i915_gem_gtt.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495
  1. /*
  2. * Copyright © 2010 Daniel Vetter
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. */
  24. #include <drm/drmP.h>
  25. #include <drm/i915_drm.h>
  26. #include "i915_drv.h"
  27. #include "i915_trace.h"
  28. #include "intel_drv.h"
  29. #define GEN6_PPGTT_PD_ENTRIES 512
  30. #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
  31. typedef uint64_t gen8_gtt_pte_t;
  32. typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
  33. /* PPGTT stuff */
  34. #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
  35. #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
  36. #define GEN6_PDE_VALID (1 << 0)
  37. /* gen6+ has bit 11-4 for physical addr bit 39-32 */
  38. #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  39. #define GEN6_PTE_VALID (1 << 0)
  40. #define GEN6_PTE_UNCACHED (1 << 1)
  41. #define HSW_PTE_UNCACHED (0)
  42. #define GEN6_PTE_CACHE_LLC (2 << 1)
  43. #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
  44. #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
  45. #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
  46. /* Cacheability Control is a 4-bit value. The low three bits are stored in *
  47. * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
  48. */
  49. #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
  50. (((bits) & 0x8) << (11 - 3)))
  51. #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
  52. #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
  53. #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
  54. #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
  55. #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
  56. #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
  57. #define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
  58. #define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
  59. #define GEN8_LEGACY_PDPS 4
  60. #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
  61. #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
  62. #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
  63. #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
  64. static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
  65. enum i915_cache_level level,
  66. bool valid)
  67. {
  68. gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
  69. pte |= addr;
  70. if (level != I915_CACHE_NONE)
  71. pte |= PPAT_CACHED_INDEX;
  72. else
  73. pte |= PPAT_UNCACHED_INDEX;
  74. return pte;
  75. }
  76. static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
  77. dma_addr_t addr,
  78. enum i915_cache_level level)
  79. {
  80. gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
  81. pde |= addr;
  82. if (level != I915_CACHE_NONE)
  83. pde |= PPAT_CACHED_PDE_INDEX;
  84. else
  85. pde |= PPAT_UNCACHED_INDEX;
  86. return pde;
  87. }
  88. static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
  89. enum i915_cache_level level,
  90. bool valid)
  91. {
  92. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  93. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  94. switch (level) {
  95. case I915_CACHE_L3_LLC:
  96. case I915_CACHE_LLC:
  97. pte |= GEN6_PTE_CACHE_LLC;
  98. break;
  99. case I915_CACHE_NONE:
  100. pte |= GEN6_PTE_UNCACHED;
  101. break;
  102. default:
  103. WARN_ON(1);
  104. }
  105. return pte;
  106. }
  107. static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
  108. enum i915_cache_level level,
  109. bool valid)
  110. {
  111. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  112. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  113. switch (level) {
  114. case I915_CACHE_L3_LLC:
  115. pte |= GEN7_PTE_CACHE_L3_LLC;
  116. break;
  117. case I915_CACHE_LLC:
  118. pte |= GEN6_PTE_CACHE_LLC;
  119. break;
  120. case I915_CACHE_NONE:
  121. pte |= GEN6_PTE_UNCACHED;
  122. break;
  123. default:
  124. WARN_ON(1);
  125. }
  126. return pte;
  127. }
  128. #define BYT_PTE_WRITEABLE (1 << 1)
  129. #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
  130. static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
  131. enum i915_cache_level level,
  132. bool valid)
  133. {
  134. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  135. pte |= GEN6_PTE_ADDR_ENCODE(addr);
  136. /* Mark the page as writeable. Other platforms don't have a
  137. * setting for read-only/writable, so this matches that behavior.
  138. */
  139. pte |= BYT_PTE_WRITEABLE;
  140. if (level != I915_CACHE_NONE)
  141. pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
  142. return pte;
  143. }
  144. static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
  145. enum i915_cache_level level,
  146. bool valid)
  147. {
  148. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  149. pte |= HSW_PTE_ADDR_ENCODE(addr);
  150. if (level != I915_CACHE_NONE)
  151. pte |= HSW_WB_LLC_AGE3;
  152. return pte;
  153. }
  154. static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
  155. enum i915_cache_level level,
  156. bool valid)
  157. {
  158. gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
  159. pte |= HSW_PTE_ADDR_ENCODE(addr);
  160. switch (level) {
  161. case I915_CACHE_NONE:
  162. break;
  163. case I915_CACHE_WT:
  164. pte |= HSW_WT_ELLC_LLC_AGE3;
  165. break;
  166. default:
  167. pte |= HSW_WB_ELLC_LLC_AGE3;
  168. break;
  169. }
  170. return pte;
  171. }
  172. /* Broadwell Page Directory Pointer Descriptors */
  173. static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
  174. uint64_t val)
  175. {
  176. int ret;
  177. BUG_ON(entry >= 4);
  178. ret = intel_ring_begin(ring, 6);
  179. if (ret)
  180. return ret;
  181. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  182. intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
  183. intel_ring_emit(ring, (u32)(val >> 32));
