core.c 200 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  89. {
  90. unsigned long delta;
  91. ktime_t soft, hard, now;
  92. for (;;) {
  93. if (hrtimer_active(period_timer))
  94. break;
  95. now = hrtimer_cb_get_time(period_timer);
  96. hrtimer_forward(period_timer, now, period);
  97. soft = hrtimer_get_softexpires(period_timer);
  98. hard = hrtimer_get_expires(period_timer);
  99. delta = ktime_to_ns(ktime_sub(hard, soft));
  100. __hrtimer_start_range_ns(period_timer, soft, delta,
  101. HRTIMER_MODE_ABS_PINNED, 0);
  102. }
  103. }
  104. DEFINE_MUTEX(sched_domains_mutex);
  105. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  106. static void update_rq_clock_task(struct rq *rq, s64 delta);
  107. void update_rq_clock(struct rq *rq)
  108. {
  109. s64 delta;
  110. lockdep_assert_held(&rq->lock);
  111. if (rq->clock_skip_update & RQCF_ACT_SKIP)
  112. return;
  113. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  114. if (delta < 0)
  115. return;
  116. rq->clock += delta;
  117. update_rq_clock_task(rq, delta);
  118. }
  119. /*
  120. * Debugging: various feature bits
  121. */
  122. #define SCHED_FEAT(name, enabled) \
  123. (1UL << __SCHED_FEAT_##name) * enabled |
  124. const_debug unsigned int sysctl_sched_features =
  125. #include "features.h"
  126. 0;
  127. #undef SCHED_FEAT
  128. #ifdef CONFIG_SCHED_DEBUG
  129. #define SCHED_FEAT(name, enabled) \
  130. #name ,
  131. static const char * const sched_feat_names[] = {
  132. #include "features.h"
  133. };
  134. #undef SCHED_FEAT
  135. static int sched_feat_show(struct seq_file *m, void *v)
  136. {
  137. int i;
  138. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  139. if (!(sysctl_sched_features & (1UL << i)))
  140. seq_puts(m, "NO_");
  141. seq_printf(m, "%s ", sched_feat_names[i]);
  142. }
  143. seq_puts(m, "\n");
  144. return 0;
  145. }
  146. #ifdef HAVE_JUMP_LABEL
  147. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  148. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  149. #define SCHED_FEAT(name, enabled) \
  150. jump_label_key__##enabled ,
  151. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  152. #include "features.h"
  153. };
  154. #undef SCHED_FEAT
  155. static void sched_feat_disable(int i)
  156. {
  157. if (static_key_enabled(&sched_feat_keys[i]))
  158. static_key_slow_dec(&sched_feat_keys[i]);
  159. }
  160. static void sched_feat_enable(int i)
  161. {
  162. if (!static_key_enabled(&sched_feat_keys[i]))
  163. static_key_slow_inc(&sched_feat_keys[i]);
  164. }
  165. #else
  166. static void sched_feat_disable(int i) { };
  167. static void sched_feat_enable(int i) { };
  168. #endif /* HAVE_JUMP_LABEL */
  169. static int sched_feat_set(char *cmp)
  170. {
  171. int i;
  172. int neg = 0;
  173. if (strncmp(cmp, "NO_", 3) == 0) {
  174. neg = 1;
  175. cmp += 3;
  176. }
  177. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  178. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  179. if (neg) {
  180. sysctl_sched_features &= ~(1UL << i);
  181. sched_feat_disable(i);
  182. } else {
  183. sysctl_sched_features |= (1UL << i);
  184. sched_feat_enable(i);
  185. }
  186. break;
  187. }
  188. }
  189. return i;
  190. }
  191. static ssize_t
  192. sched_feat_write(struct file *filp, const char __user *ubuf,
  193. size_t cnt, loff_t *ppos)
  194. {
  195. char buf[64];
  196. char *cmp;
  197. int i;
  198. struct inode *inode;
  199. if (cnt > 63)
  200. cnt = 63;
  201. if (copy_from_user(&buf, ubuf, cnt))
  202. return -EFAULT;
  203. buf[cnt] = 0;
  204. cmp = strstrip(buf);
  205. /* Ensure the static_key remains in a consistent state */
  206. inode = file_inode(filp);
  207. mutex_lock(&inode->i_mutex);
  208. i = sched_feat_set(cmp);
  209. mutex_unlock(&inode->i_mutex);
  210. if (i == __SCHED_FEAT_NR)
  211. return -EINVAL;
  212. *ppos += cnt;
  213. return cnt;
  214. }
  215. static int sched_feat_open(struct inode *inode, struct file *filp)
  216. {
  217. return single_open(filp, sched_feat_show, NULL);
  218. }
  219. static const struct file_operations sched_feat_fops = {
  220. .open = sched_feat_open,
  221. .write = sched_feat_write,
  222. .read = seq_read,
  223. .llseek = seq_lseek,
  224. .release = single_release,
  225. };
  226. static __init int sched_init_debug(void)
  227. {
  228. debugfs_create_file("sched_features", 0644, NULL, NULL,
  229. &sched_feat_fops);
  230. return 0;
  231. }
  232. late_initcall(sched_init_debug);
  233. #endif /* CONFIG_SCHED_DEBUG */
  234. /*
  235. * Number of tasks to iterate in a single balance run.
