intel_ddi.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  30. * them for both DP and FDI transports, allowing those ports to
  31. * automatically adapt to HDMI connections as well
  32. */
  33. static const u32 hsw_ddi_translations_dp[] = {
  34. 0x00FFFFFF, 0x0006000E, /* DP parameters */
  35. 0x00D75FFF, 0x0005000A,
  36. 0x00C30FFF, 0x00040006,
  37. 0x80AAAFFF, 0x000B0000,
  38. 0x00FFFFFF, 0x0005000A,
  39. 0x00D75FFF, 0x000C0004,
  40. 0x80C30FFF, 0x000B0000,
  41. 0x00FFFFFF, 0x00040006,
  42. 0x80D75FFF, 0x000B0000,
  43. };
  44. static const u32 hsw_ddi_translations_fdi[] = {
  45. 0x00FFFFFF, 0x0007000E, /* FDI parameters */
  46. 0x00D75FFF, 0x000F000A,
  47. 0x00C30FFF, 0x00060006,
  48. 0x00AAAFFF, 0x001E0000,
  49. 0x00FFFFFF, 0x000F000A,
  50. 0x00D75FFF, 0x00160004,
  51. 0x00C30FFF, 0x001E0000,
  52. 0x00FFFFFF, 0x00060006,
  53. 0x00D75FFF, 0x001E0000,
  54. };
  55. static const u32 hsw_ddi_translations_hdmi[] = {
  56. /* Idx NT mV diff T mV diff db */
  57. 0x00FFFFFF, 0x0006000E, /* 0: 400 400 0 */
  58. 0x00E79FFF, 0x000E000C, /* 1: 400 500 2 */
  59. 0x00D75FFF, 0x0005000A, /* 2: 400 600 3.5 */
  60. 0x00FFFFFF, 0x0005000A, /* 3: 600 600 0 */
  61. 0x00E79FFF, 0x001D0007, /* 4: 600 750 2 */
  62. 0x00D75FFF, 0x000C0004, /* 5: 600 900 3.5 */
  63. 0x00FFFFFF, 0x00040006, /* 6: 800 800 0 */
  64. 0x80E79FFF, 0x00030002, /* 7: 800 1000 2 */
  65. 0x00FFFFFF, 0x00140005, /* 8: 850 850 0 */
  66. 0x00FFFFFF, 0x000C0004, /* 9: 900 900 0 */
  67. 0x00FFFFFF, 0x001C0003, /* 10: 950 950 0 */
  68. 0x80FFFFFF, 0x00030002, /* 11: 1000 1000 0 */
  69. };
  70. static const u32 bdw_ddi_translations_edp[] = {
  71. 0x00FFFFFF, 0x00000012, /* eDP parameters */
  72. 0x00EBAFFF, 0x00020011,
  73. 0x00C71FFF, 0x0006000F,
  74. 0x00FFFFFF, 0x00020011,
  75. 0x00DB6FFF, 0x0005000F,
  76. 0x00BEEFFF, 0x000A000C,
  77. 0x00FFFFFF, 0x0005000F,
  78. 0x00DB6FFF, 0x000A000C,
  79. 0x00FFFFFF, 0x000A000C,
  80. 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/
  81. };
  82. static const u32 bdw_ddi_translations_dp[] = {
  83. 0x00FFFFFF, 0x0007000E, /* DP parameters */
  84. 0x00D75FFF, 0x000E000A,
  85. 0x00BEFFFF, 0x00140006,
  86. 0x00FFFFFF, 0x000E000A,
  87. 0x00D75FFF, 0x00180004,
  88. 0x80CB2FFF, 0x001B0002,
  89. 0x00F7DFFF, 0x00180004,
  90. 0x80D75FFF, 0x001B0002,
  91. 0x80FFFFFF, 0x001B0002,
  92. 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/
  93. };
  94. static const u32 bdw_ddi_translations_fdi[] = {
  95. 0x00FFFFFF, 0x0001000E, /* FDI parameters */
  96. 0x00D75FFF, 0x0004000A,
  97. 0x00C30FFF, 0x00070006,
  98. 0x00AAAFFF, 0x000C0000,
  99. 0x00FFFFFF, 0x0004000A,
  100. 0x00D75FFF, 0x00090004,
  101. 0x00C30FFF, 0x000C0000,
  102. 0x00FFFFFF, 0x00070006,
  103. 0x00D75FFF, 0x000C0000,
  104. 0x00FFFFFF, 0x00140006 /* HDMI parameters 800mV 0dB*/
  105. };
  106. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  107. {
  108. struct drm_encoder *encoder = &intel_encoder->base;
  109. int type = intel_encoder->type;
  110. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
  111. type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
  112. struct intel_digital_port *intel_dig_port =
  113. enc_to_dig_port(encoder);
  114. return intel_dig_port->port;
  115. } else if (type == INTEL_OUTPUT_ANALOG) {
  116. return PORT_E;
  117. } else {
  118. DRM_ERROR("Invalid DDI encoder type %d\n", type);
  119. BUG();
  120. }
  121. }
  122. /*
  123. * Starting with Haswell, DDI port buffers must be programmed with correct
  124. * values in advance. The buffer values are different for FDI and DP modes,
  125. * but the HDMI/DVI fields are shared among those. So we program the DDI
  126. * in either FDI or DP modes only, as HDMI connections will work with both
  127. * of those
  128. */
  129. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
  130. {
  131. struct drm_i915_private *dev_priv = dev->dev_private;
  132. u32 reg;
  133. int i;
  134. int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  135. const u32 *ddi_translations_fdi;
  136. const u32 *ddi_translations_dp;
  137. const u32 *ddi_translations_edp;
  138. const u32 *ddi_translations;
  139. if (IS_BROADWELL(dev)) {
  140. ddi_translations_fdi = bdw_ddi_translations_fdi;
  141. ddi_translations_dp = bdw_ddi_translations_dp;
  142. ddi_translations_edp = bdw_ddi_translations_edp;
  143. } else if (IS_HASWELL(dev)) {
  144. ddi_translations_fdi = hsw_ddi_translations_fdi;
  145. ddi_translations_dp = hsw_ddi_translations_dp;
  146. ddi_translations_edp = hsw_ddi_translations_dp;
  147. } else {
  148. WARN(1, "ddi translation table missing\n");
  149. ddi_translations_edp = bdw_ddi_translations_dp;
  150. ddi_translations_fdi = bdw_ddi_translations_fdi;
  151. ddi_translations_dp = bdw_ddi_translations_dp;
  152. }
  153. switch (port) {
  154. case PORT_A:
  155. ddi_translations = ddi_translations_edp;
  156. break;
  157. case PORT_B:
  158. case PORT_C:
  159. ddi_translations = ddi_translations_dp;
  160. break;
  161. case PORT_D:
  162. if (intel_dp_is_edp(dev, PORT_D))
  163. ddi_translations = ddi_translations_edp;
  164. else
  165. ddi_translations = ddi_translations_dp;
  166. break;
  167. case PORT_E:
  168. ddi_translations = ddi_translations_fdi;
  169. break;
  170. default:
  171. BUG();
  172. }
  173. for (i = 0, reg = DDI_BUF_TRANS(port);
  174. i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
  175. I915_WRITE(reg, ddi_translations[i]);
  176. reg += 4;
  177. }
  178. /* Entry 9 is for HDMI: */
  179. for (i = 0; i < 2; i++) {
  180. I915_WRITE(reg, hsw_ddi_translations_hdmi[hdmi_level * 2 + i]);
  181. reg += 4;
  182. }
  183. }
  184. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  185. * mode and port E for FDI.
