i915_sysfs.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Ben Widawsky <ben@bwidawsk.net>
  25. *
  26. */
  27. #include <linux/device.h>
  28. #include <linux/module.h>
  29. #include <linux/stat.h>
  30. #include <linux/sysfs.h>
  31. #include "intel_drv.h"
  32. #include "i915_drv.h"
  33. #define dev_to_drm_minor(d) dev_get_drvdata((d))
  34. #ifdef CONFIG_PM
  35. static u32 calc_residency(struct drm_device *dev, const u32 reg)
  36. {
  37. struct drm_i915_private *dev_priv = dev->dev_private;
  38. u64 raw_time; /* 32b value may overflow during fixed point math */
  39. u64 units = 128ULL, div = 100000ULL, bias = 100ULL;
  40. u32 ret;
  41. if (!intel_enable_rc6(dev))
  42. return 0;
  43. intel_runtime_pm_get(dev_priv);
  44. /* On VLV, residency time is in CZ units rather than 1.28us */
  45. if (IS_VALLEYVIEW(dev)) {
  46. u32 clkctl2;
  47. clkctl2 = I915_READ(VLV_CLK_CTL2) >>
  48. CLK_CTL2_CZCOUNT_30NS_SHIFT;
  49. if (!clkctl2) {
  50. WARN(!clkctl2, "bogus CZ count value");
  51. ret = 0;
  52. goto out;
  53. }
  54. units = DIV_ROUND_UP_ULL(30ULL * bias, (u64)clkctl2);
  55. if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
  56. units <<= 8;
  57. div = 1000000ULL * bias;
  58. }
  59. raw_time = I915_READ(reg) * units;
  60. ret = DIV_ROUND_UP_ULL(raw_time, div);
  61. out:
  62. intel_runtime_pm_put(dev_priv);
  63. return ret;
  64. }
  65. static ssize_t
  66. show_rc6_mask(struct device *kdev, struct device_attribute *attr, char *buf)
  67. {
  68. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  69. return snprintf(buf, PAGE_SIZE, "%x\n", intel_enable_rc6(dminor->dev));
  70. }
  71. static ssize_t
  72. show_rc6_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  73. {
  74. struct drm_minor *dminor = dev_get_drvdata(kdev);
  75. u32 rc6_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6);
  76. return snprintf(buf, PAGE_SIZE, "%u\n", rc6_residency);
  77. }
  78. static ssize_t
  79. show_rc6p_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  80. {
  81. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  82. u32 rc6p_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6p);
  83. if (IS_VALLEYVIEW(dminor->dev))
  84. rc6p_residency = 0;
  85. return snprintf(buf, PAGE_SIZE, "%u\n", rc6p_residency);
  86. }
  87. static ssize_t
  88. show_rc6pp_ms(struct device *kdev, struct device_attribute *attr, char *buf)
  89. {
  90. struct drm_minor *dminor = dev_to_drm_minor(kdev);
  91. u32 rc6pp_residency = calc_residency(dminor->dev, GEN6_GT_GFX_RC6pp);
  92. if (IS_VALLEYVIEW(dminor->dev))
  93. rc6pp_residency = 0;
  94. return snprintf(buf, PAGE_SIZE, "%u\n", rc6pp_residency);
  95. }
  96. static DEVICE_ATTR(rc6_enable, S_IRUGO, show_rc6_mask, NULL);
  97. static DEVICE_ATTR(rc6_residency_ms, S_IRUGO, show_rc6_ms, NULL);
  98. static DEVICE_ATTR(rc6p_residency_ms, S_IRUGO, show_rc6p_ms, NULL);
  99. static DEVICE_ATTR(rc6pp_residency_ms, S_IRUGO, show_rc6pp_ms, NULL);
