amd64_edac.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *pci_ctl;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  22. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  23. * or higher value'.
  24. *
  25. *FIXME: Produce a better mapping/linearisation.
  26. */
  27. static const struct scrubrate {
  28. u32 scrubval; /* bit pattern for scrub rate */
  29. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  30. } scrubrates[] = {
  31. { 0x01, 1600000000UL},
  32. { 0x02, 800000000UL},
  33. { 0x03, 400000000UL},
  34. { 0x04, 200000000UL},
  35. { 0x05, 100000000UL},
  36. { 0x06, 50000000UL},
  37. { 0x07, 25000000UL},
  38. { 0x08, 12284069UL},
  39. { 0x09, 6274509UL},
  40. { 0x0A, 3121951UL},
  41. { 0x0B, 1560975UL},
  42. { 0x0C, 781440UL},
  43. { 0x0D, 390720UL},
  44. { 0x0E, 195300UL},
  45. { 0x0F, 97650UL},
  46. { 0x10, 48854UL},
  47. { 0x11, 24427UL},
  48. { 0x12, 12213UL},
  49. { 0x13, 6101UL},
  50. { 0x14, 3051UL},
  51. { 0x15, 1523UL},
  52. { 0x16, 761UL},
  53. { 0x00, 0UL}, /* scrubbing off */
  54. };
  55. int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  56. u32 *val, const char *func)
  57. {
  58. int err = 0;
  59. err = pci_read_config_dword(pdev, offset, val);
  60. if (err)
  61. amd64_warn("%s: error reading F%dx%03x.\n",
  62. func, PCI_FUNC(pdev->devfn), offset);
  63. return err;
  64. }
  65. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  66. u32 val, const char *func)
  67. {
  68. int err = 0;
  69. err = pci_write_config_dword(pdev, offset, val);
  70. if (err)
  71. amd64_warn("%s: error writing to F%dx%03x.\n",
  72. func, PCI_FUNC(pdev->devfn), offset);
  73. return err;
  74. }
  75. /*
  76. *
  77. * Depending on the family, F2 DCT reads need special handling:
  78. *
  79. * K8: has a single DCT only
  80. *
  81. * F10h: each DCT has its own set of regs
  82. * DCT0 -> F2x040..
  83. * DCT1 -> F2x140..
  84. *
  85. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  86. *
  87. * F16h: has only 1 DCT
  88. */
  89. static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  90. const char *func)
  91. {
  92. if (addr >= 0x100)
  93. return -EINVAL;
  94. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  95. }
  96. static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  97. const char *func)
  98. {
  99. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  100. }
  101. /*
  102. * Select DCT to which PCI cfg accesses are routed
  103. */
  104. static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
  105. {
  106. u32 reg = 0;
  107. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  108. reg &= (pvt->model >= 0x30) ? ~3 : ~1;
  109. reg |= dct;
  110. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  111. }
  112. static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  113. const char *func)
  114. {
  115. u8 dct = 0;
  116. /* For F15 M30h, the second dct is DCT 3, refer to BKDG Section 2.10 */
  117. if (addr >= 0x140 && addr <= 0x1a0) {
  118. dct = (pvt->model >= 0x30) ? 3 : 1;
  119. addr -= 0x100;
  120. }
  121. f15h_select_dct(pvt, dct);
  122. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  123. }
  124. /*
  125. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  126. * hardware and can involve L2 cache, dcache as well as the main memory. With
  127. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  128. * functionality.
  129. *
  130. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  131. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  132. * bytes/sec for the setting.
  133. *
  134. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  135. * other archs, we might not have access to the caches directly.
  136. */
  137. /*
  138. * scan the scrub rate mapping table for a close or matching bandwidth value to
  139. * issue. If requested is too big, then use last maximum value found.
  140. */
  141. static int __set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  142. {
  143. u32 scrubval;
  144. int i;
  145. /*
  146. * map the configured rate (new_bw) to a value specific to the AMD64
  147. * memory controller and apply to register. Search for the first
  148. * bandwidth entry that is greater or equal than the setting requested
  149. * and program that. If at last entry, turn off DRAM scrubbing.
  150. *
  151. * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
  152. * by falling back to the last element in scrubrates[].
  153. */
  154. for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
  155. /*
  156. * skip scrub rates which aren't recommended
  157. * (see F10 BKDG, F3x58)
  158. */
  159. if (scrubrates[i].scrubval < min_rate)
  160. continue;
  161. if (scrubrates[i].bandwidth <= new_bw)
  162. break;
  163. }
  164. scrubval = scrubrates[i].scrubval;
  165. pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
  166. if (scrubval)
  167. return scrubrates[i].bandwidth;
  168. return 0;
  169. }
  170. static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  171. {
  172. struct amd64_pvt *pvt = mci->pvt_info;
  173. u32 min_scrubrate = 0x5;
  174. if (pvt->fam == 0xf)
  175. min_scrubrate = 0x0;
  176. /* Erratum #505 */
  177. if (pvt->fam == 0x15 && pvt->model < 0x10)
  178. f15h_select_dct(pvt, 0);
  179. return __set_scrub_rate(pvt->F3, bw, min_scrubrate);
  180. }
  181. static int get_scrub_rate(struct mem_ctl_info *mci)
  182. {
  183. struct amd64_pvt *pvt = mci->pvt_info;
  184. u32 scrubval = 0;
  185. int i, retval = -EINVAL;
  186. /* Erratum #505 */
  187. if (pvt->fam == 0x15 && pvt->model < 0x10)
  188. f15h_select_dct(pvt, 0);
  189. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  190. scrubval = scrubval & 0x001F;
  191. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  192. if (scrubrates[i].scrubval == scrubval) {
  193. retval = scrubrates[i].bandwidth;
  194. break;
  195. }
  196. }
  197. return retval;
  198. }
  199. /*
  200. * returns true if the SysAddr given by sys_addr matches the
  201. * DRAM base/limit associated with node_id
  202. */
  203. static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
  204. {
  205. u64 addr;
  206. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  207. * all ones if the most significant implemented address bit is 1.
  208. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  209. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  210. * Application Programming.
  211. */
  212. addr = sys_addr & 0x000000ffffffffffull;
  213. return ((addr >= get_dram_base(pvt, nid)) &&
  214. (addr <= get_dram_limit(pvt, nid)));
  215. }
  216. /*
  217. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  218. * mem_ctl_info structure for the node that the SysAddr maps to.
  219. *
  220. * On failure, return NULL.
  221. */
  222. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  223. u64 sys_addr)
  224. {
  225. struct amd64_pvt *pvt;
  226. u8 node_id;
  227. u32 intlv_en, bits;
  228. /*
  229. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  230. * 3.4.4.2) registers to map the SysAddr to a node ID.
  231. */
  232. pvt = mci->pvt_info;
  233. /*
  234. * The value of this field should be the same for all DRAM Base
  235. * registers. Therefore we arbitrarily choose to read it from the
  236. * register for node 0.
  237. */
  238. intlv_en = dram_intlv_en(pvt, 0);
  239. if (intlv_en == 0) {
  240. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  241. if (base_limit_match(pvt, sys_addr, node_id))
  242. goto found;
  243. }
  244. goto err_no_match;
  245. }
  246. if (unlikely((intlv_en != 0x01) &&
  247. (intlv_en != 0x03) &&
  248. (intlv_en != 0x07))) {
  249. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  250. return NULL;
  251. }
  252. bits = (((u32) sys_addr) >> 12) & intlv_en;
  253. for (node_id = 0; ; ) {
  254. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  255. break; /* intlv_sel field matches */
  256. if (++node_id >= DRAM_RANGES)
  257. goto err_no_match;
  258. }
  259. /* sanity test for sys_addr */
  260. if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
  261. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  262. "range for node %d with node interleaving enabled.\n",
  263. __func__, sys_addr, node_id);
  264. return NULL;
  265. }
  266. found:
  267. return edac_mc_find((int)node_id);
  268. err_no_match:
  269. edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
  270. (unsigned long)sys_addr);
  271. return NULL;
  272. }
  273. /*
  274. * compute the CS base address of the @csrow on the DRAM controller @dct.
  275. * For details see F2x[5C:40] in the processor's BKDG
  276. */
  277. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  278. u64 *base, u64 *mask)
  279. {
  280. u64 csbase, csmask, base_bits, mask_bits;
  281. u8 addr_shift;
  282. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  283. csbase = pvt->csels[dct].csbases[csrow];
  284. csmask = pvt->csels[dct].csmasks[csrow];
  285. base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
  286. mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
  287. addr_shift = 4;
  288. /*
  289. * F16h and F15h, models 30h and later need two addr_shift values:
  290. * 8 for high and 6 for low (cf. F16h BKDG).
  291. */
  292. } else if (pvt->fam == 0x16 ||
  293. (pvt->fam == 0x15 && pvt->model >= 0x30)) {
  294. csbase = pvt->csels[dct].csbases[csrow];
  295. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  296. *base = (csbase & GENMASK_ULL(15, 5)) << 6;
  297. *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
  298. *mask = ~0ULL;
  299. /* poke holes for the csmask */
  300. *mask &= ~((GENMASK_ULL(15, 5) << 6) |
  301. (GENMASK_ULL(30, 19) << 8));
  302. *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
  303. *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
  304. return;
  305. } else {
  306. csbase = pvt->csels[dct].csbases[csrow];
  307. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  308. addr_shift = 8;
  309. if (pvt->fam == 0x15)
  310. base_bits = mask_bits =
  311. GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
  312. else
  313. base_bits = mask_bits =
  314. GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
  315. }
  316. *base = (csbase & base_bits) << addr_shift;
  317. *mask = ~0ULL;
  318. /* poke holes for the csmask */
  319. *mask &= ~(mask_bits << addr_shift);
  320. /* OR them in */
  321. *mask |= (csmask & mask_bits) << addr_shift;
  322. }
  323. #define for_each_chip_select(i, dct, pvt) \
  324. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  325. #define chip_select_base(i, dct, pvt) \
  326. pvt->csels[dct].csbases[i]
  327. #define for_each_chip_select_mask(i, dct, pvt) \
  328. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  329. /*
  330. * @input_addr is an InputAddr associated with the node given by mci. Return the
  331. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  332. */
  333. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  334. {
  335. struct amd64_pvt *pvt;
  336. int csrow;
  337. u64 base, mask;
  338. pvt = mci->pvt_info;
  339. for_each_chip_select(csrow, 0, pvt) {
  340. if (!csrow_enabled(csrow, 0, pvt))
  341. continue;
  342. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  343. mask = ~mask;
  344. if ((input_addr & mask) == (base & mask)) {
  345. edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
  346. (unsigned long)input_addr, csrow,
  347. pvt->mc_node_id);
  348. return csrow;
  349. }
  350. }
  351. edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  352. (unsigned long)input_addr, pvt->mc_node_id);
  353. return -1;
  354. }
  355. /*
  356. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  357. * for the node represented by mci. Info is passed back in *hole_base,
  358. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  359. * info is invalid. Info may be invalid for either of the following reasons:
  360. *
  361. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  362. * Address Register does not exist.
