)) {
  225. size_t n;
  226. get_random_bytes(&n, sizeof(n));
  227. n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
  228. n += ca->sb.first_bucket;
  229. b = ca->buckets + n;
  230. if (can_invalidate_bucket(ca, b))
  231. invalidate_one_bucket(ca, b);
  232. if (++checked >= ca->sb.nbuckets / 2) {
  233. ca->invalidate_needs_gc = 1;
  234. wake_up_gc(ca->set);
  235. return;
  236. }
  237. }
  238. }
  239. static void invalidate_buckets(struct cache *ca)
  240. {
  241. if (ca->invalidate_needs_gc)
  242. return;
  243. switch (CACHE_REPLACEMENT(&ca->sb)) {
  244. case CACHE_REPLACEMENT_LRU:
  245. invalidate_buckets_lru(ca);
  246. break;
  247. case CACHE_REPLACEMENT_FIFO:
  248. invalidate_buckets_fifo(ca);
  249. break;
  250. case CACHE_REPLACEMENT_RANDOM:
  251. invalidate_buckets_random(ca);
  252. break;
  253. }
  254. trace_bcache_alloc_invalidate(ca);
  255. }
  256. #define allocator_wait(ca, cond) \
  257. do { \
  258. while (1) { \
  259. set_current_state(TASK_INTERRUPTIBLE); \
  260. if (cond) \
  261. break; \
  262. \
  263. mutex_unlock(&(ca)->set->bucket_lock); \
  264. if (kthread_should_stop()) \
  265. return 0; \
  266. \
  267. try_to_freeze(); \
  268. schedule(); \
  269. mutex_lock(&(ca)->set->bucket_lock); \
  270. } \
  271. __set_current_state(TASK_RUNNING); \
  272. } while (0)
  273. static int bch_allocator_push(struct cache *ca, long bucket)
  274. {
  275. unsigned i;
  276. /* Prios/gens are actually the most important reserve */
  277. if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
  278. return true;
  279. for (i = 0; i < RESERVE_NR; i++)
  280. if (fifo_push(&ca->free[i], bucket))
  281. return true;
  282. return false;
  283. }
  284. static int bch_allocator_thread(void *arg)
  285. {
  286. struct cache *ca = arg;
  287. mutex_lock(&ca->set->bucket_lock);
  288. while (1) {
  289. /*
  290. * First, we pull buckets off of the unused and free_inc lists,
  291. * possibly issue discards to them, then we add the bucket to
  292. * the free list:
  293. */
  294. while (1) {
  295. long bucket;
  296. if ((!atomic_read(&ca->set->prio_blocked) ||
  297. !CACHE_SYNC(&ca->set->sb)) &&
  298. !fifo_empty(&ca->unused))
  299. fifo_pop(&ca->unused, bucket);
  300. else if (!fifo_empty(&ca->free_inc))
  301. fifo_pop(&ca->free_inc, bucket);
  302. else
  303. break;
  304. if (ca->discard) {
  305. mutex_unlock(&ca->set->bucket_lock);
  306. blkdev_issue_discard(ca->bdev,
  307. bucket_to_sector(ca->set, bucket),
  308. ca->sb.block_size, GFP_KERNEL, 0);
  309. mutex_lock(&ca->set->bucket_lock);
  310. }
  311. allocator_wait(ca, bch_allocator_push(ca, bucket));
  312. wake_up(&ca->set->bucket_wait);
  313. }
  314. /*
  315. * We've run out of free buckets, we need to find some buckets
  316. * we can invalidate. First, invalidate them in memory and add
  317. * them to the free_inc list:
  318. */
  319. allocator_wait(ca, ca->set->gc_mark_valid &&
  320. (ca->need_save_prio > 64 ||
  321. !ca->invalidate_needs_gc));
  322. invalidate_buckets(ca);
  323. /*
  324. * Now, we write their new gens to disk so we can start writing
  325. * new stuff to them:
  326. */
  327. allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
  328. if (CACHE_SYNC(&ca->set->sb) &&
  329. (!fifo_empty(&ca->free_inc) ||
  330. ca->need_save_prio > 64))
  331. bch_prio_write(ca);
  332. }
  333. }
  334. long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait)
  335. {
  336. DEFINE_WAIT(w);
  337. struct bucket *b;
  338. long r;
  339. /* fastpath */
  340. if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
  341. fifo_pop(&ca->free[reserve], r))
  342. goto out;
  343. if (!wait)
  344. return -1;
  345. do {
  346. prepare_to_wait(&ca->set->bucket_wait, &w,
  347. TASK_UNINTERRUPTIBLE);
  348. mutex_unlock(&ca->set->bucket_lock);
  349. schedule();
  350. mutex_lock(&ca->set->bucket_lock);
  351. } while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
  352. !fifo_pop(&ca->free[reserve], r));
  353. finish_wait(&ca->set->bucket_wait, &w);
  354. out:
  355. wake_up_process(ca->alloc_thread);
  356. if (expensive_debug_checks(ca->set)) {
  357. size_t iter;
  358. long i;
  359. unsigned j;
  360. for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
  361. BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
