book3s_hv.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387
  1. /*
  2. * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  3. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
  4. *
  5. * Authors:
  6. * Paul Mackerras <paulus@au1.ibm.com>
  7. * Alexander Graf <agraf@suse.de>
  8. * Kevin Wolf <mail@kevin-wolf.de>
  9. *
  10. * Description: KVM functions specific to running on Book 3S
  11. * processors in hypervisor mode (specifically POWER7 and later).
  12. *
  13. * This file is derived from arch/powerpc/kvm/book3s.c,
  14. * by Alexander Graf <agraf@suse.de>.
  15. *
  16. * This program is free software; you can redistribute it and/or modify
  17. * it under the terms of the GNU General Public License, version 2, as
  18. * published by the Free Software Foundation.
  19. */
  20. #include <linux/kvm_host.h>
  21. #include <linux/err.h>
  22. #include <linux/slab.h>
  23. #include <linux/preempt.h>
  24. #include <linux/sched.h>
  25. #include <linux/delay.h>
  26. #include <linux/export.h>
  27. #include <linux/fs.h>
  28. #include <linux/anon_inodes.h>
  29. #include <linux/cpumask.h>
  30. #include <linux/spinlock.h>
  31. #include <linux/page-flags.h>
  32. #include <linux/srcu.h>
  33. #include <linux/miscdevice.h>
  34. #include <asm/reg.h>
  35. #include <asm/cputable.h>
  36. #include <asm/cacheflush.h>
  37. #include <asm/tlbflush.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/io.h>
  40. #include <asm/kvm_ppc.h>
  41. #include <asm/kvm_book3s.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/lppaca.h>
  44. #include <asm/processor.h>
  45. #include <asm/cputhreads.h>
  46. #include <asm/page.h>
  47. #include <asm/hvcall.h>
  48. #include <asm/switch_to.h>
  49. #include <asm/smp.h>
  50. #include <linux/gfp.h>
  51. #include <linux/vmalloc.h>
  52. #include <linux/highmem.h>
  53. #include <linux/hugetlb.h>
  54. #include <linux/module.h>
  55. #include "book3s.h"
  56. /* #define EXIT_DEBUG */
  57. /* #define EXIT_DEBUG_SIMPLE */
  58. /* #define EXIT_DEBUG_INT */
  59. /* Used to indicate that a guest page fault needs to be handled */
  60. #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
  61. /* Used as a "null" value for timebase values */
  62. #define TB_NIL (~(u64)0)
  63. static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
  64. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
  65. static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
  66. {
  67. int me;
  68. int cpu = vcpu->cpu;
  69. wait_queue_head_t *wqp;
  70. wqp = kvm_arch_vcpu_wq(vcpu);
  71. if (waitqueue_active(wqp)) {
  72. wake_up_interruptible(wqp);
  73. ++vcpu->stat.halt_wakeup;
  74. }
  75. me = get_cpu();
  76. /* CPU points to the first thread of the core */
  77. if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
  78. #ifdef CONFIG_KVM_XICS
  79. int real_cpu = cpu + vcpu->arch.ptid;
  80. if (paca[real_cpu].kvm_hstate.xics_phys)
  81. xics_wake_cpu(real_cpu);
  82. else
  83. #endif
  84. if (cpu_online(cpu))
  85. smp_send_reschedule(cpu);
  86. }
  87. put_cpu();
  88. }
  89. /*
  90. * We use the vcpu_load/put functions to measure stolen time.
  91. * Stolen time is counted as time when either the vcpu is able to
  92. * run as part of a virtual core, but the task running the vcore
  93. * is preempted or sleeping, or when the vcpu needs something done
  94. * in the kernel by the task running the vcpu, but that task is
  95. * preempted or sleeping. Those two things have to be counted
  96. * separately, since one of the vcpu tasks will take on the job
  97. * of running the core, and the other vcpu tasks in the vcore will
  98. * sleep waiting for it to do that, but that sleep shouldn't count
  99. * as stolen time.
  100. *
  101. * Hence we accumulate stolen time when the vcpu can run as part of
  102. * a vcore using vc->stolen_tb, and the stolen time when the vcpu
  103. * needs its task to do other things in the kernel (for example,
  104. * service a page fault) in busy_stolen. We don't accumulate
  105. * stolen time for a vcore when it is inactive, or for a vcpu
  106. * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
  107. * a misnomer; it means that the vcpu task is not executing in
  108. * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
  109. * the kernel. We don't have any way of dividing up that time
  110. * between time that the vcpu is genuinely stopped, time that
  111. * the task is actively working on behalf of the vcpu, and time
  112. * that the task is preempted, so we don't count any of it as
  113. * stolen.
  114. *
  115. * Updates to busy_stolen are protected by arch.tbacct_lock;
  116. * updates to vc->stolen_tb are protected by the arch.tbacct_lock
  117. * of the vcpu that has taken responsibility for running the vcore
  118. * (i.e. vc->runner). The stolen times are measured in units of
  119. * timebase ticks. (Note that the != TB_NIL checks below are
  120. * purely defensive; they should never fail.)
  121. */
  122. static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
  123. {
  124. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  125. unsigned long flags;
  126. spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
  127. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
  128. vc->preempt_tb != TB_NIL) {
  129. vc->stolen_tb += mftb() - vc->preempt_tb;
  130. vc->preempt_tb = TB_NIL;
  131. }
  132. if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
  133. vcpu->arch.busy_preempt != TB_NIL) {
  134. vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
  135. vcpu->arch.busy_preempt = TB_NIL;
  136. }
  137. spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
  138. }
  139. static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
  140. {
  141. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  142. unsigned long flags;
  143. spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
  144. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
  145. vc->preempt_tb = mftb();
  146. if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
  147. vcpu->arch.busy_preempt = mftb();
  148. spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
  149. }
  150. static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
  151. {
  152. vcpu->arch.shregs.msr = msr;
  153. kvmppc_end_cede(vcpu);
  154. }
  155. void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
  156. {
  157. vcpu->arch.pvr = pvr;
  158. }
  159. int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
  160. {
  161. unsigned long pcr = 0;
  162. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  163. if (arch_compat) {
  164. if (!cpu_has_feature(CPU_FTR_ARCH_206))
  165. return -EINVAL; /* 970 has no compat mode support */
  166. switch (arch_compat) {
  167. case PVR_ARCH_205:
  168. /*
  169. * If an arch bit is set in PCR, all the defined
  170. * higher-order arch bits also have to be set.
  171. */
  172. pcr = PCR_ARCH_206 | PCR_ARCH_205;
  173. break;
  174. case PVR_ARCH_206:
  175. case PVR_ARCH_206p:
  176. pcr = PCR_ARCH_206;
  177. break;
  178. case PVR_ARCH_207:
  179. break;
  180. default:
  181. return -EINVAL;
  182. }
  183. if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
  184. /* POWER7 can't emulate POWER8 */
  185. if (!(pcr & PCR_ARCH_206))
  186. return -EINVAL;
  187. pcr &= ~PCR_ARCH_206;
  188. }
  189. }
  190. spin_lock(&vc->lock);
  191. vc->arch_compat = arch_compat;
  192. vc->pcr = pcr;
  193. spin_unlock(&vc->lock);
  194. return 0;
  195. }
  196. void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
  197. {
  198. int r;
  199. pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
  200. pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
  201. vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
  202. for (r = 0; r < 16; ++r)
  203. pr_err("r%2d = %.16lx r%d = %.16lx\n",
  204. r, kvmppc_get_gpr(vcpu, r),
  205. r+16, kvmppc_get_gpr(vcpu, r+16));
  206. pr_err("ctr = %.16lx lr = %.16lx\n",
  207. vcpu->arch.ctr, vcpu->arch.lr);
  208. pr_err("srr0 = %.16llx srr1 = %.16llx\n",
  209. vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
  210. pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
  211. vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
  212. pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
  213. vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
  214. pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
  215. vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
  216. pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
  217. pr_err("fault dar = %.16lx dsisr = %.8x\n",
  218. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  219. pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
  220. for (r = 0; r < vcpu->arch.slb_max; ++r)
  221. pr_err(" ESID = %.16llx VSID = %.16llx\n",
  222. vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
  223. pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
  224. vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
  225. vcpu->arch.last_inst);
  226. }
  227. struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
  228. {
  229. int r;
  230. struct kvm_vcpu *v, *ret = NULL;
  231. mutex_lock(&kvm->lock);
  232. kvm_for_each_vcpu(r, v, kvm) {
  233. if (v->vcpu_id == id) {
  234. ret = v;
  235. break;
  236. }
  237. }
  238. mutex_unlock(&kvm->lock);
  239. return ret;
  240. }
  241. static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
  242. {
  243. vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
  244. vpa->yield_count = 1;
  245. }
  246. static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
  247. unsigned long addr, unsigned long len)
  248. {
  249. /* check address is cacheline aligned */
  250. if (addr & (L1_CACHE_BYTES - 1))
  251. return -EINVAL;
  252. spin_lock(&vcpu->arch.vpa_update_lock);
  253. if (v->next_gpa != addr || v->len != len) {
  254. v->next_gpa = addr;
  255. v->len = addr ? len : 0;
  256. v->update_pending = 1;
  257. }
  258. spin_unlock(&vcpu->arch.vpa_update_lock);
  259. return 0;
  260. }
  261. /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
  262. struct reg_vpa {
  263. u32 dummy;
  264. union {
  265. u16 hword;
  266. u32 word;
  267. } length;
  268. };
  269. static int vpa_is_registered(struct kvmppc_vpa *vpap)
  270. {
  271. if (vpap->update_pending)
  272. return vpap->next_gpa != 0;
  273. return vpap->pinned_addr != NULL;
  274. }
  275. static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
  276. unsigned long flags,
  277. unsigned long vcpuid, unsigned long vpa)
  278. {