  363. *
  364. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  365. * indicating that its contents are not valid.
  366. *
  367. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  368. * complete 32-bit values despite the fact that the bitfields in the DHAR
  369. * only represent bits 31-24 of the base and offset values.
  370. */
  371. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  372. u64 *hole_offset, u64 *hole_size)
  373. {
  374. struct amd64_pvt *pvt = mci->pvt_info;
  375. /* only revE and later have the DRAM Hole Address Register */
  376. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
  377. edac_dbg(1, " revision %d for node %d does not support DHAR\n",
  378. pvt->ext_model, pvt->mc_node_id);
  379. return 1;
  380. }
  381. /* valid for Fam10h and above */
  382. if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  383. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
  384. return 1;
  385. }
  386. if (!dhar_valid(pvt)) {
  387. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
  388. pvt->mc_node_id);
  389. return 1;
  390. }
  391. /* This node has Memory Hoisting */
  392. /* +------------------+--------------------+--------------------+-----
  393. * | memory | DRAM hole | relocated |
  394. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  395. * | | | DRAM hole |
  396. * | | | [0x100000000, |
  397. * | | | (0x100000000+ |
  398. * | | | (0xffffffff-x))] |
  399. * +------------------+--------------------+--------------------+-----
  400. *
  401. * Above is a diagram of physical memory showing the DRAM hole and the
  402. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  403. * starts at address x (the base address) and extends through address
  404. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  405. * addresses in the hole so that they start at 0x100000000.
  406. */
  407. *hole_base = dhar_base(pvt);
  408. *hole_size = (1ULL << 32) - *hole_base;
  409. *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
  410. : k8_dhar_offset(pvt);
  411. edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  412. pvt->mc_node_id, (unsigned long)*hole_base,
  413. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  414. return 0;
  415. }
  416. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  417. /*
  418. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  419. * assumed that sys_addr maps to the node given by mci.
  420. *
  421. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  422. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  423. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  424. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  425. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  426. * These parts of the documentation are unclear. I interpret them as follows:
  427. *
  428. * When node n receives a SysAddr, it processes the SysAddr as follows:
  429. *
  430. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  431. * Limit registers for node n. If the SysAddr is not within the range
  432. * specified by the base and limit values, then node n ignores the Sysaddr
  433. * (since it does not map to node n). Otherwise continue to step 2 below.
  434. *
  435. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  436. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  437. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  438. * hole. If not, skip to step 3 below. Else get the value of the
  439. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  440. * offset defined by this value from the SysAddr.
  441. *
  442. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  443. * Base register for node n. To obtain the DramAddr, subtract the base
  444. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  445. */
  446. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  447. {
  448. struct amd64_pvt *pvt = mci->pvt_info;
  449. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  450. int ret;
  451. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  452. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  453. &hole_size);
  454. if (!ret) {
  455. if ((sys_addr >= (1ULL << 32)) &&
  456. (sys_addr < ((1ULL << 32) + hole_size))) {
  457. /* use DHAR to translate SysAddr to DramAddr */
  458. dram_addr = sys_addr - hole_offset;
  459. edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  460. (unsigned long)sys_addr,
  461. (unsigned long)dram_addr);
  462. return dram_addr;
  463. }
  464. }
  465. /*
  466. * Translate the SysAddr to a DramAddr as shown near the start of
  467. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  468. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  469. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  470. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  471. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  472. * Programmer's Manual Volume 1 Application Programming.
  473. */
  474. dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
  475. edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  476. (unsigned long)sys_addr, (unsigned long)dram_addr);
  477. return dram_addr;
  478. }
  479. /*
  480. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  481. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  482. * for node interleaving.
  483. */
  484. static int num_node_interleave_bits(unsigned intlv_en)
  485. {
  486. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  487. int n;
  488. BUG_ON(intlv_en > 7);
  489. n = intlv_shift_table[intlv_en];
  490. return n;
  491. }
  492. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  493. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  494. {
  495. struct amd64_pvt *pvt;
  496. int intlv_shift;
  497. u64 input_addr;
  498. pvt = mci->pvt_info;
  499. /*
  500. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  501. * concerning translating a DramAddr to an InputAddr.
  502. */
  503. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  504. input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
  505. (dram_addr & 0xfff);
  506. edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  507. intlv_shift, (unsigned long)dram_addr,
  508. (unsigned long)input_addr);
  509. return input_addr;
  510. }
  511. /*
  512. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  513. * assumed that @sys_addr maps to the node given by mci.
  514. */
  515. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  516. {
  517. u64 input_addr;
  518. input_addr =
  519. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  520. edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  521. (unsigned long)sys_addr, (unsigned long)input_addr);
  522. return input_addr;
  523. }
  524. /* Map the Error address to a PAGE and PAGE OFFSET. */
  525. static inline void error_address_to_page_and_offset(u64 error_address,
  526. struct err_info *err)
  527. {
  528. err->page = (u32) (error_address >> PAGE_SHIFT);
  529. err->offset = ((u32) error_address) & ~PAGE_MASK;
  530. }
  531. /*
  532. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  533. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  534. * of a node that detected an ECC memory error. mci represents the node that
  535. * the error address maps to (possibly different from the node that detected
  536. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  537. * error.
  538. */
  539. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  540. {
  541. int csrow;
  542. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  543. if (csrow == -1)
  544. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  545. "address 0x%lx\n", (unsigned long)sys_addr);
  546. return csrow;
  547. }
  548. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  549. /*
  550. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  551. * are ECC capable.
  552. */
  553. static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
  554. {
  555. u8 bit;
  556. unsigned long edac_cap = EDAC_FLAG_NONE;
  557. bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
  558. ? 19
  559. : 17;
  560. if (pvt->dclr0 & BIT(bit))
  561. edac_cap = EDAC_FLAG_SECDED;
  562. return edac_cap;
  563. }
  564. static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
  565. static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
  566. {
  567. edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  568. edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  569. (dclr & BIT(16)) ? "un" : "",
  570. (dclr & BIT(19)) ? "yes" : "no");
  571. edac_dbg(1, " PAR/ERR parity: %s\n",
  572. (dclr & BIT(8)) ? "enabled" : "disabled");
  573. if (pvt->fam == 0x10)
  574. edac_dbg(1, " DCT 128bit mode width: %s\n",
  575. (dclr & BIT(11)) ? "128b" : "64b");
  576. edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  577. (dclr & BIT(12)) ? "yes" : "no",
  578. (dclr & BIT(13)) ? "yes" : "no",
  579. (dclr & BIT(14)) ? "yes" : "no",
  580. (dclr & BIT(15)) ? "yes" : "no");
  581. }
  582. /* Display and decode various NB registers for debug purposes. */
  583. static void dump_misc_regs(struct amd64_pvt *pvt)
  584. {
  585. edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  586. edac_dbg(1, " NB two channel DRAM capable: %s\n",
  587. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  588. edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
  589. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  590. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  591. debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
  592. edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  593. edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
  594. pvt->dhar, dhar_base(pvt),
  595. (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
  596. : f10_dhar_offset(pvt));
  597. edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  598. debug_display_dimm_sizes(pvt, 0);
  599. /* everything below this point is Fam10h and above */
  600. if (pvt->fam == 0xf)
  601. return;
  602. debug_display_dimm_sizes(pvt, 1);
  603. amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
  604. /* Only if NOT ganged does dclr1 have valid info */
  605. if (!dct_ganging_enabled(pvt))
  606. debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
  607. }
  608. /*
  609. * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  610. */
  611. static void prep_chip_selects(struct amd64_pvt *pvt)
  612. {
  613. if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
  614. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  615. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  616. } else if (pvt->fam == 0x15 && pvt->model >= 0x30) {
  617. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
  618. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
  619. } else {
  620. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  621. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  622. }
  623. }
  624. /*
  625. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  626. */
  627. static void read_dct_base_mask(struct amd64_pvt *pvt)
  628. {
  629. int cs;
  630. prep_chip_selects(pvt);
  631. for_each_chip_select(cs, 0, pvt) {
  632. int reg0 = DCSB0 + (cs * 4);
  633. int reg1 = DCSB1 + (cs * 4);
