bpf_jit_comp.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800
  1. /* bpf_jit_comp.c : BPF JIT compiler
  2. *
  3. * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; version 2
  8. * of the License.
  9. */
  10. #include <linux/moduleloader.h>
  11. #include <asm/cacheflush.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/filter.h>
  14. #include <linux/if_vlan.h>
  15. #include <linux/random.h>
  16. /*
  17. * Conventions :
  18. * EAX : BPF A accumulator
  19. * EBX : BPF X accumulator
  20. * RDI : pointer to skb (first argument given to JIT function)
  21. * RBP : frame pointer (even if CONFIG_FRAME_POINTER=n)
  22. * ECX,EDX,ESI : scratch registers
  23. * r9d : skb->len - skb->data_len (headlen)
  24. * r8 : skb->data
  25. * -8(RBP) : saved RBX value
  26. * -16(RBP)..-80(RBP) : BPF_MEMWORDS values
  27. */
  28. int bpf_jit_enable __read_mostly;
  29. /*
  30. * assembly code in arch/x86/net/bpf_jit.S
  31. */
  32. extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
  33. extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
  34. extern u8 sk_load_byte_positive_offset[], sk_load_byte_msh_positive_offset[];
  35. extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
  36. extern u8 sk_load_byte_negative_offset[], sk_load_byte_msh_negative_offset[];
  37. static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
  38. {
  39. if (len == 1)
  40. *ptr = bytes;
  41. else if (len == 2)
  42. *(u16 *)ptr = bytes;
  43. else {
  44. *(u32 *)ptr = bytes;
  45. barrier();
  46. }
  47. return ptr + len;
  48. }
  49. #define EMIT(bytes, len) do { prog = emit_code(prog, bytes, len); } while (0)
  50. #define EMIT1(b1) EMIT(b1, 1)
  51. #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
  52. #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
  53. #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
  54. #define EMIT1_off32(b1, off) do { EMIT1(b1); EMIT(off, 4);} while (0)
  55. #define CLEAR_A() EMIT2(0x31, 0xc0) /* xor %eax,%eax */
  56. #define CLEAR_X() EMIT2(0x31, 0xdb) /* xor %ebx,%ebx */
  57. static inline bool is_imm8(int value)
  58. {
  59. return value <= 127 && value >= -128;
  60. }
  61. static inline bool is_near(int offset)
  62. {
  63. return offset <= 127 && offset >= -128;
  64. }
  65. #define EMIT_JMP(offset) \
  66. do { \
  67. if (offset) { \
  68. if (is_near(offset)) \
  69. EMIT2(0xeb, offset); /* jmp .+off8 */ \
  70. else \
  71. EMIT1_off32(0xe9, offset); /* jmp .+off32 */ \
  72. } \
  73. } while (0)
  74. /* list of x86 cond jumps opcodes (. + s8)
  75. * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
  76. */
  77. #define X86_JB 0x72
  78. #define X86_JAE 0x73
  79. #define X86_JE 0x74
  80. #define X86_JNE 0x75
  81. #define X86_JBE 0x76
  82. #define X86_JA 0x77
  83. #define EMIT_COND_JMP(op, offset) \
  84. do { \
  85. if (is_near(offset)) \
  86. EMIT2(op, offset); /* jxx .+off8 */ \
  87. else { \
  88. EMIT2(0x0f, op + 0x10); \
  89. EMIT(offset, 4); /* jxx .+off32 */ \
  90. } \
  91. } while (0)
  92. #define COND_SEL(CODE, TOP, FOP) \
  93. case CODE: \
  94. t_op = TOP; \
  95. f_op = FOP; \
  96. goto cond_branch
  97. #define SEEN_DATAREF 1 /* might call external helpers */
  98. #define SEEN_XREG 2 /* ebx is used */
  99. #define SEEN_MEM 4 /* use mem[] for temporary storage */
  100. static inline void bpf_flush_icache(void *start, void *end)
  101. {
  102. mm_segment_t old_fs = get_fs();
  103. set_fs(KERNEL_DS);
  104. smp_wmb();
  105. flush_icache_range((unsigned long)start, (unsigned long)end);
  106. set_fs(old_fs);
  107. }
  108. #define CHOOSE_LOAD_FUNC(K, func) \
  109. ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
  110. /* Helper to find the offset of pkt_type in sk_buff
  111. * We want to make sure its still a 3bit field starting at a byte boundary.