  186. */
  187. void intel_prepare_ddi(struct drm_device *dev)
  188. {
  189. int port;
  190. if (!HAS_DDI(dev))
  191. return;
  192. for (port = PORT_A; port <= PORT_E; port++)
  193. intel_prepare_ddi_buffers(dev, port);
  194. }
  195. static const long hsw_ddi_buf_ctl_values[] = {
  196. DDI_BUF_EMP_400MV_0DB_HSW,
  197. DDI_BUF_EMP_400MV_3_5DB_HSW,
  198. DDI_BUF_EMP_400MV_6DB_HSW,
  199. DDI_BUF_EMP_400MV_9_5DB_HSW,
  200. DDI_BUF_EMP_600MV_0DB_HSW,
  201. DDI_BUF_EMP_600MV_3_5DB_HSW,
  202. DDI_BUF_EMP_600MV_6DB_HSW,
  203. DDI_BUF_EMP_800MV_0DB_HSW,
  204. DDI_BUF_EMP_800MV_3_5DB_HSW
  205. };
  206. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  207. enum port port)
  208. {
  209. uint32_t reg = DDI_BUF_CTL(port);
  210. int i;
  211. for (i = 0; i < 8; i++) {
  212. udelay(1);
  213. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  214. return;
  215. }
  216. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  217. }
  218. /* Starting with Haswell, different DDI ports can work in FDI mode for
  219. * connection to the PCH-located connectors. For this, it is necessary to train
  220. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  221. *
  222. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  223. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  224. * DDI A (which is used for eDP)
  225. */
  226. void hsw_fdi_link_train(struct drm_crtc *crtc)
  227. {
  228. struct drm_device *dev = crtc->dev;
  229. struct drm_i915_private *dev_priv = dev->dev_private;
  230. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  231. u32 temp, i, rx_ctl_val;
  232. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  233. * mode set "sequence for CRT port" document:
  234. * - TP1 to TP2 time with the default value
  235. * - FDI delay to 90h
  236. *
  237. * WaFDIAutoLinkSetTimingOverrride:hsw
  238. */
  239. I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
  240. FDI_RX_PWRDN_LANE0_VAL(2) |
  241. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  242. /* Enable the PCH Receiver FDI PLL */
  243. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  244. FDI_RX_PLL_ENABLE |
  245. FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  246. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  247. POSTING_READ(_FDI_RXA_CTL);
  248. udelay(220);
  249. /* Switch from Rawclk to PCDclk */
  250. rx_ctl_val |= FDI_PCDCLK;
  251. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  252. /* Configure Port Clock Select */
  253. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->ddi_pll_sel);
  254. /* Start the training iterating through available voltages and emphasis,
  255. * testing each value twice. */
  256. for (i = 0; i < ARRAY_SIZE(hsw_ddi_buf_ctl_values) * 2; i++) {
  257. /* Configure DP_TP_CTL with auto-training */
  258. I915_WRITE(DP_TP_CTL(PORT_E),
  259. DP_TP_CTL_FDI_AUTOTRAIN |
  260. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  261. DP_TP_CTL_LINK_TRAIN_PAT1 |
  262. DP_TP_CTL_ENABLE);
  263. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  264. * DDI E does not support port reversal, the functionality is
  265. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  266. * port reversal bit */
  267. I915_WRITE(DDI_BUF_CTL(PORT_E),
  268. DDI_BUF_CTL_ENABLE |
  269. ((intel_crtc->config.fdi_lanes - 1) << 1) |
  270. hsw_ddi_buf_ctl_values[i / 2]);
  271. POSTING_READ(DDI_BUF_CTL(PORT_E));
  272. udelay(600);
  273. /* Program PCH FDI Receiver TU */
  274. I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
  275. /* Enable PCH FDI Receiver with auto-training */
  276. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  277. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  278. POSTING_READ(_FDI_RXA_CTL);
  279. /* Wait for FDI receiver lane calibration */
  280. udelay(30);
  281. /* Unset FDI_RX_MISC pwrdn lanes */
  282. temp = I915_READ(_FDI_RXA_MISC);
  283. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  284. I915_WRITE(_FDI_RXA_MISC, temp);
  285. POSTING_READ(_FDI_RXA_MISC);
  286. /* Wait for FDI auto training time */
  287. udelay(5);
  288. temp = I915_READ(DP_TP_STATUS(PORT_E));
  289. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  290. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  291. /* Enable normal pixel sending for FDI */
  292. I915_WRITE(DP_TP_CTL(PORT_E),
  293. DP_TP_CTL_FDI_AUTOTRAIN |
  294. DP_TP_CTL_LINK_TRAIN_NORMAL |
  295. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  296. DP_TP_CTL_ENABLE);
  297. return;
  298. }
  299. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  300. temp &= ~DDI_BUF_CTL_ENABLE;
  301. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  302. POSTING_READ(DDI_BUF_CTL(PORT_E));
  303. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  304. temp = I915_READ(DP_TP_CTL(PORT_E));
  305. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  306. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  307. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  308. POSTING_READ(DP_TP_CTL(PORT_E));
  309. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  310. rx_ctl_val &= ~FDI_RX_ENABLE;
  311. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  312. POSTING_READ(_FDI_RXA_CTL);
  313. /* Reset FDI_RX_MISC pwrdn lanes */
  314. temp = I915_READ(_FDI_RXA_MISC);
  315. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  316. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  317. I915_WRITE(_FDI_RXA_MISC, temp);
  318. POSTING_READ(_FDI_RXA_MISC);
  319. }
  320. DRM_ERROR("FDI link training failed!\n");
  321. }
  322. static void intel_ddi_mode_set(struct intel_encoder *encoder)
  323. {
  324. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  325. int port = intel_ddi_get_encoder_port(encoder);
  326. int pipe = crtc->pipe;
  327. int type = encoder->type;
  328. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  329. DRM_DEBUG_KMS("Preparing DDI mode on port %c, pipe %c\n",
  330. port_name(port), pipe_name(pipe));
  331. crtc->eld_vld = false;
  332. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  333. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  334. struct intel_digital_port *intel_dig_port =
  335. enc_to_dig_port(&encoder->base);
  336. intel_dp->DP = intel_dig_port->saved_port_bits |
  337. DDI_BUF_CTL_ENABLE | DDI_BUF_EMP_400MV_0DB_HSW;
  338. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  339. if (intel_dp->has_audio) {
  340. DRM_DEBUG_DRIVER("DP audio on pipe %c on DDI\n",
  341. pipe_name(crtc->pipe));
  342. /* write eld */
  343. DRM_DEBUG_DRIVER("DP audio: write eld information\n");
  344. intel_write_eld(&encoder->base, adjusted_mode);
  345. }
  346. } else if (type == INTEL_OUTPUT_HDMI) {
  347. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  348. if (intel_hdmi->has_audio) {
  349. /* Proper support for digital audio needs a new logic
  350. * and a new set of registers, so we leave it for future
  351. * patch bombing.