  279. struct kvm *kvm = vcpu->kvm;
  280. unsigned long len, nb;
  281. void *va;
  282. struct kvm_vcpu *tvcpu;
  283. int err;
  284. int subfunc;
  285. struct kvmppc_vpa *vpap;
  286. tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
  287. if (!tvcpu)
  288. return H_PARAMETER;
  289. subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
  290. if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
  291. subfunc == H_VPA_REG_SLB) {
  292. /* Registering new area - address must be cache-line aligned */
  293. if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
  294. return H_PARAMETER;
  295. /* convert logical addr to kernel addr and read length */
  296. va = kvmppc_pin_guest_page(kvm, vpa, &nb);
  297. if (va == NULL)
  298. return H_PARAMETER;
  299. if (subfunc == H_VPA_REG_VPA)
  300. len = ((struct reg_vpa *)va)->length.hword;
  301. else
  302. len = ((struct reg_vpa *)va)->length.word;
  303. kvmppc_unpin_guest_page(kvm, va, vpa, false);
  304. /* Check length */
  305. if (len > nb || len < sizeof(struct reg_vpa))
  306. return H_PARAMETER;
  307. } else {
  308. vpa = 0;
  309. len = 0;
  310. }
  311. err = H_PARAMETER;
  312. vpap = NULL;
  313. spin_lock(&tvcpu->arch.vpa_update_lock);
  314. switch (subfunc) {
  315. case H_VPA_REG_VPA: /* register VPA */
  316. if (len < sizeof(struct lppaca))
  317. break;
  318. vpap = &tvcpu->arch.vpa;
  319. err = 0;
  320. break;
  321. case H_VPA_REG_DTL: /* register DTL */
  322. if (len < sizeof(struct dtl_entry))
  323. break;
  324. len -= len % sizeof(struct dtl_entry);
  325. /* Check that they have previously registered a VPA */
  326. err = H_RESOURCE;
  327. if (!vpa_is_registered(&tvcpu->arch.vpa))
  328. break;
  329. vpap = &tvcpu->arch.dtl;
  330. err = 0;
  331. break;
  332. case H_VPA_REG_SLB: /* register SLB shadow buffer */
  333. /* Check that they have previously registered a VPA */
  334. err = H_RESOURCE;
  335. if (!vpa_is_registered(&tvcpu->arch.vpa))
  336. break;
  337. vpap = &tvcpu->arch.slb_shadow;
  338. err = 0;
  339. break;
  340. case H_VPA_DEREG_VPA: /* deregister VPA */
  341. /* Check they don't still have a DTL or SLB buf registered */
  342. err = H_RESOURCE;
  343. if (vpa_is_registered(&tvcpu->arch.dtl) ||
  344. vpa_is_registered(&tvcpu->arch.slb_shadow))
  345. break;
  346. vpap = &tvcpu->arch.vpa;
  347. err = 0;
  348. break;
  349. case H_VPA_DEREG_DTL: /* deregister DTL */
  350. vpap = &tvcpu->arch.dtl;
  351. err = 0;
  352. break;
  353. case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
  354. vpap = &tvcpu->arch.slb_shadow;
  355. err = 0;
  356. break;
  357. }
  358. if (vpap) {
  359. vpap->next_gpa = vpa;
  360. vpap->len = len;
  361. vpap->update_pending = 1;
  362. }
  363. spin_unlock(&tvcpu->arch.vpa_update_lock);
  364. return err;
  365. }
  366. static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
  367. {
  368. struct kvm *kvm = vcpu->kvm;
  369. void *va;
  370. unsigned long nb;
  371. unsigned long gpa;
  372. /*
  373. * We need to pin the page pointed to by vpap->next_gpa,
  374. * but we can't call kvmppc_pin_guest_page under the lock
  375. * as it does get_user_pages() and down_read(). So we
  376. * have to drop the lock, pin the page, then get the lock
  377. * again and check that a new area didn't get registered
  378. * in the meantime.
  379. */
  380. for (;;) {
  381. gpa = vpap->next_gpa;
  382. spin_unlock(&vcpu->arch.vpa_update_lock);
  383. va = NULL;
  384. nb = 0;
  385. if (gpa)
  386. va = kvmppc_pin_guest_page(kvm, gpa, &nb);
  387. spin_lock(&vcpu->arch.vpa_update_lock);
  388. if (gpa == vpap->next_gpa)
  389. break;
  390. /* sigh... unpin that one and try again */
  391. if (va)
  392. kvmppc_unpin_guest_page(kvm, va, gpa, false);
  393. }
  394. vpap->update_pending = 0;
  395. if (va && nb < vpap->len) {
  396. /*
  397. * If it's now too short, it must be that userspace
  398. * has changed the mappings underlying guest memory,
  399. * so unregister the region.
  400. */
  401. kvmppc_unpin_guest_page(kvm, va, gpa, false);
  402. va = NULL;
  403. }
  404. if (vpap->pinned_addr)
  405. kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
  406. vpap->dirty);
  407. vpap->gpa = gpa;
  408. vpap->pinned_addr = va;
  409. vpap->dirty = false;
  410. if (va)
  411. vpap->pinned_end = va + vpap->len;
  412. }
  413. static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
  414. {
  415. if (!(vcpu->arch.vpa.update_pending ||
  416. vcpu->arch.slb_shadow.update_pending ||
  417. vcpu->arch.dtl.update_pending))
  418. return;
  419. spin_lock(&vcpu->arch.vpa_update_lock);
  420. if (vcpu->arch.vpa.update_pending) {
  421. kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
  422. if (vcpu->arch.vpa.pinned_addr)
  423. init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
  424. }
  425. if (vcpu->arch.dtl.update_pending) {
  426. kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
  427. vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
  428. vcpu->arch.dtl_index = 0;
  429. }
  430. if (vcpu->arch.slb_shadow.update_pending)
  431. kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
  432. spin_unlock(&vcpu->arch.vpa_update_lock);
  433. }
  434. /*
  435. * Return the accumulated stolen time for the vcore up until `now'.
  436. * The caller should hold the vcore lock.
  437. */
  438. static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
  439. {
  440. u64 p;
  441. /*
  442. * If we are the task running the vcore, then since we hold
  443. * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
  444. * can't be updated, so we don't need the tbacct_lock.
  445. * If the vcore is inactive, it can't become active (since we
  446. * hold the vcore lock), so the vcpu load/put functions won't
  447. * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
  448. */
  449. if (vc->vcore_state != VCORE_INACTIVE &&
  450. vc->runner->arch.run_task != current) {
  451. spin_lock_irq(&vc->runner->arch.tbacct_lock);
  452. p = vc->stolen_tb;
  453. if (vc->preempt_tb != TB_NIL)
  454. p += now - vc->preempt_tb;
  455. spin_unlock_irq(&vc->runner->arch.tbacct_lock);
  456. } else {
  457. p = vc->stolen_tb;
  458. }
  459. return p;
  460. }
  461. static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
  462. struct kvmppc_vcore *vc)
  463. {
  464. struct dtl_entry *dt;
  465. struct lppaca *vpa;
  466. unsigned long stolen;
  467. unsigned long core_stolen;
  468. u64 now;
  469. dt = vcpu->arch.dtl_ptr;
  470. vpa = vcpu->arch.vpa.pinned_addr;
  471. now = mftb();
  472. core_stolen = vcore_stolen_time(vc, now);
  473. stolen = core_stolen - vcpu->arch.stolen_logged;
  474. vcpu->arch.stolen_logged = core_stolen;
  475. spin_lock_irq(&vcpu->arch.tbacct_lock);
  476. stolen += vcpu->arch.busy_stolen;
  477. vcpu->arch.busy_stolen = 0;
  478. spin_unlock_irq(&vcpu->arch.tbacct_lock);
  479. if (!dt || !vpa)
  480. return;
  481. memset(dt, 0, sizeof(struct dtl_entry));
  482. dt->dispatch_reason = 7;
  483. dt->processor_id = vc->pcpu + vcpu->arch.ptid;
  484. dt->timebase = now + vc->tb_offset;
  485. dt->enqueue_to_dispatch_time = stolen;
  486. dt->srr0 = kvmppc_get_pc(vcpu);
  487. dt->srr1 = vcpu->arch.shregs.msr;
  488. ++dt;
  489. if (dt == vcpu->arch.dtl.pinned_end)
  490. dt = vcpu->arch.dtl.pinned_addr;
  491. vcpu->arch.dtl_ptr = dt;
  492. /* order writing *dt vs. writing vpa->dtl_idx */
  493. smp_wmb();
  494. vpa->dtl_idx = ++vcpu->arch.dtl_index;
  495. vcpu->arch.dtl.dirty = true;
  496. }
  497. int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
  498. {
  499. unsigned long req = kvmppc_get_gpr(vcpu, 3);
  500. unsigned long target, ret = H_SUCCESS;
  501. struct kvm_vcpu *tvcpu;
  502. int idx, rc;
  503. switch (req) {
  504. case H_ENTER:
  505. idx = srcu_read_lock(&vcpu->kvm->srcu);
  506. ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
  507. kvmppc_get_gpr(vcpu, 5),
  508. kvmppc_get_gpr(vcpu, 6),
  509. kvmppc_get_gpr(vcpu, 7));
  510. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  511. break;
  512. case H_CEDE:
  513. break;
  514. case H_PROD:
  515. target = kvmppc_get_gpr(vcpu, 4);
  516. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  517. if (!tvcpu) {
  518. ret = H_PARAMETER;
  519. break;
  520. }
  521. tvcpu->arch.prodded = 1;
  522. smp_mb();
  523. if (vcpu->arch.ceded) {
  524. if (waitqueue_active(&vcpu->wq)) {
  525. wake_up_interruptible(&vcpu->wq);
  526. vcpu->stat.halt_wakeup++;
  527. }
  528. }
  529. break;
  530. case H_CONFER:
  531. target = kvmppc_get_gpr(vcpu, 4);
  532. if (target == -1)
  533. break;
  534. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  535. if (!tvcpu) {
  536. ret = H_PARAMETER;
  537. break;
  538. }
  539. kvm_vcpu_yield_to(tvcpu);
  540. break;
  541. case H_REGISTER_VPA:
  542. ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
  543. kvmppc_get_gpr(vcpu, 5),
  544. kvmppc_get_gpr(vcpu, 6));
  545. break;
  546. case H_RTAS:
  547. if (list_empty(&vcpu->kvm->arch.rtas_tokens))
  548. return RESUME_HOST;
  549. idx = srcu_read_lock(&vcpu->kvm->srcu);
  550. rc = kvmppc_rtas_hcall(vcpu);
  551. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  552. if (rc == -ENOENT)
  553. return RESUME_HOST;
  554. else if (rc == 0)
  555. break;
  556. /* Send the error out to userspace via KVM_RUN */
  557. return rc;
  558. case H_XIRR:
  559. case H_CPPR:
  560. case H_EOI:
  561. case H_IPI:
  562. case H_IPOLL:
  563. case H_XIRR_X:
  564. if (kvmppc_xics_enabled(vcpu)) {
  565. ret = kvmppc_xics_hcall(vcpu, req);
  566. break;
  567. } /* fallthrough */
  568. default:
  569. return RESUME_HOST;
  570. }
  571. kvmppc_set_gpr(vcpu, 3, ret);
  572. vcpu->arch.hcall_needed = 0;
  573. return RESUME_GUEST;
  574. }
  575. static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
  576. struct task_struct *tsk)
  577. {
  578. int r = RESUME_HOST;
  579. vcpu->stat.sum_exits++;
  580. run->exit_reason = KVM_EXIT_UNKNOWN;
  581. run->ready_for_interrupt_injection = 1;
  582. switch (vcpu->arch.trap) {
  583. /* We're good on these - the host merely wanted to get our attention */
  584. case BOOK3S_INTERRUPT_HV_DECREMENTER:
  585. vcpu->stat.dec_exits++;
  586. r = RESUME_GUEST;
  587. break;
  588. case BOOK3S_INTERRUPT_EXTERNAL:
  589. case BOOK3S_INTERRUPT_H_DOORBELL:
  590. vcpu->stat.ext_intr_exits++;
  591. r = RESUME_GUEST;
  592. break;
  593. case BOOK3S_INTERRUPT_PERFMON:
  594. r = RESUME_GUEST;
  595. break;
  596. case BOOK3S_INTERRUPT_MACHINE_CHECK:
  597. /*
  598. * Deliver a machine check interrupt to the guest.
