mcpm_entry.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291
  1. /*
  2. * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
  3. *
  4. * Created by: Nicolas Pitre, March 2012
  5. * Copyright: (C) 2012-2013 Linaro Limited
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/irqflags.h>
  14. #include <asm/mcpm.h>
  15. #include <asm/cacheflush.h>
  16. #include <asm/idmap.h>
  17. #include <asm/cputype.h>
  18. extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
  19. void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
  20. {
  21. unsigned long val = ptr ? virt_to_phys(ptr) : 0;
  22. mcpm_entry_vectors[cluster][cpu] = val;
  23. sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
  24. }
  25. extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
  26. void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
  27. unsigned long poke_phys_addr, unsigned long poke_val)
  28. {
  29. unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
  30. poke[0] = poke_phys_addr;
  31. poke[1] = poke_val;
  32. __sync_cache_range_w(poke, 2 * sizeof(*poke));
  33. }
  34. static const struct mcpm_platform_ops *platform_ops;
  35. int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
  36. {
  37. if (platform_ops)
  38. return -EBUSY;
  39. platform_ops = ops;
  40. return 0;
  41. }
  42. int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
  43. {
  44. if (!platform_ops)
  45. return -EUNATCH; /* try not to shadow power_up errors */
  46. might_sleep();
  47. return platform_ops->power_up(cpu, cluster);
  48. }
  49. typedef void (*phys_reset_t)(unsigned long);
  50. void mcpm_cpu_power_down(void)
  51. {
  52. phys_reset_t phys_reset;
  53. if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down))
  54. return;
  55. BUG_ON(!irqs_disabled());
  56. /*
  57. * Do this before calling into the power_down method,
  58. * as it might not always be safe to do afterwards.
  59. */
  60. setup_mm_for_reboot();
  61. platform_ops->power_down();
  62. /*
  63. * It is possible for a power_up request to happen concurrently
  64. * with a power_down request for the same CPU. In this case the
  65. * power_down method might not be able to actually enter a
  66. * powered down state with the WFI instruction if the power_up
  67. * method has removed the required reset condition. The
  68. * power_down method is then allowed to return. We must perform
  69. * a re-entry in the kernel as if the power_up method just had
  70. * deasserted reset on the CPU.
  71. *
  72. * To simplify race issues, the platform specific implementation
  73. * must accommodate for the possibility of unordered calls to
  74. * power_down and power_up with a usage count. Therefore, if a
  75. * call to power_up is issued for a CPU that is not down, then
  76. * the next call to power_down must not attempt a full shutdown
  77. * but only do the minimum (normally disabling L1 cache and CPU
  78. * coherency) and return just as if a concurrent power_up request
  79. * had happened as described above.
  80. */
  81. phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
  82. phys_reset(virt_to_phys(mcpm_entry_point));
  83. /* should never get here */
  84. BUG();
  85. }
  86. int mcpm_cpu_power_down_finish(unsigned int cpu, unsigned int cluster)
  87. {
  88. int ret;
  89. if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down_finish))
  90. return -EUNATCH;
  91. ret = platform_ops->power_down_finish(cpu, cluster);
  92. if (ret)
  93. pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
  94. __func__, cpu, cluster, ret);
  95. return ret;
  96. }
  97. void mcpm_cpu_suspend(u64 expected_residency)
  98. {
  99. phys_reset_t phys_reset;
  100. if (WARN_ON_ONCE(!platform_ops || !platform_ops->suspend))
  101. return;
  102. BUG_ON(!irqs_disabled());
  103. /* Very similar to mcpm_cpu_power_down() */
  104. setup_mm_for_reboot();
  105. platform_ops->suspend(expected_residency);
  106. phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
  107. phys_reset(virt_to_phys(mcpm_entry_point));
  108. BUG();
  109. }
  110. int mcpm_cpu_powered_up(void)
  111. {
  112. if (!platform_ops)
  113. return -EUNATCH;
  114. if (platform_ops->powered_up)
  115. platform_ops->powered_up();
  116. return 0;
  117. }
  118. struct sync_struct mcpm_sync;
  119. /*
  120. * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
  121. * This must be called at the point of committing to teardown of a CPU.