  112. */
  113. #define PKT_TYPE_MAX 7
  114. static int pkt_type_offset(void)
  115. {
  116. struct sk_buff skb_probe = {
  117. .pkt_type = ~0,
  118. };
  119. char *ct = (char *)&skb_probe;
  120. unsigned int off;
  121. for (off = 0; off < sizeof(struct sk_buff); off++) {
  122. if (ct[off] == PKT_TYPE_MAX)
  123. return off;
  124. }
  125. pr_err_once("Please fix pkt_type_offset(), as pkt_type couldn't be found\n");
  126. return -1;
  127. }
  128. struct bpf_binary_header {
  129. unsigned int pages;
  130. /* Note : for security reasons, bpf code will follow a randomly
  131. * sized amount of int3 instructions
  132. */
  133. u8 image[];
  134. };
  135. static struct bpf_binary_header *bpf_alloc_binary(unsigned int proglen,
  136. u8 **image_ptr)
  137. {
  138. unsigned int sz, hole;
  139. struct bpf_binary_header *header;
  140. /* Most of BPF filters are really small,
  141. * but if some of them fill a page, allow at least
  142. * 128 extra bytes to insert a random section of int3
  143. */
  144. sz = round_up(proglen + sizeof(*header) + 128, PAGE_SIZE);
  145. header = module_alloc(sz);
  146. if (!header)
  147. return NULL;
  148. memset(header, 0xcc, sz); /* fill whole space with int3 instructions */
  149. header->pages = sz / PAGE_SIZE;
  150. hole = sz - (proglen + sizeof(*header));
  151. /* insert a random number of int3 instructions before BPF code */
  152. *image_ptr = &header->image[prandom_u32() % hole];
  153. return header;
  154. }
  155. void bpf_jit_compile(struct sk_filter *fp)
  156. {
  157. u8 temp[64];
  158. u8 *prog;
  159. unsigned int proglen, oldproglen = 0;
  160. int ilen, i;
  161. int t_offset, f_offset;
  162. u8 t_op, f_op, seen = 0, pass;
  163. u8 *image = NULL;
  164. struct bpf_binary_header *header = NULL;
  165. u8 *func;
  166. int pc_ret0 = -1; /* bpf index of first RET #0 instruction (if any) */
  167. unsigned int cleanup_addr; /* epilogue code offset */
  168. unsigned int *addrs;
  169. const struct sock_filter *filter = fp->insns;
  170. int flen = fp->len;
  171. if (!bpf_jit_enable)
  172. return;
  173. addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
  174. if (addrs == NULL)
  175. return;
  176. /* Before first pass, make a rough estimation of addrs[]
  177. * each bpf instruction is translated to less than 64 bytes
  178. */
  179. for (proglen = 0, i = 0; i < flen; i++) {
  180. proglen += 64;
  181. addrs[i] = proglen;
  182. }
  183. cleanup_addr = proglen; /* epilogue address */
  184. for (pass = 0; pass < 10; pass++) {
  185. u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
  186. /* no prologue/epilogue for trivial filters (RET something) */
  187. proglen = 0;
  188. prog = temp;
  189. if (seen_or_pass0) {
  190. EMIT4(0x55, 0x48, 0x89, 0xe5); /* push %rbp; mov %rsp,%rbp */
  191. EMIT4(0x48, 0x83, 0xec, 96); /* subq $96,%rsp */
  192. /* note : must save %rbx in case bpf_error is hit */
  193. if (seen_or_pass0 & (SEEN_XREG | SEEN_DATAREF))
  194. EMIT4(0x48, 0x89, 0x5d, 0xf8); /* mov %rbx, -8(%rbp) */
  195. if (seen_or_pass0 & SEEN_XREG)
