rcar-hpbdma.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665
  1. /*
  2. * Copyright (C) 2011-2013 Renesas Electronics Corporation
  3. * Copyright (C) 2013 Cogent Embedded, Inc.
  4. *
  5. * This file is based on the drivers/dma/sh/shdma.c
  6. *
  7. * Renesas SuperH DMA Engine support
  8. *
  9. * This is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * - DMA of SuperH does not have Hardware DMA chain mode.
  15. * - max DMA size is 16MB.
  16. *
  17. */
  18. #include <linux/dmaengine.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/module.h>
  23. #include <linux/platform_data/dma-rcar-hpbdma.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/pm_runtime.h>
  26. #include <linux/shdma-base.h>
  27. #include <linux/slab.h>
  28. /* DMA channel registers */
  29. #define HPB_DMAE_DSAR0 0x00
  30. #define HPB_DMAE_DDAR0 0x04
  31. #define HPB_DMAE_DTCR0 0x08
  32. #define HPB_DMAE_DSAR1 0x0C
  33. #define HPB_DMAE_DDAR1 0x10
  34. #define HPB_DMAE_DTCR1 0x14
  35. #define HPB_DMAE_DSASR 0x18
  36. #define HPB_DMAE_DDASR 0x1C
  37. #define HPB_DMAE_DTCSR 0x20
  38. #define HPB_DMAE_DPTR 0x24
  39. #define HPB_DMAE_DCR 0x28
  40. #define HPB_DMAE_DCMDR 0x2C
  41. #define HPB_DMAE_DSTPR 0x30
  42. #define HPB_DMAE_DSTSR 0x34
  43. #define HPB_DMAE_DDBGR 0x38
  44. #define HPB_DMAE_DDBGR2 0x3C
  45. #define HPB_DMAE_CHAN(n) (0x40 * (n))
  46. /* DMA command register (DCMDR) bits */
  47. #define HPB_DMAE_DCMDR_BDOUT BIT(7)
  48. #define HPB_DMAE_DCMDR_DQSPD BIT(6)
  49. #define HPB_DMAE_DCMDR_DQSPC BIT(5)
  50. #define HPB_DMAE_DCMDR_DMSPD BIT(4)
  51. #define HPB_DMAE_DCMDR_DMSPC BIT(3)
  52. #define HPB_DMAE_DCMDR_DQEND BIT(2)
  53. #define HPB_DMAE_DCMDR_DNXT BIT(1)
  54. #define HPB_DMAE_DCMDR_DMEN BIT(0)
  55. /* DMA forced stop register (DSTPR) bits */
  56. #define HPB_DMAE_DSTPR_DMSTP BIT(0)
  57. /* DMA status register (DSTSR) bits */
  58. #define HPB_DMAE_DSTSR_DQSTS BIT(2)
  59. #define HPB_DMAE_DSTSR_DMSTS BIT(0)
  60. /* DMA common registers */
  61. #define HPB_DMAE_DTIMR 0x00
  62. #define HPB_DMAE_DINTSR0 0x0C
  63. #define HPB_DMAE_DINTSR1 0x10
  64. #define HPB_DMAE_DINTCR0 0x14
  65. #define HPB_DMAE_DINTCR1 0x18
  66. #define HPB_DMAE_DINTMR0 0x1C
  67. #define HPB_DMAE_DINTMR1 0x20
  68. #define HPB_DMAE_DACTSR0 0x24
  69. #define HPB_DMAE_DACTSR1 0x28
  70. #define HPB_DMAE_HSRSTR(n) (0x40 + (n) * 4)
  71. #define HPB_DMAE_HPB_DMASPR(n) (0x140 + (n) * 4)
  72. #define HPB_DMAE_HPB_DMLVLR0 0x160
  73. #define HPB_DMAE_HPB_DMLVLR1 0x164
  74. #define HPB_DMAE_HPB_DMSHPT0 0x168
  75. #define HPB_DMAE_HPB_DMSHPT1 0x16C
  76. #define HPB_DMA_SLAVE_NUMBER 256
  77. #define HPB_DMA_TCR_MAX 0x01000000 /* 16 MiB */
  78. struct hpb_dmae_chan {
  79. struct shdma_chan shdma_chan;
  80. int xfer_mode; /* DMA transfer mode */
  81. #define XFER_SINGLE 1
  82. #define XFER_DOUBLE 2
  83. unsigned plane_idx; /* current DMA information set */
