power8-pmu.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779
  1. /*
  2. * Performance counter support for POWER8 processors.
  3. *
  4. * Copyright 2009 Paul Mackerras, IBM Corporation.
  5. * Copyright 2013 Michael Ellerman, IBM Corporation.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/perf_event.h>
  14. #include <asm/firmware.h>
  15. /*
  16. * Some power8 event codes.
  17. */
  18. #define PM_CYC 0x0001e
  19. #define PM_GCT_NOSLOT_CYC 0x100f8
  20. #define PM_CMPLU_STALL 0x4000a
  21. #define PM_INST_CMPL 0x00002
  22. #define PM_BRU_FIN 0x10068
  23. #define PM_BR_MPRED_CMPL 0x400f6
  24. /* All L1 D cache load references counted at finish, gated by reject */
  25. #define PM_LD_REF_L1 0x100ee
  26. /* Load Missed L1 */
  27. #define PM_LD_MISS_L1 0x3e054
  28. /* Store Missed L1 */
  29. #define PM_ST_MISS_L1 0x300f0
  30. /* L1 cache data prefetches */
  31. #define PM_L1_PREF 0x0d8b8
  32. /* Instruction fetches from L1 */
  33. #define PM_INST_FROM_L1 0x04080
  34. /* Demand iCache Miss */
  35. #define PM_L1_ICACHE_MISS 0x200fd
  36. /* Instruction Demand sectors wriittent into IL1 */
  37. #define PM_L1_DEMAND_WRITE 0x0408c
  38. /* Instruction prefetch written into IL1 */
  39. #define PM_IC_PREF_WRITE 0x0408e
  40. /* The data cache was reloaded from local core's L3 due to a demand load */
  41. #define PM_DATA_FROM_L3 0x4c042
  42. /* Demand LD - L3 Miss (not L2 hit and not L3 hit) */
  43. #define PM_DATA_FROM_L3MISS 0x300fe
  44. /* All successful D-side store dispatches for this thread */
  45. #define PM_L2_ST 0x17080
  46. /* All successful D-side store dispatches for this thread that were L2 Miss */
  47. #define PM_L2_ST_MISS 0x17082
  48. /* Total HW L3 prefetches(Load+store) */
  49. #define PM_L3_PREF_ALL 0x4e052
  50. /* Data PTEG reload */
  51. #define PM_DTLB_MISS 0x300fc
  52. /* ITLB Reloaded */
  53. #define PM_ITLB_MISS 0x400fc
  54. /*
  55. * Raw event encoding for POWER8:
  56. *
  57. * 60 56 52 48 44 40 36 32
  58. * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
  59. * | [ thresh_cmp ] [ thresh_ctl ]
  60. * | |
  61. * *- EBB (Linux) thresh start/stop OR FAB match -*
  62. *
  63. * 28 24 20 16 12 8 4 0
  64. * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
  65. * [ ] [ sample ] [cache] [ pmc ] [unit ] c m [ pmcxsel ]
  66. * | | | | |
  67. * | | | | *- mark
  68. * | | *- L1/L2/L3 cache_sel |
  69. * | | |
  70. * | *- sampling mode for marked events *- combine
  71. * |
  72. * *- thresh_sel
  73. *
  74. * Below uses IBM bit numbering.