  599. * We have to do this, even if the host has handled the
  600. * machine check, because machine checks use SRR0/1 and
  601. * the interrupt might have trashed guest state in them.
  602. */
  603. kvmppc_book3s_queue_irqprio(vcpu,
  604. BOOK3S_INTERRUPT_MACHINE_CHECK);
  605. r = RESUME_GUEST;
  606. break;
  607. case BOOK3S_INTERRUPT_PROGRAM:
  608. {
  609. ulong flags;
  610. /*
  611. * Normally program interrupts are delivered directly
  612. * to the guest by the hardware, but we can get here
  613. * as a result of a hypervisor emulation interrupt
  614. * (e40) getting turned into a 700 by BML RTAS.
  615. */
  616. flags = vcpu->arch.shregs.msr & 0x1f0000ull;
  617. kvmppc_core_queue_program(vcpu, flags);
  618. r = RESUME_GUEST;
  619. break;
  620. }
  621. case BOOK3S_INTERRUPT_SYSCALL:
  622. {
  623. /* hcall - punt to userspace */
  624. int i;
  625. /* hypercall with MSR_PR has already been handled in rmode,
  626. * and never reaches here.
  627. */
  628. run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
  629. for (i = 0; i < 9; ++i)
  630. run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
  631. run->exit_reason = KVM_EXIT_PAPR_HCALL;
  632. vcpu->arch.hcall_needed = 1;
  633. r = RESUME_HOST;
  634. break;
  635. }
  636. /*
  637. * We get these next two if the guest accesses a page which it thinks
  638. * it has mapped but which is not actually present, either because
  639. * it is for an emulated I/O device or because the corresonding
  640. * host page has been paged out. Any other HDSI/HISI interrupts
  641. * have been handled already.
  642. */
  643. case BOOK3S_INTERRUPT_H_DATA_STORAGE:
  644. r = RESUME_PAGE_FAULT;
  645. break;
  646. case BOOK3S_INTERRUPT_H_INST_STORAGE:
  647. vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
  648. vcpu->arch.fault_dsisr = 0;
  649. r = RESUME_PAGE_FAULT;
  650. break;
  651. /*
  652. * This occurs if the guest executes an illegal instruction.
  653. * We just generate a program interrupt to the guest, since
  654. * we don't emulate any guest instructions at this stage.
  655. */
  656. case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
  657. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  658. r = RESUME_GUEST;
  659. break;
  660. /*
  661. * This occurs if the guest (kernel or userspace), does something that
  662. * is prohibited by HFSCR. We just generate a program interrupt to
  663. * the guest.
  664. */
  665. case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
  666. kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
  667. r = RESUME_GUEST;
  668. break;
  669. default:
  670. kvmppc_dump_regs(vcpu);
  671. printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
  672. vcpu->arch.trap, kvmppc_get_pc(vcpu),
  673. vcpu->arch.shregs.msr);
  674. run->hw.hardware_exit_reason = vcpu->arch.trap;
  675. r = RESUME_HOST;
  676. break;
  677. }
  678. return r;
  679. }
  680. static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
  681. struct kvm_sregs *sregs)
  682. {
  683. int i;
  684. memset(sregs, 0, sizeof(struct kvm_sregs));
  685. sregs->pvr = vcpu->arch.pvr;
  686. for (i = 0; i < vcpu->arch.slb_max; i++) {
  687. sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
  688. sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
  689. }
  690. return 0;
  691. }
  692. static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
  693. struct kvm_sregs *sregs)
  694. {
  695. int i, j;
  696. kvmppc_set_pvr_hv(vcpu, sregs->pvr);
  697. j = 0;
  698. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  699. if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
  700. vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
  701. vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
  702. ++j;
  703. }
  704. }
  705. vcpu->arch.slb_max = j;
  706. return 0;
  707. }
  708. static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr)
  709. {
  710. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  711. u64 mask;
  712. spin_lock(&vc->lock);
  713. /*
  714. * If ILE (interrupt little-endian) has changed, update the
  715. * MSR_LE bit in the intr_msr for each vcpu in this vcore.
  716. */
  717. if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
  718. struct kvm *kvm = vcpu->kvm;
  719. struct kvm_vcpu *vcpu;
  720. int i;
  721. mutex_lock(&kvm->lock);
  722. kvm_for_each_vcpu(i, vcpu, kvm) {
  723. if (vcpu->arch.vcore != vc)
  724. continue;
  725. if (new_lpcr & LPCR_ILE)
  726. vcpu->arch.intr_msr |= MSR_LE;
  727. else
  728. vcpu->arch.intr_msr &= ~MSR_LE;
  729. }
  730. mutex_unlock(&kvm->lock);
  731. }
  732. /*
  733. * Userspace can only modify DPFD (default prefetch depth),
  734. * ILE (interrupt little-endian) and TC (translation control).
  735. * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
  736. */
  737. mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
  738. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  739. mask |= LPCR_AIL;
  740. vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
  741. spin_unlock(&vc->lock);
  742. }
  743. static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
  744. union kvmppc_one_reg *val)
  745. {
  746. int r = 0;
  747. long int i;
  748. switch (id) {
  749. case KVM_REG_PPC_HIOR:
  750. *val = get_reg_val(id, 0);
  751. break;
  752. case KVM_REG_PPC_DABR:
  753. *val = get_reg_val(id, vcpu->arch.dabr);
  754. break;
  755. case KVM_REG_PPC_DABRX:
  756. *val = get_reg_val(id, vcpu->arch.dabrx);
  757. break;
  758. case KVM_REG_PPC_DSCR:
  759. *val = get_reg_val(id, vcpu->arch.dscr);
  760. break;
  761. case KVM_REG_PPC_PURR:
  762. *val = get_reg_val(id, vcpu->arch.purr);
  763. break;
  764. case KVM_REG_PPC_SPURR:
  765. *val = get_reg_val(id, vcpu->arch.spurr);
  766. break;
  767. case KVM_REG_PPC_AMR:
  768. *val = get_reg_val(id, vcpu->arch.amr);
  769. break;
  770. case KVM_REG_PPC_UAMOR:
  771. *val = get_reg_val(id, vcpu->arch.uamor);
  772. break;
  773. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
  774. i = id - KVM_REG_PPC_MMCR0;
  775. *val = get_reg_val(id, vcpu->arch.mmcr[i]);
  776. break;
  777. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  778. i = id - KVM_REG_PPC_PMC1;
  779. *val = get_reg_val(id, vcpu->arch.pmc[i]);
  780. break;
  781. case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
  782. i = id - KVM_REG_PPC_SPMC1;
  783. *val = get_reg_val(id, vcpu->arch.spmc[i]);
  784. break;
  785. case KVM_REG_PPC_SIAR:
  786. *val = get_reg_val(id, vcpu->arch.siar);
  787. break;
  788. case KVM_REG_PPC_SDAR:
  789. *val = get_reg_val(id, vcpu->arch.sdar);
  790. break;
  791. case KVM_REG_PPC_SIER:
  792. *val = get_reg_val(id, vcpu->arch.sier);
  793. break;
  794. case KVM_REG_PPC_IAMR:
  795. *val = get_reg_val(id, vcpu->arch.iamr);
  796. break;
  797. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  798. case KVM_REG_PPC_TFHAR:
  799. *val = get_reg_val(id, vcpu->arch.tfhar);
  800. break;
  801. case KVM_REG_PPC_TFIAR:
  802. *val = get_reg_val(id, vcpu->arch.tfiar);
  803. break;
  804. case KVM_REG_PPC_TEXASR:
  805. *val = get_reg_val(id, vcpu->arch.texasr);
  806. break;
  807. #endif
  808. case KVM_REG_PPC_FSCR:
  809. *val = get_reg_val(id, vcpu->arch.fscr);
  810. break;
  811. case KVM_REG_PPC_PSPB:
  812. *val = get_reg_val(id, vcpu->arch.pspb);
  813. break;
  814. case KVM_REG_PPC_EBBHR:
  815. *val = get_reg_val(id, vcpu->arch.ebbhr);
  816. break;
  817. case KVM_REG_PPC_EBBRR:
  818. *val = get_reg_val(id, vcpu->arch.ebbrr);
  819. break;
  820. case KVM_REG_PPC_BESCR:
  821. *val = get_reg_val(id, vcpu->arch.bescr);
  822. break;
  823. case KVM_REG_PPC_TAR:
  824. *val = get_reg_val(id, vcpu->arch.tar);
  825. break;
  826. case KVM_REG_PPC_DPDES:
  827. *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
  828. break;
  829. case KVM_REG_PPC_DAWR:
  830. *val = get_reg_val(id, vcpu->arch.dawr);
  831. break;
  832. case KVM_REG_PPC_DAWRX:
  833. *val = get_reg_val(id, vcpu->arch.dawrx);
  834. break;
  835. case KVM_REG_PPC_CIABR:
  836. *val = get_reg_val(id, vcpu->arch.ciabr);
  837. break;
  838. case KVM_REG_PPC_IC:
  839. *val = get_reg_val(id, vcpu->arch.ic);
  840. break;
  841. case KVM_REG_PPC_VTB:
  842. *val = get_reg_val(id, vcpu->arch.vtb);
  843. break;