  236. * Limited because this is done with IRQs disabled.
  237. */
  238. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  239. /*
  240. * period over which we average the RT time consumption, measured
  241. * in ms.
  242. *
  243. * default: 1s
  244. */
  245. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  246. /*
  247. * period over which we measure -rt task cpu usage in us.
  248. * default: 1s
  249. */
  250. unsigned int sysctl_sched_rt_period = 1000000;
  251. __read_mostly int scheduler_running;
  252. /*
  253. * part of the period that we allow rt tasks to run in us.
  254. * default: 0.95s
  255. */
  256. int sysctl_sched_rt_runtime = 950000;
  257. /*
  258. * this_rq_lock - lock this runqueue and disable interrupts.
  259. */
  260. static struct rq *this_rq_lock(void)
  261. __acquires(rq->lock)
  262. {
  263. struct rq *rq;
  264. local_irq_disable();
  265. rq = this_rq();
  266. raw_spin_lock(&rq->lock);
  267. return rq;
  268. }
  269. #ifdef CONFIG_SCHED_HRTICK
  270. /*
  271. * Use HR-timers to deliver accurate preemption points.
  272. */
  273. static void hrtick_clear(struct rq *rq)
  274. {
  275. if (hrtimer_active(&rq->hrtick_timer))
  276. hrtimer_cancel(&rq->hrtick_timer);
  277. }
  278. /*
  279. * High-resolution timer tick.
  280. * Runs from hardirq context with interrupts disabled.
  281. */
  282. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  283. {
  284. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  285. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  286. raw_spin_lock(&rq->lock);
  287. update_rq_clock(rq);
  288. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  289. raw_spin_unlock(&rq->lock);
  290. return HRTIMER_NORESTART;
  291. }
  292. #ifdef CONFIG_SMP
  293. static int __hrtick_restart(struct rq *rq)
  294. {
  295. struct hrtimer *timer = &rq->hrtick_timer;
  296. ktime_t time = hrtimer_get_softexpires(timer);
  297. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  298. }
  299. /*
  300. * called from hardirq (IPI) context
  301. */
  302. static void __hrtick_start(void *arg)
  303. {
  304. struct rq *rq = arg;
  305. raw_spin_lock(&rq->lock);
  306. __hrtick_restart(rq);
  307. rq->hrtick_csd_pending = 0;
  308. raw_spin_unlock(&rq->lock);
  309. }
  310. /*
  311. * Called to set the hrtick timer state.
  312. *
  313. * called with rq->lock held and irqs disabled
  314. */
  315. void hrtick_start(struct rq *rq, u64 delay)
  316. {
  317. struct hrtimer *timer = &rq->hrtick_timer;
  318. ktime_t time;
  319. s64 delta;
  320. /*
  321. * Don't schedule slices shorter than 10000ns, that just
  322. * doesn't make sense and can cause timer DoS.
  323. */
  324. delta = max_t(s64, delay, 10000LL);
  325. time = ktime_add_ns(timer->base->get_time(), delta);
  326. hrtimer_set_expires(timer, time);
  327. if (rq == this_rq()) {
  328. __hrtick_restart(rq);
  329. } else if (!rq->hrtick_csd_pending) {
  330. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  331. rq->hrtick_csd_pending = 1;
  332. }
  333. }
  334. static int
  335. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  336. {
  337. int cpu = (int)(long)hcpu;
  338. switch (action) {
  339. case CPU_UP_CANCELED:
  340. case CPU_UP_CANCELED_FROZEN:
  341. case CPU_DOWN_PREPARE:
  342. case CPU_DOWN_PREPARE_FROZEN:
  343. case CPU_DEAD:
  344. case CPU_DEAD_FROZEN:
  345. hrtick_clear(cpu_rq(cpu));
  346. return NOTIFY_OK;
  347. }
  348. return NOTIFY_DONE;
  349. }
  350. static __init void init_hrtick(void)
  351. {
  352. hotcpu_notifier(hotplug_hrtick, 0);
  353. }
  354. #else
  355. /*
  356. * Called to set the hrtick timer state.
  357. *
  358. * called with rq->lock held and irqs disabled
  359. */
  360. void hrtick_start(struct rq *rq, u64 delay)
  361. {
  362. /*
  363. * Don't schedule slices shorter than 10000ns, that just
  364. * doesn't make sense. Rely on vruntime for fairness.