  100. static struct attribute *rc6_attrs[] = {
  101. &dev_attr_rc6_enable.attr,
  102. &dev_attr_rc6_residency_ms.attr,
  103. &dev_attr_rc6p_residency_ms.attr,
  104. &dev_attr_rc6pp_residency_ms.attr,
  105. NULL
  106. };
  107. static struct attribute_group rc6_attr_group = {
  108. .name = power_group_name,
  109. .attrs = rc6_attrs
  110. };
  111. #endif
  112. static int l3_access_valid(struct drm_device *dev, loff_t offset)
  113. {
  114. if (!HAS_L3_DPF(dev))
  115. return -EPERM;
  116. if (offset % 4 != 0)
  117. return -EINVAL;
  118. if (offset >= GEN7_L3LOG_SIZE)
  119. return -ENXIO;
  120. return 0;
  121. }
  122. static ssize_t
  123. i915_l3_read(struct file *filp, struct kobject *kobj,
  124. struct bin_attribute *attr, char *buf,
  125. loff_t offset, size_t count)
  126. {
  127. struct device *dev = container_of(kobj, struct device, kobj);
  128. struct drm_minor *dminor = dev_to_drm_minor(dev);
  129. struct drm_device *drm_dev = dminor->dev;
  130. struct drm_i915_private *dev_priv = drm_dev->dev_private;
  131. int slice = (int)(uintptr_t)attr->private;
  132. int ret;
  133. count = round_down(count, 4);
  134. ret = l3_access_valid(drm_dev, offset);
  135. if (ret)
  136. return ret;
  137. count = min_t(size_t, GEN7_L3LOG_SIZE - offset, count);
  138. ret = i915_mutex_lock_interruptible(drm_dev);
  139. if (ret)
  140. return ret;
  141. if (dev_priv->l3_parity.remap_info[slice])
  142. memcpy(buf,
  143. dev_priv->l3_parity.remap_info[slice] + (offset/4),
  144. count);
  145. else
  146. memset(buf, 0, count);
  147. mutex_unlock(&drm_dev->struct_mutex);
  148. return count;
  149. }
  150. static ssize_t
  151. i915_l3_write(struct file *filp, struct kobject *kobj,
  152. struct bin_attribute *attr, char *buf,
  153. loff_t offset, size_t count)
  154. {
  155. struct device *dev = container_of(kobj, struct device, kobj);
  156. struct drm_minor *dminor = dev_to_drm_minor(dev);
  157. struct drm_device *drm_dev = dminor->dev;
  158. struct drm_i915_private *dev_priv = drm_dev->dev_private;
  159. struct i915_hw_context *ctx;
  160. u32 *temp = NULL; /* Just here to make handling failures easy */
  161. int slice = (int)(uintptr_t)attr->private;
  162. int ret;
  163. if (!HAS_HW_CONTEXTS(drm_dev))
  164. return -ENXIO;
  165. ret = l3_access_valid(drm_dev, offset);
  166. if (ret)
  167. return ret;
  168. ret = i915_mutex_lock_interruptible(drm_dev);
  169. if (ret)
  170. return ret;
  171. if (!dev_priv->l3_parity.remap_info[slice]) {
  172. temp = kzalloc(GEN7_L3LOG_SIZE, GFP_KERNEL);
  173. if (!temp) {
  174. mutex_unlock(&drm_dev->struct_mutex);
  175. return -ENOMEM;
  176. }
  177. }
  178. ret = i915_gpu_idle(drm_dev);
  179. if (ret) {
  180. kfree(temp);
  181. mutex_unlock(&drm_dev->struct_mutex);
  182. return ret;
  183. }
  184. /* TODO: Ideally we really want a GPU reset here to make sure errors
  185. * aren't propagated. Since I cannot find a stable way to reset the GPU
  186. * at this point it is left as a TODO.