  352. */
  353. DRM_DEBUG_DRIVER("HDMI audio on pipe %c on DDI\n",
  354. pipe_name(crtc->pipe));
  355. /* write eld */
  356. DRM_DEBUG_DRIVER("HDMI audio: write eld information\n");
  357. intel_write_eld(&encoder->base, adjusted_mode);
  358. }
  359. intel_hdmi->set_infoframes(&encoder->base, adjusted_mode);
  360. }
  361. }
  362. static struct intel_encoder *
  363. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  364. {
  365. struct drm_device *dev = crtc->dev;
  366. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  367. struct intel_encoder *intel_encoder, *ret = NULL;
  368. int num_encoders = 0;
  369. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  370. ret = intel_encoder;
  371. num_encoders++;
  372. }
  373. if (num_encoders != 1)
  374. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  375. pipe_name(intel_crtc->pipe));
  376. BUG_ON(ret == NULL);
  377. return ret;
  378. }
  379. void intel_ddi_put_crtc_pll(struct drm_crtc *crtc)
  380. {
  381. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  382. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  383. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  384. uint32_t val;
  385. switch (intel_crtc->ddi_pll_sel) {
  386. case PORT_CLK_SEL_SPLL:
  387. plls->spll_refcount--;
  388. if (plls->spll_refcount == 0) {
  389. DRM_DEBUG_KMS("Disabling SPLL\n");
  390. val = I915_READ(SPLL_CTL);
  391. WARN_ON(!(val & SPLL_PLL_ENABLE));
  392. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  393. POSTING_READ(SPLL_CTL);
  394. }
  395. break;
  396. case PORT_CLK_SEL_WRPLL1:
  397. plls->wrpll1_refcount--;
  398. if (plls->wrpll1_refcount == 0) {
  399. DRM_DEBUG_KMS("Disabling WRPLL 1\n");
  400. val = I915_READ(WRPLL_CTL1);
  401. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  402. I915_WRITE(WRPLL_CTL1, val & ~WRPLL_PLL_ENABLE);
  403. POSTING_READ(WRPLL_CTL1);
  404. }
  405. break;
  406. case PORT_CLK_SEL_WRPLL2:
  407. plls->wrpll2_refcount--;
  408. if (plls->wrpll2_refcount == 0) {
  409. DRM_DEBUG_KMS("Disabling WRPLL 2\n");
  410. val = I915_READ(WRPLL_CTL2);
  411. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  412. I915_WRITE(WRPLL_CTL2, val & ~WRPLL_PLL_ENABLE);
  413. POSTING_READ(WRPLL_CTL2);
  414. }
  415. break;
  416. }
  417. WARN(plls->spll_refcount < 0, "Invalid SPLL refcount\n");
  418. WARN(plls->wrpll1_refcount < 0, "Invalid WRPLL1 refcount\n");
  419. WARN(plls->wrpll2_refcount < 0, "Invalid WRPLL2 refcount\n");
  420. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_NONE;
  421. }
  422. #define LC_FREQ 2700
  423. #define LC_FREQ_2K (LC_FREQ * 2000)
  424. #define P_MIN 2
  425. #define P_MAX 64
  426. #define P_INC 2
  427. /* Constraints for PLL good behavior */
  428. #define REF_MIN 48
  429. #define REF_MAX 400
  430. #define VCO_MIN 2400
  431. #define VCO_MAX 4800
  432. #define ABS_DIFF(a, b) ((a > b) ? (a - b) : (b - a))
  433. struct wrpll_rnp {
  434. unsigned p, n2, r2;
  435. };
  436. static unsigned wrpll_get_budget_for_freq(int clock)
  437. {
  438. unsigned budget;
  439. switch (clock) {
  440. case 25175000:
  441. case 25200000:
  442. case 27000000:
  443. case 27027000:
  444. case 37762500:
  445. case 37800000:
  446. case 40500000:
  447. case 40541000:
  448. case 54000000:
  449. case 54054000:
  450. case 59341000:
  451. case 59400000:
  452. case 72000000:
  453. case 74176000:
  454. case 74250000:
  455. case 81000000:
  456. case 81081000:
  457. case 89012000:
  458. case 89100000:
  459. case 108000000:
  460. case 108108000:
  461. case 111264000:
  462. case 111375000:
  463. case 148352000:
  464. case 148500000:
  465. case 162000000:
  466. case 162162000:
  467. case 222525000:
  468. case 222750000:
  469. case 296703000:
  470. case 297000000:
  471. budget = 0;
  472. break;
  473. case 233500000:
  474. case 245250000:
  475. case 247750000:
  476. case 253250000:
  477. case 298000000:
  478. budget = 1500;
  479. break;
  480. case 169128000:
  481. case 169500000:
  482. case 179500000:
  483. case 202000000:
  484. budget = 2000;
  485. break;
  486. case 256250000:
  487. case 262500000:
  488. case 270000000:
  489. case 272500000:
  490. case 273750000:
  491. case 280750000:
  492. case 281250000:
  493. case 286000000:
  494. case 291750000:
  495. budget = 4000;
  496. break;
  497. case 267250000:
  498. case 268500000:
  499. budget = 5000;
  500. break;
  501. default:
  502. budget = 1000;
  503. break;
  504. }
  505. return budget;
  506. }
  507. static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  508. unsigned r2, unsigned n2, unsigned p,
  509. struct wrpll_rnp *best)
  510. {
  511. uint64_t a, b, c, d, diff, diff_best;
  512. /* No best (r,n,p) yet */
  513. if (best->p == 0) {
  514. best->p = p;
  515. best->n2 = n2;
  516. best->r2 = r2;
  517. return;
  518. }
  519. /*
  520. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  521. * freq2k.