  362. for (j = 0; j < RESERVE_NR; j++)
  363. fifo_for_each(i, &ca->free[j], iter)
  364. BUG_ON(i == r);
  365. fifo_for_each(i, &ca->free_inc, iter)
  366. BUG_ON(i == r);
  367. fifo_for_each(i, &ca->unused, iter)
  368. BUG_ON(i == r);
  369. }
  370. b = ca->buckets + r;
  371. BUG_ON(atomic_read(&b->pin) != 1);
  372. SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
  373. if (reserve <= RESERVE_PRIO) {
  374. SET_GC_MARK(b, GC_MARK_METADATA);
  375. SET_GC_MOVE(b, 0);
  376. b->prio = BTREE_PRIO;
  377. } else {
  378. SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
  379. SET_GC_MOVE(b, 0);
  380. b->prio = INITIAL_PRIO;
  381. }
  382. return r;
  383. }
  384. void bch_bucket_free(struct cache_set *c, struct bkey *k)
  385. {
  386. unsigned i;
  387. for (i = 0; i < KEY_PTRS(k); i++) {
  388. struct bucket *b = PTR_BUCKET(c, k, i);
  389. SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
  390. SET_GC_SECTORS_USED(b, 0);
  391. bch_bucket_add_unused(PTR_CACHE(c, k, i), b);
  392. }
  393. }
  394. int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
  395. struct bkey *k, int n, bool wait)
  396. {
  397. int i;
  398. lockdep_assert_held(&c->bucket_lock);
  399. BUG_ON(!n || n > c->caches_loaded || n > 8);
  400. bkey_init(k);
  401. /* sort by free space/prio of oldest data in caches */
  402. for (i = 0; i < n; i++) {
  403. struct cache *ca = c->cache_by_alloc[i];
  404. long b = bch_bucket_alloc(ca, reserve, wait);
  405. if (b == -1)
  406. goto err;
  407. k->ptr[i] = PTR(ca->buckets[b].gen,
  408. bucket_to_sector(c, b),
  409. ca->sb.nr_this_dev);
  410. SET_KEY_PTRS(k, i + 1);
  411. }
  412. return 0;
  413. err:
  414. bch_bucket_free(c, k);
  415. bkey_put(c, k);
  416. return -1;
  417. }
  418. int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
  419. struct bkey *k, int n, bool wait)
  420. {
  421. int ret;
  422. mutex_lock(&c->bucket_lock);
  423. ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
  424. mutex_unlock(&c->bucket_lock);
  425. return ret;
  426. }
  427. /* Sector allocator */
  428. struct open_bucket {
  429. struct list_head list;
  430. unsigned last_write_point;
  431. unsigned sectors_free;
  432. BKEY_PADDED(key);
  433. };
  434. /*
  435. * We keep multiple buckets open for writes, and try to segregate different
  436. * write streams for better cache utilization: first we look for a bucket where
  437. * the last write to it was sequential with the current write, and failing that
  438. * we look for a bucket that was last used by the same task.
  439. *
  440. * The ideas is if you've got multiple tasks pulling data into the cache at the
  441. * same time, you'll get better cache utilization if you try to segregate their
  442. * data and preserve locality.
  443. *
  444. * For example, say you've starting Firefox at the same time you're copying a
  445. * bunch of files. Firefox will likely end up being fairly hot and stay in the
  446. * cache awhile, but the data you copied might not be; if you wrote all that
  447. * data to the same buckets it'd get invalidated at the same time.
  448. *
  449. * Both of those tasks will be doing fairly random IO so we can't rely on
  450. * detecting sequential IO to segregate their data, but going off of the task
  451. * should be a sane heuristic.
  452. */
  453. static struct open_bucket *pick_data_bucket(struct cache_set *c,
  454. const struct bkey *search,
  455. unsigned write_point,
  456. struct bkey *alloc)
  457. {
  458. struct open_bucket *ret, *ret_task = NULL;
  459. list_for_each_entry_reverse(ret, &c->data_buckets, list)
  460. if (!bkey_cmp(&ret->key, search))
  461. goto found;
  462. else if (ret->last_write_point == write_point)
  463. ret_task = ret;
  464. ret = ret_task ?: list_first_entry(&c->data_buckets,
  465. struct open_bucket, list);
  466. found:
  467. if (!ret->sectors_free && KEY_PTRS(alloc)) {
  468. ret->sectors_free = c->sb.bucket_size;
  469. bkey_copy(&ret->key, alloc);
  470. bkey_init(alloc);
  471. }
  472. if (!ret->sectors_free)
  473. ret = NULL;
  474. return ret;
  475. }
  476. /*
  477. * Allocates some space in the cache to write to, and k to point to the newly
  478. * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
  479. * end of the newly allocated space).
