mmp_tdma.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661
  1. /*
  2. * Driver For Marvell Two-channel DMA Engine
  3. *
  4. * Copyright: Marvell International Ltd.
  5. *
  6. * The code contained herein is licensed under the GNU General Public
  7. * License. You may obtain a copy of the GNU General Public License
  8. * Version 2 or later at the following locations:
  9. *
  10. */
  11. #include <linux/err.h>
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/types.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmaengine.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/device.h>
  21. #include <mach/regs-icu.h>
  22. #include <linux/platform_data/dma-mmp_tdma.h>
  23. #include <linux/of_device.h>
  24. #include "dmaengine.h"
  25. /*
  26. * Two-Channel DMA registers
  27. */
  28. #define TDBCR 0x00 /* Byte Count */
  29. #define TDSAR 0x10 /* Src Addr */
  30. #define TDDAR 0x20 /* Dst Addr */
  31. #define TDNDPR 0x30 /* Next Desc */
  32. #define TDCR 0x40 /* Control */
  33. #define TDCP 0x60 /* Priority*/
  34. #define TDCDPR 0x70 /* Current Desc */
  35. #define TDIMR 0x80 /* Int Mask */
  36. #define TDISR 0xa0 /* Int Status */
  37. /* Two-Channel DMA Control Register */
  38. #define TDCR_SSZ_8_BITS (0x0 << 22) /* Sample Size */
  39. #define TDCR_SSZ_12_BITS (0x1 << 22)
  40. #define TDCR_SSZ_16_BITS (0x2 << 22)
  41. #define TDCR_SSZ_20_BITS (0x3 << 22)
  42. #define TDCR_SSZ_24_BITS (0x4 << 22)
  43. #define TDCR_SSZ_32_BITS (0x5 << 22)
  44. #define TDCR_SSZ_SHIFT (0x1 << 22)
  45. #define TDCR_SSZ_MASK (0x7 << 22)
  46. #define TDCR_SSPMOD (0x1 << 21) /* SSP MOD */
  47. #define TDCR_ABR (0x1 << 20) /* Channel Abort */
  48. #define TDCR_CDE (0x1 << 17) /* Close Desc Enable */
  49. #define TDCR_PACKMOD (0x1 << 16) /* Pack Mode (ADMA Only) */
  50. #define TDCR_CHANACT (0x1 << 14) /* Channel Active */
  51. #define TDCR_FETCHND (0x1 << 13) /* Fetch Next Desc */
  52. #define TDCR_CHANEN (0x1 << 12) /* Channel Enable */
  53. #define TDCR_INTMODE (0x1 << 10) /* Interrupt Mode */
  54. #define TDCR_CHAINMOD (0x1 << 9) /* Chain Mode */
  55. #define TDCR_BURSTSZ_MSK (0x7 << 6) /* Burst Size */
  56. #define TDCR_BURSTSZ_4B (0x0 << 6)
  57. #define TDCR_BURSTSZ_8B (0x1 << 6)
  58. #define TDCR_BURSTSZ_16B (0x3 << 6)
  59. #define TDCR_BURSTSZ_32B (0x6 << 6)
  60. #define TDCR_BURSTSZ_64B (0x7 << 6)
  61. #define TDCR_BURSTSZ_SQU_1B (0x5 << 6)
  62. #define TDCR_BURSTSZ_SQU_2B (0x6 << 6)
  63. #define TDCR_BURSTSZ_SQU_4B (0x0 << 6)
  64. #define TDCR_BURSTSZ_SQU_8B (0x1 << 6)
  65. #define TDCR_BURSTSZ_SQU_16B (0x3 << 6)
  66. #define TDCR_BURSTSZ_SQU_32B (0x7 << 6)
  67. #define TDCR_BURSTSZ_128B (0x5 << 6)
  68. #define TDCR_DSTDIR_MSK (0x3 << 4) /* Dst Direction */
  69. #define TDCR_DSTDIR_ADDR_HOLD (0x2 << 4) /* Dst Addr Hold */
  70. #define TDCR_DSTDIR_ADDR_INC (0x0 << 4) /* Dst Addr Increment */
  71. #define TDCR_SRCDIR_MSK (0x3 << 2) /* Src Direction */
  72. #define TDCR_SRCDIR_ADDR_HOLD (0x2 << 2) /* Src Addr Hold */
  73. #define TDCR_SRCDIR_ADDR_INC (0x0 << 2) /* Src Addr Increment */
  74. #define TDCR_DSTDESCCONT (0x1 << 1)
  75. #define TDCR_SRCDESTCONT (0x1 << 0)
  76. /* Two-Channel DMA Int Mask Register */
  77. #define TDIMR_COMP (0x1 << 0)
  78. /* Two-Channel DMA Int Status Register */
  79. #define TDISR_COMP (0x1 << 0)
  80. /*
  81. * Two-Channel DMA Descriptor Struct
  82. * NOTE: desc's buf must be aligned to 16 bytes.