  75. *
  76. * MMCR1[x:y] = unit (PMCxUNIT)
  77. * MMCR1[x] = combine (PMCxCOMB)
  78. *
  79. * if pmc == 3 and unit == 0 and pmcxsel[0:6] == 0b0101011
  80. * # PM_MRK_FAB_RSP_MATCH
  81. * MMCR1[20:27] = thresh_ctl (FAB_CRESP_MATCH / FAB_TYPE_MATCH)
  82. * else if pmc == 4 and unit == 0xf and pmcxsel[0:6] == 0b0101001
  83. * # PM_MRK_FAB_RSP_MATCH_CYC
  84. * MMCR1[20:27] = thresh_ctl (FAB_CRESP_MATCH / FAB_TYPE_MATCH)
  85. * else
  86. * MMCRA[48:55] = thresh_ctl (THRESH START/END)
  87. *
  88. * if thresh_sel:
  89. * MMCRA[45:47] = thresh_sel
  90. *
  91. * if thresh_cmp:
  92. * MMCRA[22:24] = thresh_cmp[0:2]
  93. * MMCRA[25:31] = thresh_cmp[3:9]
  94. *
  95. * if unit == 6 or unit == 7
  96. * MMCRC[53:55] = cache_sel[1:3] (L2EVENT_SEL)
  97. * else if unit == 8 or unit == 9:
  98. * if cache_sel[0] == 0: # L3 bank
  99. * MMCRC[47:49] = cache_sel[1:3] (L3EVENT_SEL0)
  100. * else if cache_sel[0] == 1:
  101. * MMCRC[50:51] = cache_sel[2:3] (L3EVENT_SEL1)
  102. * else if cache_sel[1]: # L1 event
  103. * MMCR1[16] = cache_sel[2]
  104.  * MMCR1[17] = cache_sel[3]
  105. *
  106. * if mark:
  107. * MMCRA[63] = 1 (SAMPLE_ENABLE)
  108. * MMCRA[57:59] = sample[0:2] (RAND_SAMP_ELIG)
  109.  * MMCRA[61:62] = sample[3:4] (RAND_SAMP_MODE)
  110. *
  111. */
  112. #define EVENT_EBB_MASK 1ull
  113. #define EVENT_THR_CMP_SHIFT 40 /* Threshold CMP value */
  114. #define EVENT_THR_CMP_MASK 0x3ff
  115. #define EVENT_THR_CTL_SHIFT 32 /* Threshold control value (start/stop) */
  116. #define EVENT_THR_CTL_MASK 0xffull
  117. #define EVENT_THR_SEL_SHIFT 29 /* Threshold select value */
  118. #define EVENT_THR_SEL_MASK 0x7
  119. #define EVENT_THRESH_SHIFT 29 /* All threshold bits */
  120. #define EVENT_THRESH_MASK 0x1fffffull
  121. #define EVENT_SAMPLE_SHIFT 24 /* Sampling mode & eligibility */
  122. #define EVENT_SAMPLE_MASK 0x1f
  123. #define EVENT_CACHE_SEL_SHIFT 20 /* L2/L3 cache select */
  124. #define EVENT_CACHE_SEL_MASK 0xf
  125. #define EVENT_IS_L1 (4 << EVENT_CACHE_SEL_SHIFT)
  126. #define EVENT_PMC_SHIFT 16 /* PMC number (1-based) */
  127. #define EVENT_PMC_MASK 0xf
  128. #define EVENT_UNIT_SHIFT 12 /* Unit */
  129. #define EVENT_UNIT_MASK 0xf
  130. #define EVENT_COMBINE_SHIFT 11 /* Combine bit */
  131. #define EVENT_COMBINE_MASK 0x1
  132. #define EVENT_MARKED_SHIFT 8 /* Marked bit */
  133. #define EVENT_MARKED_MASK 0x1
  134. #define EVENT_IS_MARKED (EVENT_MARKED_MASK << EVENT_MARKED_SHIFT)
  135. #define EVENT_PSEL_MASK 0xff /* PMCxSEL value */
  136. #define EVENT_VALID_MASK \
  137. ((EVENT_THRESH_MASK << EVENT_THRESH_SHIFT) | \
  138. (EVENT_SAMPLE_MASK << EVENT_SAMPLE_SHIFT) | \
  139. (EVENT_CACHE_SEL_MASK << EVENT_CACHE_SEL_SHIFT) | \
  140. (EVENT_PMC_MASK << EVENT_PMC_SHIFT) | \
  141. (EVENT_UNIT_MASK << EVENT_UNIT_SHIFT) | \
  142. (EVENT_COMBINE_MASK << EVENT_COMBINE_SHIFT) | \
  143. (EVENT_MARKED_MASK << EVENT_MARKED_SHIFT) | \
  144. (EVENT_EBB_MASK << PERF_EVENT_CONFIG_EBB_SHIFT) | \
  145. EVENT_PSEL_MASK)
  146. /* MMCRA IFM bits - POWER8 */
  147. #define POWER8_MMCRA_IFM1 0x0000000040000000UL
  148. #define POWER8_MMCRA_IFM2 0x0000000080000000UL
  149. #define POWER8_MMCRA_IFM3 0x00000000C0000000UL
  150. #define ONLY_PLM \
  151. (PERF_SAMPLE_BRANCH_USER |\
  152. PERF_SAMPLE_BRANCH_KERNEL |\
  153. PERF_SAMPLE_BRANCH_HV)
  154. /*
  155. * Layout of constraint bits:
  156. *
  157. * 60 56 52 48 44 40 36 32
  158. * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
  159. * [ fab_match ] [ thresh_cmp ] [ thresh_ctl ] [ ]
  160. * |
  161. * thresh_sel -*
  162. *
  163. * 28 24 20 16 12 8 4 0
  164. * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
  165. * | [ ] [ sample ] [ ] [6] [5] [4] [3] [2] [1]
  166. * EBB -* | |
  167. * | | Count of events for each PMC.