  187. */
  188. if (temp)
  189. dev_priv->l3_parity.remap_info[slice] = temp;
  190. memcpy(dev_priv->l3_parity.remap_info[slice] + (offset/4), buf, count);
  191. /* NB: We defer the remapping until we switch to the context */
  192. list_for_each_entry(ctx, &dev_priv->context_list, link)
  193. ctx->remap_slice |= (1<<slice);
  194. mutex_unlock(&drm_dev->struct_mutex);
  195. return count;
  196. }
  197. static struct bin_attribute dpf_attrs = {
  198. .attr = {.name = "l3_parity", .mode = (S_IRUSR | S_IWUSR)},
  199. .size = GEN7_L3LOG_SIZE,
  200. .read = i915_l3_read,
  201. .write = i915_l3_write,
  202. .mmap = NULL,
  203. .private = (void *)0
  204. };
  205. static struct bin_attribute dpf_attrs_1 = {
  206. .attr = {.name = "l3_parity_slice_1", .mode = (S_IRUSR | S_IWUSR)},
  207. .size = GEN7_L3LOG_SIZE,
  208. .read = i915_l3_read,
  209. .write = i915_l3_write,
  210. .mmap = NULL,
  211. .private = (void *)1
  212. };
  213. static ssize_t gt_cur_freq_mhz_show(struct device *kdev,
  214. struct device_attribute *attr, char *buf)
  215. {
  216. struct drm_minor *minor = dev_to_drm_minor(kdev);
  217. struct drm_device *dev = minor->dev;
  218. struct drm_i915_private *dev_priv = dev->dev_private;
  219. int ret;
  220. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  221. mutex_lock(&dev_priv->rps.hw_lock);
  222. if (IS_VALLEYVIEW(dev_priv->dev)) {
  223. u32 freq;
  224. freq = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  225. ret = vlv_gpu_freq(dev_priv, (freq >> 8) & 0xff);
  226. } else {
  227. ret = dev_priv->rps.cur_delay * GT_FREQUENCY_MULTIPLIER;
  228. }
  229. mutex_unlock(&dev_priv->rps.hw_lock);
  230. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  231. }
  232. static ssize_t vlv_rpe_freq_mhz_show(struct device *kdev,
  233. struct device_attribute *attr, char *buf)
  234. {
  235. struct drm_minor *minor = dev_to_drm_minor(kdev);
  236. struct drm_device *dev = minor->dev;
  237. struct drm_i915_private *dev_priv = dev->dev_private;
  238. return snprintf(buf, PAGE_SIZE, "%d\n",
  239. vlv_gpu_freq(dev_priv, dev_priv->rps.rpe_delay));
  240. }
  241. static ssize_t gt_max_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  242. {
  243. struct drm_minor *minor = dev_to_drm_minor(kdev);
  244. struct drm_device *dev = minor->dev;
  245. struct drm_i915_private *dev_priv = dev->dev_private;
  246. int ret;
  247. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  248. mutex_lock(&dev_priv->rps.hw_lock);
  249. if (IS_VALLEYVIEW(dev_priv->dev))
  250. ret = vlv_gpu_freq(dev_priv, dev_priv->rps.max_delay);
  251. else
  252. ret = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER;
  253. mutex_unlock(&dev_priv->rps.hw_lock);
  254. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  255. }
  256. static ssize_t gt_max_freq_mhz_store(struct device *kdev,
  257. struct device_attribute *attr,
  258. const char *buf, size_t count)
  259. {
  260. struct drm_minor *minor = dev_to_drm_minor(kdev);
  261. struct drm_device *dev = minor->dev;
  262. struct drm_i915_private *dev_priv = dev->dev_private;