  184. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  185. intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
  186. intel_ring_emit(ring, (u32)(val));
  187. intel_ring_advance(ring);
  188. return 0;
  189. }
  190. static int gen8_ppgtt_enable(struct drm_device *dev)
  191. {
  192. struct drm_i915_private *dev_priv = dev->dev_private;
  193. struct intel_ring_buffer *ring;
  194. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  195. int i, j, ret;
  196. /* bit of a hack to find the actual last used pd */
  197. int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
  198. for_each_ring(ring, dev_priv, j) {
  199. I915_WRITE(RING_MODE_GEN7(ring),
  200. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  201. }
  202. for (i = used_pd - 1; i >= 0; i--) {
  203. dma_addr_t addr = ppgtt->pd_dma_addr[i];
  204. for_each_ring(ring, dev_priv, j) {
  205. ret = gen8_write_pdp(ring, i, addr);
  206. if (ret)
  207. goto err_out;
  208. }
  209. }
  210. return 0;
  211. err_out:
  212. for_each_ring(ring, dev_priv, j)
  213. I915_WRITE(RING_MODE_GEN7(ring),
  214. _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
  215. return ret;
  216. }
  217. static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
  218. unsigned first_entry,
  219. unsigned num_entries,
  220. bool use_scratch)
  221. {
  222. struct i915_hw_ppgtt *ppgtt =
  223. container_of(vm, struct i915_hw_ppgtt, base);
  224. gen8_gtt_pte_t *pt_vaddr, scratch_pte;
  225. unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
  226. unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
  227. unsigned last_pte, i;
  228. scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
  229. I915_CACHE_LLC, use_scratch);
  230. while (num_entries) {
  231. struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
  232. last_pte = first_pte + num_entries;
  233. if (last_pte > GEN8_PTES_PER_PAGE)
  234. last_pte = GEN8_PTES_PER_PAGE;
  235. pt_vaddr = kmap_atomic(page_table);
  236. for (i = first_pte; i < last_pte; i++)
  237. pt_vaddr[i] = scratch_pte;
  238. kunmap_atomic(pt_vaddr);
  239. num_entries -= last_pte - first_pte;
  240. first_pte = 0;
  241. act_pt++;
  242. }
  243. }
  244. static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
  245. struct sg_table *pages,
  246. unsigned first_entry,
  247. enum i915_cache_level cache_level)
  248. {
  249. struct i915_hw_ppgtt *ppgtt =
  250. container_of(vm, struct i915_hw_ppgtt, base);
  251. gen8_gtt_pte_t *pt_vaddr;
  252. unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
  253. unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
  254. struct sg_page_iter sg_iter;
  255. pt_vaddr = NULL;
  256. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  257. if (pt_vaddr == NULL)
  258. pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
  259. pt_vaddr[act_pte] =
  260. gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
  261. cache_level, true);
  262. if (++act_pte == GEN8_PTES_PER_PAGE) {
  263. kunmap_atomic(pt_vaddr);
  264. pt_vaddr = NULL;
  265. act_pt++;
  266. act_pte = 0;
  267. }
  268. }
  269. if (pt_vaddr)
  270. kunmap_atomic(pt_vaddr);
  271. }
  272. static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
  273. {
  274. struct i915_hw_ppgtt *ppgtt =
  275. container_of(vm, struct i915_hw_ppgtt, base);
  276. int i, j;
  277. drm_mm_takedown(&vm->mm);
  278. for (i = 0; i < ppgtt->num_pd_pages ; i++) {
  279. if (ppgtt->pd_dma_addr[i]) {
  280. pci_unmap_page(ppgtt->base.dev->pdev,
  281. ppgtt->pd_dma_addr[i],
  282. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  283. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  284. dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
  285. if (addr)
  286. pci_unmap_page(ppgtt->base.dev->pdev,
  287. addr,
  288. PAGE_SIZE,
  289. PCI_DMA_BIDIRECTIONAL);
  290. }
  291. }
  292. kfree(ppgtt->gen8_pt_dma_addr[i]);
  293. }
  294. __free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
  295. __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
  296. }
  297. /**
  298. * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
  299. * net effect resembling a 2-level page table in normal x86 terms. Each PDP
  300. * represents 1GB of memory
  301. * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
  302. *
  303. * TODO: Do something with the size parameter
  304. **/
  305. static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
  306. {
  307. struct page *pt_pages;
  308. int i, j, ret = -ENOMEM;
  309. const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
  310. const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
  311. if (size % (1<<30))
  312. DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
  313. /* FIXME: split allocation into smaller pieces. For now we only ever do
  314. * this once, but with full PPGTT, the multiple contiguous allocations
  315. * will be bad.
  316. */
  317. ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
  318. if (!ppgtt->pd_pages)
  319. return -ENOMEM;
  320. pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
  321. if (!pt_pages) {
  322. __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
  323. return -ENOMEM;
  324. }
  325. ppgtt->gen8_pt_pages = pt_pages;
  326. ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
  327. ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
  328. ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
  329. ppgtt->enable = gen8_ppgtt_enable;
  330. ppgtt->base.clear_range = gen8_ppgtt_clear_range;
  331. ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
  332. ppgtt->base.cleanup = gen8_ppgtt_cleanup;
  333. ppgtt->base.start = 0;
  334. ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
  335. BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
  336. /*
  337. * - Create a mapping for the page directories.
  338. * - For each page directory:
  339. * allocate space for page table mappings.