  168. * L1 I/D qualifier -* | p1, p2, p3, p4, p5, p6.
  169. * nc - number of counters -*
  170. *
  171. * The PMC fields P1..P6, and NC, are adder fields. As we accumulate constraints
  172. * we want the low bit of each field to be added to any existing value.
  173. *
  174. * Everything else is a value field.
  175. */
  176. #define CNST_FAB_MATCH_VAL(v) (((v) & EVENT_THR_CTL_MASK) << 56)
  177. #define CNST_FAB_MATCH_MASK CNST_FAB_MATCH_VAL(EVENT_THR_CTL_MASK)
  178. /* We just throw all the threshold bits into the constraint */
  179. #define CNST_THRESH_VAL(v) (((v) & EVENT_THRESH_MASK) << 32)
  180. #define CNST_THRESH_MASK CNST_THRESH_VAL(EVENT_THRESH_MASK)
  181. #define CNST_EBB_VAL(v) (((v) & EVENT_EBB_MASK) << 24)
  182. #define CNST_EBB_MASK CNST_EBB_VAL(EVENT_EBB_MASK)
  183. #define CNST_L1_QUAL_VAL(v) (((v) & 3) << 22)
  184. #define CNST_L1_QUAL_MASK CNST_L1_QUAL_VAL(3)
  185. #define CNST_SAMPLE_VAL(v) (((v) & EVENT_SAMPLE_MASK) << 16)
  186. #define CNST_SAMPLE_MASK CNST_SAMPLE_VAL(EVENT_SAMPLE_MASK)
  187. /*
  188. * For NC we are counting up to 4 events. This requires three bits, and we need
  189. * the fifth event to overflow and set the 4th bit. To achieve that we bias the
  190. * fields by 3 in test_adder.
  191. */
  192. #define CNST_NC_SHIFT 12
  193. #define CNST_NC_VAL (1 << CNST_NC_SHIFT)
  194. #define CNST_NC_MASK (8 << CNST_NC_SHIFT)
  195. #define POWER8_TEST_ADDER (3 << CNST_NC_SHIFT)
  196. /*
  197. * For the per-PMC fields we have two bits. The low bit is added, so if two
  198. * events ask for the same PMC the sum will overflow, setting the high bit,
  199. * indicating an error. So our mask sets the high bit.
  200. */
  201. #define CNST_PMC_SHIFT(pmc) ((pmc - 1) * 2)
  202. #define CNST_PMC_VAL(pmc) (1 << CNST_PMC_SHIFT(pmc))
  203. #define CNST_PMC_MASK(pmc) (2 << CNST_PMC_SHIFT(pmc))
  204. /* Our add_fields is defined as: */
  205. #define POWER8_ADD_FIELDS \
  206. CNST_PMC_VAL(1) | CNST_PMC_VAL(2) | CNST_PMC_VAL(3) | \
  207. CNST_PMC_VAL(4) | CNST_PMC_VAL(5) | CNST_PMC_VAL(6) | CNST_NC_VAL
  208. /* Bits in MMCR1 for POWER8 */
  209. #define MMCR1_UNIT_SHIFT(pmc) (60 - (4 * ((pmc) - 1)))
  210. #define MMCR1_COMBINE_SHIFT(pmc) (35 - ((pmc) - 1))
  211. #define MMCR1_PMCSEL_SHIFT(pmc) (24 - (((pmc) - 1)) * 8)
  212. #define MMCR1_FAB_SHIFT 36
  213. #define MMCR1_DC_QUAL_SHIFT 47
  214. #define MMCR1_IC_QUAL_SHIFT 46
  215. /* Bits in MMCRA for POWER8 */
  216. #define MMCRA_SAMP_MODE_SHIFT 1
  217. #define MMCRA_SAMP_ELIG_SHIFT 4
  218. #define MMCRA_THR_CTL_SHIFT 8
  219. #define MMCRA_THR_SEL_SHIFT 16
  220. #define MMCRA_THR_CMP_SHIFT 32
  221. #define MMCRA_SDAR_MODE_TLB (1ull << 42)
  222. static inline bool event_is_fab_match(u64 event)
  223. {
  224. /* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
  225. event &= 0xff0fe;
  226. /* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
  227. return (event == 0x30056 || event == 0x4f052);
  228. }
  229. static int power8_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp)
