power.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860
  1. /*
  2. * acpi_power.c - ACPI Bus Power Management ($Revision: 39 $)
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. *
  7. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or (at
  12. * your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along
  20. * with this program; if not, write to the Free Software Foundation, Inc.,
  21. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  22. *
  23. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  24. */
  25. /*
  26. * ACPI power-managed devices may be controlled in two ways:
  27. * 1. via "Device Specific (D-State) Control"
  28. * 2. via "Power Resource Control".
  29. * This module is used to manage devices relying on Power Resource Control.
  30. *
  31. * An ACPI "power resource object" describes a software controllable power
  32. * plane, clock plane, or other resource used by a power managed device.
  33. * A device may rely on multiple power resources, and a power resource
  34. * may be shared by multiple devices.
  35. */
  36. #include <linux/kernel.h>
  37. #include <linux/module.h>
  38. #include <linux/init.h>
  39. #include <linux/types.h>
  40. #include <linux/slab.h>
  41. #include <linux/pm_runtime.h>
  42. #include <linux/sysfs.h>
  43. #include <linux/acpi.h>
  44. #include "sleep.h"
  45. #include "internal.h"
  46. #define PREFIX "ACPI: "
  47. #define _COMPONENT ACPI_POWER_COMPONENT
  48. ACPI_MODULE_NAME("power");
  49. #define ACPI_POWER_CLASS "power_resource"
  50. #define ACPI_POWER_DEVICE_NAME "Power Resource"
  51. #define ACPI_POWER_FILE_INFO "info"
  52. #define ACPI_POWER_FILE_STATUS "state"
  53. #define ACPI_POWER_RESOURCE_STATE_OFF 0x00
  54. #define ACPI_POWER_RESOURCE_STATE_ON 0x01
  55. #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
  56. struct acpi_power_resource {
  57. struct acpi_device device;
  58. struct list_head list_node;
  59. char *name;
  60. u32 system_level;
  61. u32 order;
  62. unsigned int ref_count;
  63. bool wakeup_enabled;
  64. struct mutex resource_lock;
  65. };
  66. struct acpi_power_resource_entry {
  67. struct list_head node;
  68. struct acpi_power_resource *resource;
  69. };
  70. static LIST_HEAD(acpi_power_resource_list);
  71. static DEFINE_MUTEX(power_resource_list_lock);
  72. /* --------------------------------------------------------------------------
  73. Power Resource Management
  74. -------------------------------------------------------------------------- */
  75. static inline
  76. struct acpi_power_resource *to_power_resource(struct acpi_device *device)
  77. {
  78. return container_of(device, struct acpi_power_resource, device);
  79. }
  80. static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
  81. {
  82. struct acpi_device *device;
  83. if (acpi_bus_get_device(handle, &device))
  84. return NULL;
  85. return to_power_resource(device);
  86. }
  87. static int acpi_power_resources_list_add(acpi_handle handle,
  88. struct list_head *list)
  89. {
  90. struct acpi_power_resource *resource = acpi_power_get_context(handle);
  91. struct acpi_power_resource_entry *entry;
  92. if (!resource || !list)
  93. return -EINVAL;
  94. entry = kzalloc(sizeof(*entry), GFP_KERNEL);
  95. if (!entry)
  96. return -ENOMEM;
  97. entry->resource = resource;
  98. if (!list_empty(list)) {
  99. struct acpi_power_resource_entry *e;
  100. list_for_each_entry(e, list, node)
  101. if (e->resource->order > resource->order) {
  102. list_add_tail(&entry->node, &e->node);
  103. return 0;
  104. }
  105. }
  106. list_add_tail(&entry->node, list);
  107. return 0;
  108. }
  109. void acpi_power_resources_list_free(struct list_head *list)
  110. {
  111. struct acpi_power_resource_entry *entry, *e;
  112. list_for_each_entry_safe(entry, e, list, node) {
  113. list_del(&entry->node);
  114. kfree(entry);
  115. }
  116. }
  117. int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
  118. struct list_head *list)
  119. {
  120. unsigned int i;
  121. int err = 0;
  122. for (i = start; i < package->package.count; i++) {
  123. union acpi_object *element = &package->package.elements[i];
  124. acpi_handle rhandle;
  125. if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
  126. err = -ENODATA;
  127. break;
  128. }
  129. rhandle = element->reference.handle;
  130. if (!rhandle) {
  131. err = -ENODEV;
  132. break;
  133. }
  134. err = acpi_add_power_resource(rhandle);