  84. bool first_desc; /* first/next transfer */
  85. int xmit_shift; /* log_2(bytes_per_xfer) */
  86. void __iomem *base;
  87. const struct hpb_dmae_slave_config *cfg;
  88. char dev_id[16]; /* unique name per DMAC of channel */
  89. dma_addr_t slave_addr;
  90. };
  91. struct hpb_dmae_device {
  92. struct shdma_dev shdma_dev;
  93. spinlock_t reg_lock; /* comm_reg operation lock */
  94. struct hpb_dmae_pdata *pdata;
  95. void __iomem *chan_reg;
  96. void __iomem *comm_reg;
  97. void __iomem *reset_reg;
  98. void __iomem *mode_reg;
  99. };
  100. struct hpb_dmae_regs {
  101. u32 sar; /* SAR / source address */
  102. u32 dar; /* DAR / destination address */
  103. u32 tcr; /* TCR / transfer count */
  104. };
  105. struct hpb_desc {
  106. struct shdma_desc shdma_desc;
  107. struct hpb_dmae_regs hw;
  108. unsigned plane_idx;
  109. };
  110. #define to_chan(schan) container_of(schan, struct hpb_dmae_chan, shdma_chan)
  111. #define to_desc(sdesc) container_of(sdesc, struct hpb_desc, shdma_desc)
  112. #define to_dev(sc) container_of(sc->shdma_chan.dma_chan.device, \
  113. struct hpb_dmae_device, shdma_dev.dma_dev)
  114. static void ch_reg_write(struct hpb_dmae_chan *hpb_dc, u32 data, u32 reg)
  115. {
  116. iowrite32(data, hpb_dc->base + reg);
  117. }
  118. static u32 ch_reg_read(struct hpb_dmae_chan *hpb_dc, u32 reg)
  119. {
  120. return ioread32(hpb_dc->base + reg);
  121. }
  122. static void dcmdr_write(struct hpb_dmae_device *hpbdev, u32 data)
  123. {
  124. iowrite32(data, hpbdev->chan_reg + HPB_DMAE_DCMDR);
  125. }
  126. static void hsrstr_write(struct hpb_dmae_device *hpbdev, u32 ch)
  127. {
  128. iowrite32(0x1, hpbdev->comm_reg + HPB_DMAE_HSRSTR(ch));
  129. }
  130. static u32 dintsr_read(struct hpb_dmae_device *hpbdev, u32 ch)
  131. {
  132. u32 v;
  133. if (ch < 32)
  134. v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR0) >> ch;
  135. else
  136. v = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTSR1) >> (ch - 32);
  137. return v & 0x1;
  138. }
  139. static void dintcr_write(struct hpb_dmae_device *hpbdev, u32 ch)
  140. {
  141. if (ch < 32)
  142. iowrite32((0x1 << ch), hpbdev->comm_reg + HPB_DMAE_DINTCR0);
  143. else
  144. iowrite32((0x1 << (ch - 32)),
  145. hpbdev->comm_reg + HPB_DMAE_DINTCR1);
  146. }
  147. static void asyncmdr_write(struct hpb_dmae_device *hpbdev, u32 data)
  148. {
  149. iowrite32(data, hpbdev->mode_reg);
  150. }
  151. static u32 asyncmdr_read(struct hpb_dmae_device *hpbdev)
  152. {
  153. return ioread32(hpbdev->mode_reg);
  154. }
  155. static void hpb_dmae_enable_int(struct hpb_dmae_device *hpbdev, u32 ch)
  156. {
  157. u32 intreg;
  158. spin_lock_irq(&hpbdev->reg_lock);
  159. if (ch < 32) {
  160. intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR0);
  161. iowrite32(BIT(ch) | intreg,
  162. hpbdev->comm_reg + HPB_DMAE_DINTMR0);
  163. } else {
  164. intreg = ioread32(hpbdev->comm_reg + HPB_DMAE_DINTMR1);