  340. * map each page table
  341. */
  342. for (i = 0; i < max_pdp; i++) {
  343. dma_addr_t temp;
  344. temp = pci_map_page(ppgtt->base.dev->pdev,
  345. &ppgtt->pd_pages[i], 0,
  346. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  347. if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
  348. goto err_out;
  349. ppgtt->pd_dma_addr[i] = temp;
  350. ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
  351. if (!ppgtt->gen8_pt_dma_addr[i])
  352. goto err_out;
  353. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  354. struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
  355. temp = pci_map_page(ppgtt->base.dev->pdev,
  356. p, 0, PAGE_SIZE,
  357. PCI_DMA_BIDIRECTIONAL);
  358. if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
  359. goto err_out;
  360. ppgtt->gen8_pt_dma_addr[i][j] = temp;
  361. }
  362. }
  363. /* For now, the PPGTT helper functions all require that the PDEs are
  364. * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
  365. * will never need to touch the PDEs again */
  366. for (i = 0; i < max_pdp; i++) {
  367. gen8_ppgtt_pde_t *pd_vaddr;
  368. pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
  369. for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
  370. dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
  371. pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
  372. I915_CACHE_LLC);
  373. }
  374. kunmap_atomic(pd_vaddr);
  375. }
  376. ppgtt->base.clear_range(&ppgtt->base, 0,
  377. ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
  378. true);
  379. DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
  380. ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
  381. DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
  382. ppgtt->num_pt_pages,
  383. (ppgtt->num_pt_pages - num_pt_pages) +
  384. size % (1<<30));
  385. return 0;
  386. err_out:
  387. ppgtt->base.cleanup(&ppgtt->base);
  388. return ret;
  389. }
  390. static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
  391. {
  392. struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
  393. gen6_gtt_pte_t __iomem *pd_addr;
  394. uint32_t pd_entry;
  395. int i;
  396. WARN_ON(ppgtt->pd_offset & 0x3f);
  397. pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
  398. ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
  399. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  400. dma_addr_t pt_addr;
  401. pt_addr = ppgtt->pt_dma_addr[i];
  402. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  403. pd_entry |= GEN6_PDE_VALID;
  404. writel(pd_entry, pd_addr + i);
  405. }
  406. readl(pd_addr);
  407. }
  408. static int gen6_ppgtt_enable(struct drm_device *dev)
  409. {
  410. drm_i915_private_t *dev_priv = dev->dev_private;
  411. uint32_t pd_offset;
  412. struct intel_ring_buffer *ring;
  413. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  414. int i;
  415. BUG_ON(ppgtt->pd_offset & 0x3f);
  416. gen6_write_pdes(ppgtt);
  417. pd_offset = ppgtt->pd_offset;
  418. pd_offset /= 64; /* in cachelines, */
  419. pd_offset <<= 16;
  420. if (INTEL_INFO(dev)->gen == 6) {
  421. uint32_t ecochk, gab_ctl, ecobits;
  422. ecobits = I915_READ(GAC_ECO_BITS);
  423. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
  424. ECOBITS_PPGTT_CACHE64B);
  425. gab_ctl = I915_READ(GAB_CTL);
  426. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  427. ecochk = I915_READ(GAM_ECOCHK);
  428. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  429. ECOCHK_PPGTT_CACHE64B);
  430. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  431. } else if (INTEL_INFO(dev)->gen >= 7) {
  432. uint32_t ecochk, ecobits;
  433. ecobits = I915_READ(GAC_ECO_BITS);
  434. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  435. ecochk = I915_READ(GAM_ECOCHK);
  436. if (IS_HASWELL(dev)) {
  437. ecochk |= ECOCHK_PPGTT_WB_HSW;
  438. } else {
  439. ecochk |= ECOCHK_PPGTT_LLC_IVB;
  440. ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
  441. }
  442. I915_WRITE(GAM_ECOCHK, ecochk);
  443. /* GFX_MODE is per-ring on gen7+ */
  444. }
  445. for_each_ring(ring, dev_priv, i) {
  446. if (INTEL_INFO(dev)->gen >= 7)
  447. I915_WRITE(RING_MODE_GEN7(ring),
  448. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  449. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  450. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  451. }
  452. return 0;
  453. }
  454. /* PPGTT support for Sandybdrige/Gen6 and later */
  455. static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
  456. unsigned first_entry,
  457. unsigned num_entries,
  458. bool use_scratch)
  459. {
  460. struct i915_hw_ppgtt *ppgtt =
  461. container_of(vm, struct i915_hw_ppgtt, base);
  462. gen6_gtt_pte_t *pt_vaddr, scratch_pte;
  463. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  464. unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  465. unsigned last_pte, i;
  466. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
  467. while (num_entries) {
  468. last_pte = first_pte + num_entries;
  469. if (last_pte > I915_PPGTT_PT_ENTRIES)
  470. last_pte = I915_PPGTT_PT_ENTRIES;
  471. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  472. for (i = first_pte; i < last_pte; i++)
  473. pt_vaddr[i] = scratch_pte;
  474. kunmap_atomic(pt_vaddr);
  475. num_entries -= last_pte - first_pte;
  476. first_pte = 0;
  477. act_pt++;
  478. }
  479. }
  480. static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
  481. struct sg_table *pages,
  482. unsigned first_entry,
  483. enum i915_cache_level cache_level)
  484. {
  485. struct i915_hw_ppgtt *ppgtt =
  486. container_of(vm, struct i915_hw_ppgtt, base);
  487. gen6_gtt_pte_t *pt_vaddr;