  634. u32 *base0 = &pvt->csels[0].csbases[cs];
  635. u32 *base1 = &pvt->csels[1].csbases[cs];
  636. if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
  637. edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
  638. cs, *base0, reg0);
  639. if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
  640. continue;
  641. if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
  642. edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
  643. cs, *base1, reg1);
  644. }
  645. for_each_chip_select_mask(cs, 0, pvt) {
  646. int reg0 = DCSM0 + (cs * 4);
  647. int reg1 = DCSM1 + (cs * 4);
  648. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  649. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  650. if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
  651. edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
  652. cs, *mask0, reg0);
  653. if (pvt->fam == 0xf || dct_ganging_enabled(pvt))
  654. continue;
  655. if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
  656. edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
  657. cs, *mask1, reg1);
  658. }
  659. }
  660. static enum mem_type determine_memory_type(struct amd64_pvt *pvt, int cs)
  661. {
  662. enum mem_type type;
  663. /* F15h supports only DDR3 */
  664. if (pvt->fam >= 0x15)
  665. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  666. else if (pvt->fam == 0x10 || pvt->ext_model >= K8_REV_F) {
  667. if (pvt->dchr0 & DDR3_MODE)
  668. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  669. else
  670. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  671. } else {
  672. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  673. }
  674. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  675. return type;
  676. }
  677. /* Get the number of DCT channels the memory controller is using. */
  678. static int k8_early_channel_count(struct amd64_pvt *pvt)
  679. {
  680. int flag;
  681. if (pvt->ext_model >= K8_REV_F)
  682. /* RevF (NPT) and later */
  683. flag = pvt->dclr0 & WIDTH_128;
  684. else
  685. /* RevE and earlier */
  686. flag = pvt->dclr0 & REVE_WIDTH_128;
  687. /* not used */
  688. pvt->dclr1 = 0;
  689. return (flag) ? 2 : 1;
  690. }
  691. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  692. static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
  693. {
  694. u64 addr;
  695. u8 start_bit = 1;
  696. u8 end_bit = 47;
  697. if (pvt->fam == 0xf) {
  698. start_bit = 3;
  699. end_bit = 39;
  700. }
  701. addr = m->addr & GENMASK_ULL(end_bit, start_bit);
  702. /*
  703. * Erratum 637 workaround
  704. */
  705. if (pvt->fam == 0x15) {
  706. struct amd64_pvt *pvt;
  707. u64 cc6_base, tmp_addr;
  708. u32 tmp;
  709. u16 mce_nid;
  710. u8 intlv_en;
  711. if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
  712. return addr;
  713. mce_nid = amd_get_nb_id(m->extcpu);
  714. pvt = mcis[mce_nid]->pvt_info;
  715. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
  716. intlv_en = tmp >> 21 & 0x7;
  717. /* add [47:27] + 3 trailing bits */
  718. cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
  719. /* reverse and add DramIntlvEn */
  720. cc6_base |= intlv_en ^ 0x7;
  721. /* pin at [47:24] */
  722. cc6_base <<= 24;
  723. if (!intlv_en)
  724. return cc6_base | (addr & GENMASK_ULL(23, 0));
  725. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
  726. /* faster log2 */
  727. tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
  728. /* OR DramIntlvSel into bits [14:12] */
  729. tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
  730. /* add remaining [11:0] bits from original MC4_ADDR */
  731. tmp_addr |= addr & GENMASK_ULL(11, 0);
  732. return cc6_base | tmp_addr;
  733. }
  734. return addr;
  735. }
  736. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  737. unsigned int device,
  738. struct pci_dev *related)
  739. {
  740. struct pci_dev *dev = NULL;
  741. while ((dev = pci_get_device(vendor, device, dev))) {
  742. if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
  743. (dev->bus->number == related->bus->number) &&
  744. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  745. break;
  746. }
  747. return dev;
  748. }
  749. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  750. {
  751. struct amd_northbridge *nb;
  752. struct pci_dev *f1 = NULL;
  753. unsigned int pci_func;
  754. int off = range << 3;
  755. u32 llim;
  756. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  757. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  758. if (pvt->fam == 0xf)
  759. return;
  760. if (!dram_rw(pvt, range))
  761. return;
  762. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  763. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  764. /* F15h: factor in CC6 save area by reading dst node's limit reg */
  765. if (pvt->fam != 0x15)
  766. return;
  767. nb = node_to_amd_nb(dram_dst_node(pvt, range));
  768. if (WARN_ON(!nb))
  769. return;
  770. pci_func = (pvt->model == 0x30) ? PCI_DEVICE_ID_AMD_15H_M30H_NB_F1
  771. : PCI_DEVICE_ID_AMD_15H_NB_F1;
  772. f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
  773. if (WARN_ON(!f1))
  774. return;
  775. amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
  776. pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
  777. /* {[39:27],111b} */
  778. pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
  779. pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
  780. /* [47:40] */
  781. pvt->ranges[range].lim.hi |= llim >> 13;
  782. pci_dev_put(f1);
  783. }
  784. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  785. struct err_info *err)
  786. {
  787. struct amd64_pvt *pvt = mci->pvt_info;
  788. error_address_to_page_and_offset(sys_addr, err);
  789. /*
  790. * Find out which node the error address belongs to. This may be
  791. * different from the node that detected the error.
  792. */
  793. err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
  794. if (!err->src_mci) {
  795. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  796. (unsigned long)sys_addr);
  797. err->err_code = ERR_NODE;
  798. return;
  799. }
  800. /* Now map the sys_addr to a CSROW */
  801. err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
  802. if (err->csrow < 0) {
  803. err->err_code = ERR_CSROW;
  804. return;
  805. }
  806. /* CHIPKILL enabled */
  807. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  808. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  809. if (err->channel < 0) {
  810. /*
  811. * Syndrome didn't map, so we don't know which of the
  812. * 2 DIMMs is in error. So we need to ID 'both' of them
  813. * as suspect.
  814. */
  815. amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
  816. "possible error reporting race\n",
  817. err->syndrome);
  818. err->err_code = ERR_CHANNEL;
  819. return;
  820. }
  821. } else {
  822. /*
  823. * non-chipkill ecc mode
  824. *
  825. * The k8 documentation is unclear about how to determine the
  826. * channel number when using non-chipkill memory. This method
  827. * was obtained from email communication with someone at AMD.
  828. * (Wish the email was placed in this comment - norsk)
  829. */
  830. err->channel = ((sys_addr & BIT(3)) != 0);
  831. }
  832. }
  833. static int ddr2_cs_size(unsigned i, bool dct_width)
  834. {
  835. unsigned shift = 0;
  836. if (i <= 2)
  837. shift = i;
  838. else if (!(i & 0x1))
  839. shift = i >> 1;
  840. else
  841. shift = (i + 1) >> 1;
  842. return 128 << (shift + !!dct_width);
  843. }
  844. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  845. unsigned cs_mode)
  846. {
  847. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  848. if (pvt->ext_model >= K8_REV_F) {
  849. WARN_ON(cs_mode > 11);
  850. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  851. }
  852. else if (pvt->ext_model >= K8_REV_D) {
  853. unsigned diff;
  854. WARN_ON(cs_mode > 10);
  855. /*
  856. * the below calculation, besides trying to win an obfuscated C
  857. * contest, maps cs_mode values to DIMM chip select sizes. The
  858. * mappings are:
  859. *
  860. * cs_mode CS size (mb)
  861. * ======= ============
  862. * 0 32
  863. * 1 64
  864. * 2 128
  865. * 3 128
  866. * 4 256
  867. * 5 512
  868. * 6 256
  869. * 7 512
  870. * 8 1024
  871. * 9 1024
  872. * 10 2048
  873. *
  874. * Basically, it calculates a value with which to shift the
  875. * smallest CS size of 32MB.
  876. *
  877. * ddr[23]_cs_size have a similar purpose.
  878. */
  879. diff = cs_mode/3 + (unsigned)(cs_mode > 5);
  880. return 32 << (cs_mode - diff);
  881. }
  882. else {
  883. WARN_ON(cs_mode > 6);
  884. return 32 << cs_mode;
  885. }
  886. }
  887. /*
  888. * Get the number of DCT channels in use.
  889. *
  890. * Return:
  891. * number of Memory Channels in operation
  892. * Pass back:
  893. * contents of the DCL0_LOW register
  894. */
  895. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  896. {
  897. int i, j, channels = 0;
  898. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  899. if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
  900. return 2;
  901. /*
  902. * Need to check if in unganged mode: In such, there are 2 channels,
  903. * but they are not in 128 bit mode and thus the above 'dclr0' status
  904. * bit will be OFF.
  905. *
  906. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  907. * their CSEnable bit on. If so, then SINGLE DIMM case.
  908. */
  909. edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
  910. /*
  911. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  912. * is more than just one DIMM present in unganged mode. Need to check
  913. * both controllers since DIMMs can be placed in either one.
  914. */
  915. for (i = 0; i < 2; i++) {
  916. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  917. for (j = 0; j < 4; j++) {
  918. if (DBAM_DIMM(j, dbam) > 0) {
  919. channels++;
  920. break;
  921. }
  922. }
  923. }
  924. if (channels > 2)
  925. channels = 2;
  926. amd64_info("MCT channel count: %d\n", channels);
  927. return channels;
  928. }
  929. static int ddr3_cs_size(unsigned i, bool dct_width)
  930. {
  931. unsigned shift = 0;
  932. int cs_size = 0;
  933. if (i == 0 || i == 3 || i == 4)
  934. cs_size = -1;
  935. else if (i <= 2)
  936. shift = i;
  937. else if (i == 12)
  938. shift = 7;
  939. else if (!(i & 0x1))
  940. shift = i >> 1;
  941. else
  942. shift = (i + 1) >> 1;
  943. if (cs_size != -1)
  944. cs_size = (128 * (1 << !!dct_width)) << shift;
  945. return cs_size;
  946. }
  947. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  948. unsigned cs_mode)
  949. {
  950. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  951. WARN_ON(cs_mode > 11);
  952. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  953. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  954. else
  955. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  956. }
  957. /*
  958. * F15h supports only 64bit DCT interfaces
  959. */
  960. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  961. unsigned cs_mode)
  962. {
  963. WARN_ON(cs_mode > 12);
  964. return ddr3_cs_size(cs_mode, false);
  965. }
  966. /*
  967. * F16h and F15h model 30h have only limited cs_modes.