  83. */
  84. struct mmp_tdma_desc {
  85. u32 byte_cnt;
  86. u32 src_addr;
  87. u32 dst_addr;
  88. u32 nxt_desc;
  89. };
  90. enum mmp_tdma_type {
  91. MMP_AUD_TDMA = 0,
  92. PXA910_SQU,
  93. };
  94. #define TDMA_ALIGNMENT 3
  95. #define TDMA_MAX_XFER_BYTES SZ_64K
  96. struct mmp_tdma_chan {
  97. struct device *dev;
  98. struct dma_chan chan;
  99. struct dma_async_tx_descriptor desc;
  100. struct tasklet_struct tasklet;
  101. struct mmp_tdma_desc *desc_arr;
  102. phys_addr_t desc_arr_phys;
  103. int desc_num;
  104. enum dma_transfer_direction dir;
  105. dma_addr_t dev_addr;
  106. u32 burst_sz;
  107. enum dma_slave_buswidth buswidth;
  108. enum dma_status status;
  109. int idx;
  110. enum mmp_tdma_type type;
  111. int irq;
  112. void __iomem *reg_base;
  113. size_t buf_len;
  114. size_t period_len;
  115. size_t pos;
  116. struct gen_pool *pool;
  117. };
  118. #define TDMA_CHANNEL_NUM 2
  119. struct mmp_tdma_device {
  120. struct device *dev;
  121. void __iomem *base;
  122. struct dma_device device;
  123. struct mmp_tdma_chan *tdmac[TDMA_CHANNEL_NUM];
  124. };
  125. #define to_mmp_tdma_chan(dchan) container_of(dchan, struct mmp_tdma_chan, chan)
  126. static void mmp_tdma_chan_set_desc(struct mmp_tdma_chan *tdmac, dma_addr_t phys)
  127. {
  128. writel(phys, tdmac->reg_base + TDNDPR);
  129. writel(readl(tdmac->reg_base + TDCR) | TDCR_FETCHND,
  130. tdmac->reg_base + TDCR);
  131. }
  132. static void mmp_tdma_enable_chan(struct mmp_tdma_chan *tdmac)
  133. {
  134. /* enable irq */
  135. writel(TDIMR_COMP, tdmac->reg_base + TDIMR);
  136. /* enable dma chan */
  137. writel(readl(tdmac->reg_base + TDCR) | TDCR_CHANEN,
  138. tdmac->reg_base + TDCR);
  139. tdmac->status = DMA_IN_PROGRESS;
  140. }
  141. static void mmp_tdma_disable_chan(struct mmp_tdma_chan *tdmac)
  142. {
  143. writel(readl(tdmac->reg_base + TDCR) & ~TDCR_CHANEN,
  144. tdmac->reg_base + TDCR);
  145. /* disable irq */
  146. writel(0, tdmac->reg_base + TDIMR);
  147. tdmac->status = DMA_COMPLETE;
  148. }
  149. static void mmp_tdma_resume_chan(struct mmp_tdma_chan *tdmac)
  150. {
  151. writel(readl(tdmac->reg_base + TDCR) | TDCR_CHANEN,
  152. tdmac->reg_base + TDCR);
  153. tdmac->status = DMA_IN_PROGRESS;
  154. }
  155. static void mmp_tdma_pause_chan(struct mmp_tdma_chan *tdmac)
  156. {
  157. writel(readl(tdmac->reg_base + TDCR) & ~TDCR_CHANEN,
  158. tdmac->reg_base + TDCR);
  159. tdmac->status = DMA_PAUSED;
  160. }
  161. static int mmp_tdma_config_chan(struct mmp_tdma_chan *tdmac)
  162. {
  163. unsigned int tdcr = 0;
  164. mmp_tdma_disable_chan(tdmac);
  165. if (tdmac->dir == DMA_MEM_TO_DEV)
  166. tdcr = TDCR_DSTDIR_ADDR_HOLD | TDCR_SRCDIR_ADDR_INC;
  167. else if (tdmac->dir == DMA_DEV_TO_MEM)
  168. tdcr = TDCR_SRCDIR_ADDR_HOLD | TDCR_DSTDIR_ADDR_INC;
  169. if (tdmac->type == MMP_AUD_TDMA) {
  170. tdcr |= TDCR_PACKMOD;
  171. switch (tdmac->burst_sz) {
  172. case 4:
  173. tdcr |= TDCR_BURSTSZ_4B;
  174. break;
  175. case 8:
  176. tdcr |= TDCR_BURSTSZ_8B;
  177. break;
  178. case 16:
  179. tdcr |= TDCR_BURSTSZ_16B;
  180. break;
  181. case 32:
  182. tdcr |= TDCR_BURSTSZ_32B;
  183. break;
  184. case 64:
