imx-sdma.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644
  1. /*
  2. * drivers/dma/imx-sdma.c
  3. *
  4. * This file contains a driver for the Freescale Smart DMA engine
  5. *
  6. * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
  7. *
  8. * Based on code from Freescale:
  9. *
  10. * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
  11. *
  12. * The code contained herein is licensed under the GNU General Public
  13. * License. You may obtain a copy of the GNU General Public License
  14. * Version 2 or later at the following locations:
  15. *
  16. * http://www.opensource.org/licenses/gpl-license.html
  17. * http://www.gnu.org/copyleft/gpl.html
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/types.h>
  22. #include <linux/bitops.h>
  23. #include <linux/mm.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/clk.h>
  26. #include <linux/delay.h>
  27. #include <linux/sched.h>
  28. #include <linux/semaphore.h>
  29. #include <linux/spinlock.h>
  30. #include <linux/device.h>
  31. #include <linux/dma-mapping.h>
  32. #include <linux/firmware.h>
  33. #include <linux/slab.h>
  34. #include <linux/platform_device.h>
  35. #include <linux/dmaengine.h>
  36. #include <linux/of.h>
  37. #include <linux/of_device.h>
  38. #include <linux/of_dma.h>
  39. #include <asm/irq.h>
  40. #include <linux/platform_data/dma-imx-sdma.h>
  41. #include <linux/platform_data/dma-imx.h>
  42. #include "dmaengine.h"
  43. /* SDMA registers */
  44. #define SDMA_H_C0PTR 0x000
  45. #define SDMA_H_INTR 0x004
  46. #define SDMA_H_STATSTOP 0x008
  47. #define SDMA_H_START 0x00c
  48. #define SDMA_H_EVTOVR 0x010
  49. #define SDMA_H_DSPOVR 0x014
  50. #define SDMA_H_HOSTOVR 0x018
  51. #define SDMA_H_EVTPEND 0x01c
  52. #define SDMA_H_DSPENBL 0x020
  53. #define SDMA_H_RESET 0x024
  54. #define SDMA_H_EVTERR 0x028
  55. #define SDMA_H_INTRMSK 0x02c
  56. #define SDMA_H_PSW 0x030
  57. #define SDMA_H_EVTERRDBG 0x034
  58. #define SDMA_H_CONFIG 0x038
  59. #define SDMA_ONCE_ENB 0x040
  60. #define SDMA_ONCE_DATA 0x044
  61. #define SDMA_ONCE_INSTR 0x048
  62. #define SDMA_ONCE_STAT 0x04c
  63. #define SDMA_ONCE_CMD 0x050
  64. #define SDMA_EVT_MIRROR 0x054
  65. #define SDMA_ILLINSTADDR 0x058
  66. #define SDMA_CHN0ADDR 0x05c
  67. #define SDMA_ONCE_RTB 0x060
  68. #define SDMA_XTRIG_CONF1 0x070
  69. #define SDMA_XTRIG_CONF2 0x074
  70. #define SDMA_CHNENBL0_IMX35 0x200
  71. #define SDMA_CHNENBL0_IMX31 0x080
  72. #define SDMA_CHNPRI_0 0x100
  73. /*
  74. * Buffer descriptor status values.
  75. */
  76. #define BD_DONE 0x01
  77. #define BD_WRAP 0x02
  78. #define BD_CONT 0x04
  79. #define BD_INTR 0x08
  80. #define BD_RROR 0x10
  81. #define BD_LAST 0x20
  82. #define BD_EXTD 0x80
  83. /*
  84. * Data Node descriptor status values.
  85. */
  86. #define DND_END_OF_FRAME 0x80
  87. #define DND_END_OF_XFER 0x40
  88. #define DND_DONE 0x20
  89. #define DND_UNUSED 0x01
  90. /*
  91. * IPCV2 descriptor status values.
  92. */
  93. #define BD_IPCV2_END_OF_FRAME 0x40
  94. #define IPCV2_MAX_NODES 50
  95. /*
  96. * Error bit set in the CCB status field by the SDMA,
  97. * in setbd routine, in case of a transfer error
  98. */
  99. #define DATA_ERROR 0x10000000
  100. /*
  101. * Buffer descriptor commands.
  102. */
  103. #define C0_ADDR 0x01
  104. #define C0_LOAD 0x02
  105. #define C0_DUMP 0x03
  106. #define C0_SETCTX 0x07
  107. #define C0_GETCTX 0x03
  108. #define C0_SETDM 0x01
  109. #define C0_SETPM 0x04
  110. #define C0_GETDM 0x02
  111. #define C0_GETPM 0x08
  112. /*
  113. * Change endianness indicator in the BD command field
  114. */
  115. #define CHANGE_ENDIANNESS 0x80
  116. /*
  117. * Mode/Count of data node descriptors - IPCv2
  118. */
  119. struct sdma_mode_count {
  120. u32 count : 16; /* size of the buffer pointed by this BD */
  121. u32 status : 8; /* E,R,I,C,W,D status bits stored here */
  122. u32 command : 8; /* command mostlky used for channel 0 */
  123. };
  124. /*
  125. * Buffer descriptor
  126. */
  127. struct sdma_buffer_descriptor {
  128. struct sdma_mode_count mode;
  129. u32 buffer_addr; /* address of the buffer described */
  130. u32 ext_buffer_addr; /* extended buffer address */
  131. } __attribute__ ((packed));
  132. /**
  133. * struct sdma_channel_control - Channel control Block
  134. *
  135. * @current_bd_ptr current buffer descriptor processed
  136. * @base_bd_ptr first element of buffer descriptor array
  137. * @unused padding. The SDMA engine expects an array of 128 byte
  138. * control blocks
  139. */
  140. struct sdma_channel_control {
  141. u32 current_bd_ptr;
  142. u32 base_bd_ptr;
  143. u32 unused[2];
  144. } __attribute__ ((packed));
  145. /**
  146. * struct sdma_state_registers - SDMA context for a channel
  147. *
  148. * @pc: program counter
  149. * @t: test bit: status of arithmetic & test instruction
  150. * @rpc: return program counter
  151. * @sf: source fault while loading data
  152. * @spc: loop start program counter
  153. * @df: destination fault while storing data
  154. * @epc: loop end program counter
  155. * @lm: loop mode
  156. */
  157. struct sdma_state_registers {
  158. u32 pc :14;
  159. u32 unused1: 1;
  160. u32 t : 1;
  161. u32 rpc :14;
  162. u32 unused0: 1;
  163. u32 sf : 1;
  164. u32 spc :14;
  165. u32 unused2: 1;
  166. u32 df : 1;
  167. u32 epc :14;
  168. u32 lm : 2;
  169. } __attribute__ ((packed));
  170. /**
  171. * struct sdma_context_data - sdma context specific to a channel
  172. *
  173. * @channel_state: channel state bits
  174. * @gReg: general registers
  175. * @mda: burst dma destination address register
  176. * @msa: burst dma source address register
  177. * @ms: burst dma status register
  178. * @md: burst dma data register
  179. * @pda: peripheral dma destination address register
  180. * @psa: peripheral dma source address register
  181. * @ps: peripheral dma status register
  182. * @pd: peripheral dma data register
  183. * @ca: CRC polynomial register
  184. * @cs: CRC accumulator register