  165. iowrite32(BIT(ch - 32) | intreg,
  166. hpbdev->comm_reg + HPB_DMAE_DINTMR1);
  167. }
  168. spin_unlock_irq(&hpbdev->reg_lock);
  169. }
  170. static void hpb_dmae_async_reset(struct hpb_dmae_device *hpbdev, u32 data)
  171. {
  172. u32 rstr;
  173. int timeout = 10000; /* 100 ms */
  174. spin_lock(&hpbdev->reg_lock);
  175. rstr = ioread32(hpbdev->reset_reg);
  176. rstr |= data;
  177. iowrite32(rstr, hpbdev->reset_reg);
  178. do {
  179. rstr = ioread32(hpbdev->reset_reg);
  180. if ((rstr & data) == data)
  181. break;
  182. udelay(10);
  183. } while (timeout--);
  184. if (timeout < 0)
  185. dev_err(hpbdev->shdma_dev.dma_dev.dev,
  186. "%s timeout\n", __func__);
  187. rstr &= ~data;
  188. iowrite32(rstr, hpbdev->reset_reg);
  189. spin_unlock(&hpbdev->reg_lock);
  190. }
  191. static void hpb_dmae_set_async_mode(struct hpb_dmae_device *hpbdev,
  192. u32 mask, u32 data)
  193. {
  194. u32 mode;
  195. spin_lock_irq(&hpbdev->reg_lock);
  196. mode = asyncmdr_read(hpbdev);
  197. mode &= ~mask;
  198. mode |= data;
  199. asyncmdr_write(hpbdev, mode);
  200. spin_unlock_irq(&hpbdev->reg_lock);
  201. }
  202. static void hpb_dmae_ctl_stop(struct hpb_dmae_device *hpbdev)
  203. {
  204. dcmdr_write(hpbdev, HPB_DMAE_DCMDR_DQSPD);
  205. }
  206. static void hpb_dmae_reset(struct hpb_dmae_device *hpbdev)
  207. {
  208. u32 ch;
  209. for (ch = 0; ch < hpbdev->pdata->num_hw_channels; ch++)
  210. hsrstr_write(hpbdev, ch);
  211. }
  212. static unsigned int calc_xmit_shift(struct hpb_dmae_chan *hpb_chan)
  213. {
  214. struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
  215. struct hpb_dmae_pdata *pdata = hpbdev->pdata;
  216. int width = ch_reg_read(hpb_chan, HPB_DMAE_DCR);
  217. int i;
  218. switch (width & (HPB_DMAE_DCR_SPDS_MASK | HPB_DMAE_DCR_DPDS_MASK)) {
  219. case HPB_DMAE_DCR_SPDS_8BIT | HPB_DMAE_DCR_DPDS_8BIT:
  220. default:
  221. i = XMIT_SZ_8BIT;
  222. break;
  223. case HPB_DMAE_DCR_SPDS_16BIT | HPB_DMAE_DCR_DPDS_16BIT:
  224. i = XMIT_SZ_16BIT;
  225. break;
  226. case HPB_DMAE_DCR_SPDS_32BIT | HPB_DMAE_DCR_DPDS_32BIT:
  227. i = XMIT_SZ_32BIT;
  228. break;
  229. }
  230. return pdata->ts_shift[i];
  231. }
  232. static void hpb_dmae_set_reg(struct hpb_dmae_chan *hpb_chan,
  233. struct hpb_dmae_regs *hw, unsigned plane)
  234. {
  235. ch_reg_write(hpb_chan, hw->sar,
  236. plane ? HPB_DMAE_DSAR1 : HPB_DMAE_DSAR0);
  237. ch_reg_write(hpb_chan, hw->dar,
  238. plane ? HPB_DMAE_DDAR1 : HPB_DMAE_DDAR0);
  239. ch_reg_write(hpb_chan, hw->tcr >> hpb_chan->xmit_shift,
  240. plane ? HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0);
  241. }
  242. static void hpb_dmae_start(struct hpb_dmae_chan *hpb_chan, bool next)
  243. {
  244. ch_reg_write(hpb_chan, (next ? HPB_DMAE_DCMDR_DNXT : 0) |
  245. HPB_DMAE_DCMDR_DMEN, HPB_DMAE_DCMDR);
  246. }
  247. static void hpb_dmae_halt(struct shdma_chan *schan)