  488. unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
  489. unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
  490. struct sg_page_iter sg_iter;
  491. pt_vaddr = NULL;
  492. for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
  493. if (pt_vaddr == NULL)
  494. pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
  495. pt_vaddr[act_pte] =
  496. vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
  497. cache_level, true);
  498. if (++act_pte == I915_PPGTT_PT_ENTRIES) {
  499. kunmap_atomic(pt_vaddr);
  500. pt_vaddr = NULL;
  501. act_pt++;
  502. act_pte = 0;
  503. }
  504. }
  505. if (pt_vaddr)
  506. kunmap_atomic(pt_vaddr);
  507. }
  508. static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
  509. {
  510. struct i915_hw_ppgtt *ppgtt =
  511. container_of(vm, struct i915_hw_ppgtt, base);
  512. int i;
  513. drm_mm_takedown(&ppgtt->base.mm);
  514. if (ppgtt->pt_dma_addr) {
  515. for (i = 0; i < ppgtt->num_pd_entries; i++)
  516. pci_unmap_page(ppgtt->base.dev->pdev,
  517. ppgtt->pt_dma_addr[i],
  518. 4096, PCI_DMA_BIDIRECTIONAL);
  519. }
  520. kfree(ppgtt->pt_dma_addr);
  521. for (i = 0; i < ppgtt->num_pd_entries; i++)
  522. __free_page(ppgtt->pt_pages[i]);
  523. kfree(ppgtt->pt_pages);
  524. kfree(ppgtt);
  525. }
  526. static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
  527. {
  528. struct drm_device *dev = ppgtt->base.dev;
  529. struct drm_i915_private *dev_priv = dev->dev_private;
  530. unsigned first_pd_entry_in_global_pt;
  531. int i;
  532. int ret = -ENOMEM;
  533. /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
  534. * entries. For aliasing ppgtt support we just steal them at the end for
  535. * now. */
  536. first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
  537. ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
  538. ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
  539. ppgtt->enable = gen6_ppgtt_enable;
  540. ppgtt->base.clear_range = gen6_ppgtt_clear_range;
  541. ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
  542. ppgtt->base.cleanup = gen6_ppgtt_cleanup;
  543. ppgtt->base.scratch = dev_priv->gtt.base.scratch;
  544. ppgtt->base.start = 0;
  545. ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
  546. ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
  547. GFP_KERNEL);
  548. if (!ppgtt->pt_pages)
  549. return -ENOMEM;
  550. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  551. ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
  552. if (!ppgtt->pt_pages[i])
  553. goto err_pt_alloc;
  554. }
  555. ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
  556. GFP_KERNEL);
  557. if (!ppgtt->pt_dma_addr)
  558. goto err_pt_alloc;
  559. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  560. dma_addr_t pt_addr;
  561. pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
  562. PCI_DMA_BIDIRECTIONAL);
  563. if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
  564. ret = -EIO;
  565. goto err_pd_pin;
  566. }
  567. ppgtt->pt_dma_addr[i] = pt_addr;
  568. }
  569. ppgtt->base.clear_range(&ppgtt->base, 0,
  570. ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
  571. ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
  572. return 0;
  573. err_pd_pin:
  574. if (ppgtt->pt_dma_addr) {
  575. for (i--; i >= 0; i--)
  576. pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
  577. 4096, PCI_DMA_BIDIRECTIONAL);
  578. }
  579. err_pt_alloc:
  580. kfree(ppgtt->pt_dma_addr);
  581. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  582. if (ppgtt->pt_pages[i])
  583. __free_page(ppgtt->pt_pages[i]);
  584. }
  585. kfree(ppgtt->pt_pages);
  586. return ret;
  587. }
  588. static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
  589. {
  590. struct drm_i915_private *dev_priv = dev->dev_private;
  591. struct i915_hw_ppgtt *ppgtt;
  592. int ret;
  593. ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
  594. if (!ppgtt)
  595. return -ENOMEM;
  596. ppgtt->base.dev = dev;
  597. if (INTEL_INFO(dev)->gen < 8)
  598. ret = gen6_ppgtt_init(ppgtt);
  599. else if (IS_GEN8(dev))
  600. ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
  601. else
  602. BUG();
  603. if (ret)
  604. kfree(ppgtt);
  605. else {
  606. dev_priv->mm.aliasing_ppgtt = ppgtt;
  607. drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
  608. ppgtt->base.total);
  609. }
  610. return ret;
  611. }
  612. void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
  613. {
  614. struct drm_i915_private *dev_priv = dev->dev_private;
  615. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  616. if (!ppgtt)
  617. return;
  618. ppgtt->base.cleanup(&ppgtt->base);
  619. dev_priv->mm.aliasing_ppgtt = NULL;
  620. }
  621. void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
  622. struct drm_i915_gem_object *obj,
  623. enum i915_cache_level cache_level)
  624. {
  625. ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
  626. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  627. cache_level);
  628. }
  629. void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
  630. struct drm_i915_gem_object *obj)
  631. {
  632. ppgtt->base.clear_range(&ppgtt->base,
  633. i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
  634. obj->base.size >> PAGE_SHIFT,
  635. true);
  636. }
  637. extern int intel_iommu_gfx_mapped;
  638. /* Certain Gen5 chipsets require require idling the GPU before
  639. * unmapping anything from the GTT when VT-d is enabled.
  640. */
  641. static inline bool needs_idle_maps(struct drm_device *dev)
  642. {
  643. #ifdef CONFIG_INTEL_IOMMU
  644. /* Query intel_iommu to see if we need the workaround. Presumably that
  645. * was loaded first.
