exynos_mct.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579
  1. /* linux/arch/arm/mach-exynos4/mct.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * EXYNOS4 MCT(Multi-Core Timer) support
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/irq.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/cpu.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/delay.h>
  21. #include <linux/percpu.h>
  22. #include <linux/of.h>
  23. #include <linux/of_irq.h>
  24. #include <linux/of_address.h>
  25. #include <linux/clocksource.h>
  26. #include <asm/mach/time.h>
  27. #define EXYNOS4_MCTREG(x) (x)
  28. #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
  29. #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
  30. #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
  31. #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
  32. #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
  33. #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
  34. #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
  35. #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
  36. #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
  37. #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
  38. #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
  39. #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
  40. #define EXYNOS4_MCT_L_MASK (0xffffff00)
  41. #define MCT_L_TCNTB_OFFSET (0x00)
  42. #define MCT_L_ICNTB_OFFSET (0x08)
  43. #define MCT_L_TCON_OFFSET (0x20)
  44. #define MCT_L_INT_CSTAT_OFFSET (0x30)
  45. #define MCT_L_INT_ENB_OFFSET (0x34)
  46. #define MCT_L_WSTAT_OFFSET (0x40)
  47. #define MCT_G_TCON_START (1 << 8)
  48. #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
  49. #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
  50. #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
  51. #define MCT_L_TCON_INT_START (1 << 1)
  52. #define MCT_L_TCON_TIMER_START (1 << 0)
  53. #define TICK_BASE_CNT 1
  54. enum {
  55. MCT_INT_SPI,
  56. MCT_INT_PPI
  57. };
  58. enum {
  59. MCT_G0_IRQ,
  60. MCT_G1_IRQ,
  61. MCT_G2_IRQ,
  62. MCT_G3_IRQ,
  63. MCT_L0_IRQ,
  64. MCT_L1_IRQ,
  65. MCT_L2_IRQ,
  66. MCT_L3_IRQ,
  67. MCT_L4_IRQ,
  68. MCT_L5_IRQ,
  69. MCT_L6_IRQ,
  70. MCT_L7_IRQ,
  71. MCT_NR_IRQS,
  72. };
  73. static void __iomem *reg_base;
  74. static unsigned long clk_rate;
  75. static unsigned int mct_int_type;
  76. static int mct_irqs[MCT_NR_IRQS];
  77. struct mct_clock_event_device {
  78. struct clock_event_device evt;
  79. unsigned long base;
  80. char name[10];
  81. };
  82. static void exynos4_mct_write(unsigned int value, unsigned long offset)
  83. {
  84. unsigned long stat_addr;
  85. u32 mask;
  86. u32 i;
  87. __raw_writel(value, reg_base + offset);
  88. if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
  89. stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
  90. switch (offset & EXYNOS4_MCT_L_MASK) {
  91. case MCT_L_TCON_OFFSET:
  92. mask = 1 << 3; /* L_TCON write status */
  93. break;
  94. case MCT_L_ICNTB_OFFSET:
  95. mask = 1 << 1; /* L_ICNTB write status */
  96. break;
  97. case MCT_L_TCNTB_OFFSET:
  98. mask = 1 << 0; /* L_TCNTB write status */
  99. break;
  100. default:
  101. return;
  102. }
  103. } else {
  104. switch (offset) {
  105. case EXYNOS4_MCT_G_TCON:
  106. stat_addr = EXYNOS4_MCT_G_WSTAT;
  107. mask = 1 << 16; /* G_TCON write status */
  108. break;
  109. case EXYNOS4_MCT_G_COMP0_L:
  110. stat_addr = EXYNOS4_MCT_G_WSTAT;
  111. mask = 1 << 0; /* G_COMP0_L write status */
  112. break;
  113. case EXYNOS4_MCT_G_COMP0_U:
  114. stat_addr = EXYNOS4_MCT_G_WSTAT;
  115. mask = 1 << 1; /* G_COMP0_U write status */
  116. break;
  117. case EXYNOS4_MCT_G_COMP0_ADD_INCR:
  118. stat_addr = EXYNOS4_MCT_G_WSTAT;
  119. mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
  120. break;
  121. case EXYNOS4_MCT_G_CNT_L:
  122. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  123. mask = 1 << 0; /* G_CNT_L write status */
  124. break;
  125. case EXYNOS4_MCT_G_CNT_U:
  126. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  127. mask = 1 << 1; /* G_CNT_U write status */
  128. break;
  129. default:
  130. return;
  131. }
  132. }
  133. /* Wait maximum 1 ms until written values are applied */