  185. * @dda: dedicated core destination address register
  186. * @dsa: dedicated core source address register
  187. * @ds: dedicated core status register
  188. * @dd: dedicated core data register
  189. */
  190. struct sdma_context_data {
  191. struct sdma_state_registers channel_state;
  192. u32 gReg[8];
  193. u32 mda;
  194. u32 msa;
  195. u32 ms;
  196. u32 md;
  197. u32 pda;
  198. u32 psa;
  199. u32 ps;
  200. u32 pd;
  201. u32 ca;
  202. u32 cs;
  203. u32 dda;
  204. u32 dsa;
  205. u32 ds;
  206. u32 dd;
  207. u32 scratch0;
  208. u32 scratch1;
  209. u32 scratch2;
  210. u32 scratch3;
  211. u32 scratch4;
  212. u32 scratch5;
  213. u32 scratch6;
  214. u32 scratch7;
  215. } __attribute__ ((packed));
  216. #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
  217. struct sdma_engine;
  218. /**
  219. * struct sdma_channel - housekeeping for a SDMA channel
  220. *
  221. * @sdma pointer to the SDMA engine for this channel
  222. * @channel the channel number, matches dmaengine chan_id + 1
  223. * @direction transfer type. Needed for setting SDMA script
  224. * @peripheral_type Peripheral type. Needed for setting SDMA script
  225. * @event_id0 aka dma request line
  226. * @event_id1 for channels that use 2 events
  227. * @word_size peripheral access size
  228. * @buf_tail ID of the buffer that was processed
  229. * @num_bd max NUM_BD. number of descriptors currently handling
  230. */
  231. struct sdma_channel {
  232. struct sdma_engine *sdma;
  233. unsigned int channel;
  234. enum dma_transfer_direction direction;
  235. enum sdma_peripheral_type peripheral_type;
  236. unsigned int event_id0;
  237. unsigned int event_id1;
  238. enum dma_slave_buswidth word_size;
  239. unsigned int buf_tail;
  240. unsigned int num_bd;
  241. struct sdma_buffer_descriptor *bd;
  242. dma_addr_t bd_phys;
  243. unsigned int pc_from_device, pc_to_device;
  244. unsigned long flags;
  245. dma_addr_t per_address;
  246. unsigned long event_mask[2];
  247. unsigned long watermark_level;
  248. u32 shp_addr, per_addr;
  249. struct dma_chan chan;
  250. spinlock_t lock;
  251. struct dma_async_tx_descriptor desc;
  252. enum dma_status status;
  253. unsigned int chn_count;
  254. unsigned int chn_real_count;
  255. struct tasklet_struct tasklet;
  256. };
  257. #define IMX_DMA_SG_LOOP BIT(0)
  258. #define MAX_DMA_CHANNELS 32
  259. #define MXC_SDMA_DEFAULT_PRIORITY 1
  260. #define MXC_SDMA_MIN_PRIORITY 1
  261. #define MXC_SDMA_MAX_PRIORITY 7
  262. #define SDMA_FIRMWARE_MAGIC 0x414d4453
  263. /**
  264. * struct sdma_firmware_header - Layout of the firmware image
  265. *
  266. * @magic "SDMA"
  267. * @version_major increased whenever layout of struct sdma_script_start_addrs
  268. * changes.
  269. * @version_minor firmware minor version (for binary compatible changes)
  270. * @script_addrs_start offset of struct sdma_script_start_addrs in this image
  271. * @num_script_addrs Number of script addresses in this image
  272. * @ram_code_start offset of SDMA ram image in this firmware image
  273. * @ram_code_size size of SDMA ram image
  274. * @script_addrs Stores the start address of the SDMA scripts
  275. * (in SDMA memory space)
  276. */
  277. struct sdma_firmware_header {
  278. u32 magic;
  279. u32 version_major;
  280. u32 version_minor;
  281. u32 script_addrs_start;
  282. u32 num_script_addrs;
  283. u32 ram_code_start;
  284. u32 ram_code_size;
  285. };
  286. struct sdma_driver_data {
  287. int chnenbl0;
  288. int num_events;
  289. struct sdma_script_start_addrs *script_addrs;
  290. };
  291. struct sdma_engine {
  292. struct device *dev;
  293. struct device_dma_parameters dma_parms;
  294. struct sdma_channel channel[MAX_DMA_CHANNELS];
  295. struct sdma_channel_control *channel_control;
  296. void __iomem *regs;
  297. struct sdma_context_data *context;
  298. dma_addr_t context_phys;
  299. struct dma_device dma_device;
  300. struct clk *clk_ipg;
  301. struct clk *clk_ahb;
  302. spinlock_t channel_0_lock;
  303. u32 script_number;
  304. struct sdma_script_start_addrs *script_addrs;
  305. const struct sdma_driver_data *drvdata;
  306. };
  307. static struct sdma_driver_data sdma_imx31 = {
  308. .chnenbl0 = SDMA_CHNENBL0_IMX31,
  309. .num_events = 32,
  310. };
  311. static struct sdma_script_start_addrs sdma_script_imx25 = {
  312. .ap_2_ap_addr = 729,
  313. .uart_2_mcu_addr = 904,
  314. .per_2_app_addr = 1255,
  315. .mcu_2_app_addr = 834,
  316. .uartsh_2_mcu_addr = 1120,
  317. .per_2_shp_addr = 1329,
  318. .mcu_2_shp_addr = 1048,
  319. .ata_2_mcu_addr = 1560,
  320. .mcu_2_ata_addr = 1479,
  321. .app_2_per_addr = 1189,
  322. .app_2_mcu_addr = 770,
  323. .shp_2_per_addr = 1407,
  324. .shp_2_mcu_addr = 979,
  325. };
  326. static struct sdma_driver_data sdma_imx25 = {
  327. .chnenbl0 = SDMA_CHNENBL0_IMX35,
  328. .num_events = 48,
  329. .script_addrs = &sdma_script_imx25,
  330. };
  331. static struct sdma_driver_data sdma_imx35 = {
  332. .chnenbl0 = SDMA_CHNENBL0_IMX35,
  333. .num_events = 48,
  334. };
  335. static struct sdma_script_start_addrs sdma_script_imx51 = {
  336. .ap_2_ap_addr = 642,
  337. .uart_2_mcu_addr = 817,
  338. .mcu_2_app_addr = 747,
  339. .mcu_2_shp_addr = 961,
  340. .ata_2_mcu_addr = 1473,
  341. .mcu_2_ata_addr = 1392,
  342. .app_2_per_addr = 1033,
  343. .app_2_mcu_addr = 683,
  344. .shp_2_per_addr = 1251,
  345. .shp_2_mcu_addr = 892,
  346. };
  347. static struct sdma_driver_data sdma_imx51 = {
  348. .chnenbl0 = SDMA_CHNENBL0_IMX35,
  349. .num_events = 48,
  350. .script_addrs = &sdma_script_imx51,
  351. };
  352. static struct sdma_script_start_addrs sdma_script_imx53 = {
  353. .ap_2_ap_addr = 642,
  354. .app_2_mcu_addr = 683,
  355. .mcu_2_app_addr = 747,
  356. .uart_2_mcu_addr = 817,
  357. .shp_2_mcu_addr = 891,
  358. .mcu_2_shp_addr = 960,
  359. .uartsh_2_mcu_addr = 1032,
  360. .spdif_2_mcu_addr = 1100,
  361. .mcu_2_spdif_addr = 1134,
  362. .firi_2_mcu_addr = 1193,
  363. .mcu_2_firi_addr = 1290,
  364. };