  646. */
  647. if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
  648. return true;
  649. #endif
  650. return false;
  651. }
  652. static bool do_idling(struct drm_i915_private *dev_priv)
  653. {
  654. bool ret = dev_priv->mm.interruptible;
  655. if (unlikely(dev_priv->gtt.do_idle_maps)) {
  656. dev_priv->mm.interruptible = false;
  657. if (i915_gpu_idle(dev_priv->dev)) {
  658. DRM_ERROR("Couldn't idle GPU\n");
  659. /* Wait a bit, in hopes it avoids the hang */
  660. udelay(10);
  661. }
  662. }
  663. return ret;
  664. }
  665. static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
  666. {
  667. if (unlikely(dev_priv->gtt.do_idle_maps))
  668. dev_priv->mm.interruptible = interruptible;
  669. }
  670. void i915_check_and_clear_faults(struct drm_device *dev)
  671. {
  672. struct drm_i915_private *dev_priv = dev->dev_private;
  673. struct intel_ring_buffer *ring;
  674. int i;
  675. if (INTEL_INFO(dev)->gen < 6)
  676. return;
  677. for_each_ring(ring, dev_priv, i) {
  678. u32 fault_reg;
  679. fault_reg = I915_READ(RING_FAULT_REG(ring));
  680. if (fault_reg & RING_FAULT_VALID) {
  681. DRM_DEBUG_DRIVER("Unexpected fault\n"
  682. "\tAddr: 0x%08lx\\n"
  683. "\tAddress space: %s\n"
  684. "\tSource ID: %d\n"
  685. "\tType: %d\n",
  686. fault_reg & PAGE_MASK,
  687. fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
  688. RING_FAULT_SRCID(fault_reg),
  689. RING_FAULT_FAULT_TYPE(fault_reg));
  690. I915_WRITE(RING_FAULT_REG(ring),
  691. fault_reg & ~RING_FAULT_VALID);
  692. }
  693. }
  694. POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
  695. }
  696. void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
  697. {
  698. struct drm_i915_private *dev_priv = dev->dev_private;
  699. /* Don't bother messing with faults pre GEN6 as we have little
  700. * documentation supporting that it's a good idea.
  701. */
  702. if (INTEL_INFO(dev)->gen < 6)
  703. return;
  704. i915_check_and_clear_faults(dev);
  705. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  706. dev_priv->gtt.base.start / PAGE_SIZE,
  707. dev_priv->gtt.base.total / PAGE_SIZE,
  708. true);
  709. }
  710. void i915_gem_restore_gtt_mappings(struct drm_device *dev)
  711. {
  712. struct drm_i915_private *dev_priv = dev->dev_private;
  713. struct drm_i915_gem_object *obj;
  714. i915_check_and_clear_faults(dev);
  715. /* First fill our portion of the GTT with scratch pages */
  716. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  717. dev_priv->gtt.base.start / PAGE_SIZE,
  718. dev_priv->gtt.base.total / PAGE_SIZE,
  719. true);
  720. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  721. i915_gem_clflush_object(obj, obj->pin_display);
  722. i915_gem_gtt_bind_object(obj, obj->cache_level);
  723. }
  724. i915_gem_chipset_flush(dev);
  725. }
  726. int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
  727. {
  728. if (obj->has_dma_mapping)
  729. return 0;
  730. if (!dma_map_sg(&obj->base.dev->pdev->dev,
  731. obj->pages->sgl, obj->pages->nents,
  732. PCI_DMA_BIDIRECTIONAL))
  733. return -ENOSPC;
  734. return 0;
  735. }
  736. static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
  737. {
  738. #ifdef writeq
  739. writeq(pte, addr);
  740. #else
  741. iowrite32((u32)pte, addr);
  742. iowrite32(pte >> 32, addr + 4);
  743. #endif
  744. }
  745. static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
  746. struct sg_table *st,
  747. unsigned int first_entry,
  748. enum i915_cache_level level)
  749. {
  750. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  751. gen8_gtt_pte_t __iomem *gtt_entries =
  752. (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  753. int i = 0;
  754. struct sg_page_iter sg_iter;
  755. dma_addr_t addr;
  756. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  757. addr = sg_dma_address(sg_iter.sg) +
  758. (sg_iter.sg_pgoffset << PAGE_SHIFT);
  759. gen8_set_pte(&gtt_entries[i],
  760. gen8_pte_encode(addr, level, true));
  761. i++;
  762. }
  763. /*
  764. * XXX: This serves as a posting read to make sure that the PTE has
  765. * actually been updated. There is some concern that even though
  766. * registers and PTEs are within the same BAR that they are potentially
  767. * of NUMA access patterns. Therefore, even with the way we assume
  768. * hardware should work, we must keep this posting read for paranoia.
  769. */
  770. if (i != 0)
  771. WARN_ON(readq(&gtt_entries[i-1])
  772. != gen8_pte_encode(addr, level, true));
  773. /* This next bit makes the above posting read even more important. We
  774. * want to flush the TLBs only after we're certain all the PTE updates
  775. * have finished.
  776. */
  777. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  778. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  779. }
  780. /*
  781. * Binds an object into the global gtt with the specified cache level. The object
  782. * will be accessible to the GPU via commands whose operands reference offsets
  783. * within the global GTT as well as accessible by the GPU through the GMADR
  784. * mapped BAR (dev_priv->mm.gtt->gtt).
  785. */
  786. static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
  787. struct sg_table *st,
  788. unsigned int first_entry,
  789. enum i915_cache_level level)
  790. {
  791. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  792. gen6_gtt_pte_t __iomem *gtt_entries =
  793. (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
  794. int i = 0;
  795. struct sg_page_iter sg_iter;
  796. dma_addr_t addr;
  797. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
  798. addr = sg_page_iter_dma_address(&sg_iter);
  799. iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
  800. i++;
  801. }
  802. /* XXX: This serves as a posting read to make sure that the PTE has
  803. * actually been updated. There is some concern that even though
  804. * registers and PTEs are within the same BAR that they are potentially
  805. * of NUMA access patterns. Therefore, even with the way we assume
  806. * hardware should work, we must keep this posting read for paranoia.