  365. */
  366. delay = max_t(u64, delay, 10000LL);
  367. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  368. HRTIMER_MODE_REL_PINNED, 0);
  369. }
  370. static inline void init_hrtick(void)
  371. {
  372. }
  373. #endif /* CONFIG_SMP */
  374. static void init_rq_hrtick(struct rq *rq)
  375. {
  376. #ifdef CONFIG_SMP
  377. rq->hrtick_csd_pending = 0;
  378. rq->hrtick_csd.flags = 0;
  379. rq->hrtick_csd.func = __hrtick_start;
  380. rq->hrtick_csd.info = rq;
  381. #endif
  382. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  383. rq->hrtick_timer.function = hrtick;
  384. }
  385. #else /* CONFIG_SCHED_HRTICK */
  386. static inline void hrtick_clear(struct rq *rq)
  387. {
  388. }
  389. static inline void init_rq_hrtick(struct rq *rq)
  390. {
  391. }
  392. static inline void init_hrtick(void)
  393. {
  394. }
  395. #endif /* CONFIG_SCHED_HRTICK */
  396. /*
  397. * cmpxchg based fetch_or, macro so it works for different integer types
  398. */
  399. #define fetch_or(ptr, val) \
  400. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  401. for (;;) { \
  402. __old = cmpxchg((ptr), __val, __val | (val)); \
  403. if (__old == __val) \
  404. break; \
  405. __val = __old; \
  406. } \
  407. __old; \
  408. })
  409. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  410. /*
  411. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  412. * this avoids any races wrt polling state changes and thereby avoids
  413. * spurious IPIs.
  414. */
  415. static bool set_nr_and_not_polling(struct task_struct *p)
  416. {
  417. struct thread_info *ti = task_thread_info(p);
  418. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  419. }
  420. /*
  421. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  422. *
  423. * If this returns true, then the idle task promises to call
  424. * sched_ttwu_pending() and reschedule soon.
  425. */
  426. static bool set_nr_if_polling(struct task_struct *p)
  427. {
  428. struct thread_info *ti = task_thread_info(p);
  429. typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
  430. for (;;) {
  431. if (!(val & _TIF_POLLING_NRFLAG))
  432. return false;
  433. if (val & _TIF_NEED_RESCHED)
  434. return true;
  435. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  436. if (old == val)
  437. break;
  438. val = old;
  439. }
  440. return true;
  441. }
  442. #else
  443. static bool set_nr_and_not_polling(struct task_struct *p)
  444. {
  445. set_tsk_need_resched(p);
  446. return true;
  447. }
  448. #ifdef CONFIG_SMP
  449. static bool set_nr_if_polling(struct task_struct *p)
  450. {
  451. return false;
  452. }
  453. #endif
  454. #endif
  455. /*
  456. * resched_curr - mark rq's current task 'to be rescheduled now'.
  457. *
  458. * On UP this means the setting of the need_resched flag, on SMP it
  459. * might also involve a cross-CPU call to trigger the scheduler on
  460. * the target CPU.
  461. */
  462. void resched_curr(struct rq *rq)
  463. {
  464. struct task_struct *curr = rq->curr;
  465. int cpu;
  466. lockdep_assert_held(&rq->lock);
  467. if (test_tsk_need_resched(curr))
  468. return;
  469. cpu = cpu_of(rq);
  470. if (cpu == smp_processor_id()) {
  471. set_tsk_need_resched(curr);
  472. set_preempt_need_resched();
  473. return;
  474. }
  475. if (set_nr_and_not_polling(curr))
  476. smp_send_reschedule(cpu);
  477. else
  478. trace_sched_wake_idle_without_ipi(cpu);
  479. }
  480. void resched_cpu(int cpu)
  481. {
  482. struct rq *rq = cpu_rq(cpu);
  483. unsigned long flags;
  484. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  485. return;
  486. resched_curr(rq);
  487. raw_spin_unlock_irqrestore(&rq->lock, flags);
  488. }
  489. #ifdef CONFIG_SMP
  490. #ifdef CONFIG_NO_HZ_COMMON
  491. /*
  492. * In the semi idle case, use the nearest busy cpu for migrating timers
  493. * from an idle cpu. This is good for power-savings.
  494. *
  495. * We don't do similar optimization for completely idle system, as
  496. * selecting an idle cpu will add more delays to the timers than intended
  497. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  498. */
  499. int get_nohz_timer_target(int pinned)
  500. {
  501. int cpu = smp_processor_id();
  502. int i;
  503. struct sched_domain *sd;
  504. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  505. return cpu;
  506. rcu_read_lock();
  507. for_each_domain(cpu, sd) {
  508. for_each_cpu(i, sched_domain_span(sd)) {
  509. if (!idle_cpu(i)) {
  510. cpu = i;
  511. goto unlock;
  512. }
  513. }
  514. }
  515. unlock:
  516. rcu_read_unlock();
  517. return cpu;
  518. }
  519. /*
  520. * When add_timer_on() enqueues a timer into the timer wheel of an
  521. * idle CPU then this timer might expire before the next timer event
  522. * which is scheduled to wake up that CPU. In case of a completely
  523. * idle system the next event might even be infinite time into the
  524. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  525. * leaves the inner idle loop so the newly added timer is taken into
  526. * account when the CPU goes back to idle and evaluates the timer
  527. * wheel for the next timer event.
  528. */
  529. static void wake_up_idle_cpu(int cpu)
  530. {
  531. struct rq *rq = cpu_rq(cpu);
  532. if (cpu == smp_processor_id())
  533. return;
  534. if (set_nr_and_not_polling(rq->idle))
  535. smp_send_reschedule(cpu);
  536. else
  537. trace_sched_wake_idle_without_ipi(cpu);
  538. }
  539. static bool wake_up_full_nohz_cpu(int cpu)
  540. {
  541. /*
  542. * We just need the target to call irq_exit() and re-evaluate
  543. * the next tick. The nohz full kick at least implies that.