  365. static struct sdma_driver_data sdma_imx53 = {
  366. .chnenbl0 = SDMA_CHNENBL0_IMX35,
  367. .num_events = 48,
  368. .script_addrs = &sdma_script_imx53,
  369. };
  370. static struct sdma_script_start_addrs sdma_script_imx6q = {
  371. .ap_2_ap_addr = 642,
  372. .uart_2_mcu_addr = 817,
  373. .mcu_2_app_addr = 747,
  374. .per_2_per_addr = 6331,
  375. .uartsh_2_mcu_addr = 1032,
  376. .mcu_2_shp_addr = 960,
  377. .app_2_mcu_addr = 683,
  378. .shp_2_mcu_addr = 891,
  379. .spdif_2_mcu_addr = 1100,
  380. .mcu_2_spdif_addr = 1134,
  381. };
  382. static struct sdma_driver_data sdma_imx6q = {
  383. .chnenbl0 = SDMA_CHNENBL0_IMX35,
  384. .num_events = 48,
  385. .script_addrs = &sdma_script_imx6q,
  386. };
  387. static struct platform_device_id sdma_devtypes[] = {
  388. {
  389. .name = "imx25-sdma",
  390. .driver_data = (unsigned long)&sdma_imx25,
  391. }, {
  392. .name = "imx31-sdma",
  393. .driver_data = (unsigned long)&sdma_imx31,
  394. }, {
  395. .name = "imx35-sdma",
  396. .driver_data = (unsigned long)&sdma_imx35,
  397. }, {
  398. .name = "imx51-sdma",
  399. .driver_data = (unsigned long)&sdma_imx51,
  400. }, {
  401. .name = "imx53-sdma",
  402. .driver_data = (unsigned long)&sdma_imx53,
  403. }, {
  404. .name = "imx6q-sdma",
  405. .driver_data = (unsigned long)&sdma_imx6q,
  406. }, {
  407. /* sentinel */
  408. }
  409. };
  410. MODULE_DEVICE_TABLE(platform, sdma_devtypes);
  411. static const struct of_device_id sdma_dt_ids[] = {
  412. { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
  413. { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
  414. { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
  415. { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
  416. { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
  417. { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
  418. { /* sentinel */ }
  419. };
  420. MODULE_DEVICE_TABLE(of, sdma_dt_ids);
  421. #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
  422. #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
  423. #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
  424. #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
  425. static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
  426. {
  427. u32 chnenbl0 = sdma->drvdata->chnenbl0;
  428. return chnenbl0 + event * 4;
  429. }
  430. static int sdma_config_ownership(struct sdma_channel *sdmac,
  431. bool event_override, bool mcu_override, bool dsp_override)
  432. {
  433. struct sdma_engine *sdma = sdmac->sdma;
  434. int channel = sdmac->channel;
  435. unsigned long evt, mcu, dsp;
  436. if (event_override && mcu_override && dsp_override)
  437. return -EINVAL;
  438. evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
  439. mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
  440. dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
  441. if (dsp_override)
  442. __clear_bit(channel, &dsp);
  443. else
  444. __set_bit(channel, &dsp);
  445. if (event_override)
  446. __clear_bit(channel, &evt);
  447. else
  448. __set_bit(channel, &evt);
  449. if (mcu_override)
  450. __clear_bit(channel, &mcu);
  451. else
  452. __set_bit(channel, &mcu);
  453. writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
  454. writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
  455. writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
  456. return 0;
  457. }
  458. static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
  459. {
  460. writel(BIT(channel), sdma->regs + SDMA_H_START);
  461. }
  462. /*
  463. * sdma_run_channel0 - run a channel and wait till it's done
  464. */
  465. static int sdma_run_channel0(struct sdma_engine *sdma)
  466. {
  467. int ret;
  468. unsigned long timeout = 500;
  469. sdma_enable_channel(sdma, 0);
  470. while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
  471. if (timeout-- <= 0)
  472. break;
  473. udelay(1);
  474. }
  475. if (ret) {
  476. /* Clear the interrupt status */
  477. writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
  478. } else {
  479. dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
  480. }
  481. return ret ? 0 : -ETIMEDOUT;
  482. }
  483. static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
  484. u32 address)
  485. {
  486. struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
  487. void *buf_virt;
  488. dma_addr_t buf_phys;
  489. int ret;
  490. unsigned long flags;
  491. buf_virt = dma_alloc_coherent(NULL,
  492. size,
  493. &buf_phys, GFP_KERNEL);
  494. if (!buf_virt) {
  495. return -ENOMEM;
  496. }
  497. spin_lock_irqsave(&sdma->channel_0_lock, flags);
  498. bd0->mode.command = C0_SETPM;
  499. bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
  500. bd0->mode.count = size / 2;
  501. bd0->buffer_addr = buf_phys;
  502. bd0->ext_buffer_addr = address;
  503. memcpy(buf_virt, buf, size);
  504. ret = sdma_run_channel0(sdma);
  505. spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
  506. dma_free_coherent(NULL, size, buf_virt, buf_phys);
  507. return ret;
  508. }
  509. static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
  510. {
  511. struct sdma_engine *sdma = sdmac->sdma;
  512. int channel = sdmac->channel;
  513. unsigned long val;
  514. u32 chnenbl = chnenbl_ofs(sdma, event);
  515. val = readl_relaxed(sdma->regs + chnenbl);
  516. __set_bit(channel, &val);
  517. writel_relaxed(val, sdma->regs + chnenbl);
  518. }
  519. static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
  520. {
  521. struct sdma_engine *sdma = sdmac->sdma;
  522. int channel = sdmac->channel;
  523. u32 chnenbl = chnenbl_ofs(sdma, event);
  524. unsigned long val;
  525. val = readl_relaxed(sdma->regs + chnenbl);
  526. __clear_bit(channel, &val);
  527. writel_relaxed(val, sdma->regs + chnenbl);
  528. }
  529. static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
  530. {
  531. struct sdma_buffer_descriptor *bd;
  532. /*
  533. * loop mode. Iterate over descriptors, re-setup them and
  534. * call callback function.