  807. */
  808. if (i != 0)
  809. WARN_ON(readl(&gtt_entries[i-1]) !=
  810. vm->pte_encode(addr, level, true));
  811. /* This next bit makes the above posting read even more important. We
  812. * want to flush the TLBs only after we're certain all the PTE updates
  813. * have finished.
  814. */
  815. I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  816. POSTING_READ(GFX_FLSH_CNTL_GEN6);
  817. }
  818. static void gen8_ggtt_clear_range(struct i915_address_space *vm,
  819. unsigned int first_entry,
  820. unsigned int num_entries,
  821. bool use_scratch)
  822. {
  823. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  824. gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
  825. (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  826. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  827. int i;
  828. if (WARN(num_entries > max_entries,
  829. "First entry = %d; Num entries = %d (max=%d)\n",
  830. first_entry, num_entries, max_entries))
  831. num_entries = max_entries;
  832. scratch_pte = gen8_pte_encode(vm->scratch.addr,
  833. I915_CACHE_LLC,
  834. use_scratch);
  835. for (i = 0; i < num_entries; i++)
  836. gen8_set_pte(&gtt_base[i], scratch_pte);
  837. readl(gtt_base);
  838. }
  839. static void gen6_ggtt_clear_range(struct i915_address_space *vm,
  840. unsigned int first_entry,
  841. unsigned int num_entries,
  842. bool use_scratch)
  843. {
  844. struct drm_i915_private *dev_priv = vm->dev->dev_private;
  845. gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
  846. (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
  847. const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
  848. int i;
  849. if (WARN(num_entries > max_entries,
  850. "First entry = %d; Num entries = %d (max=%d)\n",
  851. first_entry, num_entries, max_entries))
  852. num_entries = max_entries;
  853. scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
  854. for (i = 0; i < num_entries; i++)
  855. iowrite32(scratch_pte, &gtt_base[i]);
  856. readl(gtt_base);
  857. }
  858. static void i915_ggtt_insert_entries(struct i915_address_space *vm,
  859. struct sg_table *st,
  860. unsigned int pg_start,
  861. enum i915_cache_level cache_level)
  862. {
  863. unsigned int flags = (cache_level == I915_CACHE_NONE) ?
  864. AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
  865. intel_gtt_insert_sg_entries(st, pg_start, flags);
  866. }
  867. static void i915_ggtt_clear_range(struct i915_address_space *vm,
  868. unsigned int first_entry,
  869. unsigned int num_entries,
  870. bool unused)
  871. {
  872. intel_gtt_clear_range(first_entry, num_entries);
  873. }
  874. void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
  875. enum i915_cache_level cache_level)
  876. {
  877. struct drm_device *dev = obj->base.dev;
  878. struct drm_i915_private *dev_priv = dev->dev_private;
  879. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  880. dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
  881. entry,
  882. cache_level);
  883. obj->has_global_gtt_mapping = 1;
  884. }
  885. void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
  886. {
  887. struct drm_device *dev = obj->base.dev;
  888. struct drm_i915_private *dev_priv = dev->dev_private;
  889. const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
  890. dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
  891. entry,
  892. obj->base.size >> PAGE_SHIFT,
  893. true);
  894. obj->has_global_gtt_mapping = 0;
  895. }
  896. void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
  897. {
  898. struct drm_device *dev = obj->base.dev;
  899. struct drm_i915_private *dev_priv = dev->dev_private;
  900. bool interruptible;
  901. interruptible = do_idling(dev_priv);
  902. if (!obj->has_dma_mapping)
  903. dma_unmap_sg(&dev->pdev->dev,
  904. obj->pages->sgl, obj->pages->nents,
  905. PCI_DMA_BIDIRECTIONAL);
  906. undo_idling(dev_priv, interruptible);
  907. }
  908. static void i915_gtt_color_adjust(struct drm_mm_node *node,
  909. unsigned long color,
  910. unsigned long *start,
  911. unsigned long *end)
  912. {
  913. if (node->color != color)
  914. *start += 4096;
  915. if (!list_empty(&node->node_list)) {
  916. node = list_entry(node->node_list.next,
  917. struct drm_mm_node,
  918. node_list);
  919. if (node->allocated && node->color != color)
  920. *end -= 4096;
  921. }
  922. }
  923. void i915_gem_setup_global_gtt(struct drm_device *dev,
  924. unsigned long start,
  925. unsigned long mappable_end,
  926. unsigned long end)
  927. {
  928. /* Let GEM Manage all of the aperture.
  929. *
  930. * However, leave one page at the end still bound to the scratch page.
  931. * There are a number of places where the hardware apparently prefetches
  932. * past the end of the object, and we've seen multiple hangs with the
  933. * GPU head pointer stuck in a batchbuffer bound at the last page of the
  934. * aperture. One page should be enough to keep any prefetching inside
  935. * of the aperture.