  230. {
  231. unsigned int unit, pmc, cache, ebb;
  232. unsigned long mask, value;
  233. mask = value = 0;
  234. if (event & ~EVENT_VALID_MASK)
  235. return -1;
  236. pmc = (event >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
  237. unit = (event >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
  238. cache = (event >> EVENT_CACHE_SEL_SHIFT) & EVENT_CACHE_SEL_MASK;
  239. ebb = (event >> PERF_EVENT_CONFIG_EBB_SHIFT) & EVENT_EBB_MASK;
  240. /* Clear the EBB bit in the event, so event checks work below */
  241. event &= ~(EVENT_EBB_MASK << PERF_EVENT_CONFIG_EBB_SHIFT);
  242. if (pmc) {
  243. if (pmc > 6)
  244. return -1;
  245. mask |= CNST_PMC_MASK(pmc);
  246. value |= CNST_PMC_VAL(pmc);
  247. if (pmc >= 5 && event != 0x500fa && event != 0x600f4)
  248. return -1;
  249. }
  250. if (pmc <= 4) {
  251. /*
  252. * Add to number of counters in use. Note this includes events with
  253. * a PMC of 0 - they still need a PMC, it's just assigned later.
  254. * Don't count events on PMC 5 & 6, there is only one valid event
  255. * on each of those counters, and they are handled above.
  256. */
  257. mask |= CNST_NC_MASK;
  258. value |= CNST_NC_VAL;
  259. }
  260. if (unit >= 6 && unit <= 9) {
  261. /*
  262. * L2/L3 events contain a cache selector field, which is
  263. * supposed to be programmed into MMCRC. However MMCRC is only
  264. * HV writable, and there is no API for guest kernels to modify
  265. * it. The solution is for the hypervisor to initialise the
  266. * field to zeroes, and for us to only ever allow events that
  267. * have a cache selector of zero.
  268. */
  269. if (cache)
  270. return -1;
  271. } else if (event & EVENT_IS_L1) {
  272. mask |= CNST_L1_QUAL_MASK;
  273. value |= CNST_L1_QUAL_VAL(cache);
  274. }
  275. if (event & EVENT_IS_MARKED) {
  276. mask |= CNST_SAMPLE_MASK;
  277. value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
  278. }
  279. /*
  280. * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
  281. * the threshold control bits are used for the match value.
  282. */
  283. if (event_is_fab_match(event)) {
  284. mask |= CNST_FAB_MATCH_MASK;
  285. value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
  286. } else {
  287. /*
  288. * Check the mantissa upper two bits are not zero, unless the
  289. * exponent is also zero. See the THRESH_CMP_MANTISSA doc.
  290. */
  291. unsigned int cmp, exp;
  292. cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
  293. exp = cmp >> 7;
  294. if (exp && (cmp & 0x60) == 0)
  295. return -1;
  296. mask |= CNST_THRESH_MASK;
  297. value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
  298. }
  299. if (!pmc && ebb)
  300. /* EBB events must specify the PMC */
  301. return -1;
  302. /*
  303. * All events must agree on EBB, either all request it or none.
  304. * EBB events are pinned & exclusive, so this should never actually
  305. * hit, but we leave it as a fallback in case.