  263. u32 val, rp_state_cap, hw_max, hw_min, non_oc_max;
  264. ssize_t ret;
  265. ret = kstrtou32(buf, 0, &val);
  266. if (ret)
  267. return ret;
  268. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  269. mutex_lock(&dev_priv->rps.hw_lock);
  270. if (IS_VALLEYVIEW(dev_priv->dev)) {
  271. val = vlv_freq_opcode(dev_priv, val);
  272. hw_max = valleyview_rps_max_freq(dev_priv);
  273. hw_min = valleyview_rps_min_freq(dev_priv);
  274. non_oc_max = hw_max;
  275. } else {
  276. val /= GT_FREQUENCY_MULTIPLIER;
  277. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  278. hw_max = dev_priv->rps.hw_max;
  279. non_oc_max = (rp_state_cap & 0xff);
  280. hw_min = ((rp_state_cap & 0xff0000) >> 16);
  281. }
  282. if (val < hw_min || val > hw_max ||
  283. val < dev_priv->rps.min_delay) {
  284. mutex_unlock(&dev_priv->rps.hw_lock);
  285. return -EINVAL;
  286. }
  287. if (val > non_oc_max)
  288. DRM_DEBUG("User requested overclocking to %d\n",
  289. val * GT_FREQUENCY_MULTIPLIER);
  290. dev_priv->rps.max_delay = val;
  291. if (dev_priv->rps.cur_delay > val) {
  292. if (IS_VALLEYVIEW(dev))
  293. valleyview_set_rps(dev, val);
  294. else
  295. gen6_set_rps(dev, val);
  296. }
  297. mutex_unlock(&dev_priv->rps.hw_lock);
  298. return count;
  299. }
  300. static ssize_t gt_min_freq_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  301. {
  302. struct drm_minor *minor = dev_to_drm_minor(kdev);
  303. struct drm_device *dev = minor->dev;
  304. struct drm_i915_private *dev_priv = dev->dev_private;
  305. int ret;
  306. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  307. mutex_lock(&dev_priv->rps.hw_lock);
  308. if (IS_VALLEYVIEW(dev_priv->dev))
  309. ret = vlv_gpu_freq(dev_priv, dev_priv->rps.min_delay);
  310. else
  311. ret = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER;
  312. mutex_unlock(&dev_priv->rps.hw_lock);
  313. return snprintf(buf, PAGE_SIZE, "%d\n", ret);
  314. }
  315. static ssize_t gt_min_freq_mhz_store(struct device *kdev,
  316. struct device_attribute *attr,
  317. const char *buf, size_t count)
  318. {
  319. struct drm_minor *minor = dev_to_drm_minor(kdev);
  320. struct drm_device *dev = minor->dev;
  321. struct drm_i915_private *dev_priv = dev->dev_private;
  322. u32 val, rp_state_cap, hw_max, hw_min;
  323. ssize_t ret;
  324. ret = kstrtou32(buf, 0, &val);
  325. if (ret)
  326. return ret;
  327. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  328. mutex_lock(&dev_priv->rps.hw_lock);
  329. if (IS_VALLEYVIEW(dev)) {
  330. val = vlv_freq_opcode(dev_priv, val);
  331. hw_max = valleyview_rps_max_freq(dev_priv);
  332. hw_min = valleyview_rps_min_freq(dev_priv);
  333. } else {
  334. val /= GT_FREQUENCY_MULTIPLIER;
  335. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  336. hw_max = dev_priv->rps.hw_max;
  337. hw_min = ((rp_state_cap & 0xff0000) >> 16);
  338. }
  339. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_delay) {
  340. mutex_unlock(&dev_priv->rps.hw_lock);
  341. return -EINVAL;
  342. }
  343. dev_priv->rps.min_delay = val;