  968. */
  969. static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  970. unsigned cs_mode)
  971. {
  972. WARN_ON(cs_mode > 12);
  973. if (cs_mode == 6 || cs_mode == 8 ||
  974. cs_mode == 9 || cs_mode == 12)
  975. return -1;
  976. else
  977. return ddr3_cs_size(cs_mode, false);
  978. }
  979. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  980. {
  981. if (pvt->fam == 0xf)
  982. return;
  983. if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  984. edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  985. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  986. edac_dbg(0, " DCTs operate in %s mode\n",
  987. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  988. if (!dct_ganging_enabled(pvt))
  989. edac_dbg(0, " Address range split per DCT: %s\n",
  990. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  991. edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
  992. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  993. (dct_memory_cleared(pvt) ? "yes" : "no"));
  994. edac_dbg(0, " channel interleave: %s, "
  995. "interleave bits selector: 0x%x\n",
  996. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  997. dct_sel_interleave_addr(pvt));
  998. }
  999. amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
  1000. }
  1001. /*
  1002. * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
  1003. * 2.10.12 Memory Interleaving Modes).
  1004. */
  1005. static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1006. u8 intlv_en, int num_dcts_intlv,
  1007. u32 dct_sel)
  1008. {
  1009. u8 channel = 0;
  1010. u8 select;
  1011. if (!(intlv_en))
  1012. return (u8)(dct_sel);
  1013. if (num_dcts_intlv == 2) {
  1014. select = (sys_addr >> 8) & 0x3;
  1015. channel = select ? 0x3 : 0;
  1016. } else if (num_dcts_intlv == 4)
  1017. channel = (sys_addr >> 8) & 0x7;
  1018. return channel;
  1019. }
  1020. /*
  1021. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1022. * Interleaving Modes.
  1023. */
  1024. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1025. bool hi_range_sel, u8 intlv_en)
  1026. {
  1027. u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  1028. if (dct_ganging_enabled(pvt))
  1029. return 0;
  1030. if (hi_range_sel)
  1031. return dct_sel_high;
  1032. /*
  1033. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1034. */
  1035. if (dct_interleave_enabled(pvt)) {
  1036. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1037. /* return DCT select function: 0=DCT0, 1=DCT1 */
  1038. if (!intlv_addr)
  1039. return sys_addr >> 6 & 1;
  1040. if (intlv_addr & 0x2) {
  1041. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  1042. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1043. return ((sys_addr >> shift) & 1) ^ temp;
  1044. }
  1045. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  1046. }
  1047. if (dct_high_range_enabled(pvt))
  1048. return ~dct_sel_high & 1;
  1049. return 0;
  1050. }
  1051. /* Convert the sys_addr to the normalized DCT address */
  1052. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
  1053. u64 sys_addr, bool hi_rng,
  1054. u32 dct_sel_base_addr)
  1055. {
  1056. u64 chan_off;
  1057. u64 dram_base = get_dram_base(pvt, range);
  1058. u64 hole_off = f10_dhar_offset(pvt);
  1059. u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1060. if (hi_rng) {
  1061. /*
  1062. * if
  1063. * base address of high range is below 4Gb
  1064. * (bits [47:27] at [31:11])
  1065. * DRAM address space on this DCT is hoisted above 4Gb &&
  1066. * sys_addr > 4Gb
  1067. *
  1068. * remove hole offset from sys_addr
  1069. * else
  1070. * remove high range offset from sys_addr
  1071. */
  1072. if ((!(dct_sel_base_addr >> 16) ||
  1073. dct_sel_base_addr < dhar_base(pvt)) &&
  1074. dhar_valid(pvt) &&
  1075. (sys_addr >= BIT_64(32)))
  1076. chan_off = hole_off;
  1077. else
  1078. chan_off = dct_sel_base_off;
  1079. } else {
  1080. /*
  1081. * if
  1082. * we have a valid hole &&
  1083. * sys_addr > 4Gb
  1084. *
  1085. * remove hole
  1086. * else
  1087. * remove dram base to normalize to DCT address
  1088. */
  1089. if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
  1090. chan_off = hole_off;
  1091. else
  1092. chan_off = dram_base;
  1093. }
  1094. return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
  1095. }
  1096. /*
  1097. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1098. * spare row
  1099. */
  1100. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1101. {
  1102. int tmp_cs;
  1103. if (online_spare_swap_done(pvt, dct) &&
  1104. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1105. for_each_chip_select(tmp_cs, dct, pvt) {
  1106. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1107. csrow = tmp_cs;
  1108. break;
  1109. }
  1110. }
  1111. }
  1112. return csrow;
  1113. }
  1114. /*
  1115. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1116. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1117. *
  1118. * Return:
  1119. * -EINVAL: NOT FOUND
  1120. * 0..csrow = Chip-Select Row
  1121. */
  1122. static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
  1123. {
  1124. struct mem_ctl_info *mci;
  1125. struct amd64_pvt *pvt;
  1126. u64 cs_base, cs_mask;
  1127. int cs_found = -EINVAL;
  1128. int csrow;
  1129. mci = mcis[nid];
  1130. if (!mci)
  1131. return cs_found;
  1132. pvt = mci->pvt_info;
  1133. edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1134. for_each_chip_select(csrow, dct, pvt) {
  1135. if (!csrow_enabled(csrow, dct, pvt))
  1136. continue;
  1137. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1138. edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1139. csrow, cs_base, cs_mask);
  1140. cs_mask = ~cs_mask;
  1141. edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
  1142. (in_addr & cs_mask), (cs_base & cs_mask));
  1143. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1144. if (pvt->fam == 0x15 && pvt->model >= 0x30) {
  1145. cs_found = csrow;
  1146. break;
  1147. }
  1148. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1149. edac_dbg(1, " MATCH csrow=%d\n", cs_found);
  1150. break;
  1151. }
  1152. }
  1153. return cs_found;
  1154. }
  1155. /*
  1156. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1157. * swapped with a region located at the bottom of memory so that the GPU can use
  1158. * the interleaved region and thus two channels.
  1159. */
  1160. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1161. {
  1162. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1163. if (pvt->fam == 0x10) {
  1164. /* only revC3 and revE have that feature */
  1165. if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
  1166. return sys_addr;
  1167. }
  1168. amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
  1169. if (!(swap_reg & 0x1))
  1170. return sys_addr;
  1171. swap_base = (swap_reg >> 3) & 0x7f;
  1172. swap_limit = (swap_reg >> 11) & 0x7f;
  1173. rgn_size = (swap_reg >> 20) & 0x7f;
  1174. tmp_addr = sys_addr >> 27;
  1175. if (!(sys_addr >> 34) &&
  1176. (((tmp_addr >= swap_base) &&
  1177. (tmp_addr <= swap_limit)) ||
  1178. (tmp_addr < rgn_size)))
  1179. return sys_addr ^ (u64)swap_base << 27;
  1180. return sys_addr;
  1181. }
  1182. /* For a given @dram_range, check if @sys_addr falls within it. */
  1183. static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1184. u64 sys_addr, int *chan_sel)
  1185. {
  1186. int cs_found = -EINVAL;
  1187. u64 chan_addr;
  1188. u32 dct_sel_base;
  1189. u8 channel;
  1190. bool high_range = false;
  1191. u8 node_id = dram_dst_node(pvt, range);
  1192. u8 intlv_en = dram_intlv_en(pvt, range);
  1193. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1194. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1195. range, sys_addr, get_dram_limit(pvt, range));
  1196. if (dhar_valid(pvt) &&
  1197. dhar_base(pvt) <= sys_addr &&
  1198. sys_addr < BIT_64(32)) {
  1199. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1200. sys_addr);
  1201. return -EINVAL;
  1202. }
  1203. if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1204. return -EINVAL;
  1205. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1206. dct_sel_base = dct_sel_baseaddr(pvt);
  1207. /*
  1208. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1209. * select between DCT0 and DCT1.