  535. */
  536. while (1) {
  537. bd = &sdmac->bd[sdmac->buf_tail];
  538. if (bd->mode.status & BD_DONE)
  539. break;
  540. if (bd->mode.status & BD_RROR)
  541. sdmac->status = DMA_ERROR;
  542. else
  543. sdmac->status = DMA_IN_PROGRESS;
  544. bd->mode.status |= BD_DONE;
  545. sdmac->buf_tail++;
  546. sdmac->buf_tail %= sdmac->num_bd;
  547. if (sdmac->desc.callback)
  548. sdmac->desc.callback(sdmac->desc.callback_param);
  549. }
  550. }
  551. static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
  552. {
  553. struct sdma_buffer_descriptor *bd;
  554. int i, error = 0;
  555. sdmac->chn_real_count = 0;
  556. /*
  557. * non loop mode. Iterate over all descriptors, collect
  558. * errors and call callback function
  559. */
  560. for (i = 0; i < sdmac->num_bd; i++) {
  561. bd = &sdmac->bd[i];
  562. if (bd->mode.status & (BD_DONE | BD_RROR))
  563. error = -EIO;
  564. sdmac->chn_real_count += bd->mode.count;
  565. }
  566. if (error)
  567. sdmac->status = DMA_ERROR;
  568. else
  569. sdmac->status = DMA_COMPLETE;
  570. dma_cookie_complete(&sdmac->desc);
  571. if (sdmac->desc.callback)
  572. sdmac->desc.callback(sdmac->desc.callback_param);
  573. }
  574. static void sdma_tasklet(unsigned long data)
  575. {
  576. struct sdma_channel *sdmac = (struct sdma_channel *) data;
  577. if (sdmac->flags & IMX_DMA_SG_LOOP)
  578. sdma_handle_channel_loop(sdmac);
  579. else
  580. mxc_sdma_handle_channel_normal(sdmac);
  581. }
  582. static irqreturn_t sdma_int_handler(int irq, void *dev_id)
  583. {
  584. struct sdma_engine *sdma = dev_id;
  585. unsigned long stat;
  586. stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
  587. /* not interested in channel 0 interrupts */
  588. stat &= ~1;
  589. writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
  590. while (stat) {
  591. int channel = fls(stat) - 1;
  592. struct sdma_channel *sdmac = &sdma->channel[channel];
  593. tasklet_schedule(&sdmac->tasklet);
  594. __clear_bit(channel, &stat);
  595. }
  596. return IRQ_HANDLED;
  597. }
  598. /*
  599. * sets the pc of SDMA script according to the peripheral type
  600. */
  601. static void sdma_get_pc(struct sdma_channel *sdmac,
  602. enum sdma_peripheral_type peripheral_type)
  603. {
  604. struct sdma_engine *sdma = sdmac->sdma;
  605. int per_2_emi = 0, emi_2_per = 0;
  606. /*
  607. * These are needed once we start to support transfers between
  608. * two peripherals or memory-to-memory transfers
  609. */
  610. int per_2_per = 0, emi_2_emi = 0;
  611. sdmac->pc_from_device = 0;
  612. sdmac->pc_to_device = 0;
  613. switch (peripheral_type) {
  614. case IMX_DMATYPE_MEMORY:
  615. emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
  616. break;
  617. case IMX_DMATYPE_DSP:
  618. emi_2_per = sdma->script_addrs->bp_2_ap_addr;
  619. per_2_emi = sdma->script_addrs->ap_2_bp_addr;
  620. break;
  621. case IMX_DMATYPE_FIRI:
  622. per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
  623. emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
  624. break;
  625. case IMX_DMATYPE_UART:
  626. per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
  627. emi_2_per = sdma->script_addrs->mcu_2_app_addr;
  628. break;
  629. case IMX_DMATYPE_UART_SP:
  630. per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
  631. emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
  632. break;
  633. case IMX_DMATYPE_ATA:
  634. per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
  635. emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
  636. break;
  637. case IMX_DMATYPE_CSPI:
  638. case IMX_DMATYPE_EXT:
  639. case IMX_DMATYPE_SSI:
  640. per_2_emi = sdma->script_addrs->app_2_mcu_addr;
  641. emi_2_per = sdma->script_addrs->mcu_2_app_addr;
  642. break;
  643. case IMX_DMATYPE_SSI_DUAL:
  644. per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
  645. emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
  646. break;
  647. case IMX_DMATYPE_SSI_SP:
  648. case IMX_DMATYPE_MMC:
  649. case IMX_DMATYPE_SDHC:
  650. case IMX_DMATYPE_CSPI_SP:
  651. case IMX_DMATYPE_ESAI:
  652. case IMX_DMATYPE_MSHC_SP:
  653. per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
  654. emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
  655. break;
  656. case IMX_DMATYPE_ASRC:
  657. per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
  658. emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
  659. per_2_per = sdma->script_addrs->per_2_per_addr;
  660. break;
  661. case IMX_DMATYPE_MSHC:
  662. per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
  663. emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
  664. break;
  665. case IMX_DMATYPE_CCM:
  666. per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
  667. break;
  668. case IMX_DMATYPE_SPDIF:
  669. per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
  670. emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
  671. break;
  672. case IMX_DMATYPE_IPU_MEMORY:
  673. emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
  674. break;
  675. default:
  676. break;
  677. }
  678. sdmac->pc_from_device = per_2_emi;
  679. sdmac->pc_to_device = emi_2_per;
  680. }
  681. static int sdma_load_context(struct sdma_channel *sdmac)
  682. {
  683. struct sdma_engine *sdma = sdmac->sdma;
  684. int channel = sdmac->channel;
  685. int load_address;
  686. struct sdma_context_data *context = sdma->context;
  687. struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
  688. int ret;
  689. unsigned long flags;
  690. if (sdmac->direction == DMA_DEV_TO_MEM) {
  691. load_address = sdmac->pc_from_device;
  692. } else {
  693. load_address = sdmac->pc_to_device;
  694. }
  695. if (load_address < 0)
  696. return load_address;
  697. dev_dbg(sdma->dev, "load_address = %d\n", load_address);
  698. dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
  699. dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
  700. dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
  701. dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
  702. dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
  703. spin_lock_irqsave(&sdma->channel_0_lock, flags);