  196. CLEAR_X(); /* make sure we dont leek kernel memory */
  197. /*
  198. * If this filter needs to access skb data,
  199. * loads r9 and r8 with :
  200. * r9 = skb->len - skb->data_len
  201. * r8 = skb->data
  202. */
  203. if (seen_or_pass0 & SEEN_DATAREF) {
  204. if (offsetof(struct sk_buff, len) <= 127)
  205. /* mov off8(%rdi),%r9d */
  206. EMIT4(0x44, 0x8b, 0x4f, offsetof(struct sk_buff, len));
  207. else {
  208. /* mov off32(%rdi),%r9d */
  209. EMIT3(0x44, 0x8b, 0x8f);
  210. EMIT(offsetof(struct sk_buff, len), 4);
  211. }
  212. if (is_imm8(offsetof(struct sk_buff, data_len)))
  213. /* sub off8(%rdi),%r9d */
  214. EMIT4(0x44, 0x2b, 0x4f, offsetof(struct sk_buff, data_len));
  215. else {
  216. EMIT3(0x44, 0x2b, 0x8f);
  217. EMIT(offsetof(struct sk_buff, data_len), 4);
  218. }
  219. if (is_imm8(offsetof(struct sk_buff, data)))
  220. /* mov off8(%rdi),%r8 */
  221. EMIT4(0x4c, 0x8b, 0x47, offsetof(struct sk_buff, data));
  222. else {
  223. /* mov off32(%rdi),%r8 */
  224. EMIT3(0x4c, 0x8b, 0x87);
  225. EMIT(offsetof(struct sk_buff, data), 4);
  226. }
  227. }
  228. }
  229. switch (filter[0].code) {
  230. case BPF_S_RET_K:
  231. case BPF_S_LD_W_LEN:
  232. case BPF_S_ANC_PROTOCOL:
  233. case BPF_S_ANC_IFINDEX:
  234. case BPF_S_ANC_MARK:
  235. case BPF_S_ANC_RXHASH:
  236. case BPF_S_ANC_CPU:
  237. case BPF_S_ANC_VLAN_TAG:
  238. case BPF_S_ANC_VLAN_TAG_PRESENT:
  239. case BPF_S_ANC_QUEUE:
  240. case BPF_S_ANC_PKTTYPE:
  241. case BPF_S_LD_W_ABS:
  242. case BPF_S_LD_H_ABS:
  243. case BPF_S_LD_B_ABS:
  244. /* first instruction sets A register (or is RET 'constant') */
  245. break;
  246. default:
  247. /* make sure we dont leak kernel information to user */
  248. CLEAR_A(); /* A = 0 */
  249. }
  250. for (i = 0; i < flen; i++) {
  251. unsigned int K = filter[i].k;
  252. switch (filter[i].code) {
  253. case BPF_S_ALU_ADD_X: /* A += X; */
  254. seen |= SEEN_XREG;
  255. EMIT2(0x01, 0xd8); /* add %ebx,%eax */
  256. break;
  257. case BPF_S_ALU_ADD_K: /* A += K; */
  258. if (!K)
  259. break;
  260. if (is_imm8(K))
  261. EMIT3(0x83, 0xc0, K); /* add imm8,%eax */
  262. else
  263. EMIT1_off32(0x05, K); /* add imm32,%eax */
  264. break;
  265. case BPF_S_ALU_SUB_X: /* A -= X; */
  266. seen |= SEEN_XREG;
  267. EMIT2(0x29, 0xd8); /* sub %ebx,%eax */
  268. break;
  269. case BPF_S_ALU_SUB_K: /* A -= K */
  270. if (!K)
  271. break;
  272. if (is_imm8(K))
  273. EMIT3(0x83, 0xe8, K); /* sub imm8,%eax */
  274. else
  275. EMIT1_off32(0x2d, K); /* sub imm32,%eax */
  276. break;
  277. case BPF_S_ALU_MUL_X: /* A *= X; */
  278. seen |= SEEN_XREG;
  279. EMIT3(0x0f, 0xaf, 0xc3); /* imul %ebx,%eax */
  280. break;
  281. case BPF_S_ALU_MUL_K: /* A *= K */
  282. if (is_imm8(K))
  283. EMIT3(0x6b, 0xc0, K); /* imul imm8,%eax,%eax */
  284. else {
  285. EMIT2(0x69, 0xc0); /* imul imm32,%eax */
  286. EMIT(K, 4);
  287. }
  288. break;
  289. case BPF_S_ALU_DIV_X: /* A /= X; */
  290. seen |= SEEN_XREG;
  291. EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