  936. */
  937. struct drm_i915_private *dev_priv = dev->dev_private;
  938. struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
  939. struct drm_mm_node *entry;
  940. struct drm_i915_gem_object *obj;
  941. unsigned long hole_start, hole_end;
  942. BUG_ON(mappable_end > end);
  943. /* Subtract the guard page ... */
  944. drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
  945. if (!HAS_LLC(dev))
  946. dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
  947. /* Mark any preallocated objects as occupied */
  948. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  949. struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
  950. int ret;
  951. DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
  952. i915_gem_obj_ggtt_offset(obj), obj->base.size);
  953. WARN_ON(i915_gem_obj_ggtt_bound(obj));
  954. ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
  955. if (ret)
  956. DRM_DEBUG_KMS("Reservation failed\n");
  957. obj->has_global_gtt_mapping = 1;
  958. }
  959. dev_priv->gtt.base.start = start;
  960. dev_priv->gtt.base.total = end - start;
  961. /* Clear any non-preallocated blocks */
  962. drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
  963. const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
  964. DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
  965. hole_start, hole_end);
  966. ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
  967. }
  968. /* And finally clear the reserved guard page */
  969. ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
  970. }
  971. static bool
  972. intel_enable_ppgtt(struct drm_device *dev)
  973. {
  974. if (i915_enable_ppgtt >= 0)
  975. return i915_enable_ppgtt;
  976. #ifdef CONFIG_INTEL_IOMMU
  977. /* Disable ppgtt on SNB if VT-d is on. */
  978. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  979. return false;
  980. #endif
  981. return true;
  982. }
  983. void i915_gem_init_global_gtt(struct drm_device *dev)
  984. {
  985. struct drm_i915_private *dev_priv = dev->dev_private;
  986. unsigned long gtt_size, mappable_size;
  987. gtt_size = dev_priv->gtt.base.total;
  988. mappable_size = dev_priv->gtt.mappable_end;
  989. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  990. int ret;
  991. if (INTEL_INFO(dev)->gen <= 7) {
  992. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  993. * aperture accordingly when using aliasing ppgtt. */
  994. gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
  995. }
  996. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  997. ret = i915_gem_init_aliasing_ppgtt(dev);
  998. if (!ret)
  999. return;
  1000. DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
  1001. drm_mm_takedown(&dev_priv->gtt.base.mm);
  1002. if (INTEL_INFO(dev)->gen < 8)
  1003. gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
  1004. }
  1005. i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
  1006. }
  1007. static int setup_scratch_page(struct drm_device *dev)
  1008. {
  1009. struct drm_i915_private *dev_priv = dev->dev_private;
  1010. struct page *page;
  1011. dma_addr_t dma_addr;
  1012. page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
  1013. if (page == NULL)
  1014. return -ENOMEM;
  1015. get_page(page);
  1016. set_pages_uc(page, 1);
  1017. #ifdef CONFIG_INTEL_IOMMU
  1018. dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
  1019. PCI_DMA_BIDIRECTIONAL);
  1020. if (pci_dma_mapping_error(dev->pdev, dma_addr))
  1021. return -EINVAL;
  1022. #else
  1023. dma_addr = page_to_phys(page);
  1024. #endif
  1025. dev_priv->gtt.base.scratch.page = page;
  1026. dev_priv->gtt.base.scratch.addr = dma_addr;
  1027. return 0;
  1028. }
  1029. static void teardown_scratch_page(struct drm_device *dev)
  1030. {
  1031. struct drm_i915_private *dev_priv = dev->dev_private;
  1032. struct page *page = dev_priv->gtt.base.scratch.page;
  1033. set_pages_wb(page, 1);
  1034. pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
  1035. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  1036. put_page(page);
  1037. __free_page(page);
  1038. }
  1039. static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
  1040. {
  1041. snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
  1042. snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
  1043. return snb_gmch_ctl << 20;
  1044. }
  1045. static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
  1046. {
  1047. bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
  1048. bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
  1049. if (bdw_gmch_ctl)
  1050. bdw_gmch_ctl = 1 << bdw_gmch_ctl;
  1051. if (bdw_gmch_ctl > 4) {
  1052. WARN_ON(!i915_preliminary_hw_support);
  1053. return 4<<20;
  1054. }
  1055. return bdw_gmch_ctl << 20;
  1056. }
  1057. static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
  1058. {
  1059. snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
  1060. snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
  1061. return snb_gmch_ctl << 25; /* 32 MB units */
  1062. }
  1063. static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
  1064. {
  1065. bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
  1066. bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
  1067. return bdw_gmch_ctl << 25; /* 32 MB units */
  1068. }
  1069. static int ggtt_probe_common(struct drm_device *dev,
  1070. size_t gtt_size)
  1071. {
  1072. struct drm_i915_private *dev_priv = dev->dev_private;
  1073. phys_addr_t gtt_phys_addr;
  1074. int ret;
  1075. /* For Modern GENs the PTEs and register space are split in the BAR */
  1076. gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
  1077. (pci_resource_len(dev->pdev, 0) / 2);
  1078. dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
  1079. if (!dev_priv->gtt.gsm) {
  1080. DRM_ERROR("Failed to map the gtt page table\n");
  1081. return -ENOMEM;
  1082. }
  1083. ret = setup_scratch_page(dev);
  1084. if (ret) {
  1085. DRM_ERROR("Scratch setup failed\n");
  1086. /* iounmap will also get called at remove, but meh */
  1087. iounmap(dev_priv->gtt.gsm);
  1088. }
  1089. return ret;
  1090. }
  1091. /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
  1092. * bits. When using advanced contexts each context stores its own PAT, but
  1093. * writing this data shouldn't be harmful even in those cases. */
  1094. static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