  135. if (err)
  136. break;
  137. err = acpi_power_resources_list_add(rhandle, list);
  138. if (err)
  139. break;
  140. }
  141. if (err)
  142. acpi_power_resources_list_free(list);
  143. return err;
  144. }
  145. static int acpi_power_get_state(acpi_handle handle, int *state)
  146. {
  147. acpi_status status = AE_OK;
  148. unsigned long long sta = 0;
  149. char node_name[5];
  150. struct acpi_buffer buffer = { sizeof(node_name), node_name };
  151. if (!handle || !state)
  152. return -EINVAL;
  153. status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
  154. if (ACPI_FAILURE(status))
  155. return -ENODEV;
  156. *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
  157. ACPI_POWER_RESOURCE_STATE_OFF;
  158. acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
  159. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
  160. node_name,
  161. *state ? "on" : "off"));
  162. return 0;
  163. }
  164. static int acpi_power_get_list_state(struct list_head *list, int *state)
  165. {
  166. struct acpi_power_resource_entry *entry;
  167. int cur_state;
  168. if (!list || !state)
  169. return -EINVAL;
  170. /* The state of the list is 'on' IFF all resources are 'on'. */
  171. list_for_each_entry(entry, list, node) {
  172. struct acpi_power_resource *resource = entry->resource;
  173. acpi_handle handle = resource->device.handle;
  174. int result;
  175. mutex_lock(&resource->resource_lock);
  176. result = acpi_power_get_state(handle, &cur_state);
  177. mutex_unlock(&resource->resource_lock);
  178. if (result)
  179. return result;
  180. if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
  181. break;
  182. }
  183. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
  184. cur_state ? "on" : "off"));
  185. *state = cur_state;
  186. return 0;
  187. }
  188. static int __acpi_power_on(struct acpi_power_resource *resource)
  189. {
  190. acpi_status status = AE_OK;
  191. status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
  192. if (ACPI_FAILURE(status))
  193. return -ENODEV;
  194. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
  195. resource->name));
  196. return 0;
  197. }
  198. static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
  199. {
  200. int result = 0;
  201. if (resource->ref_count++) {
  202. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  203. "Power resource [%s] already on\n",
  204. resource->name));
  205. } else {
  206. result = __acpi_power_on(resource);
  207. if (result)
  208. resource->ref_count--;
  209. }
  210. return result;
  211. }
  212. static int acpi_power_on(struct acpi_power_resource *resource)
  213. {
  214. int result;
  215. mutex_lock(&resource->resource_lock);
  216. result = acpi_power_on_unlocked(resource);
  217. mutex_unlock(&resource->resource_lock);
  218. return result;
  219. }
  220. static int __acpi_power_off(struct acpi_power_resource *resource)
  221. {
  222. acpi_status status;
  223. status = acpi_evaluate_object(resource->device.handle, "_OFF",
  224. NULL, NULL);
  225. if (ACPI_FAILURE(status))
  226. return -ENODEV;
  227. ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
  228. resource->name));
  229. return 0;
  230. }
  231. static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
  232. {
  233. int result = 0;
  234. if (!resource->ref_count) {
  235. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  236. "Power resource [%s] already off\n",
  237. resource->name));
  238. return 0;
  239. }
  240. if (--resource->ref_count) {
  241. ACPI_DEBUG_PRINT((ACPI_DB_INFO,
  242. "Power resource [%s] still in use\n",
  243. resource->name));
  244. } else {
  245. result = __acpi_power_off(resource);
  246. if (result)
  247. resource->ref_count++;
  248. }
  249. return result;
  250. }
  251. static int acpi_power_off(struct acpi_power_resource *resource)
  252. {
  253. int result;
  254. mutex_lock(&resource->resource_lock);
  255. result = acpi_power_off_unlocked(resource);
  256. mutex_unlock(&resource->resource_lock);
  257. return result;
  258. }
  259. static int acpi_power_off_list(struct list_head *list)
  260. {
  261. struct acpi_power_resource_entry *entry;
  262. int result = 0;
  263. list_for_each_entry_reverse(entry, list, node) {
  264. result = acpi_power_off(entry->resource);
  265. if (result)
  266. goto err;
  267. }
  268. return 0;
  269. err:
  270. list_for_each_entry_continue(entry, list, node)
  271. acpi_power_on(entry->resource);