  544. * If needed we can still optimize that later with an
  545. * empty IRQ.
  546. */
  547. if (tick_nohz_full_cpu(cpu)) {
  548. if (cpu != smp_processor_id() ||
  549. tick_nohz_tick_stopped())
  550. tick_nohz_full_kick_cpu(cpu);
  551. return true;
  552. }
  553. return false;
  554. }
  555. void wake_up_nohz_cpu(int cpu)
  556. {
  557. if (!wake_up_full_nohz_cpu(cpu))
  558. wake_up_idle_cpu(cpu);
  559. }
  560. static inline bool got_nohz_idle_kick(void)
  561. {
  562. int cpu = smp_processor_id();
  563. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  564. return false;
  565. if (idle_cpu(cpu) && !need_resched())
  566. return true;
  567. /*
  568. * We can't run Idle Load Balance on this CPU for this time so we
  569. * cancel it and clear NOHZ_BALANCE_KICK
  570. */
  571. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  572. return false;
  573. }
  574. #else /* CONFIG_NO_HZ_COMMON */
  575. static inline bool got_nohz_idle_kick(void)
  576. {
  577. return false;
  578. }
  579. #endif /* CONFIG_NO_HZ_COMMON */
  580. #ifdef CONFIG_NO_HZ_FULL
  581. bool sched_can_stop_tick(void)
  582. {
  583. /*
  584. * More than one running task need preemption.
  585. * nr_running update is assumed to be visible
  586. * after IPI is sent from wakers.
  587. */
  588. if (this_rq()->nr_running > 1)
  589. return false;
  590. return true;
  591. }
  592. #endif /* CONFIG_NO_HZ_FULL */
  593. void sched_avg_update(struct rq *rq)
  594. {
  595. s64 period = sched_avg_period();
  596. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  597. /*
  598. * Inline assembly required to prevent the compiler
  599. * optimising this loop into a divmod call.
  600. * See __iter_div_u64_rem() for another example of this.
  601. */
  602. asm("" : "+rm" (rq->age_stamp));
  603. rq->age_stamp += period;
  604. rq->rt_avg /= 2;
  605. }
  606. }
  607. #endif /* CONFIG_SMP */
  608. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  609. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  610. /*
  611. * Iterate task_group tree rooted at *from, calling @down when first entering a
  612. * node and @up when leaving it for the final time.
  613. *
  614. * Caller must hold rcu_lock or sufficient equivalent.
  615. */
  616. int walk_tg_tree_from(struct task_group *from,
  617. tg_visitor down, tg_visitor up, void *data)
  618. {
  619. struct task_group *parent, *child;
  620. int ret;
  621. parent = from;
  622. down:
  623. ret = (*down)(parent, data);
  624. if (ret)
  625. goto out;
  626. list_for_each_entry_rcu(child, &parent->children, siblings) {
  627. parent = child;
  628. goto down;
  629. up:
  630. continue;
  631. }
  632. ret = (*up)(parent, data);
  633. if (ret || parent == from)
  634. goto out;
  635. child = parent;
  636. parent = parent->parent;
  637. if (parent)
  638. goto up;
  639. out:
  640. return ret;
  641. }
  642. int tg_nop(struct task_group *tg, void *data)
  643. {
  644. return 0;
  645. }
  646. #endif
  647. static void set_load_weight(struct task_struct *p)
  648. {
  649. int prio = p->static_prio - MAX_RT_PRIO;
  650. struct load_weight *load = &p->se.load;
  651. /*
  652. * SCHED_IDLE tasks get minimal weight:
  653. */
  654. if (p->policy == SCHED_IDLE) {
  655. load->weight = scale_load(WEIGHT_IDLEPRIO);
  656. load->inv_weight = WMULT_IDLEPRIO;
  657. return;
  658. }
  659. load->weight = scale_load(prio_to_weight[prio]);
  660. load->inv_weight = prio_to_wmult[prio];
  661. }
  662. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  663. {
  664. update_rq_clock(rq);
  665. sched_info_queued(rq, p);
  666. p->sched_class->enqueue_task(rq, p, flags);
  667. }
  668. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  669. {
  670. update_rq_clock(rq);
  671. sched_info_dequeued(rq, p);
  672. p->sched_class->dequeue_task(rq, p, flags);
  673. }
  674. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  675. {
  676. if (task_contributes_to_load(p))
  677. rq->nr_uninterruptible--;
  678. enqueue_task(rq, p, flags);
  679. }
  680. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  681. {
  682. if (task_contributes_to_load(p))
  683. rq->nr_uninterruptible++;
  684. dequeue_task(rq, p, flags);
  685. }
  686. static void update_rq_clock_task(struct rq *rq, s64 delta)
  687. {
  688. /*
  689. * In theory, the compile should just see 0 here, and optimize out the call
  690. * to sched_rt_avg_update. But I don't trust it...