  522. *
  523. * delta = 1e6 *
  524. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  525. * freq2k;
  526. *
  527. * and we would like delta <= budget.
  528. *
  529. * If the discrepancy is above the PPM-based budget, always prefer to
  530. * improve upon the previous solution. However, if you're within the
  531. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  532. */
  533. a = freq2k * budget * p * r2;
  534. b = freq2k * budget * best->p * best->r2;
  535. diff = ABS_DIFF((freq2k * p * r2), (LC_FREQ_2K * n2));
  536. diff_best = ABS_DIFF((freq2k * best->p * best->r2),
  537. (LC_FREQ_2K * best->n2));
  538. c = 1000000 * diff;
  539. d = 1000000 * diff_best;
  540. if (a < c && b < d) {
  541. /* If both are above the budget, pick the closer */
  542. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  543. best->p = p;
  544. best->n2 = n2;
  545. best->r2 = r2;
  546. }
  547. } else if (a >= c && b < d) {
  548. /* If A is below the threshold but B is above it? Update. */
  549. best->p = p;
  550. best->n2 = n2;
  551. best->r2 = r2;
  552. } else if (a >= c && b >= d) {
  553. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  554. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  555. best->p = p;
  556. best->n2 = n2;
  557. best->r2 = r2;
  558. }
  559. }
  560. /* Otherwise a < c && b >= d, do nothing */
  561. }
  562. static void
  563. intel_ddi_calculate_wrpll(int clock /* in Hz */,
  564. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  565. {
  566. uint64_t freq2k;
  567. unsigned p, n2, r2;
  568. struct wrpll_rnp best = { 0, 0, 0 };
  569. unsigned budget;
  570. freq2k = clock / 100;
  571. budget = wrpll_get_budget_for_freq(clock);
  572. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  573. * and directly pass the LC PLL to it. */
  574. if (freq2k == 5400000) {
  575. *n2_out = 2;
  576. *p_out = 1;
  577. *r2_out = 2;
  578. return;
  579. }
  580. /*
  581. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  582. * the WR PLL.
  583. *
  584. * We want R so that REF_MIN <= Ref <= REF_MAX.
  585. * Injecting R2 = 2 * R gives:
  586. * REF_MAX * r2 > LC_FREQ * 2 and
  587. * REF_MIN * r2 < LC_FREQ * 2
  588. *
  589. * Which means the desired boundaries for r2 are:
  590. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  591. *
  592. */
  593. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  594. r2 <= LC_FREQ * 2 / REF_MIN;
  595. r2++) {
  596. /*
  597. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  598. *
  599. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  600. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  601. * VCO_MAX * r2 > n2 * LC_FREQ and
  602. * VCO_MIN * r2 < n2 * LC_FREQ)
  603. *
  604. * Which means the desired boundaries for n2 are:
  605. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  606. */
  607. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  608. n2 <= VCO_MAX * r2 / LC_FREQ;
  609. n2++) {
  610. for (p = P_MIN; p <= P_MAX; p += P_INC)
  611. wrpll_update_rnp(freq2k, budget,
  612. r2, n2, p, &best);
  613. }
  614. }
  615. *n2_out = best.n2;
  616. *p_out = best.p;
  617. *r2_out = best.r2;
  618. }
  619. /*
  620. * Tries to find a PLL for the CRTC. If it finds, it increases the refcount and
  621. * stores it in intel_crtc->ddi_pll_sel, so other mode sets won't be able to
  622. * steal the selected PLL. You need to call intel_ddi_pll_enable to actually
  623. * enable the PLL.
  624. */
  625. bool intel_ddi_pll_select(struct intel_crtc *intel_crtc)
  626. {
  627. struct drm_crtc *crtc = &intel_crtc->base;
  628. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  629. struct drm_encoder *encoder = &intel_encoder->base;
  630. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  631. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  632. int type = intel_encoder->type;
  633. enum pipe pipe = intel_crtc->pipe;
  634. int clock = intel_crtc->config.port_clock;
  635. intel_ddi_put_crtc_pll(crtc);
  636. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  637. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  638. switch (intel_dp->link_bw) {
  639. case DP_LINK_BW_1_62:
  640. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
  641. break;
  642. case DP_LINK_BW_2_7:
  643. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
  644. break;
  645. case DP_LINK_BW_5_4:
  646. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
  647. break;
  648. default:
  649. DRM_ERROR("Link bandwidth %d unsupported\n",
  650. intel_dp->link_bw);
  651. return false;
  652. }
  653. } else if (type == INTEL_OUTPUT_HDMI) {
  654. uint32_t reg, val;
  655. unsigned p, n2, r2;
  656. intel_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  657. val = WRPLL_PLL_ENABLE | WRPLL_PLL_SELECT_LCPLL_2700 |
  658. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  659. WRPLL_DIVIDER_POST(p);
  660. if (val == I915_READ(WRPLL_CTL1)) {
  661. DRM_DEBUG_KMS("Reusing WRPLL 1 on pipe %c\n",
  662. pipe_name(pipe));
  663. reg = WRPLL_CTL1;
  664. } else if (val == I915_READ(WRPLL_CTL2)) {
  665. DRM_DEBUG_KMS("Reusing WRPLL 2 on pipe %c\n",
  666. pipe_name(pipe));
  667. reg = WRPLL_CTL2;
  668. } else if (plls->wrpll1_refcount == 0) {
  669. DRM_DEBUG_KMS("Using WRPLL 1 on pipe %c\n",
  670. pipe_name(pipe));
  671. reg = WRPLL_CTL1;
  672. } else if (plls->wrpll2_refcount == 0) {
  673. DRM_DEBUG_KMS("Using WRPLL 2 on pipe %c\n",
  674. pipe_name(pipe));
  675. reg = WRPLL_CTL2;
  676. } else {
  677. DRM_ERROR("No WRPLLs available!\n");
  678. return false;
  679. }
  680. DRM_DEBUG_KMS("WRPLL: %dKHz refresh rate with p=%d, n2=%d r2=%d\n",
  681. clock, p, n2, r2);
  682. if (reg == WRPLL_CTL1) {
  683. plls->wrpll1_refcount++;
  684. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL1;
  685. } else {
  686. plls->wrpll2_refcount++;
  687. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL2;
  688. }
  689. } else if (type == INTEL_OUTPUT_ANALOG) {
  690. if (plls->spll_refcount == 0) {
  691. DRM_DEBUG_KMS("Using SPLL on pipe %c\n",
  692. pipe_name(pipe));
  693. plls->spll_refcount++;
  694. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_SPLL;
  695. } else {
  696. DRM_ERROR("SPLL already in use\n");
  697. return false;
  698. }
  699. } else {
  700. WARN(1, "Invalid DDI encoder type %d\n", type);
  701. return false;
  702. }
  703. return true;
  704. }
  705. /*
  706. * To be called after intel_ddi_pll_select(). That one selects the PLL to be
  707. * used, this one actually enables the PLL.