  704. memset(context, 0, sizeof(*context));
  705. context->channel_state.pc = load_address;
  706. /* Send by context the event mask,base address for peripheral
  707. * and watermark level
  708. */
  709. context->gReg[0] = sdmac->event_mask[1];
  710. context->gReg[1] = sdmac->event_mask[0];
  711. context->gReg[2] = sdmac->per_addr;
  712. context->gReg[6] = sdmac->shp_addr;
  713. context->gReg[7] = sdmac->watermark_level;
  714. bd0->mode.command = C0_SETDM;
  715. bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
  716. bd0->mode.count = sizeof(*context) / 4;
  717. bd0->buffer_addr = sdma->context_phys;
  718. bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
  719. ret = sdma_run_channel0(sdma);
  720. spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
  721. return ret;
  722. }
  723. static void sdma_disable_channel(struct sdma_channel *sdmac)
  724. {
  725. struct sdma_engine *sdma = sdmac->sdma;
  726. int channel = sdmac->channel;
  727. writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
  728. sdmac->status = DMA_ERROR;
  729. }
  730. static int sdma_config_channel(struct sdma_channel *sdmac)
  731. {
  732. int ret;
  733. sdma_disable_channel(sdmac);
  734. sdmac->event_mask[0] = 0;
  735. sdmac->event_mask[1] = 0;
  736. sdmac->shp_addr = 0;
  737. sdmac->per_addr = 0;
  738. if (sdmac->event_id0) {
  739. if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
  740. return -EINVAL;
  741. sdma_event_enable(sdmac, sdmac->event_id0);
  742. }
  743. switch (sdmac->peripheral_type) {
  744. case IMX_DMATYPE_DSP:
  745. sdma_config_ownership(sdmac, false, true, true);
  746. break;
  747. case IMX_DMATYPE_MEMORY:
  748. sdma_config_ownership(sdmac, false, true, false);
  749. break;
  750. default:
  751. sdma_config_ownership(sdmac, true, true, false);
  752. break;
  753. }
  754. sdma_get_pc(sdmac, sdmac->peripheral_type);
  755. if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
  756. (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
  757. /* Handle multiple event channels differently */
  758. if (sdmac->event_id1) {
  759. sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
  760. if (sdmac->event_id1 > 31)
  761. __set_bit(31, &sdmac->watermark_level);
  762. sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
  763. if (sdmac->event_id0 > 31)
  764. __set_bit(30, &sdmac->watermark_level);
  765. } else {
  766. __set_bit(sdmac->event_id0, sdmac->event_mask);
  767. }
  768. /* Watermark Level */
  769. sdmac->watermark_level |= sdmac->watermark_level;
  770. /* Address */
  771. sdmac->shp_addr = sdmac->per_address;
  772. } else {
  773. sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
  774. }
  775. ret = sdma_load_context(sdmac);
  776. return ret;
  777. }
  778. static int sdma_set_channel_priority(struct sdma_channel *sdmac,
  779. unsigned int priority)
  780. {
  781. struct sdma_engine *sdma = sdmac->sdma;
  782. int channel = sdmac->channel;
  783. if (priority < MXC_SDMA_MIN_PRIORITY
  784. || priority > MXC_SDMA_MAX_PRIORITY) {
  785. return -EINVAL;
  786. }
  787. writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
  788. return 0;
  789. }
  790. static int sdma_request_channel(struct sdma_channel *sdmac)
  791. {
  792. struct sdma_engine *sdma = sdmac->sdma;
  793. int channel = sdmac->channel;
  794. int ret = -EBUSY;
  795. sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
  796. if (!sdmac->bd) {
  797. ret = -ENOMEM;
  798. goto out;
  799. }
  800. memset(sdmac->bd, 0, PAGE_SIZE);
  801. sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
  802. sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
  803. sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
  804. return 0;
  805. out:
  806. return ret;
  807. }
  808. static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
  809. {
  810. return container_of(chan, struct sdma_channel, chan);
  811. }
  812. static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
  813. {
  814. unsigned long flags;
  815. struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
  816. dma_cookie_t cookie;
  817. spin_lock_irqsave(&sdmac->lock, flags);
  818. cookie = dma_cookie_assign(tx);
  819. spin_unlock_irqrestore(&sdmac->lock, flags);
  820. return cookie;
  821. }
  822. static int sdma_alloc_chan_resources(struct dma_chan *chan)
  823. {
  824. struct sdma_channel *sdmac = to_sdma_chan(chan);
  825. struct imx_dma_data *data = chan->private;
  826. int prio, ret;
  827. if (!data)
  828. return -EINVAL;
  829. switch (data->priority) {
  830. case DMA_PRIO_HIGH:
  831. prio = 3;
  832. break;
  833. case DMA_PRIO_MEDIUM:
  834. prio = 2;
  835. break;
  836. case DMA_PRIO_LOW:
  837. default:
  838. prio = 1;
  839. break;
  840. }
  841. sdmac->peripheral_type = data->peripheral_type;
  842. sdmac->event_id0 = data->dma_request;
  843. clk_enable(sdmac->sdma->clk_ipg);
  844. clk_enable(sdmac->sdma->clk_ahb);
  845. ret = sdma_request_channel(sdmac);
  846. if (ret)
  847. return ret;
  848. ret = sdma_set_channel_priority(sdmac, prio);
  849. if (ret)
  850. return ret;
  851. dma_async_tx_descriptor_init(&sdmac->desc, chan);
  852. sdmac->desc.tx_submit = sdma_tx_submit;
  853. /* txd.flags will be overwritten in prep funcs */
  854. sdmac->desc.flags = DMA_CTRL_ACK;
  855. return 0;
  856. }
  857. static void sdma_free_chan_resources(struct dma_chan *chan)
  858. {
  859. struct sdma_channel *sdmac = to_sdma_chan(chan);
  860. struct sdma_engine *sdma = sdmac->sdma;
  861. sdma_disable_channel(sdmac);
  862. if (sdmac->event_id0)
  863. sdma_event_disable(sdmac, sdmac->event_id0);
  864. if (sdmac->event_id1)
  865. sdma_event_disable(sdmac, sdmac->event_id1);
  866. sdmac->event_id0 = 0;
  867. sdmac->event_id1 = 0;
  868. sdma_set_channel_priority(sdmac, 0);
  869. dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
  870. clk_disable(sdma->clk_ipg);
  871. clk_disable(sdma->clk_ahb);
  872. }
  873. static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
  874. struct dma_chan *chan, struct scatterlist *sgl,
  875. unsigned int sg_len, enum dma_transfer_direction direction,