  248. {
  249. struct hpb_dmae_chan *chan = to_chan(schan);
  250. ch_reg_write(chan, HPB_DMAE_DCMDR_DQEND, HPB_DMAE_DCMDR);
  251. ch_reg_write(chan, HPB_DMAE_DSTPR_DMSTP, HPB_DMAE_DSTPR);
  252. chan->plane_idx = 0;
  253. chan->first_desc = true;
  254. }
  255. static const struct hpb_dmae_slave_config *
  256. hpb_dmae_find_slave(struct hpb_dmae_chan *hpb_chan, int slave_id)
  257. {
  258. struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
  259. struct hpb_dmae_pdata *pdata = hpbdev->pdata;
  260. int i;
  261. if (slave_id >= HPB_DMA_SLAVE_NUMBER)
  262. return NULL;
  263. for (i = 0; i < pdata->num_slaves; i++)
  264. if (pdata->slaves[i].id == slave_id)
  265. return pdata->slaves + i;
  266. return NULL;
  267. }
  268. static void hpb_dmae_start_xfer(struct shdma_chan *schan,
  269. struct shdma_desc *sdesc)
  270. {
  271. struct hpb_dmae_chan *chan = to_chan(schan);
  272. struct hpb_dmae_device *hpbdev = to_dev(chan);
  273. struct hpb_desc *desc = to_desc(sdesc);
  274. if (chan->cfg->flags & HPB_DMAE_SET_ASYNC_RESET)
  275. hpb_dmae_async_reset(hpbdev, chan->cfg->rstr);
  276. desc->plane_idx = chan->plane_idx;
  277. hpb_dmae_set_reg(chan, &desc->hw, chan->plane_idx);
  278. hpb_dmae_start(chan, !chan->first_desc);
  279. if (chan->xfer_mode == XFER_DOUBLE) {
  280. chan->plane_idx ^= 1;
  281. chan->first_desc = false;
  282. }
  283. }
  284. static bool hpb_dmae_desc_completed(struct shdma_chan *schan,
  285. struct shdma_desc *sdesc)
  286. {
  287. /*
  288. * This is correct since we always have at most single
  289. * outstanding DMA transfer per channel, and by the time
  290. * we get completion interrupt the transfer is completed.
  291. * This will change if we ever use alternating DMA
  292. * information sets and submit two descriptors at once.
  293. */
  294. return true;
  295. }
  296. static bool hpb_dmae_chan_irq(struct shdma_chan *schan, int irq)
  297. {
  298. struct hpb_dmae_chan *chan = to_chan(schan);
  299. struct hpb_dmae_device *hpbdev = to_dev(chan);
  300. int ch = chan->cfg->dma_ch;
  301. /* Check Complete DMA Transfer */
  302. if (dintsr_read(hpbdev, ch)) {
  303. /* Clear Interrupt status */
  304. dintcr_write(hpbdev, ch);
  305. return true;
  306. }
  307. return false;
  308. }
  309. static int hpb_dmae_desc_setup(struct shdma_chan *schan,
  310. struct shdma_desc *sdesc,
  311. dma_addr_t src, dma_addr_t dst, size_t *len)
  312. {
  313. struct hpb_desc *desc = to_desc(sdesc);
  314. if (*len > (size_t)HPB_DMA_TCR_MAX)
  315. *len = (size_t)HPB_DMA_TCR_MAX;
  316. desc->hw.sar = src;
  317. desc->hw.dar = dst;
  318. desc->hw.tcr = *len;
  319. return 0;
  320. }
  321. static size_t hpb_dmae_get_partial(struct shdma_chan *schan,
  322. struct shdma_desc *sdesc)
  323. {
  324. struct hpb_desc *desc = to_desc(sdesc);
  325. struct hpb_dmae_chan *chan = to_chan(schan);
  326. u32 tcr = ch_reg_read(chan, desc->plane_idx ?