  708. */
  709. void intel_ddi_pll_enable(struct intel_crtc *crtc)
  710. {
  711. struct drm_device *dev = crtc->base.dev;
  712. struct drm_i915_private *dev_priv = dev->dev_private;
  713. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  714. int clock = crtc->config.port_clock;
  715. uint32_t reg, cur_val, new_val;
  716. int refcount;
  717. const char *pll_name;
  718. uint32_t enable_bit = (1 << 31);
  719. unsigned int p, n2, r2;
  720. BUILD_BUG_ON(enable_bit != SPLL_PLL_ENABLE);
  721. BUILD_BUG_ON(enable_bit != WRPLL_PLL_ENABLE);
  722. switch (crtc->ddi_pll_sel) {
  723. case PORT_CLK_SEL_LCPLL_2700:
  724. case PORT_CLK_SEL_LCPLL_1350:
  725. case PORT_CLK_SEL_LCPLL_810:
  726. /*
  727. * LCPLL should always be enabled at this point of the mode set
  728. * sequence, so nothing to do.
  729. */
  730. return;
  731. case PORT_CLK_SEL_SPLL:
  732. pll_name = "SPLL";
  733. reg = SPLL_CTL;
  734. refcount = plls->spll_refcount;
  735. new_val = SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz |
  736. SPLL_PLL_SSC;
  737. break;
  738. case PORT_CLK_SEL_WRPLL1:
  739. case PORT_CLK_SEL_WRPLL2:
  740. if (crtc->ddi_pll_sel == PORT_CLK_SEL_WRPLL1) {
  741. pll_name = "WRPLL1";
  742. reg = WRPLL_CTL1;
  743. refcount = plls->wrpll1_refcount;
  744. } else {
  745. pll_name = "WRPLL2";
  746. reg = WRPLL_CTL2;
  747. refcount = plls->wrpll2_refcount;
  748. }
  749. intel_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  750. new_val = WRPLL_PLL_ENABLE | WRPLL_PLL_SELECT_LCPLL_2700 |
  751. WRPLL_DIVIDER_REFERENCE(r2) |
  752. WRPLL_DIVIDER_FEEDBACK(n2) | WRPLL_DIVIDER_POST(p);
  753. break;
  754. case PORT_CLK_SEL_NONE:
  755. WARN(1, "Bad selected pll: PORT_CLK_SEL_NONE\n");
  756. return;
  757. default:
  758. WARN(1, "Bad selected pll: 0x%08x\n", crtc->ddi_pll_sel);
  759. return;
  760. }
  761. cur_val = I915_READ(reg);
  762. WARN(refcount < 1, "Bad %s refcount: %d\n", pll_name, refcount);
  763. if (refcount == 1) {
  764. WARN(cur_val & enable_bit, "%s already enabled\n", pll_name);
  765. I915_WRITE(reg, new_val);
  766. POSTING_READ(reg);
  767. udelay(20);
  768. } else {
  769. WARN((cur_val & enable_bit) == 0, "%s disabled\n", pll_name);
  770. }
  771. }
  772. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  773. {
  774. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  775. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  776. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  777. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  778. int type = intel_encoder->type;
  779. uint32_t temp;
  780. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  781. temp = TRANS_MSA_SYNC_CLK;
  782. switch (intel_crtc->config.pipe_bpp) {
  783. case 18:
  784. temp |= TRANS_MSA_6_BPC;
  785. break;
  786. case 24:
  787. temp |= TRANS_MSA_8_BPC;
  788. break;
  789. case 30:
  790. temp |= TRANS_MSA_10_BPC;
  791. break;
  792. case 36:
  793. temp |= TRANS_MSA_12_BPC;
  794. break;
  795. default:
  796. BUG();
  797. }
  798. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  799. }
  800. }
  801. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  802. {
  803. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  804. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  805. struct drm_encoder *encoder = &intel_encoder->base;
  806. struct drm_device *dev = crtc->dev;
  807. struct drm_i915_private *dev_priv = dev->dev_private;
  808. enum pipe pipe = intel_crtc->pipe;
  809. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  810. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  811. int type = intel_encoder->type;
  812. uint32_t temp;
  813. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  814. temp = TRANS_DDI_FUNC_ENABLE;
  815. temp |= TRANS_DDI_SELECT_PORT(port);
  816. switch (intel_crtc->config.pipe_bpp) {
  817. case 18:
  818. temp |= TRANS_DDI_BPC_6;
  819. break;
  820. case 24:
  821. temp |= TRANS_DDI_BPC_8;
  822. break;
  823. case 30:
  824. temp |= TRANS_DDI_BPC_10;
  825. break;
  826. case 36:
  827. temp |= TRANS_DDI_BPC_12;
  828. break;
  829. default:
  830. BUG();
  831. }
  832. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  833. temp |= TRANS_DDI_PVSYNC;
  834. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  835. temp |= TRANS_DDI_PHSYNC;
  836. if (cpu_transcoder == TRANSCODER_EDP) {
  837. switch (pipe) {
  838. case PIPE_A:
  839. /* On Haswell, can only use the always-on power well for
  840. * eDP when not using the panel fitter, and when not
  841. * using motion blur mitigation (which we don't
  842. * support). */
  843. if (IS_HASWELL(dev) && intel_crtc->config.pch_pfit.enabled)
  844. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  845. else
  846. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  847. break;
  848. case PIPE_B:
  849. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  850. break;
  851. case PIPE_C:
  852. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  853. break;
  854. default:
  855. BUG();
  856. break;
  857. }
  858. }
  859. if (type == INTEL_OUTPUT_HDMI) {
  860. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  861. if (intel_hdmi->has_hdmi_sink)
  862. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  863. else
  864. temp |= TRANS_DDI_MODE_SELECT_DVI;
  865. } else if (type == INTEL_OUTPUT_ANALOG) {
  866. temp |= TRANS_DDI_MODE_SELECT_FDI;
  867. temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
  868. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  869. type == INTEL_OUTPUT_EDP) {
  870. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  871. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  872. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  873. } else {
  874. WARN(1, "Invalid encoder type %d for pipe %c\n",
  875. intel_encoder->type, pipe_name(pipe));
  876. }
  877. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  878. }
  879. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  880. enum transcoder cpu_transcoder)
  881. {
  882. uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  883. uint32_t val = I915_READ(reg);
  884. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK);
  885. val |= TRANS_DDI_PORT_NONE;
  886. I915_WRITE(reg, val);
  887. }
  888. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  889. {
  890. struct drm_device *dev = intel_connector->base.dev;
  891. struct drm_i915_private *dev_priv = dev->dev_private;
  892. struct intel_encoder *intel_encoder = intel_connector->encoder;
  893. int type = intel_connector->base.connector_type;
  894. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  895. enum pipe pipe = 0;
  896. enum transcoder cpu_transcoder;
  897. uint32_t tmp;
  898. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  899. return false;
  900. if (port == PORT_A)
  901. cpu_transcoder = TRANSCODER_EDP;
  902. else
  903. cpu_transcoder = (enum transcoder) pipe;
  904. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  905. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  906. case TRANS_DDI_MODE_SELECT_HDMI:
  907. case TRANS_DDI_MODE_SELECT_DVI:
  908. return (type == DRM_MODE_CONNECTOR_HDMIA);
  909. case TRANS_DDI_MODE_SELECT_DP_SST:
  910. if (type == DRM_MODE_CONNECTOR_eDP)