  185. tdcr |= TDCR_BURSTSZ_64B;
  186. break;
  187. case 128:
  188. tdcr |= TDCR_BURSTSZ_128B;
  189. break;
  190. default:
  191. dev_err(tdmac->dev, "mmp_tdma: unknown burst size.\n");
  192. return -EINVAL;
  193. }
  194. switch (tdmac->buswidth) {
  195. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  196. tdcr |= TDCR_SSZ_8_BITS;
  197. break;
  198. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  199. tdcr |= TDCR_SSZ_16_BITS;
  200. break;
  201. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  202. tdcr |= TDCR_SSZ_32_BITS;
  203. break;
  204. default:
  205. dev_err(tdmac->dev, "mmp_tdma: unknown bus size.\n");
  206. return -EINVAL;
  207. }
  208. } else if (tdmac->type == PXA910_SQU) {
  209. tdcr |= TDCR_SSPMOD;
  210. switch (tdmac->burst_sz) {
  211. case 1:
  212. tdcr |= TDCR_BURSTSZ_SQU_1B;
  213. break;
  214. case 2:
  215. tdcr |= TDCR_BURSTSZ_SQU_2B;
  216. break;
  217. case 4:
  218. tdcr |= TDCR_BURSTSZ_SQU_4B;
  219. break;
  220. case 8:
  221. tdcr |= TDCR_BURSTSZ_SQU_8B;
  222. break;
  223. case 16:
  224. tdcr |= TDCR_BURSTSZ_SQU_16B;
  225. break;
  226. case 32:
  227. tdcr |= TDCR_BURSTSZ_SQU_32B;
  228. break;
  229. default:
  230. dev_err(tdmac->dev, "mmp_tdma: unknown burst size.\n");
  231. return -EINVAL;
  232. }
  233. }
  234. writel(tdcr, tdmac->reg_base + TDCR);
  235. return 0;
  236. }
  237. static int mmp_tdma_clear_chan_irq(struct mmp_tdma_chan *tdmac)
  238. {
  239. u32 reg = readl(tdmac->reg_base + TDISR);
  240. if (reg & TDISR_COMP) {
  241. /* clear irq */
  242. reg &= ~TDISR_COMP;
  243. writel(reg, tdmac->reg_base + TDISR);
  244. return 0;
  245. }
  246. return -EAGAIN;
  247. }
  248. static irqreturn_t mmp_tdma_chan_handler(int irq, void *dev_id)
  249. {
  250. struct mmp_tdma_chan *tdmac = dev_id;
  251. if (mmp_tdma_clear_chan_irq(tdmac) == 0) {
  252. tdmac->pos = (tdmac->pos + tdmac->period_len) % tdmac->buf_len;
  253. tasklet_schedule(&tdmac->tasklet);
  254. return IRQ_HANDLED;
  255. } else
  256. return IRQ_NONE;
  257. }
  258. static irqreturn_t mmp_tdma_int_handler(int irq, void *dev_id)
  259. {
  260. struct mmp_tdma_device *tdev = dev_id;
  261. int i, ret;
  262. int irq_num = 0;
  263. for (i = 0; i < TDMA_CHANNEL_NUM; i++) {
  264. struct mmp_tdma_chan *tdmac = tdev->tdmac[i];
  265. ret = mmp_tdma_chan_handler(irq, tdmac);
  266. if (ret == IRQ_HANDLED)
  267. irq_num++;
  268. }
  269. if (irq_num)
  270. return IRQ_HANDLED;
  271. else
  272. return IRQ_NONE;
  273. }
  274. static void dma_do_tasklet(unsigned long data)
  275. {
  276. struct mmp_tdma_chan *tdmac = (struct mmp_tdma_chan *)data;
  277. if (tdmac->desc.callback)
  278. tdmac->desc.callback(tdmac->desc.callback_param);
  279. }
  280. static void mmp_tdma_free_descriptor(struct mmp_tdma_chan *tdmac)
  281. {
  282. struct gen_pool *gpool;
  283. int size = tdmac->desc_num * sizeof(struct mmp_tdma_desc);
  284. gpool = tdmac->pool;
  285. if (tdmac->desc_arr)
  286. gen_pool_free(gpool, (unsigned long)tdmac->desc_arr,
  287. size);
  288. tdmac->desc_arr = NULL;
  289. return;
  290. }
  291. static dma_cookie_t mmp_tdma_tx_submit(struct dma_async_tx_descriptor *tx)
  292. {