  292. if (pc_ret0 > 0) {
  293. /* addrs[pc_ret0 - 1] is start address of target
  294. * (addrs[i] - 4) is the address following this jmp
  295. * ("xor %edx,%edx; div %ebx" being 4 bytes long)
  296. */
  297. EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
  298. (addrs[i] - 4));
  299. } else {
  300. EMIT_COND_JMP(X86_JNE, 2 + 5);
  301. CLEAR_A();
  302. EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 4)); /* jmp .+off32 */
  303. }
  304. EMIT4(0x31, 0xd2, 0xf7, 0xf3); /* xor %edx,%edx; div %ebx */
  305. break;
  306. case BPF_S_ALU_MOD_X: /* A %= X; */
  307. seen |= SEEN_XREG;
  308. EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
  309. if (pc_ret0 > 0) {
  310. /* addrs[pc_ret0 - 1] is start address of target
  311. * (addrs[i] - 6) is the address following this jmp
  312. * ("xor %edx,%edx; div %ebx;mov %edx,%eax" being 6 bytes long)
  313. */
  314. EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
  315. (addrs[i] - 6));
  316. } else {
  317. EMIT_COND_JMP(X86_JNE, 2 + 5);
  318. CLEAR_A();
  319. EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 6)); /* jmp .+off32 */
  320. }
  321. EMIT2(0x31, 0xd2); /* xor %edx,%edx */
  322. EMIT2(0xf7, 0xf3); /* div %ebx */
  323. EMIT2(0x89, 0xd0); /* mov %edx,%eax */
  324. break;
  325. case BPF_S_ALU_MOD_K: /* A %= K; */
  326. if (K == 1) {
  327. CLEAR_A();
  328. break;
  329. }
  330. EMIT2(0x31, 0xd2); /* xor %edx,%edx */
  331. EMIT1(0xb9);EMIT(K, 4); /* mov imm32,%ecx */
  332. EMIT2(0xf7, 0xf1); /* div %ecx */
  333. EMIT2(0x89, 0xd0); /* mov %edx,%eax */
  334. break;
  335. case BPF_S_ALU_DIV_K: /* A /= K */
  336. if (K == 1)
  337. break;
  338. EMIT2(0x31, 0xd2); /* xor %edx,%edx */
  339. EMIT1(0xb9);EMIT(K, 4); /* mov imm32,%ecx */
  340. EMIT2(0xf7, 0xf1); /* div %ecx */
  341. break;
  342. case BPF_S_ALU_AND_X:
  343. seen |= SEEN_XREG;
  344. EMIT2(0x21, 0xd8); /* and %ebx,%eax */
  345. break;
  346. case BPF_S_ALU_AND_K:
  347. if (K >= 0xFFFFFF00) {
  348. EMIT2(0x24, K & 0xFF); /* and imm8,%al */
  349. } else if (K >= 0xFFFF0000) {
  350. EMIT2(0x66, 0x25); /* and imm16,%ax */
  351. EMIT(K, 2);
  352. } else {
  353. EMIT1_off32(0x25, K); /* and imm32,%eax */
  354. }
  355. break;
  356. case BPF_S_ALU_OR_X:
  357. seen |= SEEN_XREG;
  358. EMIT2(0x09, 0xd8); /* or %ebx,%eax */
  359. break;
  360. case BPF_S_ALU_OR_K:
  361. if (is_imm8(K))
  362. EMIT3(0x83, 0xc8, K); /* or imm8,%eax */
  363. else
  364. EMIT1_off32(0x0d, K); /* or imm32,%eax */
  365. break;
  366. case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
  367. case BPF_S_ALU_XOR_X:
  368. seen |= SEEN_XREG;
  369. EMIT2(0x31, 0xd8); /* xor %ebx,%eax */
  370. break;
  371. case BPF_S_ALU_XOR_K: /* A ^= K; */
  372. if (K == 0)
  373. break;
  374. if (is_imm8(K))
  375. EMIT3(0x83, 0xf0, K); /* xor imm8,%eax */
  376. else
  377. EMIT1_off32(0x35, K); /* xor imm32,%eax */
  378. break;
  379. case BPF_S_ALU_LSH_X: /* A <<= X; */
  380. seen |= SEEN_XREG;
  381. EMIT4(0x89, 0xd9, 0xd3, 0xe0); /* mov %ebx,%ecx; shl %cl,%eax */