  327. HPB_DMAE_DTCR1 : HPB_DMAE_DTCR0);
  328. return (desc->hw.tcr - tcr) << chan->xmit_shift;
  329. }
  330. static bool hpb_dmae_channel_busy(struct shdma_chan *schan)
  331. {
  332. struct hpb_dmae_chan *chan = to_chan(schan);
  333. u32 dstsr = ch_reg_read(chan, HPB_DMAE_DSTSR);
  334. if (chan->xfer_mode == XFER_DOUBLE)
  335. return dstsr & HPB_DMAE_DSTSR_DQSTS;
  336. else
  337. return dstsr & HPB_DMAE_DSTSR_DMSTS;
  338. }
  339. static int
  340. hpb_dmae_alloc_chan_resources(struct hpb_dmae_chan *hpb_chan,
  341. const struct hpb_dmae_slave_config *cfg)
  342. {
  343. struct hpb_dmae_device *hpbdev = to_dev(hpb_chan);
  344. struct hpb_dmae_pdata *pdata = hpbdev->pdata;
  345. const struct hpb_dmae_channel *channel = pdata->channels;
  346. int slave_id = cfg->id;
  347. int i, err;
  348. for (i = 0; i < pdata->num_channels; i++, channel++) {
  349. if (channel->s_id == slave_id) {
  350. struct device *dev = hpb_chan->shdma_chan.dev;
  351. hpb_chan->base = hpbdev->chan_reg +
  352. HPB_DMAE_CHAN(cfg->dma_ch);
  353. dev_dbg(dev, "Detected Slave device\n");
  354. dev_dbg(dev, " -- slave_id : 0x%x\n", slave_id);
  355. dev_dbg(dev, " -- cfg->dma_ch : %d\n", cfg->dma_ch);
  356. dev_dbg(dev, " -- channel->ch_irq: %d\n",
  357. channel->ch_irq);
  358. break;
  359. }
  360. }
  361. err = shdma_request_irq(&hpb_chan->shdma_chan, channel->ch_irq,
  362. IRQF_SHARED, hpb_chan->dev_id);
  363. if (err) {
  364. dev_err(hpb_chan->shdma_chan.dev,
  365. "DMA channel request_irq %d failed with error %d\n",
  366. channel->ch_irq, err);
  367. return err;
  368. }
  369. hpb_chan->plane_idx = 0;
  370. hpb_chan->first_desc = true;
  371. if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) == 0) {
  372. hpb_chan->xfer_mode = XFER_SINGLE;
  373. } else if ((cfg->dcr & (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) ==
  374. (HPB_DMAE_DCR_CT | HPB_DMAE_DCR_DIP)) {
  375. hpb_chan->xfer_mode = XFER_DOUBLE;
  376. } else {
  377. dev_err(hpb_chan->shdma_chan.dev, "DCR setting error");
  378. return -EINVAL;
  379. }
  380. if (cfg->flags & HPB_DMAE_SET_ASYNC_MODE)
  381. hpb_dmae_set_async_mode(hpbdev, cfg->mdm, cfg->mdr);
  382. ch_reg_write(hpb_chan, cfg->dcr, HPB_DMAE_DCR);
  383. ch_reg_write(hpb_chan, cfg->port, HPB_DMAE_DPTR);
  384. hpb_chan->xmit_shift = calc_xmit_shift(hpb_chan);
  385. hpb_dmae_enable_int(hpbdev, cfg->dma_ch);
  386. return 0;
  387. }
  388. static int hpb_dmae_set_slave(struct shdma_chan *schan, int slave_id,
  389. dma_addr_t slave_addr, bool try)
  390. {
  391. struct hpb_dmae_chan *chan = to_chan(schan);
  392. const struct hpb_dmae_slave_config *sc =
  393. hpb_dmae_find_slave(chan, slave_id);
  394. if (!sc)
  395. return -ENODEV;
  396. if (try)
  397. return 0;
  398. chan->cfg = sc;
  399. chan->slave_addr = slave_addr ? : sc->addr;
  400. return hpb_dmae_alloc_chan_resources(chan, sc);
  401. }