  293. struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(tx->chan);
  294. mmp_tdma_chan_set_desc(tdmac, tdmac->desc_arr_phys);
  295. return 0;
  296. }
  297. static int mmp_tdma_alloc_chan_resources(struct dma_chan *chan)
  298. {
  299. struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan);
  300. int ret;
  301. dma_async_tx_descriptor_init(&tdmac->desc, chan);
  302. tdmac->desc.tx_submit = mmp_tdma_tx_submit;
  303. if (tdmac->irq) {
  304. ret = devm_request_irq(tdmac->dev, tdmac->irq,
  305. mmp_tdma_chan_handler, 0, "tdma", tdmac);
  306. if (ret)
  307. return ret;
  308. }
  309. return 1;
  310. }
  311. static void mmp_tdma_free_chan_resources(struct dma_chan *chan)
  312. {
  313. struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan);
  314. if (tdmac->irq)
  315. devm_free_irq(tdmac->dev, tdmac->irq, tdmac);
  316. mmp_tdma_free_descriptor(tdmac);
  317. return;
  318. }
  319. struct mmp_tdma_desc *mmp_tdma_alloc_descriptor(struct mmp_tdma_chan *tdmac)
  320. {
  321. struct gen_pool *gpool;
  322. int size = tdmac->desc_num * sizeof(struct mmp_tdma_desc);
  323. gpool = tdmac->pool;
  324. if (!gpool)
  325. return NULL;
  326. tdmac->desc_arr = gen_pool_dma_alloc(gpool, size, &tdmac->desc_arr_phys);
  327. return tdmac->desc_arr;
  328. }
  329. static struct dma_async_tx_descriptor *mmp_tdma_prep_dma_cyclic(
  330. struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
  331. size_t period_len, enum dma_transfer_direction direction,
  332. unsigned long flags, void *context)
  333. {
  334. struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan);
  335. struct mmp_tdma_desc *desc;
  336. int num_periods = buf_len / period_len;
  337. int i = 0, buf = 0;
  338. if (tdmac->status != DMA_COMPLETE)
  339. return NULL;
  340. if (period_len > TDMA_MAX_XFER_BYTES) {
  341. dev_err(tdmac->dev,
  342. "maximum period size exceeded: %d > %d\n",
  343. period_len, TDMA_MAX_XFER_BYTES);
  344. goto err_out;
  345. }
  346. tdmac->status = DMA_IN_PROGRESS;
  347. tdmac->desc_num = num_periods;
  348. desc = mmp_tdma_alloc_descriptor(tdmac);
  349. if (!desc)
  350. goto err_out;
  351. while (buf < buf_len) {
  352. desc = &tdmac->desc_arr[i];
  353. if (i + 1 == num_periods)
  354. desc->nxt_desc = tdmac->desc_arr_phys;
  355. else
  356. desc->nxt_desc = tdmac->desc_arr_phys +
  357. sizeof(*desc) * (i + 1);
  358. if (direction == DMA_MEM_TO_DEV) {
  359. desc->src_addr = dma_addr;
  360. desc->dst_addr = tdmac->dev_addr;
  361. } else {
  362. desc->src_addr = tdmac->dev_addr;
  363. desc->dst_addr = dma_addr;
  364. }
  365. desc->byte_cnt = period_len;
  366. dma_addr += period_len;
  367. buf += period_len;
  368. i++;
  369. }
  370. tdmac->buf_len = buf_len;
  371. tdmac->period_len = period_len;
  372. tdmac->pos = 0;
  373. return &tdmac->desc;
  374. err_out:
  375. tdmac->status = DMA_ERROR;
  376. return NULL;
  377. }
  378. static int mmp_tdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  379. unsigned long arg)
  380. {
  381. struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan);
  382. struct dma_slave_config *dmaengine_cfg = (void *)arg;
  383. int ret = 0;
  384. switch (cmd) {