  344. if (dev_priv->rps.cur_delay < val) {
  345. if (IS_VALLEYVIEW(dev))
  346. valleyview_set_rps(dev, val);
  347. else
  348. gen6_set_rps(dev, val);
  349. }
  350. mutex_unlock(&dev_priv->rps.hw_lock);
  351. return count;
  352. }
  353. static DEVICE_ATTR(gt_cur_freq_mhz, S_IRUGO, gt_cur_freq_mhz_show, NULL);
  354. static DEVICE_ATTR(gt_max_freq_mhz, S_IRUGO | S_IWUSR, gt_max_freq_mhz_show, gt_max_freq_mhz_store);
  355. static DEVICE_ATTR(gt_min_freq_mhz, S_IRUGO | S_IWUSR, gt_min_freq_mhz_show, gt_min_freq_mhz_store);
  356. static DEVICE_ATTR(vlv_rpe_freq_mhz, S_IRUGO, vlv_rpe_freq_mhz_show, NULL);
  357. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf);
  358. static DEVICE_ATTR(gt_RP0_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  359. static DEVICE_ATTR(gt_RP1_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  360. static DEVICE_ATTR(gt_RPn_freq_mhz, S_IRUGO, gt_rp_mhz_show, NULL);
  361. /* For now we have a static number of RP states */
  362. static ssize_t gt_rp_mhz_show(struct device *kdev, struct device_attribute *attr, char *buf)
  363. {
  364. struct drm_minor *minor = dev_to_drm_minor(kdev);
  365. struct drm_device *dev = minor->dev;
  366. struct drm_i915_private *dev_priv = dev->dev_private;
  367. u32 val, rp_state_cap;
  368. ssize_t ret;
  369. ret = mutex_lock_interruptible(&dev->struct_mutex);
  370. if (ret)
  371. return ret;
  372. intel_runtime_pm_get(dev_priv);
  373. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  374. intel_runtime_pm_put(dev_priv);
  375. mutex_unlock(&dev->struct_mutex);
  376. if (attr == &dev_attr_gt_RP0_freq_mhz) {
  377. val = ((rp_state_cap & 0x0000ff) >> 0) * GT_FREQUENCY_MULTIPLIER;
  378. } else if (attr == &dev_attr_gt_RP1_freq_mhz) {
  379. val = ((rp_state_cap & 0x00ff00) >> 8) * GT_FREQUENCY_MULTIPLIER;
  380. } else if (attr == &dev_attr_gt_RPn_freq_mhz) {
  381. val = ((rp_state_cap & 0xff0000) >> 16) * GT_FREQUENCY_MULTIPLIER;
  382. } else {
  383. BUG();
  384. }
  385. return snprintf(buf, PAGE_SIZE, "%d\n", val);
  386. }
  387. static const struct attribute *gen6_attrs[] = {
  388. &dev_attr_gt_cur_freq_mhz.attr,
  389. &dev_attr_gt_max_freq_mhz.attr,
  390. &dev_attr_gt_min_freq_mhz.attr,
  391. &dev_attr_gt_RP0_freq_mhz.attr,
  392. &dev_attr_gt_RP1_freq_mhz.attr,
  393. &dev_attr_gt_RPn_freq_mhz.attr,
  394. NULL,
  395. };
  396. static const struct attribute *vlv_attrs[] = {
  397. &dev_attr_gt_cur_freq_mhz.attr,
  398. &dev_attr_gt_max_freq_mhz.attr,
  399. &dev_attr_gt_min_freq_mhz.attr,
  400. &dev_attr_vlv_rpe_freq_mhz.attr,
  401. NULL,
  402. };
  403. static ssize_t error_state_read(struct file *filp, struct kobject *kobj,
  404. struct bin_attribute *attr, char *buf,
  405. loff_t off, size_t count)
  406. {
  407. struct device *kdev = container_of(kobj, struct device, kobj);
  408. struct drm_minor *minor = dev_to_drm_minor(kdev);
  409. struct drm_device *dev = minor->dev;
  410. struct i915_error_state_file_priv error_priv;
  411. struct drm_i915_error_state_buf error_str;
  412. ssize_t ret_count = 0;
  413. int ret;