  1210. */
  1211. if (dct_high_range_enabled(pvt) &&
  1212. !dct_ganging_enabled(pvt) &&
  1213. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1214. high_range = true;
  1215. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1216. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1217. high_range, dct_sel_base);
  1218. /* Remove node interleaving, see F1x120 */
  1219. if (intlv_en)
  1220. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1221. (chan_addr & 0xfff);
  1222. /* remove channel interleave */
  1223. if (dct_interleave_enabled(pvt) &&
  1224. !dct_high_range_enabled(pvt) &&
  1225. !dct_ganging_enabled(pvt)) {
  1226. if (dct_sel_interleave_addr(pvt) != 1) {
  1227. if (dct_sel_interleave_addr(pvt) == 0x3)
  1228. /* hash 9 */
  1229. chan_addr = ((chan_addr >> 10) << 9) |
  1230. (chan_addr & 0x1ff);
  1231. else
  1232. /* A[6] or hash 6 */
  1233. chan_addr = ((chan_addr >> 7) << 6) |
  1234. (chan_addr & 0x3f);
  1235. } else
  1236. /* A[12] */
  1237. chan_addr = ((chan_addr >> 13) << 12) |
  1238. (chan_addr & 0xfff);
  1239. }
  1240. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1241. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1242. if (cs_found >= 0)
  1243. *chan_sel = channel;
  1244. return cs_found;
  1245. }
  1246. static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1247. u64 sys_addr, int *chan_sel)
  1248. {
  1249. int cs_found = -EINVAL;
  1250. int num_dcts_intlv = 0;
  1251. u64 chan_addr, chan_offset;
  1252. u64 dct_base, dct_limit;
  1253. u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
  1254. u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
  1255. u64 dhar_offset = f10_dhar_offset(pvt);
  1256. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  1257. u8 node_id = dram_dst_node(pvt, range);
  1258. u8 intlv_en = dram_intlv_en(pvt, range);
  1259. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
  1260. amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
  1261. dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
  1262. dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
  1263. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1264. range, sys_addr, get_dram_limit(pvt, range));
  1265. if (!(get_dram_base(pvt, range) <= sys_addr) &&
  1266. !(get_dram_limit(pvt, range) >= sys_addr))
  1267. return -EINVAL;
  1268. if (dhar_valid(pvt) &&
  1269. dhar_base(pvt) <= sys_addr &&
  1270. sys_addr < BIT_64(32)) {
  1271. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1272. sys_addr);
  1273. return -EINVAL;
  1274. }
  1275. /* Verify sys_addr is within DCT Range. */
  1276. dct_base = (u64) dct_sel_baseaddr(pvt);
  1277. dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
  1278. if (!(dct_cont_base_reg & BIT(0)) &&
  1279. !(dct_base <= (sys_addr >> 27) &&
  1280. dct_limit >= (sys_addr >> 27)))
  1281. return -EINVAL;
  1282. /* Verify number of dct's that participate in channel interleaving. */
  1283. num_dcts_intlv = (int) hweight8(intlv_en);
  1284. if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
  1285. return -EINVAL;
  1286. channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
  1287. num_dcts_intlv, dct_sel);
  1288. /* Verify we stay within the MAX number of channels allowed */
  1289. if (channel > 3)
  1290. return -EINVAL;
  1291. leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
  1292. /* Get normalized DCT addr */
  1293. if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
  1294. chan_offset = dhar_offset;
  1295. else
  1296. chan_offset = dct_base << 27;
  1297. chan_addr = sys_addr - chan_offset;
  1298. /* remove channel interleave */
  1299. if (num_dcts_intlv == 2) {
  1300. if (intlv_addr == 0x4)
  1301. chan_addr = ((chan_addr >> 9) << 8) |
  1302. (chan_addr & 0xff);
  1303. else if (intlv_addr == 0x5)
  1304. chan_addr = ((chan_addr >> 10) << 9) |
  1305. (chan_addr & 0x1ff);
  1306. else
  1307. return -EINVAL;
  1308. } else if (num_dcts_intlv == 4) {
  1309. if (intlv_addr == 0x4)
  1310. chan_addr = ((chan_addr >> 10) << 8) |
  1311. (chan_addr & 0xff);
  1312. else if (intlv_addr == 0x5)
  1313. chan_addr = ((chan_addr >> 11) << 9) |
  1314. (chan_addr & 0x1ff);
  1315. else
  1316. return -EINVAL;
  1317. }
  1318. if (dct_offset_en) {
  1319. amd64_read_pci_cfg(pvt->F1,
  1320. DRAM_CONT_HIGH_OFF + (int) channel * 4,
  1321. &tmp);
  1322. chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
  1323. }
  1324. f15h_select_dct(pvt, channel);
  1325. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1326. /*
  1327. * Find Chip select:
  1328. * if channel = 3, then alias it to 1. This is because, in F15 M30h,
  1329. * there is support for 4 DCT's, but only 2 are currently functional.
  1330. * They are DCT0 and DCT3. But we have read all registers of DCT3 into
  1331. * pvt->csels[1]. So we need to use '1' here to get correct info.
  1332. * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
  1333. */
  1334. alias_channel = (channel == 3) ? 1 : channel;
  1335. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
  1336. if (cs_found >= 0)
  1337. *chan_sel = alias_channel;
  1338. return cs_found;
  1339. }
  1340. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
  1341. u64 sys_addr,
  1342. int *chan_sel)
  1343. {
  1344. int cs_found = -EINVAL;
  1345. unsigned range;
  1346. for (range = 0; range < DRAM_RANGES; range++) {
  1347. if (!dram_rw(pvt, range))
  1348. continue;
  1349. if (pvt->fam == 0x15 && pvt->model >= 0x30)
  1350. cs_found = f15_m30h_match_to_this_node(pvt, range,
  1351. sys_addr,
  1352. chan_sel);
  1353. else if ((get_dram_base(pvt, range) <= sys_addr) &&
  1354. (get_dram_limit(pvt, range) >= sys_addr)) {
  1355. cs_found = f1x_match_to_this_node(pvt, range,
  1356. sys_addr, chan_sel);
  1357. if (cs_found >= 0)
  1358. break;
  1359. }
  1360. }
  1361. return cs_found;
  1362. }
  1363. /*
  1364. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1365. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1366. *
  1367. * The @sys_addr is usually an error address received from the hardware
  1368. * (MCX_ADDR).
  1369. */
  1370. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1371. struct err_info *err)
  1372. {
  1373. struct amd64_pvt *pvt = mci->pvt_info;
  1374. error_address_to_page_and_offset(sys_addr, err);
  1375. err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
  1376. if (err->csrow < 0) {
  1377. err->err_code = ERR_CSROW;
  1378. return;
  1379. }
  1380. /*
  1381. * We need the syndromes for channel detection only when we're
  1382. * ganged. Otherwise @chan should already contain the channel at
  1383. * this point.
  1384. */
  1385. if (dct_ganging_enabled(pvt))
  1386. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  1387. }
  1388. /*
  1389. * debug routine to display the memory sizes of all logical DIMMs and its
  1390. * CSROWs
  1391. */
  1392. static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
  1393. {
  1394. int dimm, size0, size1;
  1395. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1396. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1397. if (pvt->fam == 0xf) {
  1398. /* K8 families < revF not supported yet */
  1399. if (pvt->ext_model < K8_REV_F)
  1400. return;
  1401. else
  1402. WARN_ON(ctrl != 0);
  1403. }
  1404. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
  1405. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
  1406. : pvt->csels[0].csbases;
  1407. edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1408. ctrl, dbam);
  1409. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1410. /* Dump memory sizes for DIMM and its CSROWs */
  1411. for (dimm = 0; dimm < 4; dimm++) {
  1412. size0 = 0;
  1413. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1414. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1415. DBAM_DIMM(dimm, dbam));
  1416. size1 = 0;
  1417. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1418. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1419. DBAM_DIMM(dimm, dbam));
  1420. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1421. dimm * 2, size0,
  1422. dimm * 2 + 1, size1);
  1423. }
  1424. }
  1425. static struct amd64_family_type family_types[] = {
  1426. [K8_CPUS] = {
  1427. .ctl_name = "K8",
  1428. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1429. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1430. .ops = {
  1431. .early_channel_count = k8_early_channel_count,
  1432. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1433. .dbam_to_cs = k8_dbam_to_chip_select,
  1434. .read_dct_pci_cfg = k8_read_dct_pci_cfg,
  1435. }
  1436. },
  1437. [F10_CPUS] = {
  1438. .ctl_name = "F10h",
  1439. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1440. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1441. .ops = {
  1442. .early_channel_count = f1x_early_channel_count,
  1443. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1444. .dbam_to_cs = f10_dbam_to_chip_select,
  1445. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1446. }
  1447. },
  1448. [F15_CPUS] = {
  1449. .ctl_name = "F15h",
  1450. .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
  1451. .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
  1452. .ops = {
  1453. .early_channel_count = f1x_early_channel_count,
  1454. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1455. .dbam_to_cs = f15_dbam_to_chip_select,
  1456. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1457. }
  1458. },
  1459. [F15_M30H_CPUS] = {
  1460. .ctl_name = "F15h_M30h",
  1461. .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
  1462. .f3_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F3,
  1463. .ops = {
  1464. .early_channel_count = f1x_early_channel_count,
  1465. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1466. .dbam_to_cs = f16_dbam_to_chip_select,
  1467. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1468. }
  1469. },
  1470. [F16_CPUS] = {
  1471. .ctl_name = "F16h",
  1472. .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
  1473. .f3_id = PCI_DEVICE_ID_AMD_16H_NB_F3,
  1474. .ops = {
  1475. .early_channel_count = f1x_early_channel_count,
  1476. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1477. .dbam_to_cs = f16_dbam_to_chip_select,
  1478. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1479. }
  1480. },
  1481. };
  1482. /*
  1483. * These are tables of eigenvectors (one per line) which can be used for the
  1484. * construction of the syndrome tables. The modified syndrome search algorithm
  1485. * uses those to find the symbol in error and thus the DIMM.
  1486. *
  1487. * Algorithm courtesy of Ross LaFetra from AMD.