  876. unsigned long flags, void *context)
  877. {
  878. struct sdma_channel *sdmac = to_sdma_chan(chan);
  879. struct sdma_engine *sdma = sdmac->sdma;
  880. int ret, i, count;
  881. int channel = sdmac->channel;
  882. struct scatterlist *sg;
  883. if (sdmac->status == DMA_IN_PROGRESS)
  884. return NULL;
  885. sdmac->status = DMA_IN_PROGRESS;
  886. sdmac->flags = 0;
  887. sdmac->buf_tail = 0;
  888. dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
  889. sg_len, channel);
  890. sdmac->direction = direction;
  891. ret = sdma_load_context(sdmac);
  892. if (ret)
  893. goto err_out;
  894. if (sg_len > NUM_BD) {
  895. dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
  896. channel, sg_len, NUM_BD);
  897. ret = -EINVAL;
  898. goto err_out;
  899. }
  900. sdmac->chn_count = 0;
  901. for_each_sg(sgl, sg, sg_len, i) {
  902. struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
  903. int param;
  904. bd->buffer_addr = sg->dma_address;
  905. count = sg_dma_len(sg);
  906. if (count > 0xffff) {
  907. dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
  908. channel, count, 0xffff);
  909. ret = -EINVAL;
  910. goto err_out;
  911. }
  912. bd->mode.count = count;
  913. sdmac->chn_count += count;
  914. if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
  915. ret = -EINVAL;
  916. goto err_out;
  917. }
  918. switch (sdmac->word_size) {
  919. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  920. bd->mode.command = 0;
  921. if (count & 3 || sg->dma_address & 3)
  922. return NULL;
  923. break;
  924. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  925. bd->mode.command = 2;
  926. if (count & 1 || sg->dma_address & 1)
  927. return NULL;
  928. break;
  929. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  930. bd->mode.command = 1;
  931. break;
  932. default:
  933. return NULL;
  934. }
  935. param = BD_DONE | BD_EXTD | BD_CONT;
  936. if (i + 1 == sg_len) {
  937. param |= BD_INTR;
  938. param |= BD_LAST;
  939. param &= ~BD_CONT;
  940. }
  941. dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
  942. i, count, (u64)sg->dma_address,
  943. param & BD_WRAP ? "wrap" : "",
  944. param & BD_INTR ? " intr" : "");
  945. bd->mode.status = param;
  946. }
  947. sdmac->num_bd = sg_len;
  948. sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
  949. return &sdmac->desc;
  950. err_out:
  951. sdmac->status = DMA_ERROR;
  952. return NULL;
  953. }
  954. static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
  955. struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
  956. size_t period_len, enum dma_transfer_direction direction,
  957. unsigned long flags, void *context)
  958. {
  959. struct sdma_channel *sdmac = to_sdma_chan(chan);
  960. struct sdma_engine *sdma = sdmac->sdma;
  961. int num_periods = buf_len / period_len;
  962. int channel = sdmac->channel;
  963. int ret, i = 0, buf = 0;
  964. dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
  965. if (sdmac->status == DMA_IN_PROGRESS)
  966. return NULL;
  967. sdmac->status = DMA_IN_PROGRESS;
  968. sdmac->buf_tail = 0;
  969. sdmac->flags |= IMX_DMA_SG_LOOP;
  970. sdmac->direction = direction;
  971. ret = sdma_load_context(sdmac);
  972. if (ret)
  973. goto err_out;
  974. if (num_periods > NUM_BD) {
  975. dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
  976. channel, num_periods, NUM_BD);
  977. goto err_out;
  978. }
  979. if (period_len > 0xffff) {
  980. dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
  981. channel, period_len, 0xffff);
  982. goto err_out;
  983. }
  984. while (buf < buf_len) {
  985. struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
  986. int param;
  987. bd->buffer_addr = dma_addr;
  988. bd->mode.count = period_len;
  989. if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
  990. goto err_out;
  991. if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
  992. bd->mode.command = 0;
  993. else
  994. bd->mode.command = sdmac->word_size;
  995. param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
  996. if (i + 1 == num_periods)
  997. param |= BD_WRAP;
  998. dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
  999. i, period_len, (u64)dma_addr,
  1000. param & BD_WRAP ? "wrap" : "",
  1001. param & BD_INTR ? " intr" : "");
  1002. bd->mode.status = param;
  1003. dma_addr += period_len;
  1004. buf += period_len;
  1005. i++;
  1006. }
  1007. sdmac->num_bd = num_periods;
  1008. sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
  1009. return &sdmac->desc;
  1010. err_out:
  1011. sdmac->status = DMA_ERROR;
  1012. return NULL;
  1013. }
  1014. static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1015. unsigned long arg)
  1016. {
  1017. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1018. struct dma_slave_config *dmaengine_cfg = (void *)arg;
  1019. switch (cmd) {
  1020. case DMA_TERMINATE_ALL:
  1021. sdma_disable_channel(sdmac);
  1022. return 0;
  1023. case DMA_SLAVE_CONFIG:
  1024. if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
  1025. sdmac->per_address = dmaengine_cfg->src_addr;
  1026. sdmac->watermark_level = dmaengine_cfg->src_maxburst *
  1027. dmaengine_cfg->src_addr_width;
  1028. sdmac->word_size = dmaengine_cfg->src_addr_width;
  1029. } else {
  1030. sdmac->per_address = dmaengine_cfg->dst_addr;
  1031. sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
  1032. dmaengine_cfg->dst_addr_width;
  1033. sdmac->word_size = dmaengine_cfg->dst_addr_width;
  1034. }
  1035. sdmac->direction = dmaengine_cfg->direction;
  1036. return sdma_config_channel(sdmac);
  1037. default:
  1038. return -ENOSYS;
  1039. }
  1040. return -EINVAL;
  1041. }
  1042. static enum dma_status sdma_tx_status(struct dma_chan *chan,
  1043. dma_cookie_t cookie,
  1044. struct dma_tx_state *txstate)
  1045. {
  1046. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1047. dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
  1048. sdmac->chn_count - sdmac->chn_real_count);
  1049. return sdmac->status;
  1050. }
  1051. static void sdma_issue_pending(struct dma_chan *chan)
  1052. {