  134. for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
  135. if (__raw_readl(reg_base + stat_addr) & mask) {
  136. __raw_writel(mask, reg_base + stat_addr);
  137. return;
  138. }
  139. panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
  140. }
  141. /* Clocksource handling */
  142. static void exynos4_mct_frc_start(u32 hi, u32 lo)
  143. {
  144. u32 reg;
  145. exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
  146. exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
  147. reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  148. reg |= MCT_G_TCON_START;
  149. exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
  150. }
  151. static cycle_t exynos4_frc_read(struct clocksource *cs)
  152. {
  153. unsigned int lo, hi;
  154. u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
  155. do {
  156. hi = hi2;
  157. lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
  158. hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
  159. } while (hi != hi2);
  160. return ((cycle_t)hi << 32) | lo;
  161. }
  162. static void exynos4_frc_resume(struct clocksource *cs)
  163. {
  164. exynos4_mct_frc_start(0, 0);
  165. }
  166. struct clocksource mct_frc = {
  167. .name = "mct-frc",
  168. .rating = 400,
  169. .read = exynos4_frc_read,
  170. .mask = CLOCKSOURCE_MASK(64),
  171. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  172. .resume = exynos4_frc_resume,
  173. };
  174. static void __init exynos4_clocksource_init(void)
  175. {
  176. exynos4_mct_frc_start(0, 0);
  177. if (clocksource_register_hz(&mct_frc, clk_rate))
  178. panic("%s: can't register clocksource\n", mct_frc.name);
  179. }
  180. static void exynos4_mct_comp0_stop(void)
  181. {
  182. unsigned int tcon;
  183. tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  184. tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
  185. exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
  186. exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
  187. }
  188. static void exynos4_mct_comp0_start(enum clock_event_mode mode,
  189. unsigned long cycles)
  190. {
  191. unsigned int tcon;
  192. cycle_t comp_cycle;
  193. tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  194. if (mode == CLOCK_EVT_MODE_PERIODIC) {
  195. tcon |= MCT_G_TCON_COMP0_AUTO_INC;
  196. exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
  197. }
  198. comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
  199. exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
  200. exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
  201. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
  202. tcon |= MCT_G_TCON_COMP0_ENABLE;
  203. exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
  204. }
  205. static int exynos4_comp_set_next_event(unsigned long cycles,
  206. struct clock_event_device *evt)
  207. {
  208. exynos4_mct_comp0_start(evt->mode, cycles);
  209. return 0;
  210. }
  211. static void exynos4_comp_set_mode(enum clock_event_mode mode,
  212. struct clock_event_device *evt)
  213. {
  214. unsigned long cycles_per_jiffy;
  215. exynos4_mct_comp0_stop();
  216. switch (mode) {
  217. case CLOCK_EVT_MODE_PERIODIC:
  218. cycles_per_jiffy =
  219. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  220. exynos4_mct_comp0_start(mode, cycles_per_jiffy);
  221. break;
  222. case CLOCK_EVT_MODE_ONESHOT:
  223. case CLOCK_EVT_MODE_UNUSED:
  224. case CLOCK_EVT_MODE_SHUTDOWN:
  225. case CLOCK_EVT_MODE_RESUME:
  226. break;
  227. }
  228. }
  229. static struct clock_event_device mct_comp_device = {
  230. .name = "mct-comp",
  231. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  232. .rating = 250,
  233. .set_next_event = exynos4_comp_set_next_event,
  234. .set_mode = exynos4_comp_set_mode,
  235. };
  236. static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
  237. {
  238. struct clock_event_device *evt = dev_id;
  239. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
  240. evt->event_handler(evt);
  241. return IRQ_HANDLED;
  242. }
  243. static struct irqaction mct_comp_event_irq = {
  244. .name = "mct_comp_irq",
  245. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  246. .handler = exynos4_mct_comp_isr,
  247. .dev_id = &mct_comp_device,