  382. break;
  383. case BPF_S_ALU_LSH_K:
  384. if (K == 0)
  385. break;
  386. else if (K == 1)
  387. EMIT2(0xd1, 0xe0); /* shl %eax */
  388. else
  389. EMIT3(0xc1, 0xe0, K);
  390. break;
  391. case BPF_S_ALU_RSH_X: /* A >>= X; */
  392. seen |= SEEN_XREG;
  393. EMIT4(0x89, 0xd9, 0xd3, 0xe8); /* mov %ebx,%ecx; shr %cl,%eax */
  394. break;
  395. case BPF_S_ALU_RSH_K: /* A >>= K; */
  396. if (K == 0)
  397. break;
  398. else if (K == 1)
  399. EMIT2(0xd1, 0xe8); /* shr %eax */
  400. else
  401. EMIT3(0xc1, 0xe8, K);
  402. break;
  403. case BPF_S_ALU_NEG:
  404. EMIT2(0xf7, 0xd8); /* neg %eax */
  405. break;
  406. case BPF_S_RET_K:
  407. if (!K) {
  408. if (pc_ret0 == -1)
  409. pc_ret0 = i;
  410. CLEAR_A();
  411. } else {
  412. EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
  413. }
  414. /* fallinto */
  415. case BPF_S_RET_A:
  416. if (seen_or_pass0) {
  417. if (i != flen - 1) {
  418. EMIT_JMP(cleanup_addr - addrs[i]);
  419. break;
  420. }
  421. if (seen_or_pass0 & SEEN_XREG)
  422. EMIT4(0x48, 0x8b, 0x5d, 0xf8); /* mov -8(%rbp),%rbx */
  423. EMIT1(0xc9); /* leaveq */
  424. }
  425. EMIT1(0xc3); /* ret */
  426. break;
  427. case BPF_S_MISC_TAX: /* X = A */
  428. seen |= SEEN_XREG;
  429. EMIT2(0x89, 0xc3); /* mov %eax,%ebx */
  430. break;
  431. case BPF_S_MISC_TXA: /* A = X */
  432. seen |= SEEN_XREG;
  433. EMIT2(0x89, 0xd8); /* mov %ebx,%eax */
  434. break;
  435. case BPF_S_LD_IMM: /* A = K */
  436. if (!K)
  437. CLEAR_A();
  438. else
  439. EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
  440. break;
  441. case BPF_S_LDX_IMM: /* X = K */
  442. seen |= SEEN_XREG;
  443. if (!K)
  444. CLEAR_X();
  445. else
  446. EMIT1_off32(0xbb, K); /* mov $imm32,%ebx */
  447. break;
  448. case BPF_S_LD_MEM: /* A = mem[K] : mov off8(%rbp),%eax */
  449. seen |= SEEN_MEM;
  450. EMIT3(0x8b, 0x45, 0xf0 - K*4);
  451. break;
  452. case BPF_S_LDX_MEM: /* X = mem[K] : mov off8(%rbp),%ebx */
  453. seen |= SEEN_XREG | SEEN_MEM;
  454. EMIT3(0x8b, 0x5d, 0xf0 - K*4);
  455. break;
  456. case BPF_S_ST: /* mem[K] = A : mov %eax,off8(%rbp) */
  457. seen |= SEEN_MEM;
  458. EMIT3(0x89, 0x45, 0xf0 - K*4);
  459. break;
  460. case BPF_S_STX: /* mem[K] = X : mov %ebx,off8(%rbp) */
  461. seen |= SEEN_XREG | SEEN_MEM;
  462. EMIT3(0x89, 0x5d, 0xf0 - K*4);
  463. break;
  464. case BPF_S_LD_W_LEN: /* A = skb->len; */
  465. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
  466. if (is_imm8(offsetof(struct sk_buff, len)))
  467. /* mov off8(%rdi),%eax */
  468. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, len));
  469. else {
  470. EMIT2(0x8b, 0x87);
  471. EMIT(offsetof(struct sk_buff, len), 4);
  472. }
  473. break;
  474. case BPF_S_LDX_W_LEN: /* X = skb->len; */
  475. seen |= SEEN_XREG;
  476. if (is_imm8(offsetof(struct sk_buff, len)))
  477. /* mov off8(%rdi),%ebx */
  478. EMIT3(0x8b, 0x5f, offsetof(struct sk_buff, len));
  479. else {
  480. EMIT2(0x8b, 0x9f);
  481. EMIT(offsetof(struct sk_buff, len), 4);
  482. }
  483. break;
  484. case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