  911. return true;
  912. case TRANS_DDI_MODE_SELECT_DP_MST:
  913. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  914. case TRANS_DDI_MODE_SELECT_FDI:
  915. return (type == DRM_MODE_CONNECTOR_VGA);
  916. default:
  917. return false;
  918. }
  919. }
  920. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  921. enum pipe *pipe)
  922. {
  923. struct drm_device *dev = encoder->base.dev;
  924. struct drm_i915_private *dev_priv = dev->dev_private;
  925. enum port port = intel_ddi_get_encoder_port(encoder);
  926. u32 tmp;
  927. int i;
  928. tmp = I915_READ(DDI_BUF_CTL(port));
  929. if (!(tmp & DDI_BUF_CTL_ENABLE))
  930. return false;
  931. if (port == PORT_A) {
  932. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  933. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  934. case TRANS_DDI_EDP_INPUT_A_ON:
  935. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  936. *pipe = PIPE_A;
  937. break;
  938. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  939. *pipe = PIPE_B;
  940. break;
  941. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  942. *pipe = PIPE_C;
  943. break;
  944. }
  945. return true;
  946. } else {
  947. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  948. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  949. if ((tmp & TRANS_DDI_PORT_MASK)
  950. == TRANS_DDI_SELECT_PORT(port)) {
  951. *pipe = i;
  952. return true;
  953. }
  954. }
  955. }
  956. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  957. return false;
  958. }
  959. static uint32_t intel_ddi_get_crtc_pll(struct drm_i915_private *dev_priv,
  960. enum pipe pipe)
  961. {
  962. uint32_t temp, ret;
  963. enum port port = I915_MAX_PORTS;
  964. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  965. pipe);
  966. int i;
  967. if (cpu_transcoder == TRANSCODER_EDP) {
  968. port = PORT_A;
  969. } else {
  970. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  971. temp &= TRANS_DDI_PORT_MASK;
  972. for (i = PORT_B; i <= PORT_E; i++)
  973. if (temp == TRANS_DDI_SELECT_PORT(i))
  974. port = i;
  975. }
  976. if (port == I915_MAX_PORTS) {
  977. WARN(1, "Pipe %c enabled on an unknown port\n",
  978. pipe_name(pipe));
  979. ret = PORT_CLK_SEL_NONE;
  980. } else {
  981. ret = I915_READ(PORT_CLK_SEL(port));
  982. DRM_DEBUG_KMS("Pipe %c connected to port %c using clock "
  983. "0x%08x\n", pipe_name(pipe), port_name(port),
  984. ret);
  985. }
  986. return ret;
  987. }
  988. void intel_ddi_setup_hw_pll_state(struct drm_device *dev)
  989. {
  990. struct drm_i915_private *dev_priv = dev->dev_private;
  991. enum pipe pipe;
  992. struct intel_crtc *intel_crtc;
  993. dev_priv->ddi_plls.spll_refcount = 0;
  994. dev_priv->ddi_plls.wrpll1_refcount = 0;
  995. dev_priv->ddi_plls.wrpll2_refcount = 0;
  996. for_each_pipe(pipe) {
  997. intel_crtc =
  998. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  999. if (!intel_crtc->active) {
  1000. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_NONE;
  1001. continue;
  1002. }
  1003. intel_crtc->ddi_pll_sel = intel_ddi_get_crtc_pll(dev_priv,
  1004. pipe);
  1005. switch (intel_crtc->ddi_pll_sel) {
  1006. case PORT_CLK_SEL_SPLL:
  1007. dev_priv->ddi_plls.spll_refcount++;
  1008. break;
  1009. case PORT_CLK_SEL_WRPLL1:
  1010. dev_priv->ddi_plls.wrpll1_refcount++;
  1011. break;
  1012. case PORT_CLK_SEL_WRPLL2:
  1013. dev_priv->ddi_plls.wrpll2_refcount++;
  1014. break;
  1015. }
  1016. }
  1017. }
  1018. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  1019. {
  1020. struct drm_crtc *crtc = &intel_crtc->base;
  1021. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1022. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1023. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1024. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1025. if (cpu_transcoder != TRANSCODER_EDP)
  1026. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1027. TRANS_CLK_SEL_PORT(port));
  1028. }
  1029. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  1030. {
  1031. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1032. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1033. if (cpu_transcoder != TRANSCODER_EDP)
  1034. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1035. TRANS_CLK_SEL_DISABLED);
  1036. }
  1037. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  1038. {
  1039. struct drm_encoder *encoder = &intel_encoder->base;
  1040. struct drm_crtc *crtc = encoder->crtc;
  1041. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1042. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1043. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1044. int type = intel_encoder->type;
  1045. if (type == INTEL_OUTPUT_EDP) {
  1046. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1047. ironlake_edp_panel_on(intel_dp);
  1048. }
  1049. WARN_ON(intel_crtc->ddi_pll_sel == PORT_CLK_SEL_NONE);
  1050. I915_WRITE(PORT_CLK_SEL(port), intel_crtc->ddi_pll_sel);
  1051. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  1052. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1053. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1054. intel_dp_start_link_train(intel_dp);
  1055. intel_dp_complete_link_train(intel_dp);
  1056. if (port != PORT_A)
  1057. intel_dp_stop_link_train(intel_dp);
  1058. }
  1059. }
  1060. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  1061. {
  1062. struct drm_encoder *encoder = &intel_encoder->base;
  1063. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1064. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1065. int type = intel_encoder->type;
  1066. uint32_t val;
  1067. bool wait = false;
  1068. val = I915_READ(DDI_BUF_CTL(port));
  1069. if (val & DDI_BUF_CTL_ENABLE) {
  1070. val &= ~DDI_BUF_CTL_ENABLE;
  1071. I915_WRITE(DDI_BUF_CTL(port), val);
  1072. wait = true;
  1073. }
  1074. val = I915_READ(DP_TP_CTL(port));
  1075. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1076. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1077. I915_WRITE(DP_TP_CTL(port), val);
  1078. if (wait)
  1079. intel_wait_ddi_buf_idle(dev_priv, port);
  1080. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  1081. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1082. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  1083. ironlake_edp_panel_vdd_on(intel_dp);
  1084. ironlake_edp_panel_off(intel_dp);
  1085. }
  1086. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  1087. }
  1088. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  1089. {
  1090. struct drm_encoder *encoder = &intel_encoder->base;
  1091. struct drm_crtc *crtc = encoder->crtc;
  1092. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1093. int pipe = intel_crtc->pipe;
  1094. struct drm_device *dev = encoder->dev;
  1095. struct drm_i915_private *dev_priv = dev->dev_private;
  1096. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1097. int type = intel_encoder->type;
  1098. uint32_t tmp;
  1099. if (type == INTEL_OUTPUT_HDMI) {
  1100. struct intel_digital_port *intel_dig_port =
  1101. enc_to_dig_port(encoder);
  1102. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  1103. * are ignored so nothing special needs to be done besides
  1104. * enabling the port.