  844. case KVM_REG_PPC_CSIGR:
  845. *val = get_reg_val(id, vcpu->arch.csigr);
  846. break;
  847. case KVM_REG_PPC_TACR:
  848. *val = get_reg_val(id, vcpu->arch.tacr);
  849. break;
  850. case KVM_REG_PPC_TCSCR:
  851. *val = get_reg_val(id, vcpu->arch.tcscr);
  852. break;
  853. case KVM_REG_PPC_PID:
  854. *val = get_reg_val(id, vcpu->arch.pid);
  855. break;
  856. case KVM_REG_PPC_ACOP:
  857. *val = get_reg_val(id, vcpu->arch.acop);
  858. break;
  859. case KVM_REG_PPC_WORT:
  860. *val = get_reg_val(id, vcpu->arch.wort);
  861. break;
  862. case KVM_REG_PPC_VPA_ADDR:
  863. spin_lock(&vcpu->arch.vpa_update_lock);
  864. *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
  865. spin_unlock(&vcpu->arch.vpa_update_lock);
  866. break;
  867. case KVM_REG_PPC_VPA_SLB:
  868. spin_lock(&vcpu->arch.vpa_update_lock);
  869. val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
  870. val->vpaval.length = vcpu->arch.slb_shadow.len;
  871. spin_unlock(&vcpu->arch.vpa_update_lock);
  872. break;
  873. case KVM_REG_PPC_VPA_DTL:
  874. spin_lock(&vcpu->arch.vpa_update_lock);
  875. val->vpaval.addr = vcpu->arch.dtl.next_gpa;
  876. val->vpaval.length = vcpu->arch.dtl.len;
  877. spin_unlock(&vcpu->arch.vpa_update_lock);
  878. break;
  879. case KVM_REG_PPC_TB_OFFSET:
  880. *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
  881. break;
  882. case KVM_REG_PPC_LPCR:
  883. *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
  884. break;
  885. case KVM_REG_PPC_PPR:
  886. *val = get_reg_val(id, vcpu->arch.ppr);
  887. break;
  888. case KVM_REG_PPC_ARCH_COMPAT:
  889. *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
  890. break;
  891. default:
  892. r = -EINVAL;
  893. break;
  894. }
  895. return r;
  896. }
  897. static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
  898. union kvmppc_one_reg *val)
  899. {
  900. int r = 0;
  901. long int i;
  902. unsigned long addr, len;
  903. switch (id) {
  904. case KVM_REG_PPC_HIOR:
  905. /* Only allow this to be set to zero */
  906. if (set_reg_val(id, *val))
  907. r = -EINVAL;
  908. break;
  909. case KVM_REG_PPC_DABR:
  910. vcpu->arch.dabr = set_reg_val(id, *val);
  911. break;
  912. case KVM_REG_PPC_DABRX:
  913. vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
  914. break;
  915. case KVM_REG_PPC_DSCR:
  916. vcpu->arch.dscr = set_reg_val(id, *val);
  917. break;
  918. case KVM_REG_PPC_PURR:
  919. vcpu->arch.purr = set_reg_val(id, *val);
  920. break;
  921. case KVM_REG_PPC_SPURR:
  922. vcpu->arch.spurr = set_reg_val(id, *val);
  923. break;
  924. case KVM_REG_PPC_AMR:
  925. vcpu->arch.amr = set_reg_val(id, *val);
  926. break;
  927. case KVM_REG_PPC_UAMOR:
  928. vcpu->arch.uamor = set_reg_val(id, *val);
  929. break;
  930. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
  931. i = id - KVM_REG_PPC_MMCR0;
  932. vcpu->arch.mmcr[i] = set_reg_val(id, *val);
  933. break;
  934. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  935. i = id - KVM_REG_PPC_PMC1;
  936. vcpu->arch.pmc[i] = set_reg_val(id, *val);
  937. break;
  938. case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
  939. i = id - KVM_REG_PPC_SPMC1;
  940. vcpu->arch.spmc[i] = set_reg_val(id, *val);
  941. break;
  942. case KVM_REG_PPC_SIAR:
  943. vcpu->arch.siar = set_reg_val(id, *val);
  944. break;
  945. case KVM_REG_PPC_SDAR:
  946. vcpu->arch.sdar = set_reg_val(id, *val);
  947. break;
  948. case KVM_REG_PPC_SIER:
  949. vcpu->arch.sier = set_reg_val(id, *val);
  950. break;
  951. case KVM_REG_PPC_IAMR:
  952. vcpu->arch.iamr = set_reg_val(id, *val);
  953. break;
  954. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  955. case KVM_REG_PPC_TFHAR:
  956. vcpu->arch.tfhar = set_reg_val(id, *val);
  957. break;
  958. case KVM_REG_PPC_TFIAR:
  959. vcpu->arch.tfiar = set_reg_val(id, *val);
  960. break;
  961. case KVM_REG_PPC_TEXASR:
  962. vcpu->arch.texasr = set_reg_val(id, *val);
  963. break;
  964. #endif
  965. case KVM_REG_PPC_FSCR:
  966. vcpu->arch.fscr = set_reg_val(id, *val);
  967. break;
  968. case KVM_REG_PPC_PSPB:
  969. vcpu->arch.pspb = set_reg_val(id, *val);
  970. break;
  971. case KVM_REG_PPC_EBBHR:
  972. vcpu->arch.ebbhr = set_reg_val(id, *val);
  973. break;
  974. case KVM_REG_PPC_EBBRR:
  975. vcpu->arch.ebbrr = set_reg_val(id, *val);
  976. break;
  977. case KVM_REG_PPC_BESCR:
  978. vcpu->arch.bescr = set_reg_val(id, *val);
  979. break;
  980. case KVM_REG_PPC_TAR:
  981. vcpu->arch.tar = set_reg_val(id, *val);
  982. break;
  983. case KVM_REG_PPC_DPDES:
  984. vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
  985. break;
  986. case KVM_REG_PPC_DAWR:
  987. vcpu->arch.dawr = set_reg_val(id, *val);
  988. break;
  989. case KVM_REG_PPC_DAWRX:
  990. vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
  991. break;
  992. case KVM_REG_PPC_CIABR:
  993. vcpu->arch.ciabr = set_reg_val(id, *val);
  994. /* Don't allow setting breakpoints in hypervisor code */
  995. if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
  996. vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
  997. break;
  998. case KVM_REG_PPC_IC:
  999. vcpu->arch.ic = set_reg_val(id, *val);
  1000. break;
  1001. case KVM_REG_PPC_VTB:
  1002. vcpu->arch.vtb = set_reg_val(id, *val);
  1003. break;
  1004. case KVM_REG_PPC_CSIGR:
  1005. vcpu->arch.csigr = set_reg_val(id, *val);
  1006. break;
  1007. case KVM_REG_PPC_TACR:
  1008. vcpu->arch.tacr = set_reg_val(id, *val);
  1009. break;
  1010. case KVM_REG_PPC_TCSCR:
  1011. vcpu->arch.tcscr = set_reg_val(id, *val);
  1012. break;
  1013. case KVM_REG_PPC_PID:
  1014. vcpu->arch.pid = set_reg_val(id, *val);
  1015. break;
  1016. case KVM_REG_PPC_ACOP:
  1017. vcpu->arch.acop = set_reg_val(id, *val);
  1018. break;
  1019. case KVM_REG_PPC_WORT:
  1020. vcpu->arch.wort = set_reg_val(id, *val);
  1021. break;
  1022. case KVM_REG_PPC_VPA_ADDR:
  1023. addr = set_reg_val(id, *val);
  1024. r = -EINVAL;
  1025. if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
  1026. vcpu->arch.dtl.next_gpa))
  1027. break;
  1028. r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
  1029. break;
  1030. case KVM_REG_PPC_VPA_SLB:
  1031. addr = val->vpaval.addr;
  1032. len = val->vpaval.length;
  1033. r = -EINVAL;
  1034. if (addr && !vcpu->arch.vpa.next_gpa)
  1035. break;
  1036. r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
  1037. break;
  1038. case KVM_REG_PPC_VPA_DTL:
  1039. addr = val->vpaval.addr;
  1040. len = val->vpaval.length;
  1041. r = -EINVAL;
  1042. if (addr && (len < sizeof(struct dtl_entry) ||
  1043. !vcpu->arch.vpa.next_gpa))
  1044. break;
  1045. len -= len % sizeof(struct dtl_entry);
  1046. r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
  1047. break;
  1048. case KVM_REG_PPC_TB_OFFSET:
  1049. /* round up to multiple of 2^24 */
  1050. vcpu->arch.vcore->tb_offset =
  1051. ALIGN(set_reg_val(id, *val), 1UL << 24);
  1052. break;
  1053. case KVM_REG_PPC_LPCR:
  1054. kvmppc_set_lpcr(vcpu, set_reg_val(id, *val));
  1055. break;
  1056. case KVM_REG_PPC_PPR:
  1057. vcpu->arch.ppr = set_reg_val(id, *val);
  1058. break;
  1059. case KVM_REG_PPC_ARCH_COMPAT:
  1060. r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
  1061. break;
  1062. default:
  1063. r = -EINVAL;
  1064. break;
  1065. }
  1066. return r;
  1067. }
  1068. static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
  1069. unsigned int id)
  1070. {
  1071. struct kvm_vcpu *vcpu;
  1072. int err = -EINVAL;
  1073. int core;
  1074. struct kvmppc_vcore *vcore;
  1075. core = id / threads_per_core;
  1076. if (core >= KVM_MAX_VCORES)
  1077. goto out;
  1078. err = -ENOMEM;
  1079. vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  1080. if (!vcpu)
  1081. goto out;
  1082. err = kvm_vcpu_init(vcpu, kvm, id);
  1083. if (err)
  1084. goto free_vcpu;
  1085. vcpu->arch.shared = &vcpu->arch.shregs;
  1086. vcpu->arch.mmcr[0] = MMCR0_FC;
  1087. vcpu->arch.ctrl = CTRL_RUNLATCH;
  1088. /* default to host PVR, since we can't spoof it */
  1089. kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
  1090. spin_lock_init(&vcpu->arch.vpa_update_lock);
  1091. spin_lock_init(&vcpu->arch.tbacct_lock);
  1092. vcpu->arch.busy_preempt = TB_NIL;
  1093. vcpu->arch.intr_msr = MSR_SF | MSR_ME;
  1094. kvmppc_mmu_book3s_hv_init(vcpu);