  691. */
  692. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  693. s64 steal = 0, irq_delta = 0;
  694. #endif
  695. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  696. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  697. /*
  698. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  699. * this case when a previous update_rq_clock() happened inside a
  700. * {soft,}irq region.
  701. *
  702. * When this happens, we stop ->clock_task and only update the
  703. * prev_irq_time stamp to account for the part that fit, so that a next
  704. * update will consume the rest. This ensures ->clock_task is
  705. * monotonic.
  706. *
  707. * It does however cause some slight miss-attribution of {soft,}irq
  708. * time, a more accurate solution would be to update the irq_time using
  709. * the current rq->clock timestamp, except that would require using
  710. * atomic ops.
  711. */
  712. if (irq_delta > delta)
  713. irq_delta = delta;
  714. rq->prev_irq_time += irq_delta;
  715. delta -= irq_delta;
  716. #endif
  717. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  718. if (static_key_false((&paravirt_steal_rq_enabled))) {
  719. steal = paravirt_steal_clock(cpu_of(rq));
  720. steal -= rq->prev_steal_time_rq;
  721. if (unlikely(steal > delta))
  722. steal = delta;
  723. rq->prev_steal_time_rq += steal;
  724. delta -= steal;
  725. }
  726. #endif
  727. rq->clock_task += delta;
  728. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  729. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  730. sched_rt_avg_update(rq, irq_delta + steal);
  731. #endif
  732. }
  733. void sched_set_stop_task(int cpu, struct task_struct *stop)
  734. {
  735. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  736. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  737. if (stop) {
  738. /*
  739. * Make it appear like a SCHED_FIFO task, its something
  740. * userspace knows about and won't get confused about.
  741. *
  742. * Also, it will make PI more or less work without too
  743. * much confusion -- but then, stop work should not
  744. * rely on PI working anyway.
  745. */
  746. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  747. stop->sched_class = &stop_sched_class;
  748. }
  749. cpu_rq(cpu)->stop = stop;
  750. if (old_stop) {
  751. /*
  752. * Reset it back to a normal scheduling class so that
  753. * it can die in pieces.
  754. */
  755. old_stop->sched_class = &rt_sched_class;
  756. }
  757. }
  758. /*
  759. * __normal_prio - return the priority that is based on the static prio
  760. */
  761. static inline int __normal_prio(struct task_struct *p)
  762. {
  763. return p->static_prio;
  764. }
  765. /*
  766. * Calculate the expected normal priority: i.e. priority
  767. * without taking RT-inheritance into account. Might be
  768. * boosted by interactivity modifiers. Changes upon fork,
  769. * setprio syscalls, and whenever the interactivity
  770. * estimator recalculates.
  771. */
  772. static inline int normal_prio(struct task_struct *p)
  773. {
  774. int prio;
  775. if (task_has_dl_policy(p))
  776. prio = MAX_DL_PRIO-1;
  777. else if (task_has_rt_policy(p))
  778. prio = MAX_RT_PRIO-1 - p->rt_priority;
  779. else
  780. prio = __normal_prio(p);
  781. return prio;
  782. }
  783. /*
  784. * Calculate the current priority, i.e. the priority
  785. * taken into account by the scheduler. This value might
  786. * be boosted by RT tasks, or might be boosted by
  787. * interactivity modifiers. Will be RT if the task got
  788. * RT-boosted. If not then it returns p->normal_prio.
  789. */
  790. static int effective_prio(struct task_struct *p)
  791. {
  792. p->normal_prio = normal_prio(p);
  793. /*
  794. * If we are RT tasks or we were boosted to RT priority,
  795. * keep the priority unchanged. Otherwise, update priority
  796. * to the normal priority:
  797. */
  798. if (!rt_prio(p->prio))
  799. return p->normal_prio;
  800. return p->prio;
  801. }
  802. /**
  803. * task_curr - is this task currently executing on a CPU?
  804. * @p: the task in question.
  805. *
  806. * Return: 1 if the task is currently executing. 0 otherwise.
  807. */
  808. inline int task_curr(const struct task_struct *p)
  809. {
  810. return cpu_curr(task_cpu(p)) == p;
  811. }
  812. /*
  813. * Can drop rq->lock because from sched_class::switched_from() methods drop it.
  814. */
  815. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  816. const struct sched_class *prev_class,
  817. int oldprio)
  818. {
  819. if (prev_class != p->sched_class) {
  820. if (prev_class->switched_from)
  821. prev_class->switched_from(rq, p);
  822. /* Possble rq->lock 'hole'. */
  823. p->sched_class->switched_to(rq, p);
  824. } else if (oldprio != p->prio || dl_task(p))
  825. p->sched_class->prio_changed(rq, p, oldprio);
  826. }
  827. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  828. {
  829. const struct sched_class *class;
  830. if (p->sched_class == rq->curr->sched_class) {
  831. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  832. } else {
  833. for_each_class(class) {
  834. if (class == rq->curr->sched_class)
  835. break;
  836. if (class == p->sched_class) {
  837. resched_curr(rq);
  838. break;
  839. }
  840. }
  841. }
  842. /*
  843. * A queue event has occurred, and we're going to schedule. In
  844. * this case, we can save a useless back to back clock update.