  1105. */
  1106. I915_WRITE(DDI_BUF_CTL(port),
  1107. intel_dig_port->saved_port_bits |
  1108. DDI_BUF_CTL_ENABLE);
  1109. } else if (type == INTEL_OUTPUT_EDP) {
  1110. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1111. if (port == PORT_A)
  1112. intel_dp_stop_link_train(intel_dp);
  1113. ironlake_edp_backlight_on(intel_dp);
  1114. intel_edp_psr_enable(intel_dp);
  1115. }
  1116. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  1117. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1118. tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4));
  1119. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  1120. }
  1121. }
  1122. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  1123. {
  1124. struct drm_encoder *encoder = &intel_encoder->base;
  1125. struct drm_crtc *crtc = encoder->crtc;
  1126. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1127. int pipe = intel_crtc->pipe;
  1128. int type = intel_encoder->type;
  1129. struct drm_device *dev = encoder->dev;
  1130. struct drm_i915_private *dev_priv = dev->dev_private;
  1131. uint32_t tmp;
  1132. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  1133. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  1134. tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) <<
  1135. (pipe * 4));
  1136. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  1137. }
  1138. if (type == INTEL_OUTPUT_EDP) {
  1139. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1140. intel_edp_psr_disable(intel_dp);
  1141. ironlake_edp_backlight_off(intel_dp);
  1142. }
  1143. }
  1144. int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
  1145. {
  1146. struct drm_device *dev = dev_priv->dev;
  1147. uint32_t lcpll = I915_READ(LCPLL_CTL);
  1148. uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  1149. if (lcpll & LCPLL_CD_SOURCE_FCLK) {
  1150. return 800000;
  1151. } else if (I915_READ(HSW_FUSE_STRAP) & HSW_CDCLK_LIMIT) {
  1152. return 450000;
  1153. } else if (freq == LCPLL_CLK_FREQ_450) {
  1154. return 450000;
  1155. } else if (IS_HASWELL(dev)) {
  1156. if (IS_ULT(dev))
  1157. return 337500;
  1158. else
  1159. return 540000;
  1160. } else {
  1161. if (freq == LCPLL_CLK_FREQ_54O_BDW)
  1162. return 540000;
  1163. else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
  1164. return 337500;
  1165. else
  1166. return 675000;
  1167. }
  1168. }
  1169. void intel_ddi_pll_init(struct drm_device *dev)
  1170. {
  1171. struct drm_i915_private *dev_priv = dev->dev_private;
  1172. uint32_t val = I915_READ(LCPLL_CTL);
  1173. /* The LCPLL register should be turned on by the BIOS. For now let's
  1174. * just check its state and print errors in case something is wrong.
  1175. * Don't even try to turn it on.
  1176. */
  1177. DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
  1178. intel_ddi_get_cdclk_freq(dev_priv));
  1179. if (val & LCPLL_CD_SOURCE_FCLK)
  1180. DRM_ERROR("CDCLK source is not LCPLL\n");
  1181. if (val & LCPLL_PLL_DISABLE)
  1182. DRM_ERROR("LCPLL is disabled\n");
  1183. }
  1184. void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
  1185. {
  1186. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  1187. struct intel_dp *intel_dp = &intel_dig_port->dp;
  1188. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1189. enum port port = intel_dig_port->port;
  1190. uint32_t val;
  1191. bool wait = false;
  1192. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1193. val = I915_READ(DDI_BUF_CTL(port));
  1194. if (val & DDI_BUF_CTL_ENABLE) {
  1195. val &= ~DDI_BUF_CTL_ENABLE;
  1196. I915_WRITE(DDI_BUF_CTL(port), val);
  1197. wait = true;
  1198. }
  1199. val = I915_READ(DP_TP_CTL(port));
  1200. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1201. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1202. I915_WRITE(DP_TP_CTL(port), val);
  1203. POSTING_READ(DP_TP_CTL(port));
  1204. if (wait)
  1205. intel_wait_ddi_buf_idle(dev_priv, port);
  1206. }
  1207. val = DP_TP_CTL_ENABLE | DP_TP_CTL_MODE_SST |
  1208. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1209. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  1210. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1211. I915_WRITE(DP_TP_CTL(port), val);
  1212. POSTING_READ(DP_TP_CTL(port));
  1213. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1214. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1215. POSTING_READ(DDI_BUF_CTL(port));
  1216. udelay(600);
  1217. }
  1218. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  1219. {
  1220. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1221. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1222. uint32_t val;
  1223. intel_ddi_post_disable(intel_encoder);
  1224. val = I915_READ(_FDI_RXA_CTL);
  1225. val &= ~FDI_RX_ENABLE;
  1226. I915_WRITE(_FDI_RXA_CTL, val);
  1227. val = I915_READ(_FDI_RXA_MISC);
  1228. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1229. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1230. I915_WRITE(_FDI_RXA_MISC, val);
  1231. val = I915_READ(_FDI_RXA_CTL);
  1232. val &= ~FDI_PCDCLK;
  1233. I915_WRITE(_FDI_RXA_CTL, val);
  1234. val = I915_READ(_FDI_RXA_CTL);
  1235. val &= ~FDI_RX_PLL_ENABLE;
  1236. I915_WRITE(_FDI_RXA_CTL, val);
  1237. }
  1238. static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
  1239. {
  1240. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  1241. int type = intel_encoder->type;
  1242. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP)
  1243. intel_dp_check_link_status(intel_dp);
  1244. }
  1245. void intel_ddi_get_config(struct intel_encoder *encoder,
  1246. struct intel_crtc_config *pipe_config)
  1247. {
  1248. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1249. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1250. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1251. u32 temp, flags = 0;
  1252. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1253. if (temp & TRANS_DDI_PHSYNC)
  1254. flags |= DRM_MODE_FLAG_PHSYNC;
  1255. else
  1256. flags |= DRM_MODE_FLAG_NHSYNC;
  1257. if (temp & TRANS_DDI_PVSYNC)