  385. case DMA_TERMINATE_ALL:
  386. mmp_tdma_disable_chan(tdmac);
  387. break;
  388. case DMA_PAUSE:
  389. mmp_tdma_pause_chan(tdmac);
  390. break;
  391. case DMA_RESUME:
  392. mmp_tdma_resume_chan(tdmac);
  393. break;
  394. case DMA_SLAVE_CONFIG:
  395. if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
  396. tdmac->dev_addr = dmaengine_cfg->src_addr;
  397. tdmac->burst_sz = dmaengine_cfg->src_maxburst;
  398. tdmac->buswidth = dmaengine_cfg->src_addr_width;
  399. } else {
  400. tdmac->dev_addr = dmaengine_cfg->dst_addr;
  401. tdmac->burst_sz = dmaengine_cfg->dst_maxburst;
  402. tdmac->buswidth = dmaengine_cfg->dst_addr_width;
  403. }
  404. tdmac->dir = dmaengine_cfg->direction;
  405. return mmp_tdma_config_chan(tdmac);
  406. default:
  407. ret = -ENOSYS;
  408. }
  409. return ret;
  410. }
  411. static enum dma_status mmp_tdma_tx_status(struct dma_chan *chan,
  412. dma_cookie_t cookie, struct dma_tx_state *txstate)
  413. {
  414. struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan);
  415. dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
  416. tdmac->buf_len - tdmac->pos);
  417. return tdmac->status;
  418. }
  419. static void mmp_tdma_issue_pending(struct dma_chan *chan)
  420. {
  421. struct mmp_tdma_chan *tdmac = to_mmp_tdma_chan(chan);
  422. mmp_tdma_enable_chan(tdmac);
  423. }
  424. static int mmp_tdma_remove(struct platform_device *pdev)
  425. {
  426. struct mmp_tdma_device *tdev = platform_get_drvdata(pdev);
  427. dma_async_device_unregister(&tdev->device);
  428. return 0;
  429. }
  430. static int mmp_tdma_chan_init(struct mmp_tdma_device *tdev,
  431. int idx, int irq,
  432. int type, struct gen_pool *pool)
  433. {
  434. struct mmp_tdma_chan *tdmac;
  435. if (idx >= TDMA_CHANNEL_NUM) {
  436. dev_err(tdev->dev, "too many channels for device!\n");
  437. return -EINVAL;
  438. }
  439. /* alloc channel */
  440. tdmac = devm_kzalloc(tdev->dev, sizeof(*tdmac), GFP_KERNEL);
  441. if (!tdmac) {
  442. dev_err(tdev->dev, "no free memory for DMA channels!\n");
  443. return -ENOMEM;
  444. }
  445. if (irq)
  446. tdmac->irq = irq;
  447. tdmac->dev = tdev->dev;
  448. tdmac->chan.device = &tdev->device;
  449. tdmac->idx = idx;
  450. tdmac->type = type;
  451. tdmac->reg_base = tdev->base + idx * 4;
  452. tdmac->pool = pool;
  453. tdmac->status = DMA_COMPLETE;
  454. tdev->tdmac[tdmac->idx] = tdmac;
  455. tasklet_init(&tdmac->tasklet, dma_do_tasklet, (unsigned long)tdmac);
  456. /* add the channel to tdma_chan list */
  457. list_add_tail(&tdmac->chan.device_node,
  458. &tdev->device.channels);
  459. return 0;
  460. }
  461. static struct of_device_id mmp_tdma_dt_ids[] = {
  462. { .compatible = "marvell,adma-1.0", .data = (void *)MMP_AUD_TDMA},
  463. { .compatible = "marvell,pxa910-squ", .data = (void *)PXA910_SQU},
  464. {}
  465. };
  466. MODULE_DEVICE_TABLE(of, mmp_tdma_dt_ids);
  467. static int mmp_tdma_probe(struct platform_device *pdev)
  468. {
  469. enum mmp_tdma_type type;
  470. const struct of_device_id *of_id;
  471. struct mmp_tdma_device *tdev;
  472. struct resource *iores;
  473. int i, ret;
  474. int irq = 0, irq_num = 0;
  475. int chan_num = TDMA_CHANNEL_NUM;