  845. */
  846. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  847. rq_clock_skip_update(rq, true);
  848. }
  849. static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
  850. void register_task_migration_notifier(struct notifier_block *n)
  851. {
  852. atomic_notifier_chain_register(&task_migration_notifier, n);
  853. }
  854. #ifdef CONFIG_SMP
  855. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  856. {
  857. #ifdef CONFIG_SCHED_DEBUG
  858. /*
  859. * We should never call set_task_cpu() on a blocked task,
  860. * ttwu() will sort out the placement.
  861. */
  862. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  863. !p->on_rq);
  864. #ifdef CONFIG_LOCKDEP
  865. /*
  866. * The caller should hold either p->pi_lock or rq->lock, when changing
  867. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  868. *
  869. * sched_move_task() holds both and thus holding either pins the cgroup,
  870. * see task_group().
  871. *
  872. * Furthermore, all task_rq users should acquire both locks, see
  873. * task_rq_lock().
  874. */
  875. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  876. lockdep_is_held(&task_rq(p)->lock)));
  877. #endif
  878. #endif
  879. trace_sched_migrate_task(p, new_cpu);
  880. if (task_cpu(p) != new_cpu) {
  881. struct task_migration_notifier tmn;
  882. if (p->sched_class->migrate_task_rq)
  883. p->sched_class->migrate_task_rq(p, new_cpu);
  884. p->se.nr_migrations++;
  885. perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
  886. tmn.task = p;
  887. tmn.from_cpu = task_cpu(p);
  888. tmn.to_cpu = new_cpu;
  889. atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
  890. }
  891. __set_task_cpu(p, new_cpu);
  892. }
  893. static void __migrate_swap_task(struct task_struct *p, int cpu)
  894. {
  895. if (task_on_rq_queued(p)) {
  896. struct rq *src_rq, *dst_rq;
  897. src_rq = task_rq(p);
  898. dst_rq = cpu_rq(cpu);
  899. deactivate_task(src_rq, p, 0);
  900. set_task_cpu(p, cpu);
  901. activate_task(dst_rq, p, 0);
  902. check_preempt_curr(dst_rq, p, 0);
  903. } else {
  904. /*
  905. * Task isn't running anymore; make it appear like we migrated
  906. * it before it went to sleep. This means on wakeup we make the
  907. * previous cpu our targer instead of where it really is.
  908. */
  909. p->wake_cpu = cpu;
  910. }
  911. }
  912. struct migration_swap_arg {
  913. struct task_struct *src_task, *dst_task;
  914. int src_cpu, dst_cpu;
  915. };
  916. static int migrate_swap_stop(void *data)
  917. {
  918. struct migration_swap_arg *arg = data;
  919. struct rq *src_rq, *dst_rq;
  920. int ret = -EAGAIN;
  921. src_rq = cpu_rq(arg->src_cpu);
  922. dst_rq = cpu_rq(arg->dst_cpu);
  923. double_raw_lock(&arg->src_task->pi_lock,
  924. &arg->dst_task->pi_lock);
  925. double_rq_lock(src_rq, dst_rq);
  926. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  927. goto unlock;
  928. if (task_cpu(arg->src_task) != arg->src_cpu)
  929. goto unlock;
  930. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  931. goto unlock;
  932. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  933. goto unlock;
  934. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  935. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  936. ret = 0;
  937. unlock:
  938. double_rq_unlock(src_rq, dst_rq);
  939. raw_spin_unlock(&arg->dst_task->pi_lock);
  940. raw_spin_unlock(&arg->src_task->pi_lock);
  941. return ret;
  942. }
  943. /*
  944. * Cross migrate two tasks
  945. */
  946. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  947. {
  948. struct migration_swap_arg arg;
  949. int ret = -EINVAL;
  950. arg = (struct migration_swap_arg){
  951. .src_task = cur,
  952. .src_cpu = task_cpu(cur),
  953. .dst_task = p,
  954. .dst_cpu = task_cpu(p),
  955. };
  956. if (arg.src_cpu == arg.dst_cpu)
  957. goto out;
  958. /*
  959. * These three tests are all lockless; this is OK since all of them
  960. * will be re-checked with proper locks held further down the line.
  961. */
  962. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  963. goto out;
  964. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  965. goto out;
  966. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  967. goto out;
  968. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  969. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  970. out:
  971. return ret;
  972. }
  973. struct migration_arg {
  974. struct task_struct *task;
  975. int dest_cpu;
  976. };
  977. static int migration_cpu_stop(void *data);
  978. /*
  979. * wait_task_inactive - wait for a thread to unschedule.
  980. *
  981. * If @match_state is nonzero, it's the @p->state value just checked and
  982. * not expected to change. If it changes, i.e. @p might have woken up,
  983. * then return zero. When we succeed in waiting for @p to be off its CPU,
  984. * we return a positive number (its total switch count). If a second call
  985. * a short while later returns the same number, the caller can be sure that
  986. * @p has remained unscheduled the whole time.