  402. static void hpb_dmae_setup_xfer(struct shdma_chan *schan, int slave_id)
  403. {
  404. }
  405. static dma_addr_t hpb_dmae_slave_addr(struct shdma_chan *schan)
  406. {
  407. struct hpb_dmae_chan *chan = to_chan(schan);
  408. return chan->slave_addr;
  409. }
  410. static struct shdma_desc *hpb_dmae_embedded_desc(void *buf, int i)
  411. {
  412. return &((struct hpb_desc *)buf)[i].shdma_desc;
  413. }
  414. static const struct shdma_ops hpb_dmae_ops = {
  415. .desc_completed = hpb_dmae_desc_completed,
  416. .halt_channel = hpb_dmae_halt,
  417. .channel_busy = hpb_dmae_channel_busy,
  418. .slave_addr = hpb_dmae_slave_addr,
  419. .desc_setup = hpb_dmae_desc_setup,
  420. .set_slave = hpb_dmae_set_slave,
  421. .setup_xfer = hpb_dmae_setup_xfer,
  422. .start_xfer = hpb_dmae_start_xfer,
  423. .embedded_desc = hpb_dmae_embedded_desc,
  424. .chan_irq = hpb_dmae_chan_irq,
  425. .get_partial = hpb_dmae_get_partial,
  426. };
  427. static int hpb_dmae_chan_probe(struct hpb_dmae_device *hpbdev, int id)
  428. {
  429. struct shdma_dev *sdev = &hpbdev->shdma_dev;
  430. struct platform_device *pdev =
  431. to_platform_device(hpbdev->shdma_dev.dma_dev.dev);
  432. struct hpb_dmae_chan *new_hpb_chan;
  433. struct shdma_chan *schan;
  434. /* Alloc channel */
  435. new_hpb_chan = devm_kzalloc(&pdev->dev,
  436. sizeof(struct hpb_dmae_chan), GFP_KERNEL);
  437. if (!new_hpb_chan) {
  438. dev_err(hpbdev->shdma_dev.dma_dev.dev,
  439. "No free memory for allocating DMA channels!\n");
  440. return -ENOMEM;
  441. }
  442. schan = &new_hpb_chan->shdma_chan;
  443. schan->max_xfer_len = HPB_DMA_TCR_MAX;
  444. shdma_chan_probe(sdev, schan, id);
  445. if (pdev->id >= 0)
  446. snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id),
  447. "hpb-dmae%d.%d", pdev->id, id);
  448. else
  449. snprintf(new_hpb_chan->dev_id, sizeof(new_hpb_chan->dev_id),
  450. "hpb-dma.%d", id);
  451. return 0;
  452. }
  453. static int hpb_dmae_probe(struct platform_device *pdev)
  454. {
  455. struct hpb_dmae_pdata *pdata = pdev->dev.platform_data;
  456. struct hpb_dmae_device *hpbdev;
  457. struct dma_device *dma_dev;
  458. struct resource *chan, *comm, *rest, *mode, *irq_res;
  459. int err, i;
  460. /* Get platform data */
  461. if (!pdata || !pdata->num_channels)
  462. return -ENODEV;
  463. chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  464. comm = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  465. rest = platform_get_resource(pdev, IORESOURCE_MEM, 2);
  466. mode = platform_get_resource(pdev, IORESOURCE_MEM, 3);
  467. irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  468. if (!irq_res)
  469. return -ENODEV;
  470. hpbdev = devm_kzalloc(&pdev->dev, sizeof(struct hpb_dmae_device),
  471. GFP_KERNEL);
  472. if (!hpbdev) {
  473. dev_err(&pdev->dev, "Not enough memory\n");
  474. return -ENOMEM;
  475. }
  476. hpbdev->chan_reg = devm_ioremap_resource(&pdev->dev, chan);
  477. if (IS_ERR(hpbdev->chan_reg))