  272. return result;
  273. }
  274. static int acpi_power_on_list(struct list_head *list)
  275. {
  276. struct acpi_power_resource_entry *entry;
  277. int result = 0;
  278. list_for_each_entry(entry, list, node) {
  279. result = acpi_power_on(entry->resource);
  280. if (result)
  281. goto err;
  282. }
  283. return 0;
  284. err:
  285. list_for_each_entry_continue_reverse(entry, list, node)
  286. acpi_power_off(entry->resource);
  287. return result;
  288. }
  289. static struct attribute *attrs[] = {
  290. NULL,
  291. };
  292. static struct attribute_group attr_groups[] = {
  293. [ACPI_STATE_D0] = {
  294. .name = "power_resources_D0",
  295. .attrs = attrs,
  296. },
  297. [ACPI_STATE_D1] = {
  298. .name = "power_resources_D1",
  299. .attrs = attrs,
  300. },
  301. [ACPI_STATE_D2] = {
  302. .name = "power_resources_D2",
  303. .attrs = attrs,
  304. },
  305. [ACPI_STATE_D3_HOT] = {
  306. .name = "power_resources_D3hot",
  307. .attrs = attrs,
  308. },
  309. };
  310. static struct attribute_group wakeup_attr_group = {
  311. .name = "power_resources_wakeup",
  312. .attrs = attrs,
  313. };
  314. static void acpi_power_hide_list(struct acpi_device *adev,
  315. struct list_head *resources,
  316. struct attribute_group *attr_group)
  317. {
  318. struct acpi_power_resource_entry *entry;
  319. if (list_empty(resources))
  320. return;
  321. list_for_each_entry_reverse(entry, resources, node) {
  322. struct acpi_device *res_dev = &entry->resource->device;
  323. sysfs_remove_link_from_group(&adev->dev.kobj,
  324. attr_group->name,
  325. dev_name(&res_dev->dev));
  326. }
  327. sysfs_remove_group(&adev->dev.kobj, attr_group);
  328. }
  329. static void acpi_power_expose_list(struct acpi_device *adev,
  330. struct list_head *resources,
  331. struct attribute_group *attr_group)
  332. {
  333. struct acpi_power_resource_entry *entry;
  334. int ret;
  335. if (list_empty(resources))
  336. return;
  337. ret = sysfs_create_group(&adev->dev.kobj, attr_group);
  338. if (ret)
  339. return;
  340. list_for_each_entry(entry, resources, node) {
  341. struct acpi_device *res_dev = &entry->resource->device;
  342. ret = sysfs_add_link_to_group(&adev->dev.kobj,
  343. attr_group->name,
  344. &res_dev->dev.kobj,
  345. dev_name(&res_dev->dev));
  346. if (ret) {
  347. acpi_power_hide_list(adev, resources, attr_group);
  348. break;
  349. }
  350. }
  351. }
  352. static void acpi_power_expose_hide(struct acpi_device *adev,
  353. struct list_head *resources,
  354. struct attribute_group *attr_group,
  355. bool expose)
  356. {
  357. if (expose)
  358. acpi_power_expose_list(adev, resources, attr_group);
  359. else
  360. acpi_power_hide_list(adev, resources, attr_group);
  361. }
  362. void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
  363. {
  364. int state;
  365. if (adev->wakeup.flags.valid)
  366. acpi_power_expose_hide(adev, &adev->wakeup.resources,
  367. &wakeup_attr_group, add);
  368. if (!adev->power.flags.power_resources)
  369. return;
  370. for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
  371. acpi_power_expose_hide(adev,
  372. &adev->power.states[state].resources,
  373. &attr_groups[state], add);
  374. }
  375. int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
  376. {
  377. struct acpi_power_resource_entry *entry;
  378. int system_level = 5;
  379. list_for_each_entry(entry, list, node) {
  380. struct acpi_power_resource *resource = entry->resource;
  381. acpi_handle handle = resource->device.handle;
  382. int result;
  383. int state;
  384. mutex_lock(&resource->resource_lock);
  385. result = acpi_power_get_state(handle, &state);
  386. if (result) {
  387. mutex_unlock(&resource->resource_lock);
  388. return result;
  389. }
  390. if (state == ACPI_POWER_RESOURCE_STATE_ON) {
  391. resource->ref_count++;
  392. resource->wakeup_enabled = true;
  393. }
  394. if (system_level > resource->system_level)
  395. system_level = resource->system_level;
  396. mutex_unlock(&resource->resource_lock);
  397. }
  398. *system_level_p = system_level;
  399. return 0;
  400. }
  401. /* --------------------------------------------------------------------------
  402. Device Power Management
  403. -------------------------------------------------------------------------- */
  404. /**
  405. * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
  406. * ACPI 3.0) _PSW (Power State Wake)
  407. * @dev: Device to handle.