  987. *
  988. * The caller must ensure that the task *will* unschedule sometime soon,
  989. * else this function might spin for a *long* time. This function can't
  990. * be called with interrupts off, or it may introduce deadlock with
  991. * smp_call_function() if an IPI is sent by the same process we are
  992. * waiting to become inactive.
  993. */
  994. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  995. {
  996. unsigned long flags;
  997. int running, queued;
  998. unsigned long ncsw;
  999. struct rq *rq;
  1000. for (;;) {
  1001. /*
  1002. * We do the initial early heuristics without holding
  1003. * any task-queue locks at all. We'll only try to get
  1004. * the runqueue lock when things look like they will
  1005. * work out!
  1006. */
  1007. rq = task_rq(p);
  1008. /*
  1009. * If the task is actively running on another CPU
  1010. * still, just relax and busy-wait without holding
  1011. * any locks.
  1012. *
  1013. * NOTE! Since we don't hold any locks, it's not
  1014. * even sure that "rq" stays as the right runqueue!
  1015. * But we don't care, since "task_running()" will
  1016. * return false if the runqueue has changed and p
  1017. * is actually now running somewhere else!
  1018. */
  1019. while (task_running(rq, p)) {
  1020. if (match_state && unlikely(p->state != match_state))
  1021. return 0;
  1022. cpu_relax();
  1023. }
  1024. /*
  1025. * Ok, time to look more closely! We need the rq
  1026. * lock now, to be *sure*. If we're wrong, we'll
  1027. * just go back and repeat.
  1028. */
  1029. rq = task_rq_lock(p, &flags);
  1030. trace_sched_wait_task(p);
  1031. running = task_running(rq, p);
  1032. queued = task_on_rq_queued(p);
  1033. ncsw = 0;
  1034. if (!match_state || p->state == match_state)
  1035. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1036. task_rq_unlock(rq, p, &flags);
  1037. /*
  1038. * If it changed from the expected state, bail out now.
  1039. */
  1040. if (unlikely(!ncsw))
  1041. break;
  1042. /*
  1043. * Was it really running after all now that we
  1044. * checked with the proper locks actually held?
  1045. *
  1046. * Oops. Go back and try again..
  1047. */
  1048. if (unlikely(running)) {
  1049. cpu_relax();
  1050. continue;
  1051. }
  1052. /*
  1053. * It's not enough that it's not actively running,
  1054. * it must be off the runqueue _entirely_, and not
  1055. * preempted!
  1056. *
  1057. * So if it was still runnable (but just not actively
  1058. * running right now), it's preempted, and we should
  1059. * yield - it could be a while.
  1060. */
  1061. if (unlikely(queued)) {
  1062. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1063. set_current_state(TASK_UNINTERRUPTIBLE);
  1064. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1065. continue;
  1066. }
  1067. /*
  1068. * Ahh, all good. It wasn't running, and it wasn't
  1069. * runnable, which means that it will never become
  1070. * running in the future either. We're all done!
  1071. */
  1072. break;
  1073. }
  1074. return ncsw;
  1075. }
  1076. /***
  1077. * kick_process - kick a running thread to enter/exit the kernel
  1078. * @p: the to-be-kicked thread
  1079. *
  1080. * Cause a process which is running on another CPU to enter
  1081. * kernel-mode, without any delay. (to get signals handled.)
  1082. *
  1083. * NOTE: this function doesn't have to take the runqueue lock,
  1084. * because all it wants to ensure is that the remote task enters
  1085. * the kernel. If the IPI races and the task has been migrated
  1086. * to another CPU then no harm is done and the purpose has been
  1087. * achieved as well.
  1088. */
  1089. void kick_process(struct task_struct *p)
  1090. {
  1091. int cpu;
  1092. preempt_disable();
  1093. cpu = task_cpu(p);
  1094. if ((cpu != smp_processor_id()) && task_curr(p))
  1095. smp_send_reschedule(cpu);
  1096. preempt_enable();
  1097. }
  1098. EXPORT_SYMBOL_GPL(kick_process);
  1099. #endif /* CONFIG_SMP */
  1100. #ifdef CONFIG_SMP
  1101. /*
  1102. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1103. */
  1104. static int select_fallback_rq(int cpu, struct task_struct *p)
  1105. {
  1106. int nid = cpu_to_node(cpu);
  1107. const struct cpumask *nodemask = NULL;
  1108. enum { cpuset, possible, fail } state = cpuset;
  1109. int dest_cpu;
  1110. /*
  1111. * If the node that the cpu is on has been offlined, cpu_to_node()
  1112. * will return -1. There is no cpu on the node, and we should
  1113. * select the cpu on the other node.