  476. struct gen_pool *pool;
  477. of_id = of_match_device(mmp_tdma_dt_ids, &pdev->dev);
  478. if (of_id)
  479. type = (enum mmp_tdma_type) of_id->data;
  480. else
  481. type = platform_get_device_id(pdev)->driver_data;
  482. /* always have couple channels */
  483. tdev = devm_kzalloc(&pdev->dev, sizeof(*tdev), GFP_KERNEL);
  484. if (!tdev)
  485. return -ENOMEM;
  486. tdev->dev = &pdev->dev;
  487. for (i = 0; i < chan_num; i++) {
  488. if (platform_get_irq(pdev, i) > 0)
  489. irq_num++;
  490. }
  491. iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  492. tdev->base = devm_ioremap_resource(&pdev->dev, iores);
  493. if (IS_ERR(tdev->base))
  494. return PTR_ERR(tdev->base);
  495. INIT_LIST_HEAD(&tdev->device.channels);
  496. if (pdev->dev.of_node)
  497. pool = of_get_named_gen_pool(pdev->dev.of_node, "asram", 0);
  498. else
  499. pool = sram_get_gpool("asram");
  500. if (!pool) {
  501. dev_err(&pdev->dev, "asram pool not available\n");
  502. return -ENOMEM;
  503. }
  504. if (irq_num != chan_num) {
  505. irq = platform_get_irq(pdev, 0);
  506. ret = devm_request_irq(&pdev->dev, irq,
  507. mmp_tdma_int_handler, 0, "tdma", tdev);
  508. if (ret)
  509. return ret;
  510. }
  511. /* initialize channel parameters */
  512. for (i = 0; i < chan_num; i++) {
  513. irq = (irq_num != chan_num) ? 0 : platform_get_irq(pdev, i);
  514. ret = mmp_tdma_chan_init(tdev, i, irq, type, pool);
  515. if (ret)
  516. return ret;
  517. }
  518. dma_cap_set(DMA_SLAVE, tdev->device.cap_mask);
  519. dma_cap_set(DMA_CYCLIC, tdev->device.cap_mask);
  520. tdev->device.dev = &pdev->dev;
  521. tdev->device.device_alloc_chan_resources =
  522. mmp_tdma_alloc_chan_resources;
  523. tdev->device.device_free_chan_resources =
  524. mmp_tdma_free_chan_resources;
  525. tdev->device.device_prep_dma_cyclic = mmp_tdma_prep_dma_cyclic;
  526. tdev->device.device_tx_status = mmp_tdma_tx_status;
  527. tdev->device.device_issue_pending = mmp_tdma_issue_pending;
  528. tdev->device.device_control = mmp_tdma_control;
  529. tdev->device.copy_align = TDMA_ALIGNMENT;
  530. dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
  531. platform_set_drvdata(pdev, tdev);
  532. ret = dma_async_device_register(&tdev->device);
  533. if (ret) {
  534. dev_err(tdev->device.dev, "unable to register\n");
  535. return ret;
  536. }
  537. dev_info(tdev->device.dev, "initialized\n");
  538. return 0;
  539. }
  540. static const struct platform_device_id mmp_tdma_id_table[] = {
  541. { "mmp-adma", MMP_AUD_TDMA },
  542. { "pxa910-squ", PXA910_SQU },
  543. { },
  544. };
  545. static struct platform_driver mmp_tdma_driver = {
  546. .driver = {
  547. .name = "mmp-tdma",
  548. .owner = THIS_MODULE,
  549. .of_match_table = mmp_tdma_dt_ids,
  550. },
  551. .id_table = mmp_tdma_id_table,
  552. .probe = mmp_tdma_probe,
  553. .remove = mmp_tdma_remove,
  554. };
  555. module_platform_driver(mmp_tdma_driver);
  556. MODULE_LICENSE("GPL");
  557. MODULE_DESCRIPTION("MMP Two-Channel DMA Driver");
  558. MODULE_ALIAS("platform:mmp-tdma");
  559. MODULE_AUTHOR("Leo Yan <leoy@marvell.com>");
  560. MODULE_AUTHOR("Zhangfei Gao <zhangfei.gao@marvell.com>");