  1095. vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
  1096. init_waitqueue_head(&vcpu->arch.cpu_run);
  1097. mutex_lock(&kvm->lock);
  1098. vcore = kvm->arch.vcores[core];
  1099. if (!vcore) {
  1100. vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
  1101. if (vcore) {
  1102. INIT_LIST_HEAD(&vcore->runnable_threads);
  1103. spin_lock_init(&vcore->lock);
  1104. init_waitqueue_head(&vcore->wq);
  1105. vcore->preempt_tb = TB_NIL;
  1106. vcore->lpcr = kvm->arch.lpcr;
  1107. vcore->first_vcpuid = core * threads_per_core;
  1108. vcore->kvm = kvm;
  1109. }
  1110. kvm->arch.vcores[core] = vcore;
  1111. kvm->arch.online_vcores++;
  1112. }
  1113. mutex_unlock(&kvm->lock);
  1114. if (!vcore)
  1115. goto free_vcpu;
  1116. spin_lock(&vcore->lock);
  1117. ++vcore->num_threads;
  1118. spin_unlock(&vcore->lock);
  1119. vcpu->arch.vcore = vcore;
  1120. vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
  1121. vcpu->arch.cpu_type = KVM_CPU_3S_64;
  1122. kvmppc_sanity_check(vcpu);
  1123. return vcpu;
  1124. free_vcpu:
  1125. kmem_cache_free(kvm_vcpu_cache, vcpu);
  1126. out:
  1127. return ERR_PTR(err);
  1128. }
  1129. static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
  1130. {
  1131. if (vpa->pinned_addr)
  1132. kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
  1133. vpa->dirty);
  1134. }
  1135. static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
  1136. {
  1137. spin_lock(&vcpu->arch.vpa_update_lock);
  1138. unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
  1139. unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
  1140. unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
  1141. spin_unlock(&vcpu->arch.vpa_update_lock);
  1142. kvm_vcpu_uninit(vcpu);
  1143. kmem_cache_free(kvm_vcpu_cache, vcpu);
  1144. }
  1145. static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
  1146. {
  1147. /* Indicate we want to get back into the guest */
  1148. return 1;
  1149. }
  1150. static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
  1151. {
  1152. unsigned long dec_nsec, now;
  1153. now = get_tb();
  1154. if (now > vcpu->arch.dec_expires) {
  1155. /* decrementer has already gone negative */
  1156. kvmppc_core_queue_dec(vcpu);
  1157. kvmppc_core_prepare_to_enter(vcpu);
  1158. return;
  1159. }
  1160. dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
  1161. / tb_ticks_per_sec;
  1162. hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
  1163. HRTIMER_MODE_REL);
  1164. vcpu->arch.timer_running = 1;
  1165. }
  1166. static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
  1167. {
  1168. vcpu->arch.ceded = 0;
  1169. if (vcpu->arch.timer_running) {
  1170. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  1171. vcpu->arch.timer_running = 0;
  1172. }
  1173. }
  1174. extern void __kvmppc_vcore_entry(void);
  1175. static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
  1176. struct kvm_vcpu *vcpu)
  1177. {
  1178. u64 now;
  1179. if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  1180. return;
  1181. spin_lock_irq(&vcpu->arch.tbacct_lock);
  1182. now = mftb();
  1183. vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
  1184. vcpu->arch.stolen_logged;
  1185. vcpu->arch.busy_preempt = now;
  1186. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  1187. spin_unlock_irq(&vcpu->arch.tbacct_lock);
  1188. --vc->n_runnable;
  1189. list_del(&vcpu->arch.run_list);
  1190. }
  1191. static int kvmppc_grab_hwthread(int cpu)
  1192. {
  1193. struct paca_struct *tpaca;
  1194. long timeout = 1000;
  1195. tpaca = &paca[cpu];
  1196. /* Ensure the thread won't go into the kernel if it wakes */
  1197. tpaca->kvm_hstate.hwthread_req = 1;
  1198. tpaca->kvm_hstate.kvm_vcpu = NULL;
  1199. /*
  1200. * If the thread is already executing in the kernel (e.g. handling
  1201. * a stray interrupt), wait for it to get back to nap mode.
  1202. * The smp_mb() is to ensure that our setting of hwthread_req
  1203. * is visible before we look at hwthread_state, so if this
  1204. * races with the code at system_reset_pSeries and the thread
  1205. * misses our setting of hwthread_req, we are sure to see its
  1206. * setting of hwthread_state, and vice versa.
  1207. */
  1208. smp_mb();
  1209. while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
  1210. if (--timeout <= 0) {
  1211. pr_err("KVM: couldn't grab cpu %d\n", cpu);
  1212. return -EBUSY;
  1213. }
  1214. udelay(1);
  1215. }
  1216. return 0;
  1217. }
  1218. static void kvmppc_release_hwthread(int cpu)
  1219. {
  1220. struct paca_struct *tpaca;
  1221. tpaca = &paca[cpu];
  1222. tpaca->kvm_hstate.hwthread_req = 0;
  1223. tpaca->kvm_hstate.kvm_vcpu = NULL;
  1224. }
  1225. static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
  1226. {
  1227. int cpu;
  1228. struct paca_struct *tpaca;
  1229. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  1230. if (vcpu->arch.timer_running) {
  1231. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  1232. vcpu->arch.timer_running = 0;
  1233. }
  1234. cpu = vc->pcpu + vcpu->arch.ptid;
  1235. tpaca = &paca[cpu];
  1236. tpaca->kvm_hstate.kvm_vcpu = vcpu;
  1237. tpaca->kvm_hstate.kvm_vcore = vc;
  1238. tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
  1239. vcpu->cpu = vc->pcpu;
  1240. smp_wmb();
  1241. #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
  1242. if (cpu != smp_processor_id()) {
  1243. #ifdef CONFIG_KVM_XICS
  1244. xics_wake_cpu(cpu);
  1245. #endif
  1246. if (vcpu->arch.ptid)
  1247. ++vc->n_woken;
  1248. }
  1249. #endif
  1250. }
  1251. static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
  1252. {
  1253. int i;
  1254. HMT_low();
  1255. i = 0;
  1256. while (vc->nap_count < vc->n_woken) {
  1257. if (++i >= 1000000) {
  1258. pr_err("kvmppc_wait_for_nap timeout %d %d\n",
  1259. vc->nap_count, vc->n_woken);
  1260. break;
  1261. }
  1262. cpu_relax();
  1263. }
  1264. HMT_medium();
  1265. }
  1266. /*
  1267. * Check that we are on thread 0 and that any other threads in
  1268. * this core are off-line. Then grab the threads so they can't
  1269. * enter the kernel.
  1270. */
  1271. static int on_primary_thread(void)
  1272. {
  1273. int cpu = smp_processor_id();
  1274. int thr = cpu_thread_in_core(cpu);
  1275. if (thr)
  1276. return 0;
  1277. while (++thr < threads_per_core)
  1278. if (cpu_online(cpu + thr))
  1279. return 0;
  1280. /* Grab all hw threads so they can't go into the kernel */
  1281. for (thr = 1; thr < threads_per_core; ++thr) {
  1282. if (kvmppc_grab_hwthread(cpu + thr)) {
  1283. /* Couldn't grab one; let the others go */
  1284. do {
  1285. kvmppc_release_hwthread(cpu + thr);
  1286. } while (--thr > 0);
  1287. return 0;
  1288. }
  1289. }
  1290. return 1;
  1291. }
  1292. /*
  1293. * Run a set of guest threads on a physical core.
  1294. * Called with vc->lock held.
  1295. */
  1296. static void kvmppc_run_core(struct kvmppc_vcore *vc)
  1297. {
  1298. struct kvm_vcpu *vcpu, *vnext;
  1299. long ret;
  1300. u64 now;
  1301. int i, need_vpa_update;
  1302. int srcu_idx;
  1303. struct kvm_vcpu *vcpus_to_update[threads_per_core];
  1304. /* don't start if any threads have a signal pending */
  1305. need_vpa_update = 0;
  1306. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1307. if (signal_pending(vcpu->arch.run_task))
  1308. return;
  1309. if (vcpu->arch.vpa.update_pending ||
  1310. vcpu->arch.slb_shadow.update_pending ||
  1311. vcpu->arch.dtl.update_pending)
  1312. vcpus_to_update[need_vpa_update++] = vcpu;
  1313. }
  1314. /*
  1315. * Initialize *vc, in particular vc->vcore_state, so we can
  1316. * drop the vcore lock if necessary.
  1317. */
  1318. vc->n_woken = 0;
  1319. vc->nap_count = 0;
  1320. vc->entry_exit_count = 0;
  1321. vc->vcore_state = VCORE_STARTING;
  1322. vc->in_guest = 0;
  1323. vc->napping_threads = 0;
  1324. /*
  1325. * Updating any of the vpas requires calling kvmppc_pin_guest_page,
  1326. * which can't be called with any spinlocks held.
  1327. */
  1328. if (need_vpa_update) {
  1329. spin_unlock(&vc->lock);
  1330. for (i = 0; i < need_vpa_update; ++i)
  1331. kvmppc_update_vpas(vcpus_to_update[i]);
  1332. spin_lock(&vc->lock);
  1333. }
  1334. /*
  1335. * Make sure we are running on thread 0, and that
  1336. * secondary threads are offline.