  1488. */
  1489. static const u16 x4_vectors[] = {
  1490. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1491. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1492. 0x0001, 0x0002, 0x0004, 0x0008,
  1493. 0x1013, 0x3032, 0x4044, 0x8088,
  1494. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1495. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1496. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1497. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1498. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1499. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1500. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1501. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1502. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1503. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1504. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1505. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1506. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1507. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1508. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1509. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1510. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1511. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1512. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1513. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1514. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1515. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1516. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1517. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1518. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1519. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1520. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1521. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1522. 0x4807, 0xc40e, 0x130c, 0x3208,
  1523. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1524. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1525. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1526. };
  1527. static const u16 x8_vectors[] = {
  1528. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1529. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1530. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1531. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1532. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1533. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1534. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1535. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1536. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1537. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1538. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1539. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1540. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1541. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1542. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1543. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1544. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1545. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1546. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1547. };
  1548. static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
  1549. unsigned v_dim)
  1550. {
  1551. unsigned int i, err_sym;
  1552. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1553. u16 s = syndrome;
  1554. unsigned v_idx = err_sym * v_dim;
  1555. unsigned v_end = (err_sym + 1) * v_dim;
  1556. /* walk over all 16 bits of the syndrome */
  1557. for (i = 1; i < (1U << 16); i <<= 1) {
  1558. /* if bit is set in that eigenvector... */
  1559. if (v_idx < v_end && vectors[v_idx] & i) {
  1560. u16 ev_comp = vectors[v_idx++];
  1561. /* ... and bit set in the modified syndrome, */
  1562. if (s & i) {
  1563. /* remove it. */
  1564. s ^= ev_comp;
  1565. if (!s)
  1566. return err_sym;
  1567. }
  1568. } else if (s & i)
  1569. /* can't get to zero, move to next symbol */
  1570. break;
  1571. }
  1572. }
  1573. edac_dbg(0, "syndrome(%x) not found\n", syndrome);
  1574. return -1;
  1575. }
  1576. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1577. {
  1578. if (sym_size == 4)
  1579. switch (err_sym) {
  1580. case 0x20:
  1581. case 0x21:
  1582. return 0;
  1583. break;
  1584. case 0x22:
  1585. case 0x23:
  1586. return 1;
  1587. break;
  1588. default:
  1589. return err_sym >> 4;
  1590. break;
  1591. }
  1592. /* x8 symbols */
  1593. else
  1594. switch (err_sym) {
  1595. /* imaginary bits not in a DIMM */
  1596. case 0x10:
  1597. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1598. err_sym);
  1599. return -1;
  1600. break;
  1601. case 0x11:
  1602. return 0;
  1603. break;
  1604. case 0x12:
  1605. return 1;
  1606. break;
  1607. default:
  1608. return err_sym >> 3;
  1609. break;
  1610. }
  1611. return -1;
  1612. }
  1613. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1614. {
  1615. struct amd64_pvt *pvt = mci->pvt_info;
  1616. int err_sym = -1;
  1617. if (pvt->ecc_sym_sz == 8)
  1618. err_sym = decode_syndrome(syndrome, x8_vectors,
  1619. ARRAY_SIZE(x8_vectors),
  1620. pvt->ecc_sym_sz);
  1621. else if (pvt->ecc_sym_sz == 4)
  1622. err_sym = decode_syndrome(syndrome, x4_vectors,
  1623. ARRAY_SIZE(x4_vectors),
  1624. pvt->ecc_sym_sz);
  1625. else {
  1626. amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
  1627. return err_sym;
  1628. }
  1629. return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
  1630. }
  1631. static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
  1632. u8 ecc_type)
  1633. {
  1634. enum hw_event_mc_err_type err_type;
  1635. const char *string;
  1636. if (ecc_type == 2)
  1637. err_type = HW_EVENT_ERR_CORRECTED;
  1638. else if (ecc_type == 1)
  1639. err_type = HW_EVENT_ERR_UNCORRECTED;
  1640. else {
  1641. WARN(1, "Something is rotten in the state of Denmark.\n");
  1642. return;
  1643. }
  1644. switch (err->err_code) {
  1645. case DECODE_OK:
  1646. string = "";
  1647. break;
  1648. case ERR_NODE:
  1649. string = "Failed to map error addr to a node";
  1650. break;
  1651. case ERR_CSROW:
  1652. string = "Failed to map error addr to a csrow";
  1653. break;
  1654. case ERR_CHANNEL:
  1655. string = "unknown syndrome - possible error reporting race";
  1656. break;
  1657. default:
  1658. string = "WTF error";
  1659. break;
  1660. }
  1661. edac_mc_handle_error(err_type, mci, 1,
  1662. err->page, err->offset, err->syndrome,
  1663. err->csrow, err->channel, -1,
  1664. string, "");
  1665. }
  1666. static inline void decode_bus_error(int node_id, struct mce *m)
  1667. {
  1668. struct mem_ctl_info *mci = mcis[node_id];
  1669. struct amd64_pvt *pvt = mci->pvt_info;
  1670. u8 ecc_type = (m->status >> 45) & 0x3;
  1671. u8 xec = XEC(m->status, 0x1f);
  1672. u16 ec = EC(m->status);
  1673. u64 sys_addr;
  1674. struct err_info err;
  1675. /* Bail out early if this was an 'observed' error */
  1676. if (PP(ec) == NBSL_PP_OBS)
  1677. return;
  1678. /* Do only ECC errors */
  1679. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1680. return;
  1681. memset(&err, 0, sizeof(err));
  1682. sys_addr = get_error_address(pvt, m);
  1683. if (ecc_type == 2)
  1684. err.syndrome = extract_syndrome(m->status);
  1685. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
  1686. __log_bus_error(mci, &err, ecc_type);
  1687. }
  1688. /*
  1689. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1690. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1691. */
  1692. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1693. {
  1694. /* Reserve the ADDRESS MAP Device */
  1695. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1696. if (!pvt->F1) {
  1697. amd64_err("error address map device not found: "
  1698. "vendor %x device 0x%x (broken BIOS?)\n",
  1699. PCI_VENDOR_ID_AMD, f1_id);
  1700. return -ENODEV;
  1701. }
  1702. /* Reserve the MISC Device */
  1703. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1704. if (!pvt->F3) {
  1705. pci_dev_put(pvt->F1);
  1706. pvt->F1 = NULL;
  1707. amd64_err("error F3 device not found: "
  1708. "vendor %x device 0x%x (broken BIOS?)\n",
  1709. PCI_VENDOR_ID_AMD, f3_id);
  1710. return -ENODEV;
  1711. }
  1712. edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
  1713. edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
  1714. edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
  1715. return 0;
  1716. }
  1717. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1718. {
  1719. pci_dev_put(pvt->F1);
  1720. pci_dev_put(pvt->F3);
  1721. }
  1722. /*
  1723. * Retrieve the hardware registers of the memory controller (this includes the
  1724. * 'Address Map' and 'Misc' device regs)
  1725. */
  1726. static void read_mc_regs(struct amd64_pvt *pvt)
  1727. {
  1728. unsigned range;
  1729. u64 msr_val;
  1730. u32 tmp;
  1731. /*
  1732. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1733. * those are Read-As-Zero
  1734. */
  1735. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1736. edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1737. /* check first whether TOP_MEM2 is enabled */
  1738. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1739. if (msr_val & (1U << 21)) {
  1740. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1741. edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1742. } else
  1743. edac_dbg(0, " TOP_MEM2 disabled\n");
  1744. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  1745. read_dram_ctl_register(pvt);
  1746. for (range = 0; range < DRAM_RANGES; range++) {
  1747. u8 rw;
  1748. /* read settings for this DRAM range */
  1749. read_dram_base_limit_regs(pvt, range);
  1750. rw = dram_rw(pvt, range);
  1751. if (!rw)
  1752. continue;
  1753. edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1754. range,
  1755. get_dram_base(pvt, range),
  1756. get_dram_limit(pvt, range));
  1757. edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1758. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1759. (rw & 0x1) ? "R" : "-",
  1760. (rw & 0x2) ? "W" : "-",
  1761. dram_intlv_sel(pvt, range),
  1762. dram_dst_node(pvt, range));
  1763. }
  1764. read_dct_base_mask(pvt);
  1765. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1766. amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
  1767. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1768. amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
  1769. amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
  1770. if (!dct_ganging_enabled(pvt)) {
  1771. amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
  1772. amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
  1773. }
  1774. pvt->ecc_sym_sz = 4;
  1775. if (pvt->fam >= 0x10) {
  1776. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1777. if (pvt->fam != 0x16)
  1778. /* F16h has only DCT0 */
  1779. amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
  1780. /* F10h, revD and later can do x8 ECC too */
  1781. if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
  1782. pvt->ecc_sym_sz = 8;
  1783. }
  1784. dump_misc_regs(pvt);
  1785. }
  1786. /*
  1787. * NOTE: CPU Revision Dependent code
  1788. *
  1789. * Input:
  1790. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1791. * k8 private pointer to -->
  1792. * DRAM Bank Address mapping register
  1793. * node_id
  1794. * DCL register where dual_channel_active is
  1795. *
  1796. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1797. *
  1798. * Bits: CSROWs
  1799. * 0-3 CSROWs 0 and 1
  1800. * 4-7 CSROWs 2 and 3
  1801. * 8-11 CSROWs 4 and 5
  1802. * 12-15 CSROWs 6 and 7
  1803. *
  1804. * Values range from: 0 to 15
  1805. * The meaning of the values depends on CPU revision and dual-channel state,
  1806. * see relevant BKDG more info.
  1807. *
  1808. * The memory controller provides for total of only 8 CSROWs in its current
  1809. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1810. * single channel or two (2) DIMMs in dual channel mode.
  1811. *
  1812. * The following code logic collapses the various tables for CSROW based on CPU
  1813. * revision.
  1814. *
  1815. * Returns:
  1816. * The number of PAGE_SIZE pages on the specified CSROW number it
  1817. * encompasses
  1818. *
  1819. */
  1820. static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  1821. {
  1822. u32 cs_mode, nr_pages;
  1823. u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
  1824. /*
  1825. * The math on this doesn't look right on the surface because x/2*4 can
  1826. * be simplified to x*2 but this expression makes use of the fact that
  1827. * it is integral math where 1/2=0. This intermediate value becomes the
  1828. * number of bits to shift the DBAM register to extract the proper CSROW
  1829. * field.
  1830. */
  1831. cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
  1832. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
  1833. edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
  1834. csrow_nr, dct, cs_mode);
  1835. edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
  1836. return nr_pages;
  1837. }
  1838. /*
  1839. * Initialize the array of csrow attribute instances, based on the values
  1840. * from pci config hardware registers.