  485. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
  486. if (is_imm8(offsetof(struct sk_buff, protocol))) {
  487. /* movzwl off8(%rdi),%eax */
  488. EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, protocol));
  489. } else {
  490. EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
  491. EMIT(offsetof(struct sk_buff, protocol), 4);
  492. }
  493. EMIT2(0x86, 0xc4); /* ntohs() : xchg %al,%ah */
  494. break;
  495. case BPF_S_ANC_IFINDEX:
  496. if (is_imm8(offsetof(struct sk_buff, dev))) {
  497. /* movq off8(%rdi),%rax */
  498. EMIT4(0x48, 0x8b, 0x47, offsetof(struct sk_buff, dev));
  499. } else {
  500. EMIT3(0x48, 0x8b, 0x87); /* movq off32(%rdi),%rax */
  501. EMIT(offsetof(struct sk_buff, dev), 4);
  502. }
  503. EMIT3(0x48, 0x85, 0xc0); /* test %rax,%rax */
  504. EMIT_COND_JMP(X86_JE, cleanup_addr - (addrs[i] - 6));
  505. BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
  506. EMIT2(0x8b, 0x80); /* mov off32(%rax),%eax */
  507. EMIT(offsetof(struct net_device, ifindex), 4);
  508. break;
  509. case BPF_S_ANC_MARK:
  510. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
  511. if (is_imm8(offsetof(struct sk_buff, mark))) {
  512. /* mov off8(%rdi),%eax */
  513. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, mark));
  514. } else {
  515. EMIT2(0x8b, 0x87);
  516. EMIT(offsetof(struct sk_buff, mark), 4);
  517. }
  518. break;
  519. case BPF_S_ANC_RXHASH:
  520. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
  521. if (is_imm8(offsetof(struct sk_buff, rxhash))) {
  522. /* mov off8(%rdi),%eax */
  523. EMIT3(0x8b, 0x47, offsetof(struct sk_buff, rxhash));
  524. } else {
  525. EMIT2(0x8b, 0x87);
  526. EMIT(offsetof(struct sk_buff, rxhash), 4);
  527. }
  528. break;
  529. case BPF_S_ANC_QUEUE:
  530. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
  531. if (is_imm8(offsetof(struct sk_buff, queue_mapping))) {
  532. /* movzwl off8(%rdi),%eax */
  533. EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, queue_mapping));
  534. } else {
  535. EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
  536. EMIT(offsetof(struct sk_buff, queue_mapping), 4);
  537. }
  538. break;
  539. case BPF_S_ANC_CPU:
  540. #ifdef CONFIG_SMP
  541. EMIT4(0x65, 0x8b, 0x04, 0x25); /* mov %gs:off32,%eax */
  542. EMIT((u32)(unsigned long)&cpu_number, 4); /* A = smp_processor_id(); */
  543. #else
  544. CLEAR_A();
  545. #endif
  546. break;
  547. case BPF_S_ANC_VLAN_TAG:
  548. case BPF_S_ANC_VLAN_TAG_PRESENT:
  549. BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
  550. if (is_imm8(offsetof(struct sk_buff, vlan_tci))) {
  551. /* movzwl off8(%rdi),%eax */
  552. EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, vlan_tci));
  553. } else {
  554. EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
  555. EMIT(offsetof(struct sk_buff, vlan_tci), 4);
  556. }
  557. BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
  558. if (filter[i].code == BPF_S_ANC_VLAN_TAG) {
  559. EMIT3(0x80, 0xe4, 0xef); /* and $0xef,%ah */