  480. *
  481. * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
  482. * sectors were actually allocated.
  483. *
  484. * If s->writeback is true, will not fail.
  485. */
  486. bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
  487. unsigned write_point, unsigned write_prio, bool wait)
  488. {
  489. struct open_bucket *b;
  490. BKEY_PADDED(key) alloc;
  491. unsigned i;
  492. /*
  493. * We might have to allocate a new bucket, which we can't do with a
  494. * spinlock held. So if we have to allocate, we drop the lock, allocate
  495. * and then retry. KEY_PTRS() indicates whether alloc points to
  496. * allocated bucket(s).
  497. */
  498. bkey_init(&alloc.key);
  499. spin_lock(&c->data_bucket_lock);
  500. while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
  501. unsigned watermark = write_prio
  502. ? RESERVE_MOVINGGC
  503. : RESERVE_NONE;
  504. spin_unlock(&c->data_bucket_lock);
  505. if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
  506. return false;
  507. spin_lock(&c->data_bucket_lock);
  508. }
  509. /*
  510. * If we had to allocate, we might race and not need to allocate the
  511. * second time we call find_data_bucket(). If we allocated a bucket but
  512. * didn't use it, drop the refcount bch_bucket_alloc_set() took:
  513. */
  514. if (KEY_PTRS(&alloc.key))
  515. bkey_put(c, &alloc.key);
  516. for (i = 0; i < KEY_PTRS(&b->key); i++)
  517. EBUG_ON(ptr_stale(c, &b->key, i));
  518. /* Set up the pointer to the space we're allocating: */
  519. for (i = 0; i < KEY_PTRS(&b->key); i++)
  520. k->ptr[i] = b->key.ptr[i];
  521. sectors = min(sectors, b->sectors_free);
  522. SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
  523. SET_KEY_SIZE(k, sectors);
  524. SET_KEY_PTRS(k, KEY_PTRS(&b->key));
  525. /*
  526. * Move b to the end of the lru, and keep track of what this bucket was
  527. * last used for:
  528. */
  529. list_move_tail(&b->list, &c->data_buckets);
  530. bkey_copy_key(&b->key, k);
  531. b->last_write_point = write_point;
  532. b->sectors_free -= sectors;
  533. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  534. SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
  535. atomic_long_add(sectors,
  536. &PTR_CACHE(c, &b->key, i)->sectors_written);
  537. }
  538. if (b->sectors_free < c->sb.block_size)
  539. b->sectors_free = 0;
  540. /*
  541. * k takes refcounts on the buckets it points to until it's inserted
  542. * into the btree, but if we're done with this bucket we just transfer
  543. * get_data_bucket()'s refcount.
  544. */
  545. if (b->sectors_free)
  546. for (i = 0; i < KEY_PTRS(&b->key); i++)
  547. atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
  548. spin_unlock(&c->data_bucket_lock);
  549. return true;
  550. }
  551. /* Init */
  552. void bch_open_buckets_free(struct cache_set *c)
  553. {
  554. struct open_bucket *b;
  555. while (!list_empty(&c->data_buckets)) {
  556. b = list_first_entry(&c->data_buckets,
  557. struct open_bucket, list);
  558. list_del(&b->list);
  559. kfree(b);
  560. }
  561. }
  562. int bch_open_buckets_alloc(struct cache_set *c)
  563. {
  564. int i;
  565. spin_lock_init(&c->data_bucket_lock);
  566. for (i = 0; i < 6; i++) {
  567. struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
  568. if (!b)
  569. return -ENOMEM;
  570. list_add(&b->list, &c->data_buckets);
  571. }
  572. return 0;
  573. }
  574. int bch_cache_allocator_start(struct cache *ca)
  575. {
  576. struct task_struct *k = kthread_run(bch_allocator_thread,
  577. ca, "bcache_allocator");
  578. if (IS_ERR(k))
  579. return PTR_ERR(k);
  580. ca->alloc_thread = k;
  581. return 0;
  582. }
  583. int bch_cache_allocator_init(struct cache *ca)
  584. {
  585. /*
  586. * Reserve:
  587. * Prio/gen writes first
  588. * Then 8 for btree allocations
  589. * Then half for the moving garbage collector
  590. */
  591. #if 0
  592. ca->watermark[WATERMARK_PRIO] = 0;
  593. ca->watermark[WATERMARK_METADATA] = prio_buckets(ca);
  594. ca->watermark[WATERMARK_MOVINGGC] = 8 +
  595. ca->watermark[WATERMARK_METADATA];
  596. ca->watermark[WATERMARK_NONE] = ca->free.size / 2 +
  597. ca->watermark[WATERMARK_MOVINGGC];
  598. #endif
  599. return 0;
  600. }