  306. */
  307. mask |= CNST_EBB_VAL(ebb);
  308. value |= CNST_EBB_MASK;
  309. *maskp = mask;
  310. *valp = value;
  311. return 0;
  312. }
  313. static int power8_compute_mmcr(u64 event[], int n_ev,
  314. unsigned int hwc[], unsigned long mmcr[])
  315. {
  316. unsigned long mmcra, mmcr1, unit, combine, psel, cache, val;
  317. unsigned int pmc, pmc_inuse;
  318. int i;
  319. pmc_inuse = 0;
  320. /* First pass to count resource use */
  321. for (i = 0; i < n_ev; ++i) {
  322. pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
  323. if (pmc)
  324. pmc_inuse |= 1 << pmc;
  325. }
  326. /* In continous sampling mode, update SDAR on TLB miss */
  327. mmcra = MMCRA_SDAR_MODE_TLB;
  328. mmcr1 = 0;
  329. /* Second pass: assign PMCs, set all MMCR1 fields */
  330. for (i = 0; i < n_ev; ++i) {
  331. pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
  332. unit = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
  333. combine = (event[i] >> EVENT_COMBINE_SHIFT) & EVENT_COMBINE_MASK;
  334. psel = event[i] & EVENT_PSEL_MASK;
  335. if (!pmc) {
  336. for (pmc = 1; pmc <= 4; ++pmc) {
  337. if (!(pmc_inuse & (1 << pmc)))
  338. break;
  339. }
  340. pmc_inuse |= 1 << pmc;
  341. }
  342. if (pmc <= 4) {
  343. mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
  344. mmcr1 |= combine << MMCR1_COMBINE_SHIFT(pmc);
  345. mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
  346. }
  347. if (event[i] & EVENT_IS_L1) {
  348. cache = event[i] >> EVENT_CACHE_SEL_SHIFT;
  349. mmcr1 |= (cache & 1) << MMCR1_IC_QUAL_SHIFT;
  350. cache >>= 1;
  351. mmcr1 |= (cache & 1) << MMCR1_DC_QUAL_SHIFT;
  352. }
  353. if (event[i] & EVENT_IS_MARKED) {
  354. mmcra |= MMCRA_SAMPLE_ENABLE;
  355. val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
  356. if (val) {
  357. mmcra |= (val & 3) << MMCRA_SAMP_MODE_SHIFT;
  358. mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
  359. }
  360. }
  361. /*
  362. * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
  363. * the threshold bits are used for the match value.
  364. */
  365. if (event_is_fab_match(event[i])) {
  366. mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
  367. EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
  368. } else {
  369. val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
  370. mmcra |= val << MMCRA_THR_CTL_SHIFT;
  371. val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
  372. mmcra |= val << MMCRA_THR_SEL_SHIFT;
  373. val = (event[i] >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
  374. mmcra |= val << MMCRA_THR_CMP_SHIFT;
  375. }
  376. hwc[i] = pmc - 1;
  377. }
  378. /* Return MMCRx values */
  379. mmcr[0] = 0;
  380. /* pmc_inuse is 1-based */
  381. if (pmc_inuse & 2)
  382. mmcr[0] = MMCR0_PMC1CE;
  383. if (pmc_inuse & 0x7c)
  384. mmcr[0] |= MMCR0_PMCjCE;
  385. /* If we're not using PMC 5 or 6, freeze them */
  386. if (!(pmc_inuse & 0x60))
  387. mmcr[0] |= MMCR0_FC56;
  388. mmcr[1] = mmcr1;
  389. mmcr[2] = mmcra;
  390. return 0;
  391. }
  392. #define MAX_ALT 2
  393. /* Table of alternatives, sorted by column 0 */
  394. static const unsigned int event_alternatives[][MAX_ALT] = {
  395. { 0x10134, 0x301e2 }, /* PM_MRK_ST_CMPL */
  396. { 0x10138, 0x40138 }, /* PM_BR_MRK_2PATH */
  397. { 0x18082, 0x3e05e }, /* PM_L3_CO_MEPF */
  398. { 0x1d14e, 0x401e8 }, /* PM_MRK_DATA_FROM_L2MISS */
  399. { 0x1e054, 0x4000a }, /* PM_CMPLU_STALL */
  400. { 0x20036, 0x40036 }, /* PM_BR_2PATH */
  401. { 0x200f2, 0x300f2 }, /* PM_INST_DISP */
  402. { 0x200f4, 0x600f4 }, /* PM_RUN_CYC */
  403. { 0x2013c, 0x3012e }, /* PM_MRK_FILT_MATCH */
  404. { 0x3e054, 0x400f0 }, /* PM_LD_MISS_L1 */
  405. { 0x400fa, 0x500fa }, /* PM_RUN_INST_CMPL */
  406. };
  407. /*
  408. * Scan the alternatives table for a match and return the
  409. * index into the alternatives table if found, else -1.