  560. } else {
  561. EMIT3(0xc1, 0xe8, 0x0c); /* shr $0xc,%eax */
  562. EMIT3(0x83, 0xe0, 0x01); /* and $0x1,%eax */
  563. }
  564. break;
  565. case BPF_S_ANC_PKTTYPE:
  566. {
  567. int off = pkt_type_offset();
  568. if (off < 0)
  569. goto out;
  570. if (is_imm8(off)) {
  571. /* movzbl off8(%rdi),%eax */
  572. EMIT4(0x0f, 0xb6, 0x47, off);
  573. } else {
  574. /* movbl off32(%rdi),%eax */
  575. EMIT3(0x0f, 0xb6, 0x87);
  576. EMIT(off, 4);
  577. }
  578. EMIT3(0x83, 0xe0, PKT_TYPE_MAX); /* and $0x7,%eax */
  579. break;
  580. }
  581. case BPF_S_LD_W_ABS:
  582. func = CHOOSE_LOAD_FUNC(K, sk_load_word);
  583. common_load: seen |= SEEN_DATAREF;
  584. t_offset = func - (image + addrs[i]);
  585. EMIT1_off32(0xbe, K); /* mov imm32,%esi */
  586. EMIT1_off32(0xe8, t_offset); /* call */
  587. break;
  588. case BPF_S_LD_H_ABS:
  589. func = CHOOSE_LOAD_FUNC(K, sk_load_half);
  590. goto common_load;
  591. case BPF_S_LD_B_ABS:
  592. func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
  593. goto common_load;
  594. case BPF_S_LDX_B_MSH:
  595. func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
  596. seen |= SEEN_DATAREF | SEEN_XREG;
  597. t_offset = func - (image + addrs[i]);
  598. EMIT1_off32(0xbe, K); /* mov imm32,%esi */
  599. EMIT1_off32(0xe8, t_offset); /* call sk_load_byte_msh */
  600. break;
  601. case BPF_S_LD_W_IND:
  602. func = sk_load_word;
  603. common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
  604. t_offset = func - (image + addrs[i]);
  605. if (K) {
  606. if (is_imm8(K)) {
  607. EMIT3(0x8d, 0x73, K); /* lea imm8(%rbx), %esi */
  608. } else {
  609. EMIT2(0x8d, 0xb3); /* lea imm32(%rbx),%esi */
  610. EMIT(K, 4);
  611. }
  612. } else {
  613. EMIT2(0x89,0xde); /* mov %ebx,%esi */
  614. }
  615. EMIT1_off32(0xe8, t_offset); /* call sk_load_xxx_ind */
  616. break;
  617. case BPF_S_LD_H_IND:
  618. func = sk_load_half;
  619. goto common_load_ind;
  620. case BPF_S_LD_B_IND:
  621. func = sk_load_byte;
  622. goto common_load_ind;
  623. case BPF_S_JMP_JA:
  624. t_offset = addrs[i + K] - addrs[i];
  625. EMIT_JMP(t_offset);
  626. break;
  627. COND_SEL(BPF_S_JMP_JGT_K, X86_JA, X86_JBE);
  628. COND_SEL(BPF_S_JMP_JGE_K, X86_JAE, X86_JB);
  629. COND_SEL(BPF_S_JMP_JEQ_K, X86_JE, X86_JNE);
  630. COND_SEL(BPF_S_JMP_JSET_K,X86_JNE, X86_JE);
  631. COND_SEL(BPF_S_JMP_JGT_X, X86_JA, X86_JBE);
  632. COND_SEL(BPF_S_JMP_JGE_X, X86_JAE, X86_JB);
  633. COND_SEL(BPF_S_JMP_JEQ_X, X86_JE, X86_JNE);
  634. COND_SEL(BPF_S_JMP_JSET_X,X86_JNE, X86_JE);
  635. cond_branch: f_offset = addrs[i + filter[i].jf] - addrs[i];
  636. t_offset = addrs[i + filter[i].jt] - addrs[i];
  637. /* same targets, can avoid doing the test :) */
  638. if (filter[i].jt == filter[i].jf) {
  639. EMIT_JMP(t_offset);
  640. break;
  641. }
  642. switch (filter[i].code) {
  643. case BPF_S_JMP_JGT_X:
  644. case BPF_S_JMP_JGE_X:
  645. case BPF_S_JMP_JEQ_X:
  646. seen |= SEEN_XREG;
  647. EMIT2(0x39, 0xd8); /* cmp %ebx,%eax */
  648. break;
  649. case BPF_S_JMP_JSET_X:
  650. seen |= SEEN_XREG;