  1095. {
  1096. #define GEN8_PPAT_UC (0<<0)
  1097. #define GEN8_PPAT_WC (1<<0)
  1098. #define GEN8_PPAT_WT (2<<0)
  1099. #define GEN8_PPAT_WB (3<<0)
  1100. #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
  1101. /* FIXME(BDW): Bspec is completely confused about cache control bits. */
  1102. #define GEN8_PPAT_LLC (1<<2)
  1103. #define GEN8_PPAT_LLCELLC (2<<2)
  1104. #define GEN8_PPAT_LLCeLLC (3<<2)
  1105. #define GEN8_PPAT_AGE(x) (x<<4)
  1106. #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
  1107. uint64_t pat;
  1108. pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
  1109. GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
  1110. GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
  1111. GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
  1112. GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
  1113. GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
  1114. GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
  1115. GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
  1116. /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
  1117. * write would work. */
  1118. I915_WRITE(GEN8_PRIVATE_PAT, pat);
  1119. I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
  1120. }
  1121. static int gen8_gmch_probe(struct drm_device *dev,
  1122. size_t *gtt_total,
  1123. size_t *stolen,
  1124. phys_addr_t *mappable_base,
  1125. unsigned long *mappable_end)
  1126. {
  1127. struct drm_i915_private *dev_priv = dev->dev_private;
  1128. unsigned int gtt_size;
  1129. u16 snb_gmch_ctl;
  1130. int ret;
  1131. /* TODO: We're not aware of mappable constraints on gen8 yet */
  1132. *mappable_base = pci_resource_start(dev->pdev, 2);
  1133. *mappable_end = pci_resource_len(dev->pdev, 2);
  1134. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
  1135. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
  1136. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  1137. *stolen = gen8_get_stolen_size(snb_gmch_ctl);
  1138. gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
  1139. *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
  1140. gen8_setup_private_ppat(dev_priv);
  1141. ret = ggtt_probe_common(dev, gtt_size);
  1142. dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
  1143. dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
  1144. return ret;
  1145. }
  1146. static int gen6_gmch_probe(struct drm_device *dev,
  1147. size_t *gtt_total,
  1148. size_t *stolen,
  1149. phys_addr_t *mappable_base,
  1150. unsigned long *mappable_end)
  1151. {
  1152. struct drm_i915_private *dev_priv = dev->dev_private;
  1153. unsigned int gtt_size;
  1154. u16 snb_gmch_ctl;
  1155. int ret;
  1156. *mappable_base = pci_resource_start(dev->pdev, 2);
  1157. *mappable_end = pci_resource_len(dev->pdev, 2);
  1158. /* 64/512MB is the current min/max we actually know of, but this is just
  1159. * a coarse sanity check.
  1160. */
  1161. if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
  1162. DRM_ERROR("Unknown GMADR size (%lx)\n",
  1163. dev_priv->gtt.mappable_end);
  1164. return -ENXIO;
  1165. }
  1166. if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
  1167. pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
  1168. pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
  1169. *stolen = gen6_get_stolen_size(snb_gmch_ctl);
  1170. gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
  1171. *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
  1172. ret = ggtt_probe_common(dev, gtt_size);
  1173. dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
  1174. dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
  1175. return ret;
  1176. }
  1177. static void gen6_gmch_remove(struct i915_address_space *vm)
  1178. {
  1179. struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
  1180. drm_mm_takedown(&vm->mm);
  1181. iounmap(gtt->gsm);
  1182. teardown_scratch_page(vm->dev);
  1183. }
  1184. static int i915_gmch_probe(struct drm_device *dev,
  1185. size_t *gtt_total,
  1186. size_t *stolen,
  1187. phys_addr_t *mappable_base,
  1188. unsigned long *mappable_end)
  1189. {
  1190. struct drm_i915_private *dev_priv = dev->dev_private;
  1191. int ret;
  1192. ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
  1193. if (!ret) {
  1194. DRM_ERROR("failed to set up gmch\n");
  1195. return -EIO;
  1196. }
  1197. intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
  1198. dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
  1199. dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
  1200. dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
  1201. if (unlikely(dev_priv->gtt.do_idle_maps))
  1202. DRM_INFO("applying Ironlake quirks for intel_iommu\n");
  1203. return 0;
  1204. }
  1205. static void i915_gmch_remove(struct i915_address_space *vm)
  1206. {
  1207. intel_gmch_remove();
  1208. }
  1209. int i915_gem_gtt_init(struct drm_device *dev)
  1210. {
  1211. struct drm_i915_private *dev_priv = dev->dev_private;
  1212. struct i915_gtt *gtt = &dev_priv->gtt;
  1213. int ret;
  1214. if (INTEL_INFO(dev)->gen <= 5) {
  1215. gtt->gtt_probe = i915_gmch_probe;
  1216. gtt->base.cleanup = i915_gmch_remove;
  1217. } else if (INTEL_INFO(dev)->gen < 8) {
  1218. gtt->gtt_probe = gen6_gmch_probe;
  1219. gtt->base.cleanup = gen6_gmch_remove;
  1220. if (IS_HASWELL(dev) && dev_priv->ellc_size)
  1221. gtt->base.pte_encode = iris_pte_encode;
  1222. else if (IS_HASWELL(dev))
  1223. gtt->base.pte_encode = hsw_pte_encode;
  1224. else if (IS_VALLEYVIEW(dev))
  1225. gtt->base.pte_encode = byt_pte_encode;
  1226. else if (INTEL_INFO(dev)->gen >= 7)
  1227. gtt->base.pte_encode = ivb_pte_encode;
  1228. else
  1229. gtt->base.pte_encode = snb_pte_encode;
  1230. } else {
  1231. dev_priv->gtt.gtt_probe = gen8_gmch_probe;
  1232. dev_priv->gtt.base.cleanup = gen6_gmch_remove;
  1233. }
  1234. ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
  1235. &gtt->mappable_base, &gtt->mappable_end);
  1236. if (ret)
  1237. return ret;
  1238. gtt->base.dev = dev;
  1239. /* GMADR is the PCI mmio aperture into the global GTT. */
  1240. DRM_INFO("Memory usable by graphics device = %zdM\n",
  1241. gtt->base.total >> 20);
  1242. DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
  1243. DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
  1244. return 0;
  1245. }