imx6q-cpufreq.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. /*
  2. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/cpu.h>
  10. #include <linux/cpufreq.h>
  11. #include <linux/delay.h>
  12. #include <linux/err.h>
  13. #include <linux/module.h>
  14. #include <linux/of.h>
  15. #include <linux/pm_opp.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/regulator/consumer.h>
  18. #define PU_SOC_VOLTAGE_NORMAL 1250000
  19. #define PU_SOC_VOLTAGE_HIGH 1275000
  20. #define FREQ_1P2_GHZ 1200000000
  21. static struct regulator *arm_reg;
  22. static struct regulator *pu_reg;
  23. static struct regulator *soc_reg;
  24. static struct clk *arm_clk;
  25. static struct clk *pll1_sys_clk;
  26. static struct clk *pll1_sw_clk;
  27. static struct clk *step_clk;
  28. static struct clk *pll2_pfd2_396m_clk;
  29. static struct device *cpu_dev;
  30. static struct cpufreq_frequency_table *freq_table;
  31. static unsigned int transition_latency;
  32. static u32 *imx6_soc_volt;
  33. static u32 soc_opp_count;
  34. static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
  35. {
  36. struct dev_pm_opp *opp;
  37. unsigned long freq_hz, volt, volt_old;
  38. unsigned int old_freq, new_freq;
  39. int ret;
  40. new_freq = freq_table[index].frequency;
  41. freq_hz = new_freq * 1000;
  42. old_freq = clk_get_rate(arm_clk) / 1000;
  43. rcu_read_lock();
  44. opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
  45. if (IS_ERR(opp)) {
  46. rcu_read_unlock();
  47. dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
  48. return PTR_ERR(opp);
  49. }
  50. volt = dev_pm_opp_get_voltage(opp);
  51. rcu_read_unlock();
  52. volt_old = regulator_get_voltage(arm_reg);
  53. dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
  54. old_freq / 1000, volt_old / 1000,
  55. new_freq / 1000, volt / 1000);
  56. /* scaling up? scale voltage before frequency */
  57. if (new_freq > old_freq) {
  58. ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
  59. if (ret) {
  60. dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
  61. return ret;
  62. }
  63. ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
  64. if (ret) {
  65. dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
  66. return ret;
  67. }
  68. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  69. if (ret) {
  70. dev_err(cpu_dev,
  71. "failed to scale vddarm up: %d\n", ret);
  72. return ret;
  73. }
  74. }
  75. /*
  76. * The setpoints are selected per PLL/PDF frequencies, so we need to
  77. * reprogram PLL for frequency scaling. The procedure of reprogramming
  78. * PLL1 is as below.
  79. *
  80. * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
  81. * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
  82. * - Disable pll2_pfd2_396m_clk
  83. */
  84. clk_set_parent(step_clk, pll2_pfd2_396m_clk);
  85. clk_set_parent(pll1_sw_clk, step_clk);
  86. if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
  87. clk_set_rate(pll1_sys_clk, new_freq * 1000);
  88. clk_set_parent(pll1_sw_clk, pll1_sys_clk);
  89. }
  90. /* Ensure the arm clock divider is what we expect */
  91. ret = clk_set_rate(arm_clk, new_freq * 1000);
  92. if (ret) {
  93. dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
  94. regulator_set_voltage_tol(arm_reg, volt_old, 0);
  95. return ret;
  96. }
  97. /* scaling down? scale voltage after frequency */
  98. if (new_freq < old_freq) {
  99. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  100. if (ret) {
  101. dev_warn(cpu_dev,
  102. "failed to scale vddarm down: %d\n", ret);
  103. ret = 0;
  104. }
  105. ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
  106. if (ret) {
  107. dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
  108. ret = 0;
  109. }
  110. ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
  111. if (ret) {
  112. dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
  113. ret = 0;
  114. }
  115. }
  116. return 0;
  117. }
  118. static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
  119. {
  120. policy->clk = arm_clk;
  121. return cpufreq_generic_init(policy, freq_table, transition_latency);
  122. }
  123. static struct cpufreq_driver imx6q_cpufreq_driver = {
  124. .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
  125. .verify = cpufreq_generic_frequency_table_verify,
  126. .target_index = imx6q_set_target,
  127. .get = cpufreq_generic_get,
  128. .init = imx6q_cpufreq_init,
  129. .exit = cpufreq_generic_exit,
  130. .name = "imx6q-cpufreq",
  131. .attr = cpufreq_generic_attr,
  132. };
  133. static int imx6q_cpufreq_probe(struct platform_device *pdev)
  134. {
  135. struct device_node *np;
  136. struct dev_pm_opp *opp;
  137. unsigned long min_volt, max_volt;
  138. int num, ret;
  139. const struct property *prop;
  140. const __be32 *val;
  141. u32 nr, i, j;
  142. cpu_dev = get_cpu_device(0);
  143. if (!cpu_dev) {
  144. pr_err("failed to get cpu0 device\n");
  145. return -ENODEV;
  146. }
  147. np = of_node_get(cpu_dev->of_node);
  148. if (!np) {
  149. dev_err(cpu_dev, "failed to find cpu0 node\n");
  150. return -ENOENT;
  151. }
  152. arm_clk = devm_clk_get(cpu_dev, "arm");
  153. pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
  154. pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
  155. step_clk = devm_clk_get(cpu_dev, "step");
  156. pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
  157. if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
  158. IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
  159. dev_err(cpu_dev, "failed to get clocks\n");
  160. ret = -ENOENT;
  161. goto put_node;
  162. }
  163. arm_reg = devm_regulator_get(cpu_dev, "arm");
  164. pu_reg = devm_regulator_get(cpu_dev, "pu");
  165. soc_reg = devm_regulator_get(cpu_dev, "soc");
  166. if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
  167. dev_err(cpu_dev, "failed to get regulators\n");
  168. ret = -ENOENT;
  169. goto put_node;
  170. }
  171. /*
  172. * We expect an OPP table supplied by platform.