  410. */
  411. static int find_alternative(u64 event)
  412. {
  413. int i, j;
  414. for (i = 0; i < ARRAY_SIZE(event_alternatives); ++i) {
  415. if (event < event_alternatives[i][0])
  416. break;
  417. for (j = 0; j < MAX_ALT && event_alternatives[i][j]; ++j)
  418. if (event == event_alternatives[i][j])
  419. return i;
  420. }
  421. return -1;
  422. }
  423. static int power8_get_alternatives(u64 event, unsigned int flags, u64 alt[])
  424. {
  425. int i, j, num_alt = 0;
  426. u64 alt_event;
  427. alt[num_alt++] = event;
  428. i = find_alternative(event);
  429. if (i >= 0) {
  430. /* Filter out the original event, it's already in alt[0] */
  431. for (j = 0; j < MAX_ALT; ++j) {
  432. alt_event = event_alternatives[i][j];
  433. if (alt_event && alt_event != event)
  434. alt[num_alt++] = alt_event;
  435. }
  436. }
  437. if (flags & PPMU_ONLY_COUNT_RUN) {
  438. /*
  439. * We're only counting in RUN state, so PM_CYC is equivalent to
  440. * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
  441. */
  442. j = num_alt;
  443. for (i = 0; i < num_alt; ++i) {
  444. switch (alt[i]) {
  445. case 0x1e: /* PM_CYC */
  446. alt[j++] = 0x600f4; /* PM_RUN_CYC */
  447. break;
  448. case 0x600f4: /* PM_RUN_CYC */
  449. alt[j++] = 0x1e;
  450. break;
  451. case 0x2: /* PM_PPC_CMPL */
  452. alt[j++] = 0x500fa; /* PM_RUN_INST_CMPL */
  453. break;
  454. case 0x500fa: /* PM_RUN_INST_CMPL */
  455. alt[j++] = 0x2; /* PM_PPC_CMPL */
  456. break;
  457. }
  458. }
  459. num_alt = j;
  460. }
  461. return num_alt;
  462. }
  463. static void power8_disable_pmc(unsigned int pmc, unsigned long mmcr[])
  464. {
  465. if (pmc <= 3)
  466. mmcr[1] &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
  467. }
  468. PMU_FORMAT_ATTR(event, "config:0-49");
  469. PMU_FORMAT_ATTR(pmcxsel, "config:0-7");
  470. PMU_FORMAT_ATTR(mark, "config:8");
  471. PMU_FORMAT_ATTR(combine, "config:11");
  472. PMU_FORMAT_ATTR(unit, "config:12-15");
  473. PMU_FORMAT_ATTR(pmc, "config:16-19");
  474. PMU_FORMAT_ATTR(cache_sel, "config:20-23");
  475. PMU_FORMAT_ATTR(sample_mode, "config:24-28");
  476. PMU_FORMAT_ATTR(thresh_sel, "config:29-31");
  477. PMU_FORMAT_ATTR(thresh_stop, "config:32-35");
  478. PMU_FORMAT_ATTR(thresh_start, "config:36-39");
  479. PMU_FORMAT_ATTR(thresh_cmp, "config:40-49");
  480. static struct attribute *power8_pmu_format_attr[] = {
  481. &format_attr_event.attr,
  482. &format_attr_pmcxsel.attr,
  483. &format_attr_mark.attr,
  484. &format_attr_combine.attr,
  485. &format_attr_unit.attr,
  486. &format_attr_pmc.attr,
  487. &format_attr_cache_sel.attr,
  488. &format_attr_sample_mode.attr,
  489. &format_attr_thresh_sel.attr,
  490. &format_attr_thresh_stop.attr,
  491. &format_attr_thresh_start.attr,
  492. &format_attr_thresh_cmp.attr,
  493. NULL,
  494. };
  495. struct attribute_group power8_pmu_format_group = {
  496. .name = "format",
  497. .attrs = power8_pmu_format_attr,
  498. };
  499. static const struct attribute_group *power8_pmu_attr_groups[] = {
  500. &power8_pmu_format_group,
  501. NULL,
  502. };
  503. static int power8_generic_events[] = {
  504. [PERF_COUNT_HW_CPU_CYCLES] = PM_CYC,
  505. [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = PM_GCT_NOSLOT_CYC,
  506. [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = PM_CMPLU_STALL,
  507. [PERF_COUNT_HW_INSTRUCTIONS] = PM_INST_CMPL,
  508. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = PM_BRU_FIN,
  509. [PERF_COUNT_HW_BRANCH_MISSES] = PM_BR_MPRED_CMPL,
  510. [PERF_COUNT_HW_CACHE_REFERENCES] = PM_LD_REF_L1,
  511. [PERF_COUNT_HW_CACHE_MISSES] = PM_LD_MISS_L1,
  512. };
  513. static u64 power8_bhrb_filter_map(u64 branch_sample_type)
  514. {
  515. u64 pmu_bhrb_filter = 0;
  516. /* BHRB and regular PMU events share the same privilege state
  517. * filter configuration. BHRB is always recorded along with a
  518. * regular PMU event. As the privilege state filter is handled
  519. * in the basic PMC configuration of the accompanying regular
  520. * PMU event, we ignore any separate BHRB specific request.