  1337. */
  1338. if (threads_per_core > 1 && !on_primary_thread()) {
  1339. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  1340. vcpu->arch.ret = -EBUSY;
  1341. goto out;
  1342. }
  1343. vc->pcpu = smp_processor_id();
  1344. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1345. kvmppc_start_thread(vcpu);
  1346. kvmppc_create_dtl_entry(vcpu, vc);
  1347. }
  1348. /* Set this explicitly in case thread 0 doesn't have a vcpu */
  1349. get_paca()->kvm_hstate.kvm_vcore = vc;
  1350. get_paca()->kvm_hstate.ptid = 0;
  1351. vc->vcore_state = VCORE_RUNNING;
  1352. preempt_disable();
  1353. spin_unlock(&vc->lock);
  1354. kvm_guest_enter();
  1355. srcu_idx = srcu_read_lock(&vc->kvm->srcu);
  1356. __kvmppc_vcore_entry();
  1357. spin_lock(&vc->lock);
  1358. /* disable sending of IPIs on virtual external irqs */
  1359. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  1360. vcpu->cpu = -1;
  1361. /* wait for secondary threads to finish writing their state to memory */
  1362. if (vc->nap_count < vc->n_woken)
  1363. kvmppc_wait_for_nap(vc);
  1364. for (i = 0; i < threads_per_core; ++i)
  1365. kvmppc_release_hwthread(vc->pcpu + i);
  1366. /* prevent other vcpu threads from doing kvmppc_start_thread() now */
  1367. vc->vcore_state = VCORE_EXITING;
  1368. spin_unlock(&vc->lock);
  1369. srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
  1370. /* make sure updates to secondary vcpu structs are visible now */
  1371. smp_mb();
  1372. kvm_guest_exit();
  1373. preempt_enable();
  1374. cond_resched();
  1375. spin_lock(&vc->lock);
  1376. now = get_tb();
  1377. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  1378. /* cancel pending dec exception if dec is positive */
  1379. if (now < vcpu->arch.dec_expires &&
  1380. kvmppc_core_pending_dec(vcpu))
  1381. kvmppc_core_dequeue_dec(vcpu);
  1382. ret = RESUME_GUEST;
  1383. if (vcpu->arch.trap)
  1384. ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
  1385. vcpu->arch.run_task);
  1386. vcpu->arch.ret = ret;
  1387. vcpu->arch.trap = 0;
  1388. if (vcpu->arch.ceded) {
  1389. if (ret != RESUME_GUEST)
  1390. kvmppc_end_cede(vcpu);
  1391. else
  1392. kvmppc_set_timer(vcpu);
  1393. }
  1394. }
  1395. out:
  1396. vc->vcore_state = VCORE_INACTIVE;
  1397. list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
  1398. arch.run_list) {
  1399. if (vcpu->arch.ret != RESUME_GUEST) {
  1400. kvmppc_remove_runnable(vc, vcpu);
  1401. wake_up(&vcpu->arch.cpu_run);
  1402. }
  1403. }
  1404. }
  1405. /*
  1406. * Wait for some other vcpu thread to execute us, and
  1407. * wake us up when we need to handle something in the host.
  1408. */
  1409. static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
  1410. {
  1411. DEFINE_WAIT(wait);
  1412. prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
  1413. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
  1414. schedule();
  1415. finish_wait(&vcpu->arch.cpu_run, &wait);
  1416. }
  1417. /*
  1418. * All the vcpus in this vcore are idle, so wait for a decrementer
  1419. * or external interrupt to one of the vcpus. vc->lock is held.
  1420. */
  1421. static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
  1422. {
  1423. DEFINE_WAIT(wait);
  1424. prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
  1425. vc->vcore_state = VCORE_SLEEPING;
  1426. spin_unlock(&vc->lock);
  1427. schedule();
  1428. finish_wait(&vc->wq, &wait);
  1429. spin_lock(&vc->lock);
  1430. vc->vcore_state = VCORE_INACTIVE;
  1431. }
  1432. static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1433. {
  1434. int n_ceded;
  1435. struct kvmppc_vcore *vc;
  1436. struct kvm_vcpu *v, *vn;
  1437. kvm_run->exit_reason = 0;
  1438. vcpu->arch.ret = RESUME_GUEST;
  1439. vcpu->arch.trap = 0;
  1440. kvmppc_update_vpas(vcpu);
  1441. /*
  1442. * Synchronize with other threads in this virtual core
  1443. */
  1444. vc = vcpu->arch.vcore;
  1445. spin_lock(&vc->lock);
  1446. vcpu->arch.ceded = 0;
  1447. vcpu->arch.run_task = current;
  1448. vcpu->arch.kvm_run = kvm_run;
  1449. vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
  1450. vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
  1451. vcpu->arch.busy_preempt = TB_NIL;
  1452. list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
  1453. ++vc->n_runnable;
  1454. /*
  1455. * This happens the first time this is called for a vcpu.
  1456. * If the vcore is already running, we may be able to start
  1457. * this thread straight away and have it join in.
  1458. */
  1459. if (!signal_pending(current)) {
  1460. if (vc->vcore_state == VCORE_RUNNING &&
  1461. VCORE_EXIT_COUNT(vc) == 0) {
  1462. kvmppc_create_dtl_entry(vcpu, vc);
  1463. kvmppc_start_thread(vcpu);
  1464. } else if (vc->vcore_state == VCORE_SLEEPING) {
  1465. wake_up(&vc->wq);
  1466. }
  1467. }
  1468. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  1469. !signal_pending(current)) {
  1470. if (vc->vcore_state != VCORE_INACTIVE) {
  1471. spin_unlock(&vc->lock);
  1472. kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
  1473. spin_lock(&vc->lock);
  1474. continue;
  1475. }
  1476. list_for_each_entry_safe(v, vn, &vc->runnable_threads,
  1477. arch.run_list) {
  1478. kvmppc_core_prepare_to_enter(v);
  1479. if (signal_pending(v->arch.run_task)) {
  1480. kvmppc_remove_runnable(vc, v);
  1481. v->stat.signal_exits++;
  1482. v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
  1483. v->arch.ret = -EINTR;
  1484. wake_up(&v->arch.cpu_run);
  1485. }
  1486. }
  1487. if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  1488. break;
  1489. vc->runner = vcpu;
  1490. n_ceded = 0;
  1491. list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
  1492. if (!v->arch.pending_exceptions)
  1493. n_ceded += v->arch.ceded;
  1494. else
  1495. v->arch.ceded = 0;
  1496. }
  1497. if (n_ceded == vc->n_runnable)
  1498. kvmppc_vcore_blocked(vc);
  1499. else
  1500. kvmppc_run_core(vc);
  1501. vc->runner = NULL;
  1502. }
  1503. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  1504. (vc->vcore_state == VCORE_RUNNING ||
  1505. vc->vcore_state == VCORE_EXITING)) {
  1506. spin_unlock(&vc->lock);
  1507. kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
  1508. spin_lock(&vc->lock);
  1509. }
  1510. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
  1511. kvmppc_remove_runnable(vc, vcpu);
  1512. vcpu->stat.signal_exits++;
  1513. kvm_run->exit_reason = KVM_EXIT_INTR;
  1514. vcpu->arch.ret = -EINTR;
  1515. }
  1516. if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
  1517. /* Wake up some vcpu to run the core */
  1518. v = list_first_entry(&vc->runnable_threads,
  1519. struct kvm_vcpu, arch.run_list);
  1520. wake_up(&v->arch.cpu_run);
  1521. }
  1522. spin_unlock(&vc->lock);
  1523. return vcpu->arch.ret;
  1524. }
  1525. static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1526. {
  1527. int r;
  1528. int srcu_idx;
  1529. if (!vcpu->arch.sane) {
  1530. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1531. return -EINVAL;
  1532. }
  1533. kvmppc_core_prepare_to_enter(vcpu);
  1534. /* No need to go into the guest when all we'll do is come back out */
  1535. if (signal_pending(current)) {
  1536. run->exit_reason = KVM_EXIT_INTR;
  1537. return -EINTR;
  1538. }
  1539. atomic_inc(&vcpu->kvm->arch.vcpus_running);
  1540. /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
  1541. smp_mb();
  1542. /* On the first time here, set up HTAB and VRMA or RMA */
  1543. if (!vcpu->kvm->arch.rma_setup_done) {
  1544. r = kvmppc_hv_setup_htab_rma(vcpu);
  1545. if (r)
  1546. goto out;
  1547. }
  1548. flush_fp_to_thread(current);
  1549. flush_altivec_to_thread(current);
  1550. flush_vsx_to_thread(current);
  1551. vcpu->arch.wqp = &vcpu->arch.vcore->wq;
  1552. vcpu->arch.pgdir = current->mm->pgd;
  1553. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  1554. do {
  1555. r = kvmppc_run_vcpu(run, vcpu);
  1556. if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
  1557. !(vcpu->arch.shregs.msr & MSR_PR)) {
  1558. r = kvmppc_pseries_do_hcall(vcpu);
  1559. kvmppc_core_prepare_to_enter(vcpu);
  1560. } else if (r == RESUME_PAGE_FAULT) {
  1561. srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  1562. r = kvmppc_book3s_hv_page_fault(run, vcpu,
  1563. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  1564. srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
  1565. }
  1566. } while (r == RESUME_GUEST);
  1567. out:
  1568. vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
  1569. atomic_dec(&vcpu->kvm->arch.vcpus_running);
  1570. return r;
  1571. }
  1572. /* Work out RMLS (real mode limit selector) field value for a given RMA size.