  173. * Just, incase the platform did not supply the OPP
  174. * table, it will try to get it.
  175. */
  176. num = dev_pm_opp_get_opp_count(cpu_dev);
  177. if (num < 0) {
  178. ret = of_init_opp_table(cpu_dev);
  179. if (ret < 0) {
  180. dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
  181. goto put_node;
  182. }
  183. num = dev_pm_opp_get_opp_count(cpu_dev);
  184. if (num < 0) {
  185. ret = num;
  186. dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
  187. goto put_node;
  188. }
  189. }
  190. ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
  191. if (ret) {
  192. dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
  193. goto put_node;
  194. }
  195. /* Make imx6_soc_volt array's size same as arm opp number */
  196. imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
  197. if (imx6_soc_volt == NULL) {
  198. ret = -ENOMEM;
  199. goto free_freq_table;
  200. }
  201. prop = of_find_property(np, "fsl,soc-operating-points", NULL);
  202. if (!prop || !prop->value)
  203. goto soc_opp_out;
  204. /*
  205. * Each OPP is a set of tuples consisting of frequency and
  206. * voltage like <freq-kHz vol-uV>.
  207. */
  208. nr = prop->length / sizeof(u32);
  209. if (nr % 2 || (nr / 2) < num)
  210. goto soc_opp_out;
  211. for (j = 0; j < num; j++) {
  212. val = prop->value;
  213. for (i = 0; i < nr / 2; i++) {
  214. unsigned long freq = be32_to_cpup(val++);
  215. unsigned long volt = be32_to_cpup(val++);
  216. if (freq_table[j].frequency == freq) {
  217. imx6_soc_volt[soc_opp_count++] = volt;
  218. break;
  219. }
  220. }
  221. }
  222. soc_opp_out:
  223. /* use fixed soc opp volt if no valid soc opp info found in dtb */
  224. if (soc_opp_count != num) {
  225. dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
  226. for (j = 0; j < num; j++)
  227. imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
  228. if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
  229. imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
  230. }
  231. if (of_property_read_u32(np, "clock-latency", &transition_latency))
  232. transition_latency = CPUFREQ_ETERNAL;
  233. /*
  234. * Calculate the ramp time for max voltage change in the
  235. * VDDSOC and VDDPU regulators.
  236. */
  237. ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
  238. if (ret > 0)
  239. transition_latency += ret * 1000;
  240. ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
  241. if (ret > 0)
  242. transition_latency += ret * 1000;
  243. /*
  244. * OPP is maintained in order of increasing frequency, and
  245. * freq_table initialised from OPP is therefore sorted in the
  246. * same order.
  247. */
  248. rcu_read_lock();
  249. opp = dev_pm_opp_find_freq_exact(cpu_dev,
  250. freq_table[0].frequency * 1000, true);
  251. min_volt = dev_pm_opp_get_voltage(opp);
  252. opp = dev_pm_opp_find_freq_exact(cpu_dev,
  253. freq_table[--num].frequency * 1000, true);
  254. max_volt = dev_pm_opp_get_voltage(opp);
  255. rcu_read_unlock();
  256. ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
  257. if (ret > 0)
  258. transition_latency += ret * 1000;
  259. ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
  260. if (ret) {
  261. dev_err(cpu_dev, "failed register driver: %d\n", ret);
  262. goto free_freq_table;
  263. }
  264. of_node_put(np);
  265. return 0;
  266. free_freq_table:
  267. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  268. put_node:
  269. of_node_put(np);
  270. return ret;
  271. }
  272. static int imx6q_cpufreq_remove(struct platform_device *pdev)
  273. {
  274. cpufreq_unregister_driver(&imx6q_cpufreq_driver);
  275. dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
  276. return 0;
  277. }
  278. static struct platform_driver imx6q_cpufreq_platdrv = {
  279. .driver = {
  280. .name = "imx6q-cpufreq",
  281. .owner = THIS_MODULE,
  282. },
  283. .probe = imx6q_cpufreq_probe,
  284. .remove = imx6q_cpufreq_remove,
  285. };
  286. module_platform_driver(imx6q_cpufreq_platdrv);
  287. MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
  288. MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
  289. MODULE_LICENSE("GPL");