  1258. flags |= DRM_MODE_FLAG_PVSYNC;
  1259. else
  1260. flags |= DRM_MODE_FLAG_NVSYNC;
  1261. pipe_config->adjusted_mode.flags |= flags;
  1262. switch (temp & TRANS_DDI_BPC_MASK) {
  1263. case TRANS_DDI_BPC_6:
  1264. pipe_config->pipe_bpp = 18;
  1265. break;
  1266. case TRANS_DDI_BPC_8:
  1267. pipe_config->pipe_bpp = 24;
  1268. break;
  1269. case TRANS_DDI_BPC_10:
  1270. pipe_config->pipe_bpp = 30;
  1271. break;
  1272. case TRANS_DDI_BPC_12:
  1273. pipe_config->pipe_bpp = 36;
  1274. break;
  1275. default:
  1276. break;
  1277. }
  1278. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  1279. case TRANS_DDI_MODE_SELECT_HDMI:
  1280. case TRANS_DDI_MODE_SELECT_DVI:
  1281. case TRANS_DDI_MODE_SELECT_FDI:
  1282. break;
  1283. case TRANS_DDI_MODE_SELECT_DP_SST:
  1284. case TRANS_DDI_MODE_SELECT_DP_MST:
  1285. pipe_config->has_dp_encoder = true;
  1286. intel_dp_get_m_n(intel_crtc, pipe_config);
  1287. break;
  1288. default:
  1289. break;
  1290. }
  1291. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
  1292. pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
  1293. /*
  1294. * This is a big fat ugly hack.
  1295. *
  1296. * Some machines in UEFI boot mode provide us a VBT that has 18
  1297. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  1298. * unknown we fail to light up. Yet the same BIOS boots up with
  1299. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  1300. * max, not what it tells us to use.
  1301. *
  1302. * Note: This will still be broken if the eDP panel is not lit
  1303. * up by the BIOS, and thus we can't get the mode at module
  1304. * load.
  1305. */
  1306. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  1307. pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
  1308. dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
  1309. }
  1310. }
  1311. static void intel_ddi_destroy(struct drm_encoder *encoder)
  1312. {
  1313. /* HDMI has nothing special to destroy, so we can go with this. */
  1314. intel_dp_encoder_destroy(encoder);
  1315. }
  1316. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1317. struct intel_crtc_config *pipe_config)
  1318. {
  1319. int type = encoder->type;
  1320. int port = intel_ddi_get_encoder_port(encoder);
  1321. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  1322. if (port == PORT_A)
  1323. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  1324. if (type == INTEL_OUTPUT_HDMI)
  1325. return intel_hdmi_compute_config(encoder, pipe_config);
  1326. else
  1327. return intel_dp_compute_config(encoder, pipe_config);
  1328. }
  1329. static const struct drm_encoder_funcs intel_ddi_funcs = {
  1330. .destroy = intel_ddi_destroy,
  1331. };
  1332. static struct intel_connector *
  1333. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  1334. {
  1335. struct intel_connector *connector;
  1336. enum port port = intel_dig_port->port;
  1337. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1338. if (!connector)
  1339. return NULL;
  1340. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  1341. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  1342. kfree(connector);
  1343. return NULL;
  1344. }
  1345. return connector;
  1346. }
  1347. static struct intel_connector *
  1348. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  1349. {
  1350. struct intel_connector *connector;
  1351. enum port port = intel_dig_port->port;
  1352. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1353. if (!connector)
  1354. return NULL;
  1355. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  1356. intel_hdmi_init_connector(intel_dig_port, connector);
  1357. return connector;
  1358. }
  1359. void intel_ddi_init(struct drm_device *dev, enum port port)
  1360. {
  1361. struct drm_i915_private *dev_priv = dev->dev_private;
  1362. struct intel_digital_port *intel_dig_port;
  1363. struct intel_encoder *intel_encoder;
  1364. struct drm_encoder *encoder;
  1365. struct intel_connector *hdmi_connector = NULL;
  1366. struct intel_connector *dp_connector = NULL;
  1367. bool init_hdmi, init_dp;
  1368. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  1369. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  1370. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  1371. if (!init_dp && !init_hdmi) {
  1372. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible\n",
  1373. port_name(port));
  1374. init_hdmi = true;
  1375. init_dp = true;
  1376. }
  1377. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1378. if (!intel_dig_port)
  1379. return;
  1380. intel_encoder = &intel_dig_port->base;
  1381. encoder = &intel_encoder->base;
  1382. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  1383. DRM_MODE_ENCODER_TMDS);
  1384. intel_encoder->compute_config = intel_ddi_compute_config;
  1385. intel_encoder->mode_set = intel_ddi_mode_set;
  1386. intel_encoder->enable = intel_enable_ddi;
  1387. intel_encoder->pre_enable = intel_ddi_pre_enable;
  1388. intel_encoder->disable = intel_disable_ddi;
  1389. intel_encoder->post_disable = intel_ddi_post_disable;
  1390. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  1391. intel_encoder->get_config = intel_ddi_get_config;
  1392. intel_dig_port->port = port;
  1393. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  1394. (DDI_BUF_PORT_REVERSAL |
  1395. DDI_A_4_LANES);
  1396. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  1397. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1398. intel_encoder->cloneable = false;
  1399. intel_encoder->hot_plug = intel_ddi_hot_plug;
  1400. if (init_dp)
  1401. dp_connector = intel_ddi_init_dp_connector(intel_dig_port);
  1402. /* In theory we don't need the encoder->type check, but leave it just in
  1403. * case we have some really bad VBTs... */
  1404. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi)
  1405. hdmi_connector = intel_ddi_init_hdmi_connector(intel_dig_port);
  1406. if (!dp_connector && !hdmi_connector) {
  1407. drm_encoder_cleanup(encoder);
  1408. kfree(intel_dig_port);
  1409. }
  1410. }