  521. */
  522. /* No branch filter requested */
  523. if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY)
  524. return pmu_bhrb_filter;
  525. /* Invalid branch filter options - HW does not support */
  526. if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
  527. return -1;
  528. if (branch_sample_type & PERF_SAMPLE_BRANCH_IND_CALL)
  529. return -1;
  530. if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_CALL) {
  531. pmu_bhrb_filter |= POWER8_MMCRA_IFM1;
  532. return pmu_bhrb_filter;
  533. }
  534. /* Every thing else is unsupported */
  535. return -1;
  536. }
  537. static void power8_config_bhrb(u64 pmu_bhrb_filter)
  538. {
  539. /* Enable BHRB filter in PMU */
  540. mtspr(SPRN_MMCRA, (mfspr(SPRN_MMCRA) | pmu_bhrb_filter));
  541. }
  542. #define C(x) PERF_COUNT_HW_CACHE_##x
  543. /*
  544. * Table of generalized cache-related events.
  545. * 0 means not supported, -1 means nonsensical, other values
  546. * are event codes.
  547. */
  548. static int power8_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
  549. [ C(L1D) ] = {
  550. [ C(OP_READ) ] = {
  551. [ C(RESULT_ACCESS) ] = PM_LD_REF_L1,
  552. [ C(RESULT_MISS) ] = PM_LD_MISS_L1,
  553. },
  554. [ C(OP_WRITE) ] = {
  555. [ C(RESULT_ACCESS) ] = 0,
  556. [ C(RESULT_MISS) ] = PM_ST_MISS_L1,
  557. },
  558. [ C(OP_PREFETCH) ] = {
  559. [ C(RESULT_ACCESS) ] = PM_L1_PREF,
  560. [ C(RESULT_MISS) ] = 0,
  561. },
  562. },
  563. [ C(L1I) ] = {
  564. [ C(OP_READ) ] = {
  565. [ C(RESULT_ACCESS) ] = PM_INST_FROM_L1,
  566. [ C(RESULT_MISS) ] = PM_L1_ICACHE_MISS,
  567. },
  568. [ C(OP_WRITE) ] = {
  569. [ C(RESULT_ACCESS) ] = PM_L1_DEMAND_WRITE,
  570. [ C(RESULT_MISS) ] = -1,
  571. },
  572. [ C(OP_PREFETCH) ] = {
  573. [ C(RESULT_ACCESS) ] = PM_IC_PREF_WRITE,
  574. [ C(RESULT_MISS) ] = 0,
  575. },
  576. },
  577. [ C(LL) ] = {
  578. [ C(OP_READ) ] = {
  579. [ C(RESULT_ACCESS) ] = PM_DATA_FROM_L3,
  580. [ C(RESULT_MISS) ] = PM_DATA_FROM_L3MISS,
  581. },
  582. [ C(OP_WRITE) ] = {
  583. [ C(RESULT_ACCESS) ] = PM_L2_ST,
  584. [ C(RESULT_MISS) ] = PM_L2_ST_MISS,
  585. },
  586. [ C(OP_PREFETCH) ] = {
  587. [ C(RESULT_ACCESS) ] = PM_L3_PREF_ALL,
  588. [ C(RESULT_MISS) ] = 0,
  589. },
  590. },
  591. [ C(DTLB) ] = {
  592. [ C(OP_READ) ] = {
  593. [ C(RESULT_ACCESS) ] = 0,
  594. [ C(RESULT_MISS) ] = PM_DTLB_MISS,
  595. },
  596. [ C(OP_WRITE) ] = {
  597. [ C(RESULT_ACCESS) ] = -1,
  598. [ C(RESULT_MISS) ] = -1,