  1573. Assumes POWER7 or PPC970. */
  1574. static inline int lpcr_rmls(unsigned long rma_size)
  1575. {
  1576. switch (rma_size) {
  1577. case 32ul << 20: /* 32 MB */
  1578. if (cpu_has_feature(CPU_FTR_ARCH_206))
  1579. return 8; /* only supported on POWER7 */
  1580. return -1;
  1581. case 64ul << 20: /* 64 MB */
  1582. return 3;
  1583. case 128ul << 20: /* 128 MB */
  1584. return 7;
  1585. case 256ul << 20: /* 256 MB */
  1586. return 4;
  1587. case 1ul << 30: /* 1 GB */
  1588. return 2;
  1589. case 16ul << 30: /* 16 GB */
  1590. return 1;
  1591. case 256ul << 30: /* 256 GB */
  1592. return 0;
  1593. default:
  1594. return -1;
  1595. }
  1596. }
  1597. static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1598. {
  1599. struct page *page;
  1600. struct kvm_rma_info *ri = vma->vm_file->private_data;
  1601. if (vmf->pgoff >= kvm_rma_pages)
  1602. return VM_FAULT_SIGBUS;
  1603. page = pfn_to_page(ri->base_pfn + vmf->pgoff);
  1604. get_page(page);
  1605. vmf->page = page;
  1606. return 0;
  1607. }
  1608. static const struct vm_operations_struct kvm_rma_vm_ops = {
  1609. .fault = kvm_rma_fault,
  1610. };
  1611. static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
  1612. {
  1613. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1614. vma->vm_ops = &kvm_rma_vm_ops;
  1615. return 0;
  1616. }
  1617. static int kvm_rma_release(struct inode *inode, struct file *filp)
  1618. {
  1619. struct kvm_rma_info *ri = filp->private_data;
  1620. kvm_release_rma(ri);
  1621. return 0;
  1622. }
  1623. static const struct file_operations kvm_rma_fops = {
  1624. .mmap = kvm_rma_mmap,
  1625. .release = kvm_rma_release,
  1626. };
  1627. static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
  1628. struct kvm_allocate_rma *ret)
  1629. {
  1630. long fd;
  1631. struct kvm_rma_info *ri;
  1632. /*
  1633. * Only do this on PPC970 in HV mode
  1634. */
  1635. if (!cpu_has_feature(CPU_FTR_HVMODE) ||
  1636. !cpu_has_feature(CPU_FTR_ARCH_201))
  1637. return -EINVAL;
  1638. if (!kvm_rma_pages)
  1639. return -EINVAL;
  1640. ri = kvm_alloc_rma();
  1641. if (!ri)
  1642. return -ENOMEM;
  1643. fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
  1644. if (fd < 0)
  1645. kvm_release_rma(ri);
  1646. ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
  1647. return fd;
  1648. }
  1649. static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
  1650. int linux_psize)
  1651. {
  1652. struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
  1653. if (!def->shift)
  1654. return;
  1655. (*sps)->page_shift = def->shift;
  1656. (*sps)->slb_enc = def->sllp;
  1657. (*sps)->enc[0].page_shift = def->shift;
  1658. /*
  1659. * Only return base page encoding. We don't want to return
  1660. * all the supporting pte_enc, because our H_ENTER doesn't
  1661. * support MPSS yet. Once they do, we can start passing all
  1662. * support pte_enc here
  1663. */
  1664. (*sps)->enc[0].pte_enc = def->penc[linux_psize];
  1665. (*sps)++;
  1666. }
  1667. static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
  1668. struct kvm_ppc_smmu_info *info)
  1669. {
  1670. struct kvm_ppc_one_seg_page_size *sps;
  1671. info->flags = KVM_PPC_PAGE_SIZES_REAL;
  1672. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  1673. info->flags |= KVM_PPC_1T_SEGMENTS;
  1674. info->slb_size = mmu_slb_size;
  1675. /* We only support these sizes for now, and no muti-size segments */
  1676. sps = &info->sps[0];
  1677. kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
  1678. kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
  1679. kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
  1680. return 0;
  1681. }
  1682. /*
  1683. * Get (and clear) the dirty memory log for a memory slot.
  1684. */
  1685. static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
  1686. struct kvm_dirty_log *log)
  1687. {
  1688. struct kvm_memory_slot *memslot;
  1689. int r;
  1690. unsigned long n;
  1691. mutex_lock(&kvm->slots_lock);
  1692. r = -EINVAL;
  1693. if (log->slot >= KVM_USER_MEM_SLOTS)
  1694. goto out;
  1695. memslot = id_to_memslot(kvm->memslots, log->slot);
  1696. r = -ENOENT;
  1697. if (!memslot->dirty_bitmap)
  1698. goto out;
  1699. n = kvm_dirty_bitmap_bytes(memslot);
  1700. memset(memslot->dirty_bitmap, 0, n);
  1701. r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
  1702. if (r)
  1703. goto out;
  1704. r = -EFAULT;
  1705. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1706. goto out;
  1707. r = 0;
  1708. out:
  1709. mutex_unlock(&kvm->slots_lock);
  1710. return r;
  1711. }
  1712. static void unpin_slot(struct kvm_memory_slot *memslot)
  1713. {
  1714. unsigned long *physp;
  1715. unsigned long j, npages, pfn;
  1716. struct page *page;
  1717. physp = memslot->arch.slot_phys;
  1718. npages = memslot->npages;
  1719. if (!physp)
  1720. return;
  1721. for (j = 0; j < npages; j++) {
  1722. if (!(physp[j] & KVMPPC_GOT_PAGE))
  1723. continue;
  1724. pfn = physp[j] >> PAGE_SHIFT;
  1725. page = pfn_to_page(pfn);
  1726. SetPageDirty(page);
  1727. put_page(page);
  1728. }
  1729. }
  1730. static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
  1731. struct kvm_memory_slot *dont)
  1732. {
  1733. if (!dont || free->arch.rmap != dont->arch.rmap) {
  1734. vfree(free->arch.rmap);
  1735. free->arch.rmap = NULL;
  1736. }
  1737. if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
  1738. unpin_slot(free);
  1739. vfree(free->arch.slot_phys);
  1740. free->arch.slot_phys = NULL;
  1741. }
  1742. }
  1743. static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
  1744. unsigned long npages)
  1745. {
  1746. slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
  1747. if (!slot->arch.rmap)
  1748. return -ENOMEM;
  1749. slot->arch.slot_phys = NULL;
  1750. return 0;
  1751. }
  1752. static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
  1753. struct kvm_memory_slot *memslot,
  1754. struct kvm_userspace_memory_region *mem)
  1755. {
  1756. unsigned long *phys;
  1757. /* Allocate a slot_phys array if needed */
  1758. phys = memslot->arch.slot_phys;
  1759. if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
  1760. phys = vzalloc(memslot->npages * sizeof(unsigned long));
  1761. if (!phys)
  1762. return -ENOMEM;
  1763. memslot->arch.slot_phys = phys;
  1764. }
  1765. return 0;
  1766. }
  1767. static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
  1768. struct kvm_userspace_memory_region *mem,
  1769. const struct kvm_memory_slot *old)
  1770. {
  1771. unsigned long npages = mem->memory_size >> PAGE_SHIFT;
  1772. struct kvm_memory_slot *memslot;
  1773. if (npages && old->npages) {
  1774. /*
  1775. * If modifying a memslot, reset all the rmap dirty bits.
  1776. * If this is a new memslot, we don't need to do anything
  1777. * since the rmap array starts out as all zeroes,
  1778. * i.e. no pages are dirty.
  1779. */
  1780. memslot = id_to_memslot(kvm->memslots, mem->slot);
  1781. kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
  1782. }
  1783. }
  1784. /*
  1785. * Update LPCR values in kvm->arch and in vcores.
  1786. * Caller must hold kvm->lock.
  1787. */
  1788. void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
  1789. {
  1790. long int i;
  1791. u32 cores_done = 0;
  1792. if ((kvm->arch.lpcr & mask) == lpcr)
  1793. return;
  1794. kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
  1795. for (i = 0; i < KVM_MAX_VCORES; ++i) {
  1796. struct kvmppc_vcore *vc = kvm->arch.vcores[i];
  1797. if (!vc)
  1798. continue;
  1799. spin_lock(&vc->lock);
  1800. vc->lpcr = (vc->lpcr & ~mask) | lpcr;
  1801. spin_unlock(&vc->lock);
  1802. if (++cores_done >= kvm->arch.online_vcores)
  1803. break;
  1804. }
  1805. }
  1806. static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
  1807. {
  1808. return;
  1809. }
  1810. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
  1811. {
  1812. int err = 0;
  1813. struct kvm *kvm = vcpu->kvm;
  1814. struct kvm_rma_info *ri = NULL;
  1815. unsigned long hva;
  1816. struct kvm_memory_slot *memslot;
  1817. struct vm_area_struct *vma;
  1818. unsigned long lpcr = 0, senc;
  1819. unsigned long lpcr_mask = 0;
  1820. unsigned long psize, porder;
  1821. unsigned long rma_size;
  1822. unsigned long rmls;
  1823. unsigned long *physp;
  1824. unsigned long i, npages;
  1825. int srcu_idx;
  1826. mutex_lock(&kvm->lock);
  1827. if (kvm->arch.rma_setup_done)
  1828. goto out; /* another vcpu beat us to it */
  1829. /* Allocate hashed page table (if not done already) and reset it */
  1830. if (!kvm->arch.hpt_virt) {
  1831. err = kvmppc_alloc_hpt(kvm, NULL);
  1832. if (err) {
  1833. pr_err("KVM: Couldn't alloc HPT\n");
  1834. goto out;
  1835. }
  1836. }
  1837. /* Look up the memslot for guest physical address 0 */
  1838. srcu_idx = srcu_read_lock(&kvm->srcu);
  1839. memslot = gfn_to_memslot(kvm, 0);
  1840. /* We must have some memory at 0 by now */
  1841. err = -EINVAL;
  1842. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  1843. goto out_srcu;
  1844. /* Look up the VMA for the start of this memory slot */
  1845. hva = memslot->userspace_addr;
  1846. down_read(&current->mm->mmap_sem);
  1847. vma = find_vma(current->mm, hva);
  1848. if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
  1849. goto up_out;
  1850. psize = vma_kernel_pagesize(vma);
  1851. porder = __ilog2(psize);
  1852. /* Is this one of our preallocated RMAs? */
  1853. if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
  1854. hva == vma->vm_start)
  1855. ri = vma->vm_file->private_data;
  1856. up_read(&current->mm->mmap_sem);
  1857. if (!ri) {