  1841. */
  1842. static int init_csrows(struct mem_ctl_info *mci)
  1843. {
  1844. struct amd64_pvt *pvt = mci->pvt_info;
  1845. struct csrow_info *csrow;
  1846. struct dimm_info *dimm;
  1847. enum edac_type edac_mode;
  1848. enum mem_type mtype;
  1849. int i, j, empty = 1;
  1850. int nr_pages = 0;
  1851. u32 val;
  1852. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  1853. pvt->nbcfg = val;
  1854. edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1855. pvt->mc_node_id, val,
  1856. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  1857. /*
  1858. * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
  1859. */
  1860. for_each_chip_select(i, 0, pvt) {
  1861. bool row_dct0 = !!csrow_enabled(i, 0, pvt);
  1862. bool row_dct1 = false;
  1863. if (pvt->fam != 0xf)
  1864. row_dct1 = !!csrow_enabled(i, 1, pvt);
  1865. if (!row_dct0 && !row_dct1)
  1866. continue;
  1867. csrow = mci->csrows[i];
  1868. empty = 0;
  1869. edac_dbg(1, "MC node: %d, csrow: %d\n",
  1870. pvt->mc_node_id, i);
  1871. if (row_dct0) {
  1872. nr_pages = get_csrow_nr_pages(pvt, 0, i);
  1873. csrow->channels[0]->dimm->nr_pages = nr_pages;
  1874. }
  1875. /* K8 has only one DCT */
  1876. if (pvt->fam != 0xf && row_dct1) {
  1877. int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
  1878. csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
  1879. nr_pages += row_dct1_pages;
  1880. }
  1881. mtype = determine_memory_type(pvt, i);
  1882. edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
  1883. /*
  1884. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1885. */
  1886. if (pvt->nbcfg & NBCFG_ECC_ENABLE)
  1887. edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
  1888. EDAC_S4ECD4ED : EDAC_SECDED;
  1889. else
  1890. edac_mode = EDAC_NONE;
  1891. for (j = 0; j < pvt->channel_count; j++) {
  1892. dimm = csrow->channels[j]->dimm;
  1893. dimm->mtype = mtype;
  1894. dimm->edac_mode = edac_mode;
  1895. }
  1896. }
  1897. return empty;
  1898. }
  1899. /* get all cores on this DCT */
  1900. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
  1901. {
  1902. int cpu;
  1903. for_each_online_cpu(cpu)
  1904. if (amd_get_nb_id(cpu) == nid)
  1905. cpumask_set_cpu(cpu, mask);
  1906. }
  1907. /* check MCG_CTL on all the cpus on this node */
  1908. static bool nb_mce_bank_enabled_on_node(u16 nid)
  1909. {
  1910. cpumask_var_t mask;
  1911. int cpu, nbe;
  1912. bool ret = false;
  1913. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1914. amd64_warn("%s: Error allocating mask\n", __func__);
  1915. return false;
  1916. }
  1917. get_cpus_on_this_dct_cpumask(mask, nid);
  1918. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1919. for_each_cpu(cpu, mask) {
  1920. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1921. nbe = reg->l & MSR_MCGCTL_NBE;
  1922. edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1923. cpu, reg->q,
  1924. (nbe ? "enabled" : "disabled"));
  1925. if (!nbe)
  1926. goto out;
  1927. }
  1928. ret = true;
  1929. out:
  1930. free_cpumask_var(mask);
  1931. return ret;
  1932. }
  1933. static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
  1934. {
  1935. cpumask_var_t cmask;
  1936. int cpu;
  1937. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1938. amd64_warn("%s: error allocating mask\n", __func__);
  1939. return false;
  1940. }
  1941. get_cpus_on_this_dct_cpumask(cmask, nid);
  1942. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1943. for_each_cpu(cpu, cmask) {
  1944. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1945. if (on) {
  1946. if (reg->l & MSR_MCGCTL_NBE)
  1947. s->flags.nb_mce_enable = 1;
  1948. reg->l |= MSR_MCGCTL_NBE;
  1949. } else {
  1950. /*
  1951. * Turn off NB MCE reporting only when it was off before
  1952. */
  1953. if (!s->flags.nb_mce_enable)
  1954. reg->l &= ~MSR_MCGCTL_NBE;
  1955. }
  1956. }
  1957. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1958. free_cpumask_var(cmask);
  1959. return 0;
  1960. }
  1961. static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  1962. struct pci_dev *F3)
  1963. {
  1964. bool ret = true;
  1965. u32 value, mask = 0x3; /* UECC/CECC enable */
  1966. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1967. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1968. return false;
  1969. }
  1970. amd64_read_pci_cfg(F3, NBCTL, &value);
  1971. s->old_nbctl = value & mask;
  1972. s->nbctl_valid = true;
  1973. value |= mask;
  1974. amd64_write_pci_cfg(F3, NBCTL, value);
  1975. amd64_read_pci_cfg(F3, NBCFG, &value);
  1976. edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1977. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1978. if (!(value & NBCFG_ECC_ENABLE)) {
  1979. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1980. s->flags.nb_ecc_prev = 0;
  1981. /* Attempt to turn on DRAM ECC Enable */
  1982. value |= NBCFG_ECC_ENABLE;
  1983. amd64_write_pci_cfg(F3, NBCFG, value);
  1984. amd64_read_pci_cfg(F3, NBCFG, &value);
  1985. if (!(value & NBCFG_ECC_ENABLE)) {
  1986. amd64_warn("Hardware rejected DRAM ECC enable,"
  1987. "check memory DIMM configuration.\n");
  1988. ret = false;
  1989. } else {
  1990. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1991. }
  1992. } else {
  1993. s->flags.nb_ecc_prev = 1;
  1994. }
  1995. edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1996. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1997. return ret;
  1998. }
  1999. static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  2000. struct pci_dev *F3)
  2001. {
  2002. u32 value, mask = 0x3; /* UECC/CECC enable */
  2003. if (!s->nbctl_valid)
  2004. return;
  2005. amd64_read_pci_cfg(F3, NBCTL, &value);
  2006. value &= ~mask;
  2007. value |= s->old_nbctl;
  2008. amd64_write_pci_cfg(F3, NBCTL, value);
  2009. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  2010. if (!s->flags.nb_ecc_prev) {
  2011. amd64_read_pci_cfg(F3, NBCFG, &value);
  2012. value &= ~NBCFG_ECC_ENABLE;
  2013. amd64_write_pci_cfg(F3, NBCFG, value);
  2014. }
  2015. /* restore the NB Enable MCGCTL bit */
  2016. if (toggle_ecc_err_reporting(s, nid, OFF))
  2017. amd64_warn("Error restoring NB MCGCTL settings!\n");
  2018. }
  2019. /*
  2020. * EDAC requires that the BIOS have ECC enabled before
  2021. * taking over the processing of ECC errors. A command line
  2022. * option allows to force-enable hardware ECC later in
  2023. * enable_ecc_error_reporting().
  2024. */
  2025. static const char *ecc_msg =
  2026. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  2027. " Either enable ECC checking or force module loading by setting "
  2028. "'ecc_enable_override'.\n"
  2029. " (Note that use of the override may cause unknown side effects.)\n";
  2030. static bool ecc_enabled(struct pci_dev *F3, u16 nid)
  2031. {
  2032. u32 value;
  2033. u8 ecc_en = 0;
  2034. bool nb_mce_en = false;
  2035. amd64_read_pci_cfg(F3, NBCFG, &value);
  2036. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  2037. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  2038. nb_mce_en = nb_mce_bank_enabled_on_node(nid);
  2039. if (!nb_mce_en)
  2040. amd64_notice("NB MCE bank disabled, set MSR "
  2041. "0x%08x[4] on node %d to enable.\n",
  2042. MSR_IA32_MCG_CTL, nid);
  2043. if (!ecc_en || !nb_mce_en) {
  2044. amd64_notice("%s", ecc_msg);
  2045. return false;
  2046. }
  2047. return true;
  2048. }
  2049. static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  2050. {
  2051. struct amd64_pvt *pvt = mci->pvt_info;
  2052. int rc;
  2053. rc = amd64_create_sysfs_dbg_files(mci);
  2054. if (rc < 0)
  2055. return rc;
  2056. if (pvt->fam >= 0x10) {
  2057. rc = amd64_create_sysfs_inject_files(mci);
  2058. if (rc < 0)
  2059. return rc;
  2060. }
  2061. return 0;
  2062. }
  2063. static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
  2064. {
  2065. struct amd64_pvt *pvt = mci->pvt_info;
  2066. amd64_remove_sysfs_dbg_files(mci);
  2067. if (pvt->fam >= 0x10)
  2068. amd64_remove_sysfs_inject_files(mci);
  2069. }
  2070. static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
  2071. struct amd64_family_type *fam)
  2072. {
  2073. struct amd64_pvt *pvt = mci->pvt_info;
  2074. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2075. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2076. if (pvt->nbcap & NBCAP_SECDED)
  2077. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2078. if (pvt->nbcap & NBCAP_CHIPKILL)
  2079. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2080. mci->edac_cap = determine_edac_cap(pvt);
  2081. mci->mod_name = EDAC_MOD_STR;
  2082. mci->mod_ver = EDAC_AMD64_VERSION;
  2083. mci->ctl_name = fam->ctl_name;
  2084. mci->dev_name = pci_name(pvt->F2);
  2085. mci->ctl_page_to_phys = NULL;
  2086. /* memory scrubber interface */
  2087. mci->set_sdram_scrub_rate = set_scrub_rate;
  2088. mci->get_sdram_scrub_rate = get_scrub_rate;
  2089. }
  2090. /*
  2091. * returns a pointer to the family descriptor on success, NULL otherwise.
  2092. */
  2093. static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
  2094. {
  2095. struct amd64_family_type *fam_type = NULL;
  2096. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2097. pvt->stepping = boot_cpu_data.x86_mask;
  2098. pvt->model = boot_cpu_data.x86_model;
  2099. pvt->fam = boot_cpu_data.x86;
  2100. switch (pvt->fam) {
  2101. case 0xf:
  2102. fam_type = &family_types[K8_CPUS];
  2103. pvt->ops = &family_types[K8_CPUS].ops;
  2104. break;
  2105. case 0x10:
  2106. fam_type = &family_types[F10_CPUS];
  2107. pvt->ops = &family_types[F10_CPUS].ops;
  2108. break;
  2109. case 0x15:
  2110. if (pvt->model == 0x30) {
  2111. fam_type = &family_types[F15_M30H_CPUS];
  2112. pvt->ops = &family_types[F15_M30H_CPUS].ops;
  2113. break;
  2114. }
  2115. fam_type = &family_types[F15_CPUS];
  2116. pvt->ops = &family_types[F15_CPUS].ops;
  2117. break;
  2118. case 0x16:
  2119. fam_type = &family_types[F16_CPUS];
  2120. pvt->ops = &family_types[F16_CPUS].ops;
  2121. break;
  2122. default:
  2123. amd64_err("Unsupported family!\n");
  2124. return NULL;
  2125. }
  2126. amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
  2127. (pvt->fam == 0xf ?