  408. * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
  409. * @sleep_state: Target sleep state of the system.
  410. * @dev_state: Target power state of the device.
  411. *
  412. * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
  413. * State Wake) for the device, if present. On failure reset the device's
  414. * wakeup.flags.valid flag.
  415. *
  416. * RETURN VALUE:
  417. * 0 if either _DSW or _PSW has been successfully executed
  418. * 0 if neither _DSW nor _PSW has been found
  419. * -ENODEV if the execution of either _DSW or _PSW has failed
  420. */
  421. int acpi_device_sleep_wake(struct acpi_device *dev,
  422. int enable, int sleep_state, int dev_state)
  423. {
  424. union acpi_object in_arg[3];
  425. struct acpi_object_list arg_list = { 3, in_arg };
  426. acpi_status status = AE_OK;
  427. /*
  428. * Try to execute _DSW first.
  429. *
  430. * Three agruments are needed for the _DSW object:
  431. * Argument 0: enable/disable the wake capabilities
  432. * Argument 1: target system state
  433. * Argument 2: target device state
  434. * When _DSW object is called to disable the wake capabilities, maybe
  435. * the first argument is filled. The values of the other two agruments
  436. * are meaningless.
  437. */
  438. in_arg[0].type = ACPI_TYPE_INTEGER;
  439. in_arg[0].integer.value = enable;
  440. in_arg[1].type = ACPI_TYPE_INTEGER;
  441. in_arg[1].integer.value = sleep_state;
  442. in_arg[2].type = ACPI_TYPE_INTEGER;
  443. in_arg[2].integer.value = dev_state;
  444. status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
  445. if (ACPI_SUCCESS(status)) {
  446. return 0;
  447. } else if (status != AE_NOT_FOUND) {
  448. printk(KERN_ERR PREFIX "_DSW execution failed\n");
  449. dev->wakeup.flags.valid = 0;
  450. return -ENODEV;
  451. }
  452. /* Execute _PSW */
  453. status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
  454. if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
  455. printk(KERN_ERR PREFIX "_PSW execution failed\n");
  456. dev->wakeup.flags.valid = 0;
  457. return -ENODEV;
  458. }
  459. return 0;
  460. }
  461. /*
  462. * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
  463. * 1. Power on the power resources required for the wakeup device
  464. * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
  465. * State Wake) for the device, if present
  466. */
  467. int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
  468. {
  469. struct acpi_power_resource_entry *entry;
  470. int err = 0;
  471. if (!dev || !dev->wakeup.flags.valid)
  472. return -EINVAL;
  473. mutex_lock(&acpi_device_lock);
  474. if (dev->wakeup.prepare_count++)
  475. goto out;
  476. list_for_each_entry(entry, &dev->wakeup.resources, node) {
  477. struct acpi_power_resource *resource = entry->resource;
  478. mutex_lock(&resource->resource_lock);
  479. if (!resource->wakeup_enabled) {
  480. err = acpi_power_on_unlocked(resource);
  481. if (!err)
  482. resource->wakeup_enabled = true;
  483. }
  484. mutex_unlock(&resource->resource_lock);
  485. if (err) {
  486. dev_err(&dev->dev,
  487. "Cannot turn wakeup power resources on\n");
  488. dev->wakeup.flags.valid = 0;
  489. goto out;
  490. }
  491. }
  492. /*
  493. * Passing 3 as the third argument below means the device may be
  494. * put into arbitrary power state afterward.