  1858. /* On POWER7, use VRMA; on PPC970, give up */
  1859. err = -EPERM;
  1860. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  1861. pr_err("KVM: CPU requires an RMO\n");
  1862. goto out_srcu;
  1863. }
  1864. /* We can handle 4k, 64k or 16M pages in the VRMA */
  1865. err = -EINVAL;
  1866. if (!(psize == 0x1000 || psize == 0x10000 ||
  1867. psize == 0x1000000))
  1868. goto out_srcu;
  1869. /* Update VRMASD field in the LPCR */
  1870. senc = slb_pgsize_encoding(psize);
  1871. kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
  1872. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  1873. lpcr_mask = LPCR_VRMASD;
  1874. /* the -4 is to account for senc values starting at 0x10 */
  1875. lpcr = senc << (LPCR_VRMASD_SH - 4);
  1876. /* Create HPTEs in the hash page table for the VRMA */
  1877. kvmppc_map_vrma(vcpu, memslot, porder);
  1878. } else {
  1879. /* Set up to use an RMO region */
  1880. rma_size = kvm_rma_pages;
  1881. if (rma_size > memslot->npages)
  1882. rma_size = memslot->npages;
  1883. rma_size <<= PAGE_SHIFT;
  1884. rmls = lpcr_rmls(rma_size);
  1885. err = -EINVAL;
  1886. if ((long)rmls < 0) {
  1887. pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
  1888. goto out_srcu;
  1889. }
  1890. atomic_inc(&ri->use_count);
  1891. kvm->arch.rma = ri;
  1892. /* Update LPCR and RMOR */
  1893. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  1894. /* PPC970; insert RMLS value (split field) in HID4 */
  1895. lpcr_mask = (1ul << HID4_RMLS0_SH) |
  1896. (3ul << HID4_RMLS2_SH) | HID4_RMOR;
  1897. lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
  1898. ((rmls & 3) << HID4_RMLS2_SH);
  1899. /* RMOR is also in HID4 */
  1900. lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
  1901. << HID4_RMOR_SH;
  1902. } else {
  1903. /* POWER7 */
  1904. lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
  1905. lpcr = rmls << LPCR_RMLS_SH;
  1906. kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
  1907. }
  1908. pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
  1909. ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
  1910. /* Initialize phys addrs of pages in RMO */
  1911. npages = kvm_rma_pages;
  1912. porder = __ilog2(npages);
  1913. physp = memslot->arch.slot_phys;
  1914. if (physp) {
  1915. if (npages > memslot->npages)
  1916. npages = memslot->npages;
  1917. spin_lock(&kvm->arch.slot_phys_lock);
  1918. for (i = 0; i < npages; ++i)
  1919. physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
  1920. porder;
  1921. spin_unlock(&kvm->arch.slot_phys_lock);
  1922. }
  1923. }
  1924. kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
  1925. /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
  1926. smp_wmb();
  1927. kvm->arch.rma_setup_done = 1;
  1928. err = 0;
  1929. out_srcu:
  1930. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1931. out:
  1932. mutex_unlock(&kvm->lock);
  1933. return err;
  1934. up_out:
  1935. up_read(&current->mm->mmap_sem);
  1936. goto out_srcu;
  1937. }
  1938. static int kvmppc_core_init_vm_hv(struct kvm *kvm)
  1939. {
  1940. unsigned long lpcr, lpid;
  1941. /* Allocate the guest's logical partition ID */
  1942. lpid = kvmppc_alloc_lpid();
  1943. if ((long)lpid < 0)
  1944. return -ENOMEM;
  1945. kvm->arch.lpid = lpid;
  1946. /*
  1947. * Since we don't flush the TLB when tearing down a VM,
  1948. * and this lpid might have previously been used,
  1949. * make sure we flush on each core before running the new VM.
  1950. */
  1951. cpumask_setall(&kvm->arch.need_tlb_flush);
  1952. kvm->arch.rma = NULL;
  1953. kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
  1954. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  1955. /* PPC970; HID4 is effectively the LPCR */
  1956. kvm->arch.host_lpid = 0;
  1957. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
  1958. lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
  1959. lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
  1960. ((lpid & 0xf) << HID4_LPID5_SH);
  1961. } else {
  1962. /* POWER7; init LPCR for virtual RMA mode */
  1963. kvm->arch.host_lpid = mfspr(SPRN_LPID);
  1964. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
  1965. lpcr &= LPCR_PECE | LPCR_LPES;
  1966. lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
  1967. LPCR_VPM0 | LPCR_VPM1;
  1968. kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
  1969. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  1970. /* On POWER8 turn on online bit to enable PURR/SPURR */
  1971. if (cpu_has_feature(CPU_FTR_ARCH_207S))
  1972. lpcr |= LPCR_ONL;
  1973. }
  1974. kvm->arch.lpcr = lpcr;
  1975. kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
  1976. spin_lock_init(&kvm->arch.slot_phys_lock);
  1977. /*
  1978. * Don't allow secondary CPU threads to come online
  1979. * while any KVM VMs exist.
  1980. */
  1981. inhibit_secondary_onlining();
  1982. return 0;
  1983. }
  1984. static void kvmppc_free_vcores(struct kvm *kvm)
  1985. {
  1986. long int i;
  1987. for (i = 0; i < KVM_MAX_VCORES; ++i)
  1988. kfree(kvm->arch.vcores[i]);
  1989. kvm->arch.online_vcores = 0;
  1990. }
  1991. static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
  1992. {
  1993. uninhibit_secondary_onlining();
  1994. kvmppc_free_vcores(kvm);
  1995. if (kvm->arch.rma) {
  1996. kvm_release_rma(kvm->arch.rma);
  1997. kvm->arch.rma = NULL;
  1998. }
  1999. kvmppc_free_hpt(kvm);
  2000. }
  2001. /* We don't need to emulate any privileged instructions or dcbz */
  2002. static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
  2003. unsigned int inst, int *advance)
  2004. {
  2005. return EMULATE_FAIL;
  2006. }
  2007. static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
  2008. ulong spr_val)
  2009. {
  2010. return EMULATE_FAIL;
  2011. }
  2012. static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
  2013. ulong *spr_val)
  2014. {
  2015. return EMULATE_FAIL;
  2016. }
  2017. static int kvmppc_core_check_processor_compat_hv(void)
  2018. {
  2019. if (!cpu_has_feature(CPU_FTR_HVMODE))
  2020. return -EIO;
  2021. return 0;
  2022. }
  2023. static long kvm_arch_vm_ioctl_hv(struct file *filp,
  2024. unsigned int ioctl, unsigned long arg)
  2025. {
  2026. struct kvm *kvm __maybe_unused = filp->private_data;
  2027. void __user *argp = (void __user *)arg;
  2028. long r;
  2029. switch (ioctl) {
  2030. case KVM_ALLOCATE_RMA: {
  2031. struct kvm_allocate_rma rma;
  2032. struct kvm *kvm = filp->private_data;
  2033. r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
  2034. if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
  2035. r = -EFAULT;
  2036. break;
  2037. }
  2038. case KVM_PPC_ALLOCATE_HTAB: {
  2039. u32 htab_order;
  2040. r = -EFAULT;
  2041. if (get_user(htab_order, (u32 __user *)argp))
  2042. break;
  2043. r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
  2044. if (r)
  2045. break;
  2046. r = -EFAULT;
  2047. if (put_user(htab_order, (u32 __user *)argp))
  2048. break;
  2049. r = 0;
  2050. break;
  2051. }
  2052. case KVM_PPC_GET_HTAB_FD: {
  2053. struct kvm_get_htab_fd ghf;
  2054. r = -EFAULT;
  2055. if (copy_from_user(&ghf, argp, sizeof(ghf)))
  2056. break;
  2057. r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
  2058. break;
  2059. }
  2060. default:
  2061. r = -ENOTTY;
  2062. }
  2063. return r;
  2064. }
  2065. static struct kvmppc_ops kvm_ops_hv = {
  2066. .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
  2067. .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
  2068. .get_one_reg = kvmppc_get_one_reg_hv,
  2069. .set_one_reg = kvmppc_set_one_reg_hv,
  2070. .vcpu_load = kvmppc_core_vcpu_load_hv,
  2071. .vcpu_put = kvmppc_core_vcpu_put_hv,
  2072. .set_msr = kvmppc_set_msr_hv,
  2073. .vcpu_run = kvmppc_vcpu_run_hv,
  2074. .vcpu_create = kvmppc_core_vcpu_create_hv,
  2075. .vcpu_free = kvmppc_core_vcpu_free_hv,
  2076. .check_requests = kvmppc_core_check_requests_hv,
  2077. .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
  2078. .flush_memslot = kvmppc_core_flush_memslot_hv,
  2079. .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
  2080. .commit_memory_region = kvmppc_core_commit_memory_region_hv,
  2081. .unmap_hva = kvm_unmap_hva_hv,
  2082. .unmap_hva_range = kvm_unmap_hva_range_hv,
  2083. .age_hva = kvm_age_hva_hv,
  2084. .test_age_hva = kvm_test_age_hva_hv,
  2085. .set_spte_hva = kvm_set_spte_hva_hv,
  2086. .mmu_destroy = kvmppc_mmu_destroy_hv,
  2087. .free_memslot = kvmppc_core_free_memslot_hv,
  2088. .create_memslot = kvmppc_core_create_memslot_hv,
  2089. .init_vm = kvmppc_core_init_vm_hv,
  2090. .destroy_vm = kvmppc_core_destroy_vm_hv,
  2091. .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
  2092. .emulate_op = kvmppc_core_emulate_op_hv,
  2093. .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
  2094. .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
  2095. .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
  2096. .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
  2097. };
  2098. static int kvmppc_book3s_init_hv(void)
  2099. {
  2100. int r;
  2101. /*
  2102. * FIXME!! Do we need to check on all cpus ?
  2103. */
  2104. r = kvmppc_core_check_processor_compat_hv();
  2105. if (r < 0)
  2106. return r;
  2107. kvm_ops_hv.owner = THIS_MODULE;
  2108. kvmppc_hv_ops = &kvm_ops_hv;
  2109. r = kvmppc_mmu_hv_init();
  2110. return r;
  2111. }
  2112. static void kvmppc_book3s_exit_hv(void)
  2113. {
  2114. kvmppc_hv_ops = NULL;
  2115. }
  2116. module_init(kvmppc_book3s_init_hv);
  2117. module_exit(kvmppc_book3s_exit_hv);
  2118. MODULE_LICENSE("GPL");
  2119. MODULE_ALIAS_MISCDEV(KVM_MINOR);
  2120. MODULE_ALIAS("devname:kvm");