  2128. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2129. : "revE or earlier ")
  2130. : ""), pvt->mc_node_id);
  2131. return fam_type;
  2132. }
  2133. static int init_one_instance(struct pci_dev *F2)
  2134. {
  2135. struct amd64_pvt *pvt = NULL;
  2136. struct amd64_family_type *fam_type = NULL;
  2137. struct mem_ctl_info *mci = NULL;
  2138. struct edac_mc_layer layers[2];
  2139. int err = 0, ret;
  2140. u16 nid = amd_get_node_id(F2);
  2141. ret = -ENOMEM;
  2142. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2143. if (!pvt)
  2144. goto err_ret;
  2145. pvt->mc_node_id = nid;
  2146. pvt->F2 = F2;
  2147. ret = -EINVAL;
  2148. fam_type = per_family_init(pvt);
  2149. if (!fam_type)
  2150. goto err_free;
  2151. ret = -ENODEV;
  2152. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  2153. if (err)
  2154. goto err_free;
  2155. read_mc_regs(pvt);
  2156. /*
  2157. * We need to determine how many memory channels there are. Then use
  2158. * that information for calculating the size of the dynamic instance
  2159. * tables in the 'mci' structure.
  2160. */
  2161. ret = -EINVAL;
  2162. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2163. if (pvt->channel_count < 0)
  2164. goto err_siblings;
  2165. ret = -ENOMEM;
  2166. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  2167. layers[0].size = pvt->csels[0].b_cnt;
  2168. layers[0].is_virt_csrow = true;
  2169. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  2170. /*
  2171. * Always allocate two channels since we can have setups with DIMMs on
  2172. * only one channel. Also, this simplifies handling later for the price
  2173. * of a couple of KBs tops.
  2174. */
  2175. layers[1].size = 2;
  2176. layers[1].is_virt_csrow = false;
  2177. mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
  2178. if (!mci)
  2179. goto err_siblings;
  2180. mci->pvt_info = pvt;
  2181. mci->pdev = &pvt->F2->dev;
  2182. setup_mci_misc_attrs(mci, fam_type);
  2183. if (init_csrows(mci))
  2184. mci->edac_cap = EDAC_FLAG_NONE;
  2185. ret = -ENODEV;
  2186. if (edac_mc_add_mc(mci)) {
  2187. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2188. goto err_add_mc;
  2189. }
  2190. if (set_mc_sysfs_attrs(mci)) {
  2191. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2192. goto err_add_sysfs;
  2193. }
  2194. /* register stuff with EDAC MCE */
  2195. if (report_gart_errors)
  2196. amd_report_gart_errors(true);
  2197. amd_register_ecc_decoder(decode_bus_error);
  2198. mcis[nid] = mci;
  2199. atomic_inc(&drv_instances);
  2200. return 0;
  2201. err_add_sysfs:
  2202. edac_mc_del_mc(mci->pdev);
  2203. err_add_mc:
  2204. edac_mc_free(mci);
  2205. err_siblings:
  2206. free_mc_sibling_devs(pvt);
  2207. err_free:
  2208. kfree(pvt);
  2209. err_ret:
  2210. return ret;
  2211. }
  2212. static int probe_one_instance(struct pci_dev *pdev,
  2213. const struct pci_device_id *mc_type)
  2214. {
  2215. u16 nid = amd_get_node_id(pdev);
  2216. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2217. struct ecc_settings *s;
  2218. int ret = 0;
  2219. ret = pci_enable_device(pdev);
  2220. if (ret < 0) {
  2221. edac_dbg(0, "ret=%d\n", ret);
  2222. return -EIO;
  2223. }
  2224. ret = -ENOMEM;
  2225. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2226. if (!s)
  2227. goto err_out;
  2228. ecc_stngs[nid] = s;
  2229. if (!ecc_enabled(F3, nid)) {
  2230. ret = -ENODEV;
  2231. if (!ecc_enable_override)
  2232. goto err_enable;
  2233. amd64_warn("Forcing ECC on!\n");
  2234. if (!enable_ecc_error_reporting(s, nid, F3))
  2235. goto err_enable;
  2236. }
  2237. ret = init_one_instance(pdev);
  2238. if (ret < 0) {
  2239. amd64_err("Error probing instance: %d\n", nid);
  2240. restore_ecc_error_reporting(s, nid, F3);
  2241. }
  2242. return ret;
  2243. err_enable:
  2244. kfree(s);
  2245. ecc_stngs[nid] = NULL;
  2246. err_out:
  2247. return ret;
  2248. }
  2249. static void remove_one_instance(struct pci_dev *pdev)
  2250. {
  2251. struct mem_ctl_info *mci;
  2252. struct amd64_pvt *pvt;
  2253. u16 nid = amd_get_node_id(pdev);
  2254. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2255. struct ecc_settings *s = ecc_stngs[nid];
  2256. mci = find_mci_by_dev(&pdev->dev);
  2257. WARN_ON(!mci);
  2258. del_mc_sysfs_attrs(mci);
  2259. /* Remove from EDAC CORE tracking list */
  2260. mci = edac_mc_del_mc(&pdev->dev);
  2261. if (!mci)
  2262. return;
  2263. pvt = mci->pvt_info;
  2264. restore_ecc_error_reporting(s, nid, F3);
  2265. free_mc_sibling_devs(pvt);
  2266. /* unregister from EDAC MCE */
  2267. amd_report_gart_errors(false);
  2268. amd_unregister_ecc_decoder(decode_bus_error);
  2269. kfree(ecc_stngs[nid]);
  2270. ecc_stngs[nid] = NULL;
  2271. /* Free the EDAC CORE resources */
  2272. mci->pvt_info = NULL;
  2273. mcis[nid] = NULL;
  2274. kfree(pvt);
  2275. edac_mc_free(mci);
  2276. }
  2277. /*
  2278. * This table is part of the interface for loading drivers for PCI devices. The
  2279. * PCI core identifies what devices are on a system during boot, and then
  2280. * inquiry this table to see if this driver is for a given device found.
  2281. */
  2282. static const struct pci_device_id amd64_pci_table[] = {
  2283. {
  2284. .vendor = PCI_VENDOR_ID_AMD,
  2285. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2286. .subvendor = PCI_ANY_ID,
  2287. .subdevice = PCI_ANY_ID,
  2288. .class = 0,
  2289. .class_mask = 0,
  2290. },
  2291. {
  2292. .vendor = PCI_VENDOR_ID_AMD,
  2293. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2294. .subvendor = PCI_ANY_ID,
  2295. .subdevice = PCI_ANY_ID,
  2296. .class = 0,
  2297. .class_mask = 0,
  2298. },
  2299. {
  2300. .vendor = PCI_VENDOR_ID_AMD,
  2301. .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
  2302. .subvendor = PCI_ANY_ID,
  2303. .subdevice = PCI_ANY_ID,
  2304. .class = 0,
  2305. .class_mask = 0,
  2306. },
  2307. {
  2308. .vendor = PCI_VENDOR_ID_AMD,
  2309. .device = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
  2310. .subvendor = PCI_ANY_ID,
  2311. .subdevice = PCI_ANY_ID,
  2312. .class = 0,
  2313. .class_mask = 0,
  2314. },
  2315. {
  2316. .vendor = PCI_VENDOR_ID_AMD,
  2317. .device = PCI_DEVICE_ID_AMD_16H_NB_F2,
  2318. .subvendor = PCI_ANY_ID,
  2319. .subdevice = PCI_ANY_ID,
  2320. .class = 0,
  2321. .class_mask = 0,
  2322. },
  2323. {0, }
  2324. };
  2325. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2326. static struct pci_driver amd64_pci_driver = {
  2327. .name = EDAC_MOD_STR,
  2328. .probe = probe_one_instance,
  2329. .remove = remove_one_instance,
  2330. .id_table = amd64_pci_table,
  2331. };
  2332. static void setup_pci_device(void)
  2333. {
  2334. struct mem_ctl_info *mci;
  2335. struct amd64_pvt *pvt;
  2336. if (pci_ctl)
  2337. return;
  2338. mci = mcis[0];
  2339. if (!mci)
  2340. return;
  2341. pvt = mci->pvt_info;
  2342. pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2343. if (!pci_ctl) {
  2344. pr_warn("%s(): Unable to create PCI control\n", __func__);
  2345. pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
  2346. }
  2347. }
  2348. static int __init amd64_edac_init(void)
  2349. {
  2350. int err = -ENODEV;
  2351. printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
  2352. opstate_init();
  2353. if (amd_cache_northbridges() < 0)
  2354. goto err_ret;
  2355. err = -ENOMEM;
  2356. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2357. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2358. if (!(mcis && ecc_stngs))
  2359. goto err_free;
  2360. msrs = msrs_alloc();
  2361. if (!msrs)
  2362. goto err_free;
  2363. err = pci_register_driver(&amd64_pci_driver);
  2364. if (err)
  2365. goto err_pci;
  2366. err = -ENODEV;
  2367. if (!atomic_read(&drv_instances))
  2368. goto err_no_instances;
  2369. setup_pci_device();
  2370. return 0;
  2371. err_no_instances:
  2372. pci_unregister_driver(&amd64_pci_driver);
  2373. err_pci:
  2374. msrs_free(msrs);
  2375. msrs = NULL;
  2376. err_free:
  2377. kfree(mcis);
  2378. mcis = NULL;
  2379. kfree(ecc_stngs);
  2380. ecc_stngs = NULL;
  2381. err_ret:
  2382. return err;
  2383. }
  2384. static void __exit amd64_edac_exit(void)
  2385. {
  2386. if (pci_ctl)
  2387. edac_pci_release_generic_ctl(pci_ctl);
  2388. pci_unregister_driver(&amd64_pci_driver);
  2389. kfree(ecc_stngs);
  2390. ecc_stngs = NULL;
  2391. kfree(mcis);
  2392. mcis = NULL;
  2393. msrs_free(msrs);
  2394. msrs = NULL;
  2395. }
  2396. module_init(amd64_edac_init);
  2397. module_exit(amd64_edac_exit);
  2398. MODULE_LICENSE("GPL");
  2399. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2400. "Dave Peterson, Thayne Harbaugh");
  2401. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2402. EDAC_AMD64_VERSION);
  2403. module_param(edac_op_state, int, 0444);
  2404. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");