  599. },
  600. [ C(OP_PREFETCH) ] = {
  601. [ C(RESULT_ACCESS) ] = -1,
  602. [ C(RESULT_MISS) ] = -1,
  603. },
  604. },
  605. [ C(ITLB) ] = {
  606. [ C(OP_READ) ] = {
  607. [ C(RESULT_ACCESS) ] = 0,
  608. [ C(RESULT_MISS) ] = PM_ITLB_MISS,
  609. },
  610. [ C(OP_WRITE) ] = {
  611. [ C(RESULT_ACCESS) ] = -1,
  612. [ C(RESULT_MISS) ] = -1,
  613. },
  614. [ C(OP_PREFETCH) ] = {
  615. [ C(RESULT_ACCESS) ] = -1,
  616. [ C(RESULT_MISS) ] = -1,
  617. },
  618. },
  619. [ C(BPU) ] = {
  620. [ C(OP_READ) ] = {
  621. [ C(RESULT_ACCESS) ] = PM_BRU_FIN,
  622. [ C(RESULT_MISS) ] = PM_BR_MPRED_CMPL,
  623. },
  624. [ C(OP_WRITE) ] = {
  625. [ C(RESULT_ACCESS) ] = -1,
  626. [ C(RESULT_MISS) ] = -1,
  627. },
  628. [ C(OP_PREFETCH) ] = {
  629. [ C(RESULT_ACCESS) ] = -1,
  630. [ C(RESULT_MISS) ] = -1,
  631. },
  632. },
  633. [ C(NODE) ] = {
  634. [ C(OP_READ) ] = {
  635. [ C(RESULT_ACCESS) ] = -1,
  636. [ C(RESULT_MISS) ] = -1,
  637. },
  638. [ C(OP_WRITE) ] = {
  639. [ C(RESULT_ACCESS) ] = -1,
  640. [ C(RESULT_MISS) ] = -1,
  641. },
  642. [ C(OP_PREFETCH) ] = {
  643. [ C(RESULT_ACCESS) ] = -1,
  644. [ C(RESULT_MISS) ] = -1,
  645. },
  646. },
  647. };
  648. #undef C
  649. static struct power_pmu power8_pmu = {
  650. .name = "POWER8",
  651. .n_counter = 6,
  652. .max_alternatives = MAX_ALT + 1,
  653. .add_fields = POWER8_ADD_FIELDS,
  654. .test_adder = POWER8_TEST_ADDER,
  655. .compute_mmcr = power8_compute_mmcr,
  656. .config_bhrb = power8_config_bhrb,
  657. .bhrb_filter_map = power8_bhrb_filter_map,
  658. .get_constraint = power8_get_constraint,
  659. .get_alternatives = power8_get_alternatives,
  660. .disable_pmc = power8_disable_pmc,
  661. .flags = PPMU_HAS_SSLOT | PPMU_HAS_SIER | PPMU_BHRB | PPMU_EBB,
  662. .n_generic = ARRAY_SIZE(power8_generic_events),
  663. .generic_events = power8_generic_events,
  664. .cache_events = &power8_cache_events,
  665. .attr_groups = power8_pmu_attr_groups,
  666. .bhrb_nr = 32,
  667. };
  668. static int __init init_power8_pmu(void)
  669. {
  670. int rc;
  671. if (!cur_cpu_spec->oprofile_cpu_type ||
  672. strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc64/power8"))
  673. return -ENODEV;
  674. rc = register_power_pmu(&power8_pmu);
  675. if (rc)
  676. return rc;
  677. /* Tell userspace that EBB is supported */
  678. cur_cpu_spec->cpu_user_features2 |= PPC_FEATURE2_EBB;
  679. return 0;
  680. }
  681. early_initcall(init_power8_pmu);