  1053. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1054. struct sdma_engine *sdma = sdmac->sdma;
  1055. if (sdmac->status == DMA_IN_PROGRESS)
  1056. sdma_enable_channel(sdma, sdmac->channel);
  1057. }
  1058. #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
  1059. #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
  1060. static void sdma_add_scripts(struct sdma_engine *sdma,
  1061. const struct sdma_script_start_addrs *addr)
  1062. {
  1063. s32 *addr_arr = (u32 *)addr;
  1064. s32 *saddr_arr = (u32 *)sdma->script_addrs;
  1065. int i;
  1066. /* use the default firmware in ROM if missing external firmware */
  1067. if (!sdma->script_number)
  1068. sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
  1069. for (i = 0; i < sdma->script_number; i++)
  1070. if (addr_arr[i] > 0)
  1071. saddr_arr[i] = addr_arr[i];
  1072. }
  1073. static void sdma_load_firmware(const struct firmware *fw, void *context)
  1074. {
  1075. struct sdma_engine *sdma = context;
  1076. const struct sdma_firmware_header *header;
  1077. const struct sdma_script_start_addrs *addr;
  1078. unsigned short *ram_code;
  1079. if (!fw) {
  1080. dev_err(sdma->dev, "firmware not found\n");
  1081. return;
  1082. }
  1083. if (fw->size < sizeof(*header))
  1084. goto err_firmware;
  1085. header = (struct sdma_firmware_header *)fw->data;
  1086. if (header->magic != SDMA_FIRMWARE_MAGIC)
  1087. goto err_firmware;
  1088. if (header->ram_code_start + header->ram_code_size > fw->size)
  1089. goto err_firmware;
  1090. switch (header->version_major) {
  1091. case 1:
  1092. sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
  1093. break;
  1094. case 2:
  1095. sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
  1096. break;
  1097. default:
  1098. dev_err(sdma->dev, "unknown firmware version\n");
  1099. goto err_firmware;
  1100. }
  1101. addr = (void *)header + header->script_addrs_start;
  1102. ram_code = (void *)header + header->ram_code_start;
  1103. clk_enable(sdma->clk_ipg);
  1104. clk_enable(sdma->clk_ahb);
  1105. /* download the RAM image for SDMA */
  1106. sdma_load_script(sdma, ram_code,
  1107. header->ram_code_size,
  1108. addr->ram_code_start_addr);
  1109. clk_disable(sdma->clk_ipg);
  1110. clk_disable(sdma->clk_ahb);
  1111. sdma_add_scripts(sdma, addr);
  1112. dev_info(sdma->dev, "loaded firmware %d.%d\n",
  1113. header->version_major,
  1114. header->version_minor);
  1115. err_firmware:
  1116. release_firmware(fw);
  1117. }
  1118. static int __init sdma_get_firmware(struct sdma_engine *sdma,
  1119. const char *fw_name)
  1120. {
  1121. int ret;
  1122. ret = request_firmware_nowait(THIS_MODULE,
  1123. FW_ACTION_HOTPLUG, fw_name, sdma->dev,
  1124. GFP_KERNEL, sdma, sdma_load_firmware);
  1125. return ret;
  1126. }
  1127. static int __init sdma_init(struct sdma_engine *sdma)
  1128. {
  1129. int i, ret;
  1130. dma_addr_t ccb_phys;
  1131. clk_enable(sdma->clk_ipg);
  1132. clk_enable(sdma->clk_ahb);
  1133. /* Be sure SDMA has not started yet */
  1134. writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
  1135. sdma->channel_control = dma_alloc_coherent(NULL,
  1136. MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
  1137. sizeof(struct sdma_context_data),
  1138. &ccb_phys, GFP_KERNEL);
  1139. if (!sdma->channel_control) {
  1140. ret = -ENOMEM;
  1141. goto err_dma_alloc;
  1142. }
  1143. sdma->context = (void *)sdma->channel_control +
  1144. MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
  1145. sdma->context_phys = ccb_phys +
  1146. MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
  1147. /* Zero-out the CCB structures array just allocated */
  1148. memset(sdma->channel_control, 0,
  1149. MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
  1150. /* disable all channels */
  1151. for (i = 0; i < sdma->drvdata->num_events; i++)
  1152. writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
  1153. /* All channels have priority 0 */
  1154. for (i = 0; i < MAX_DMA_CHANNELS; i++)
  1155. writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
  1156. ret = sdma_request_channel(&sdma->channel[0]);
  1157. if (ret)
  1158. goto err_dma_alloc;
  1159. sdma_config_ownership(&sdma->channel[0], false, true, false);
  1160. /* Set Command Channel (Channel Zero) */
  1161. writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
  1162. /* Set bits of CONFIG register but with static context switching */
  1163. /* FIXME: Check whether to set ACR bit depending on clock ratios */
  1164. writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
  1165. writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
  1166. /* Set bits of CONFIG register with given context switching mode */
  1167. writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
  1168. /* Initializes channel's priorities */
  1169. sdma_set_channel_priority(&sdma->channel[0], 7);
  1170. clk_disable(sdma->clk_ipg);
  1171. clk_disable(sdma->clk_ahb);
  1172. return 0;
  1173. err_dma_alloc:
  1174. clk_disable(sdma->clk_ipg);
  1175. clk_disable(sdma->clk_ahb);
  1176. dev_err(sdma->dev, "initialisation failed with %d\n", ret);
  1177. return ret;
  1178. }
  1179. static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
  1180. {
  1181. struct imx_dma_data *data = fn_param;
  1182. if (!imx_dma_is_general_purpose(chan))
  1183. return false;
  1184. chan->private = data;
  1185. return true;
  1186. }
  1187. static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
  1188. struct of_dma *ofdma)
  1189. {
  1190. struct sdma_engine *sdma = ofdma->of_dma_data;
  1191. dma_cap_mask_t mask = sdma->dma_device.cap_mask;
  1192. struct imx_dma_data data;
  1193. if (dma_spec->args_count != 3)
  1194. return NULL;
  1195. data.dma_request = dma_spec->args[0];
  1196. data.peripheral_type = dma_spec->args[1];
  1197. data.priority = dma_spec->args[2];
  1198. return dma_request_channel(mask, sdma_filter_fn, &data);
  1199. }
  1200. static int __init sdma_probe(struct platform_device *pdev)
  1201. {
  1202. const struct of_device_id *of_id =
  1203. of_match_device(sdma_dt_ids, &pdev->dev);
  1204. struct device_node *np = pdev->dev.of_node;
  1205. const char *fw_name;