  248. };
  249. static void exynos4_clockevent_init(void)
  250. {
  251. mct_comp_device.cpumask = cpumask_of(0);
  252. clockevents_config_and_register(&mct_comp_device, clk_rate,
  253. 0xf, 0xffffffff);
  254. setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
  255. }
  256. static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
  257. /* Clock event handling */
  258. static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
  259. {
  260. unsigned long tmp;
  261. unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
  262. unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
  263. tmp = __raw_readl(reg_base + offset);
  264. if (tmp & mask) {
  265. tmp &= ~mask;
  266. exynos4_mct_write(tmp, offset);
  267. }
  268. }
  269. static void exynos4_mct_tick_start(unsigned long cycles,
  270. struct mct_clock_event_device *mevt)
  271. {
  272. unsigned long tmp;
  273. exynos4_mct_tick_stop(mevt);
  274. tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
  275. /* update interrupt count buffer */
  276. exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
  277. /* enable MCT tick interrupt */
  278. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
  279. tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
  280. tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
  281. MCT_L_TCON_INTERVAL_MODE;
  282. exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
  283. }
  284. static int exynos4_tick_set_next_event(unsigned long cycles,
  285. struct clock_event_device *evt)
  286. {
  287. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  288. exynos4_mct_tick_start(cycles, mevt);
  289. return 0;
  290. }
  291. static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
  292. struct clock_event_device *evt)
  293. {
  294. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  295. unsigned long cycles_per_jiffy;
  296. exynos4_mct_tick_stop(mevt);
  297. switch (mode) {
  298. case CLOCK_EVT_MODE_PERIODIC:
  299. cycles_per_jiffy =
  300. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  301. exynos4_mct_tick_start(cycles_per_jiffy, mevt);
  302. break;
  303. case CLOCK_EVT_MODE_ONESHOT:
  304. case CLOCK_EVT_MODE_UNUSED:
  305. case CLOCK_EVT_MODE_SHUTDOWN:
  306. case CLOCK_EVT_MODE_RESUME:
  307. break;
  308. }
  309. }
  310. static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
  311. {
  312. struct clock_event_device *evt = &mevt->evt;
  313. /*
  314. * This is for supporting oneshot mode.
  315. * Mct would generate interrupt periodically
  316. * without explicit stopping.
  317. */
  318. if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
  319. exynos4_mct_tick_stop(mevt);
  320. /* Clear the MCT tick interrupt */
  321. if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
  322. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
  323. return 1;
  324. } else {
  325. return 0;
  326. }
  327. }
  328. static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
  329. {
  330. struct mct_clock_event_device *mevt = dev_id;
  331. struct clock_event_device *evt = &mevt->evt;
  332. exynos4_mct_tick_clear(mevt);
  333. evt->event_handler(evt);
  334. return IRQ_HANDLED;
  335. }
  336. static int exynos4_local_timer_setup(struct clock_event_device *evt)
  337. {
  338. struct mct_clock_event_device *mevt;
  339. unsigned int cpu = smp_processor_id();
  340. mevt = container_of(evt, struct mct_clock_event_device, evt);
  341. mevt->base = EXYNOS4_MCT_L_BASE(cpu);
  342. sprintf(mevt->name, "mct_tick%d", cpu);
  343. evt->name = mevt->name;
  344. evt->cpumask = cpumask_of(cpu);
  345. evt->set_next_event = exynos4_tick_set_next_event;
  346. evt->set_mode = exynos4_tick_set_mode;
  347. evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  348. evt->rating = 450;
  349. clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
  350. 0xf, 0x7fffffff);
  351. exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
  352. if (mct_int_type == MCT_INT_SPI) {
  353. evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
  354. if (request_irq(evt->irq, exynos4_mct_tick_isr,
  355. IRQF_TIMER | IRQF_NOBALANCING,
  356. evt->name, mevt)) {
  357. pr_err("exynos-mct: cannot register IRQ %d\n",
  358. evt->irq);
  359. return -EIO;