  122. * The CPU cache (SCTRL.C bit) is expected to still be active.
  123. */
  124. void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
  125. {
  126. mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
  127. sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
  128. }
  129. /*
  130. * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
  131. * cluster can be torn down without disrupting this CPU.
  132. * To avoid deadlocks, this must be called before a CPU is powered down.
  133. * The CPU cache (SCTRL.C bit) is expected to be off.
  134. * However L2 cache might or might not be active.
  135. */
  136. void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
  137. {
  138. dmb();
  139. mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
  140. sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
  141. sev();
  142. }
  143. /*
  144. * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
  145. * @state: the final state of the cluster:
  146. * CLUSTER_UP: no destructive teardown was done and the cluster has been
  147. * restored to the previous state (CPU cache still active); or
  148. * CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
  149. * (CPU cache disabled, L2 cache either enabled or disabled).
  150. */
  151. void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
  152. {
  153. dmb();
  154. mcpm_sync.clusters[cluster].cluster = state;
  155. sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
  156. sev();
  157. }
  158. /*
  159. * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
  160. * This function should be called by the last man, after local CPU teardown
  161. * is complete. CPU cache expected to be active.
  162. *
  163. * Returns:
  164. * false: the critical section was not entered because an inbound CPU was
  165. * observed, or the cluster is already being set up;
  166. * true: the critical section was entered: it is now safe to tear down the
  167. * cluster.
  168. */
  169. bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
  170. {
  171. unsigned int i;
  172. struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
  173. /* Warn inbound CPUs that the cluster is being torn down: */
  174. c->cluster = CLUSTER_GOING_DOWN;
  175. sync_cache_w(&c->cluster);
  176. /* Back out if the inbound cluster is already in the critical region: */
  177. sync_cache_r(&c->inbound);
  178. if (c->inbound == INBOUND_COMING_UP)
  179. goto abort;
  180. /*
  181. * Wait for all CPUs to get out of the GOING_DOWN state, so that local
  182. * teardown is complete on each CPU before tearing down the cluster.
  183. *
  184. * If any CPU has been woken up again from the DOWN state, then we
  185. * shouldn't be taking the cluster down at all: abort in that case.
  186. */
  187. sync_cache_r(&c->cpus);
  188. for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
  189. int cpustate;
  190. if (i == cpu)
  191. continue;
  192. while (1) {
  193. cpustate = c->cpus[i].cpu;
  194. if (cpustate != CPU_GOING_DOWN)
  195. break;
  196. wfe();
  197. sync_cache_r(&c->cpus[i].cpu);
  198. }
  199. switch (cpustate) {
  200. case CPU_DOWN:
  201. continue;
  202. default:
  203. goto abort;
  204. }
  205. }
  206. return true;
  207. abort:
  208. __mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
  209. return false;
  210. }
  211. int __mcpm_cluster_state(unsigned int cluster)
  212. {
  213. sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
  214. return mcpm_sync.clusters[cluster].cluster;
  215. }
  216. extern unsigned long mcpm_power_up_setup_phys;
  217. int __init mcpm_sync_init(
  218. void (*power_up_setup)(unsigned int affinity_level))
  219. {
  220. unsigned int i, j, mpidr, this_cluster;
  221. BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
  222. BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
  223. /*
  224. * Set initial CPU and cluster states.
  225. * Only one cluster is assumed to be active at this point.
  226. */
  227. for (i = 0; i < MAX_NR_CLUSTERS; i++) {
  228. mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
  229. mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
  230. for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
  231. mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
  232. }
  233. mpidr = read_cpuid_mpidr();
  234. this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
  235. for_each_online_cpu(i)
  236. mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
  237. mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
  238. sync_cache_w(&mcpm_sync);
  239. if (power_up_setup) {
  240. mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
  241. sync_cache_w(&mcpm_power_up_setup_phys);
  242. }
  243. return 0;
  244. }