  495. */
  496. err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
  497. if (err)
  498. dev->wakeup.prepare_count = 0;
  499. out:
  500. mutex_unlock(&acpi_device_lock);
  501. return err;
  502. }
  503. /*
  504. * Shutdown a wakeup device, counterpart of above method
  505. * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
  506. * State Wake) for the device, if present
  507. * 2. Shutdown down the power resources
  508. */
  509. int acpi_disable_wakeup_device_power(struct acpi_device *dev)
  510. {
  511. struct acpi_power_resource_entry *entry;
  512. int err = 0;
  513. if (!dev || !dev->wakeup.flags.valid)
  514. return -EINVAL;
  515. mutex_lock(&acpi_device_lock);
  516. if (--dev->wakeup.prepare_count > 0)
  517. goto out;
  518. /*
  519. * Executing the code below even if prepare_count is already zero when
  520. * the function is called may be useful, for example for initialisation.
  521. */
  522. if (dev->wakeup.prepare_count < 0)
  523. dev->wakeup.prepare_count = 0;
  524. err = acpi_device_sleep_wake(dev, 0, 0, 0);
  525. if (err)
  526. goto out;
  527. list_for_each_entry(entry, &dev->wakeup.resources, node) {
  528. struct acpi_power_resource *resource = entry->resource;
  529. mutex_lock(&resource->resource_lock);
  530. if (resource->wakeup_enabled) {
  531. err = acpi_power_off_unlocked(resource);
  532. if (!err)
  533. resource->wakeup_enabled = false;
  534. }
  535. mutex_unlock(&resource->resource_lock);
  536. if (err) {
  537. dev_err(&dev->dev,
  538. "Cannot turn wakeup power resources off\n");
  539. dev->wakeup.flags.valid = 0;
  540. break;
  541. }
  542. }
  543. out:
  544. mutex_unlock(&acpi_device_lock);
  545. return err;
  546. }
  547. int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
  548. {
  549. int result = 0;
  550. int list_state = 0;
  551. int i = 0;
  552. if (!device || !state)
  553. return -EINVAL;
  554. /*
  555. * We know a device's inferred power state when all the resources
  556. * required for a given D-state are 'on'.
  557. */
  558. for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
  559. struct list_head *list = &device->power.states[i].resources;
  560. if (list_empty(list))
  561. continue;
  562. result = acpi_power_get_list_state(list, &list_state);
  563. if (result)
  564. return result;
  565. if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
  566. *state = i;
  567. return 0;
  568. }
  569. }
  570. *state = ACPI_STATE_D3_COLD;
  571. return 0;
  572. }
  573. int acpi_power_on_resources(struct acpi_device *device, int state)
  574. {
  575. if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
  576. return -EINVAL;
  577. return acpi_power_on_list(&device->power.states[state].resources);
  578. }
  579. int acpi_power_transition(struct acpi_device *device, int state)
  580. {
  581. int result = 0;
  582. if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
  583. return -EINVAL;
  584. if (device->power.state == state || !device->flags.power_manageable)
  585. return 0;
  586. if ((device->power.state < ACPI_STATE_D0)
  587. || (device->power.state > ACPI_STATE_D3_COLD))
  588. return -ENODEV;
  589. /* TBD: Resources must be ordered. */
  590. /*
  591. * First we reference all power resources required in the target list
  592. * (e.g. so the device doesn't lose power while transitioning). Then,
  593. * we dereference all power resources used in the current list.