  360. }
  361. } else {
  362. enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
  363. }
  364. return 0;
  365. }
  366. static void exynos4_local_timer_stop(struct clock_event_device *evt)
  367. {
  368. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  369. if (mct_int_type == MCT_INT_SPI)
  370. free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
  371. else
  372. disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
  373. }
  374. static int exynos4_mct_cpu_notify(struct notifier_block *self,
  375. unsigned long action, void *hcpu)
  376. {
  377. struct mct_clock_event_device *mevt;
  378. unsigned int cpu;
  379. /*
  380. * Grab cpu pointer in each case to avoid spurious
  381. * preemptible warnings
  382. */
  383. switch (action & ~CPU_TASKS_FROZEN) {
  384. case CPU_STARTING:
  385. mevt = this_cpu_ptr(&percpu_mct_tick);
  386. exynos4_local_timer_setup(&mevt->evt);
  387. break;
  388. case CPU_ONLINE:
  389. cpu = (unsigned long)hcpu;
  390. if (mct_int_type == MCT_INT_SPI)
  391. irq_set_affinity(mct_irqs[MCT_L0_IRQ + cpu],
  392. cpumask_of(cpu));
  393. break;
  394. case CPU_DYING:
  395. mevt = this_cpu_ptr(&percpu_mct_tick);
  396. exynos4_local_timer_stop(&mevt->evt);
  397. break;
  398. }
  399. return NOTIFY_OK;
  400. }
  401. static struct notifier_block exynos4_mct_cpu_nb = {
  402. .notifier_call = exynos4_mct_cpu_notify,
  403. };
  404. static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
  405. {
  406. int err;
  407. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  408. struct clk *mct_clk, *tick_clk;
  409. tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
  410. clk_get(NULL, "fin_pll");
  411. if (IS_ERR(tick_clk))
  412. panic("%s: unable to determine tick clock rate\n", __func__);
  413. clk_rate = clk_get_rate(tick_clk);
  414. mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
  415. if (IS_ERR(mct_clk))
  416. panic("%s: unable to retrieve mct clock instance\n", __func__);
  417. clk_prepare_enable(mct_clk);
  418. reg_base = base;
  419. if (!reg_base)
  420. panic("%s: unable to ioremap mct address space\n", __func__);
  421. if (mct_int_type == MCT_INT_PPI) {
  422. err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
  423. exynos4_mct_tick_isr, "MCT",
  424. &percpu_mct_tick);
  425. WARN(err, "MCT: can't request IRQ %d (%d)\n",
  426. mct_irqs[MCT_L0_IRQ], err);
  427. } else {
  428. irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
  429. }
  430. err = register_cpu_notifier(&exynos4_mct_cpu_nb);
  431. if (err)
  432. goto out_irq;
  433. /* Immediately configure the timer on the boot CPU */
  434. exynos4_local_timer_setup(&mevt->evt);
  435. return;
  436. out_irq:
  437. free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
  438. }
  439. void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
  440. {
  441. mct_irqs[MCT_G0_IRQ] = irq_g0;
  442. mct_irqs[MCT_L0_IRQ] = irq_l0;
  443. mct_irqs[MCT_L1_IRQ] = irq_l1;
  444. mct_int_type = MCT_INT_SPI;
  445. exynos4_timer_resources(NULL, base);
  446. exynos4_clocksource_init();
  447. exynos4_clockevent_init();
  448. }
  449. static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
  450. {
  451. u32 nr_irqs, i;
  452. mct_int_type = int_type;
  453. /* This driver uses only one global timer interrupt */
  454. mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
  455. /*
  456. * Find out the number of local irqs specified. The local
  457. * timer irqs are specified after the four global timer
  458. * irqs are specified.
  459. */
  460. #ifdef CONFIG_OF
  461. nr_irqs = of_irq_count(np);
  462. #else
  463. nr_irqs = 0;
  464. #endif
  465. for (i = MCT_L0_IRQ; i < nr_irqs; i++)
  466. mct_irqs[i] = irq_of_parse_and_map(np, i);
  467. exynos4_timer_resources(np, of_iomap(np, 0));
  468. exynos4_clocksource_init();
  469. exynos4_clockevent_init();
  470. }
  471. static void __init mct_init_spi(struct device_node *np)
  472. {
  473. return mct_init_dt(np, MCT_INT_SPI);
  474. }
  475. static void __init mct_init_ppi(struct device_node *np)
  476. {
  477. return mct_init_dt(np, MCT_INT_PPI);
  478. }
  479. CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
  480. CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);