  651. EMIT2(0x85, 0xd8); /* test %ebx,%eax */
  652. break;
  653. case BPF_S_JMP_JEQ_K:
  654. if (K == 0) {
  655. EMIT2(0x85, 0xc0); /* test %eax,%eax */
  656. break;
  657. }
  658. case BPF_S_JMP_JGT_K:
  659. case BPF_S_JMP_JGE_K:
  660. if (K <= 127)
  661. EMIT3(0x83, 0xf8, K); /* cmp imm8,%eax */
  662. else
  663. EMIT1_off32(0x3d, K); /* cmp imm32,%eax */
  664. break;
  665. case BPF_S_JMP_JSET_K:
  666. if (K <= 0xFF)
  667. EMIT2(0xa8, K); /* test imm8,%al */
  668. else if (!(K & 0xFFFF00FF))
  669. EMIT3(0xf6, 0xc4, K >> 8); /* test imm8,%ah */
  670. else if (K <= 0xFFFF) {
  671. EMIT2(0x66, 0xa9); /* test imm16,%ax */
  672. EMIT(K, 2);
  673. } else {
  674. EMIT1_off32(0xa9, K); /* test imm32,%eax */
  675. }
  676. break;
  677. }
  678. if (filter[i].jt != 0) {
  679. if (filter[i].jf && f_offset)
  680. t_offset += is_near(f_offset) ? 2 : 5;
  681. EMIT_COND_JMP(t_op, t_offset);
  682. if (filter[i].jf)
  683. EMIT_JMP(f_offset);
  684. break;
  685. }
  686. EMIT_COND_JMP(f_op, f_offset);
  687. break;
  688. default:
  689. /* hmm, too complex filter, give up with jit compiler */
  690. goto out;
  691. }
  692. ilen = prog - temp;
  693. if (image) {
  694. if (unlikely(proglen + ilen > oldproglen)) {
  695. pr_err("bpb_jit_compile fatal error\n");
  696. kfree(addrs);
  697. module_free(NULL, header);
  698. return;
  699. }
  700. memcpy(image + proglen, temp, ilen);
  701. }
  702. proglen += ilen;
  703. addrs[i] = proglen;
  704. prog = temp;
  705. }
  706. /* last bpf instruction is always a RET :
  707. * use it to give the cleanup instruction(s) addr
  708. */
  709. cleanup_addr = proglen - 1; /* ret */
  710. if (seen_or_pass0)
  711. cleanup_addr -= 1; /* leaveq */
  712. if (seen_or_pass0 & SEEN_XREG)
  713. cleanup_addr -= 4; /* mov -8(%rbp),%rbx */
  714. if (image) {
  715. if (proglen != oldproglen)
  716. pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", proglen, oldproglen);
  717. break;
  718. }
  719. if (proglen == oldproglen) {
  720. header = bpf_alloc_binary(proglen, &image);
  721. if (!header)
  722. goto out;
  723. }
  724. oldproglen = proglen;
  725. }
  726. if (bpf_jit_enable > 1)
  727. bpf_jit_dump(flen, proglen, pass, image);
  728. if (image) {
  729. bpf_flush_icache(header, image + proglen);
  730. set_memory_ro((unsigned long)header, header->pages);
  731. fp->bpf_func = (void *)image;
  732. }
  733. out:
  734. kfree(addrs);
  735. return;
  736. }
  737. static void bpf_jit_free_deferred(struct work_struct *work)
  738. {
  739. struct sk_filter *fp = container_of(work, struct sk_filter, work);
  740. unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
  741. struct bpf_binary_header *header = (void *)addr;
  742. set_memory_rw(addr, header->pages);
  743. module_free(NULL, header);
  744. kfree(fp);
  745. }
  746. void bpf_jit_free(struct sk_filter *fp)
  747. {
  748. if (fp->bpf_func != sk_run_filter) {
  749. INIT_WORK(&fp->work, bpf_jit_free_deferred);
  750. schedule_work(&fp->work);
  751. } else {
  752. kfree(fp);
  753. }
  754. }