  594. */
  595. if (state < ACPI_STATE_D3_COLD)
  596. result = acpi_power_on_list(
  597. &device->power.states[state].resources);
  598. if (!result && device->power.state < ACPI_STATE_D3_COLD)
  599. acpi_power_off_list(
  600. &device->power.states[device->power.state].resources);
  601. /* We shouldn't change the state unless the above operations succeed. */
  602. device->power.state = result ? ACPI_STATE_UNKNOWN : state;
  603. return result;
  604. }
  605. static void acpi_release_power_resource(struct device *dev)
  606. {
  607. struct acpi_device *device = to_acpi_device(dev);
  608. struct acpi_power_resource *resource;
  609. resource = container_of(device, struct acpi_power_resource, device);
  610. mutex_lock(&power_resource_list_lock);
  611. list_del(&resource->list_node);
  612. mutex_unlock(&power_resource_list_lock);
  613. acpi_free_pnp_ids(&device->pnp);
  614. kfree(resource);
  615. }
  616. static ssize_t acpi_power_in_use_show(struct device *dev,
  617. struct device_attribute *attr,
  618. char *buf) {
  619. struct acpi_power_resource *resource;
  620. resource = to_power_resource(to_acpi_device(dev));
  621. return sprintf(buf, "%u\n", !!resource->ref_count);
  622. }
  623. static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL);
  624. static void acpi_power_sysfs_remove(struct acpi_device *device)
  625. {
  626. device_remove_file(&device->dev, &dev_attr_resource_in_use);
  627. }
  628. int acpi_add_power_resource(acpi_handle handle)
  629. {
  630. struct acpi_power_resource *resource;
  631. struct acpi_device *device = NULL;
  632. union acpi_object acpi_object;
  633. struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
  634. acpi_status status;
  635. int state, result = -ENODEV;
  636. acpi_bus_get_device(handle, &device);
  637. if (device)
  638. return 0;
  639. resource = kzalloc(sizeof(*resource), GFP_KERNEL);
  640. if (!resource)
  641. return -ENOMEM;
  642. device = &resource->device;
  643. acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
  644. ACPI_STA_DEFAULT);
  645. mutex_init(&resource->resource_lock);
  646. INIT_LIST_HEAD(&resource->list_node);
  647. resource->name = device->pnp.bus_id;
  648. strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
  649. strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
  650. device->power.state = ACPI_STATE_UNKNOWN;
  651. /* Evalute the object to get the system level and resource order. */
  652. status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
  653. if (ACPI_FAILURE(status))
  654. goto err;
  655. resource->system_level = acpi_object.power_resource.system_level;
  656. resource->order = acpi_object.power_resource.resource_order;
  657. result = acpi_power_get_state(handle, &state);
  658. if (result)
  659. goto err;
  660. printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
  661. acpi_device_bid(device), state ? "on" : "off");
  662. device->flags.match_driver = true;
  663. result = acpi_device_add(device, acpi_release_power_resource);
  664. if (result)
  665. goto err;
  666. if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
  667. device->remove = acpi_power_sysfs_remove;
  668. mutex_lock(&power_resource_list_lock);
  669. list_add(&resource->list_node, &acpi_power_resource_list);
  670. mutex_unlock(&power_resource_list_lock);
  671. acpi_device_add_finalize(device);
  672. return 0;
  673. err:
  674. acpi_release_power_resource(&device->dev);
  675. return result;
  676. }
  677. #ifdef CONFIG_ACPI_SLEEP
  678. void acpi_resume_power_resources(void)
  679. {
  680. struct acpi_power_resource *resource;
  681. mutex_lock(&power_resource_list_lock);
  682. list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
  683. int result, state;
  684. mutex_lock(&resource->resource_lock);
  685. result = acpi_power_get_state(resource->device.handle, &state);
  686. if (result) {
  687. mutex_unlock(&resource->resource_lock);
  688. continue;
  689. }
  690. if (state == ACPI_POWER_RESOURCE_STATE_OFF
  691. && resource->ref_count) {
  692. dev_info(&resource->device.dev, "Turning ON\n");
  693. __acpi_power_on(resource);
  694. } else if (state == ACPI_POWER_RESOURCE_STATE_ON
  695. && !resource->ref_count) {
  696. dev_info(&resource->device.dev, "Turning OFF\n");
  697. __acpi_power_off(resource);
  698. }
  699. mutex_unlock(&resource->resource_lock);
  700. }
  701. mutex_unlock(&power_resource_list_lock);
  702. }
  703. #endif