  1206. int ret;
  1207. int irq;
  1208. struct resource *iores;
  1209. struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
  1210. int i;
  1211. struct sdma_engine *sdma;
  1212. s32 *saddr_arr;
  1213. const struct sdma_driver_data *drvdata = NULL;
  1214. if (of_id)
  1215. drvdata = of_id->data;
  1216. else if (pdev->id_entry)
  1217. drvdata = (void *)pdev->id_entry->driver_data;
  1218. if (!drvdata) {
  1219. dev_err(&pdev->dev, "unable to find driver data\n");
  1220. return -EINVAL;
  1221. }
  1222. ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
  1223. if (ret)
  1224. return ret;
  1225. sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
  1226. if (!sdma)
  1227. return -ENOMEM;
  1228. spin_lock_init(&sdma->channel_0_lock);
  1229. sdma->dev = &pdev->dev;
  1230. sdma->drvdata = drvdata;
  1231. iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1232. irq = platform_get_irq(pdev, 0);
  1233. if (!iores || irq < 0) {
  1234. ret = -EINVAL;
  1235. goto err_irq;
  1236. }
  1237. if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
  1238. ret = -EBUSY;
  1239. goto err_request_region;
  1240. }
  1241. sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
  1242. if (IS_ERR(sdma->clk_ipg)) {
  1243. ret = PTR_ERR(sdma->clk_ipg);
  1244. goto err_clk;
  1245. }
  1246. sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
  1247. if (IS_ERR(sdma->clk_ahb)) {
  1248. ret = PTR_ERR(sdma->clk_ahb);
  1249. goto err_clk;
  1250. }
  1251. clk_prepare(sdma->clk_ipg);
  1252. clk_prepare(sdma->clk_ahb);
  1253. sdma->regs = ioremap(iores->start, resource_size(iores));
  1254. if (!sdma->regs) {
  1255. ret = -ENOMEM;
  1256. goto err_ioremap;
  1257. }
  1258. ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
  1259. if (ret)
  1260. goto err_request_irq;
  1261. sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
  1262. if (!sdma->script_addrs) {
  1263. ret = -ENOMEM;
  1264. goto err_alloc;
  1265. }
  1266. /* initially no scripts available */
  1267. saddr_arr = (s32 *)sdma->script_addrs;
  1268. for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
  1269. saddr_arr[i] = -EINVAL;
  1270. dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
  1271. dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
  1272. INIT_LIST_HEAD(&sdma->dma_device.channels);
  1273. /* Initialize channel parameters */
  1274. for (i = 0; i < MAX_DMA_CHANNELS; i++) {
  1275. struct sdma_channel *sdmac = &sdma->channel[i];
  1276. sdmac->sdma = sdma;
  1277. spin_lock_init(&sdmac->lock);
  1278. sdmac->chan.device = &sdma->dma_device;
  1279. dma_cookie_init(&sdmac->chan);
  1280. sdmac->channel = i;
  1281. tasklet_init(&sdmac->tasklet, sdma_tasklet,
  1282. (unsigned long) sdmac);
  1283. /*
  1284. * Add the channel to the DMAC list. Do not add channel 0 though
  1285. * because we need it internally in the SDMA driver. This also means
  1286. * that channel 0 in dmaengine counting matches sdma channel 1.
  1287. */
  1288. if (i)
  1289. list_add_tail(&sdmac->chan.device_node,
  1290. &sdma->dma_device.channels);
  1291. }
  1292. ret = sdma_init(sdma);
  1293. if (ret)
  1294. goto err_init;
  1295. if (sdma->drvdata->script_addrs)
  1296. sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
  1297. if (pdata && pdata->script_addrs)
  1298. sdma_add_scripts(sdma, pdata->script_addrs);
  1299. if (pdata) {
  1300. ret = sdma_get_firmware(sdma, pdata->fw_name);
  1301. if (ret)
  1302. dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
  1303. } else {
  1304. /*
  1305. * Because that device tree does not encode ROM script address,
  1306. * the RAM script in firmware is mandatory for device tree
  1307. * probe, otherwise it fails.
  1308. */
  1309. ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
  1310. &fw_name);
  1311. if (ret)
  1312. dev_warn(&pdev->dev, "failed to get firmware name\n");
  1313. else {
  1314. ret = sdma_get_firmware(sdma, fw_name);
  1315. if (ret)
  1316. dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
  1317. }
  1318. }
  1319. sdma->dma_device.dev = &pdev->dev;
  1320. sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
  1321. sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
  1322. sdma->dma_device.device_tx_status = sdma_tx_status;
  1323. sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
  1324. sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
  1325. sdma->dma_device.device_control = sdma_control;
  1326. sdma->dma_device.device_issue_pending = sdma_issue_pending;
  1327. sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
  1328. dma_set_max_seg_size(sdma->dma_device.dev, 65535);
  1329. ret = dma_async_device_register(&sdma->dma_device);
  1330. if (ret) {
  1331. dev_err(&pdev->dev, "unable to register\n");
  1332. goto err_init;
  1333. }
  1334. if (np) {
  1335. ret = of_dma_controller_register(np, sdma_xlate, sdma);
  1336. if (ret) {
  1337. dev_err(&pdev->dev, "failed to register controller\n");
  1338. goto err_register;
  1339. }
  1340. }
  1341. dev_info(sdma->dev, "initialized\n");
  1342. return 0;
  1343. err_register:
  1344. dma_async_device_unregister(&sdma->dma_device);
  1345. err_init:
  1346. kfree(sdma->script_addrs);
  1347. err_alloc:
  1348. free_irq(irq, sdma);
  1349. err_request_irq:
  1350. iounmap(sdma->regs);
  1351. err_ioremap:
  1352. err_clk:
  1353. release_mem_region(iores->start, resource_size(iores));
  1354. err_request_region:
  1355. err_irq:
  1356. kfree(sdma);
  1357. return ret;
  1358. }
  1359. static int sdma_remove(struct platform_device *pdev)
  1360. {
  1361. return -EBUSY;
  1362. }
  1363. static struct platform_driver sdma_driver = {
  1364. .driver = {
  1365. .name = "imx-sdma",
  1366. .of_match_table = sdma_dt_ids,
  1367. },
  1368. .id_table = sdma_devtypes,
  1369. .remove = sdma_remove,
  1370. };
  1371. static int __init sdma_module_init(void)
  1372. {
  1373. return platform_driver_probe(&sdma_driver, sdma_probe);
  1374. }
  1375. module_init(sdma_module_init);
  1376. MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
  1377. MODULE_DESCRIPTION("i.MX SDMA driver");
  1378. MODULE_LICENSE("GPL");