  414. memset(&error_priv, 0, sizeof(error_priv));
  415. ret = i915_error_state_buf_init(&error_str, count, off);
  416. if (ret)
  417. return ret;
  418. error_priv.dev = dev;
  419. i915_error_state_get(dev, &error_priv);
  420. ret = i915_error_state_to_str(&error_str, &error_priv);
  421. if (ret)
  422. goto out;
  423. ret_count = count < error_str.bytes ? count : error_str.bytes;
  424. memcpy(buf, error_str.buf, ret_count);
  425. out:
  426. i915_error_state_put(&error_priv);
  427. i915_error_state_buf_release(&error_str);
  428. return ret ?: ret_count;
  429. }
  430. static ssize_t error_state_write(struct file *file, struct kobject *kobj,
  431. struct bin_attribute *attr, char *buf,
  432. loff_t off, size_t count)
  433. {
  434. struct device *kdev = container_of(kobj, struct device, kobj);
  435. struct drm_minor *minor = dev_to_drm_minor(kdev);
  436. struct drm_device *dev = minor->dev;
  437. int ret;
  438. DRM_DEBUG_DRIVER("Resetting error state\n");
  439. ret = mutex_lock_interruptible(&dev->struct_mutex);
  440. if (ret)
  441. return ret;
  442. i915_destroy_error_state(dev);
  443. mutex_unlock(&dev->struct_mutex);
  444. return count;
  445. }
  446. static struct bin_attribute error_state_attr = {
  447. .attr.name = "error",
  448. .attr.mode = S_IRUSR | S_IWUSR,
  449. .size = 0,
  450. .read = error_state_read,
  451. .write = error_state_write,
  452. };
  453. void i915_setup_sysfs(struct drm_device *dev)
  454. {
  455. int ret;
  456. #ifdef CONFIG_PM
  457. if (INTEL_INFO(dev)->gen >= 6) {
  458. ret = sysfs_merge_group(&dev->primary->kdev->kobj,
  459. &rc6_attr_group);
  460. if (ret)
  461. DRM_ERROR("RC6 residency sysfs setup failed\n");
  462. }
  463. #endif
  464. if (HAS_L3_DPF(dev)) {
  465. ret = device_create_bin_file(dev->primary->kdev, &dpf_attrs);
  466. if (ret)
  467. DRM_ERROR("l3 parity sysfs setup failed\n");
  468. if (NUM_L3_SLICES(dev) > 1) {
  469. ret = device_create_bin_file(dev->primary->kdev,
  470. &dpf_attrs_1);
  471. if (ret)
  472. DRM_ERROR("l3 parity slice 1 setup failed\n");
  473. }
  474. }
  475. ret = 0;
  476. if (IS_VALLEYVIEW(dev))
  477. ret = sysfs_create_files(&dev->primary->kdev->kobj, vlv_attrs);
  478. else if (INTEL_INFO(dev)->gen >= 6)
  479. ret = sysfs_create_files(&dev->primary->kdev->kobj, gen6_attrs);
  480. if (ret)
  481. DRM_ERROR("RPS sysfs setup failed\n");
  482. ret = sysfs_create_bin_file(&dev->primary->kdev->kobj,
  483. &error_state_attr);
  484. if (ret)
  485. DRM_ERROR("error_state sysfs setup failed\n");
  486. }
  487. void i915_teardown_sysfs(struct drm_device *dev)
  488. {
  489. sysfs_remove_bin_file(&dev->primary->kdev->kobj, &error_state_attr);
  490. if (IS_VALLEYVIEW(dev))
  491. sysfs_remove_files(&dev->primary->kdev->kobj, vlv_attrs);
  492. else
  493. sysfs_remove_files(&dev->primary->kdev->kobj, gen6_attrs);
  494. device_remove_bin_file(dev->primary->kdev, &dpf_attrs_1);
  495. device_remove_bin_file(dev->primary->kdev, &dpf_attrs);
  496. #ifdef CONFIG_PM
  497. sysfs_unmerge_group(&dev->primary->kdev->kobj, &rc6_attr_group);
  498. #endif
  499. }