  478. return PTR_ERR(hpbdev->chan_reg);
  479. hpbdev->comm_reg = devm_ioremap_resource(&pdev->dev, comm);
  480. if (IS_ERR(hpbdev->comm_reg))
  481. return PTR_ERR(hpbdev->comm_reg);
  482. hpbdev->reset_reg = devm_ioremap_resource(&pdev->dev, rest);
  483. if (IS_ERR(hpbdev->reset_reg))
  484. return PTR_ERR(hpbdev->reset_reg);
  485. hpbdev->mode_reg = devm_ioremap_resource(&pdev->dev, mode);
  486. if (IS_ERR(hpbdev->mode_reg))
  487. return PTR_ERR(hpbdev->mode_reg);
  488. dma_dev = &hpbdev->shdma_dev.dma_dev;
  489. spin_lock_init(&hpbdev->reg_lock);
  490. /* Platform data */
  491. hpbdev->pdata = pdata;
  492. pm_runtime_enable(&pdev->dev);
  493. err = pm_runtime_get_sync(&pdev->dev);
  494. if (err < 0)
  495. dev_err(&pdev->dev, "%s(): GET = %d\n", __func__, err);
  496. /* Reset DMA controller */
  497. hpb_dmae_reset(hpbdev);
  498. pm_runtime_put(&pdev->dev);
  499. dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
  500. dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
  501. hpbdev->shdma_dev.ops = &hpb_dmae_ops;
  502. hpbdev->shdma_dev.desc_size = sizeof(struct hpb_desc);
  503. err = shdma_init(&pdev->dev, &hpbdev->shdma_dev, pdata->num_channels);
  504. if (err < 0)
  505. goto error;
  506. /* Create DMA channels */
  507. for (i = 0; i < pdata->num_channels; i++)
  508. hpb_dmae_chan_probe(hpbdev, i);
  509. platform_set_drvdata(pdev, hpbdev);
  510. err = dma_async_device_register(dma_dev);
  511. if (!err)
  512. return 0;
  513. shdma_cleanup(&hpbdev->shdma_dev);
  514. error:
  515. pm_runtime_disable(&pdev->dev);
  516. return err;
  517. }
  518. static void hpb_dmae_chan_remove(struct hpb_dmae_device *hpbdev)
  519. {
  520. struct dma_device *dma_dev = &hpbdev->shdma_dev.dma_dev;
  521. struct shdma_chan *schan;
  522. int i;
  523. shdma_for_each_chan(schan, &hpbdev->shdma_dev, i) {
  524. BUG_ON(!schan);
  525. shdma_chan_remove(schan);
  526. }
  527. dma_dev->chancnt = 0;
  528. }
  529. static int hpb_dmae_remove(struct platform_device *pdev)
  530. {
  531. struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev);
  532. dma_async_device_unregister(&hpbdev->shdma_dev.dma_dev);
  533. pm_runtime_disable(&pdev->dev);
  534. hpb_dmae_chan_remove(hpbdev);
  535. return 0;
  536. }
  537. static void hpb_dmae_shutdown(struct platform_device *pdev)
  538. {
  539. struct hpb_dmae_device *hpbdev = platform_get_drvdata(pdev);
  540. hpb_dmae_ctl_stop(hpbdev);
  541. }
  542. static struct platform_driver hpb_dmae_driver = {
  543. .probe = hpb_dmae_probe,
  544. .remove = hpb_dmae_remove,
  545. .shutdown = hpb_dmae_shutdown,
  546. .driver = {
  547. .owner = THIS_MODULE,
  548. .name = "hpb-dma-engine",
  549. },
  550. };
  551. module_platform_driver(hpb_dmae_driver);
  552. MODULE_AUTHOR("Max Filippov <max.filippov@cogentembedded.com>");
  553. MODULE_DESCRIPTION("Renesas HPB DMA Engine driver");
  554. MODULE_LICENSE("GPL");