  1114. */
  1115. if (nid != -1) {
  1116. nodemask = cpumask_of_node(nid);
  1117. /* Look for allowed, online CPU in same node. */
  1118. for_each_cpu(dest_cpu, nodemask) {
  1119. if (!cpu_online(dest_cpu))
  1120. continue;
  1121. if (!cpu_active(dest_cpu))
  1122. continue;
  1123. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1124. return dest_cpu;
  1125. }
  1126. }
  1127. for (;;) {
  1128. /* Any allowed, online CPU? */
  1129. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1130. if (!cpu_online(dest_cpu))
  1131. continue;
  1132. if (!cpu_active(dest_cpu))
  1133. continue;
  1134. goto out;
  1135. }
  1136. switch (state) {
  1137. case cpuset:
  1138. /* No more Mr. Nice Guy. */
  1139. cpuset_cpus_allowed_fallback(p);
  1140. state = possible;
  1141. break;
  1142. case possible:
  1143. do_set_cpus_allowed(p, cpu_possible_mask);
  1144. state = fail;
  1145. break;
  1146. case fail:
  1147. BUG();
  1148. break;
  1149. }
  1150. }
  1151. out:
  1152. if (state != cpuset) {
  1153. /*
  1154. * Don't tell them about moving exiting tasks or
  1155. * kernel threads (both mm NULL), since they never
  1156. * leave kernel.
  1157. */
  1158. if (p->mm && printk_ratelimit()) {
  1159. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1160. task_pid_nr(p), p->comm, cpu);
  1161. }
  1162. }
  1163. return dest_cpu;
  1164. }
  1165. /*
  1166. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1167. */
  1168. static inline
  1169. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1170. {
  1171. if (p->nr_cpus_allowed > 1)
  1172. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1173. /*
  1174. * In order not to call set_task_cpu() on a blocking task we need
  1175. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1176. * cpu.
  1177. *
  1178. * Since this is common to all placement strategies, this lives here.
  1179. *
  1180. * [ this allows ->select_task() to simply return task_cpu(p) and
  1181. * not worry about this generic constraint ]
  1182. */
  1183. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1184. !cpu_online(cpu)))
  1185. cpu = select_fallback_rq(task_cpu(p), p);
  1186. return cpu;
  1187. }
  1188. static void update_avg(u64 *avg, u64 sample)
  1189. {
  1190. s64 diff = sample - *avg;
  1191. *avg += diff >> 3;
  1192. }
  1193. #endif
  1194. static void
  1195. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1196. {
  1197. #ifdef CONFIG_SCHEDSTATS
  1198. struct rq *rq = this_rq();
  1199. #ifdef CONFIG_SMP
  1200. int this_cpu = smp_processor_id();
  1201. if (cpu == this_cpu) {
  1202. schedstat_inc(rq, ttwu_local);
  1203. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1204. } else {
  1205. struct sched_domain *sd;
  1206. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1207. rcu_read_lock();
  1208. for_each_domain(this_cpu, sd) {
  1209. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1210. schedstat_inc(sd, ttwu_wake_remote);
  1211. break;
  1212. }
  1213. }
  1214. rcu_read_unlock();
  1215. }
  1216. if (wake_flags & WF_MIGRATED)
  1217. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1218. #endif /* CONFIG_SMP */
  1219. schedstat_inc(rq, ttwu_count);
  1220. schedstat_inc(p, se.statistics.nr_wakeups);
  1221. if (wake_flags & WF_SYNC)
  1222. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1223. #endif /* CONFIG_SCHEDSTATS */
  1224. }
  1225. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1226. {
  1227. activate_task(rq, p, en_flags);
  1228. p->on_rq = TASK_ON_RQ_QUEUED;
  1229. /* if a worker is waking up, notify workqueue */
  1230. if (p->flags & PF_WQ_WORKER)
  1231. wq_worker_waking_up(p, cpu_of(rq));
  1232. }
  1233. /*
  1234. * Mark the task runnable and perform wakeup-preemption.
  1235. */
  1236. static void
  1237. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1238. {
  1239. check_preempt_curr(rq, p, wake_flags);
  1240. trace_sched_wakeup(p, true);
  1241. p->state = TASK_RUNNING;
  1242. #ifdef CONFIG_SMP
  1243. if (p->sched_class->task_woken)
  1244. p->sched_class->task_woken(rq, p);
  1245. if (rq->idle_stamp) {
  1246. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1247. u64 max = 2*rq->max_idle_balance_cost;
  1248. update_avg(&rq->avg_idle, delta);
  1249. if (rq->avg_idle > max)
  1250. rq->avg_idle = max;
  1251. rq->idle_stamp = 0;
  1252. }
  1253. #endif
  1254. }
  1255. static void
  1256. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1257. {
  1258. #ifdef CONFIG_SMP
  1259. if (p->sched_contributes_to_load)
  1260. rq->nr_uninterruptible--;
  1261. #endif
  1262. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1263. ttwu_do_wakeup(rq, p, wake_flags);
  1264. }
  1265. /*
  1266. * Called in case the task @p isn't fully descheduled from its runqueue,
  1267. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1268. * since all we need to do is flip p->state to TASK_RUNNING, since
  1269. * the task is still ->on_rq.
  1270. */
  1271. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1272. {
  1273. struct rq *rq;
  1274. int ret = 0;
  1275. rq = __task_rq_lock(p);
  1276. if (task_on_rq_queued(p)) {
  1277. /* check_preempt_curr() may use rq clock */
  1278. update_rq_clock(rq);
  1279. ttwu_do_wakeup(rq, p, wake_flags);
  1280. ret = 1;
  1281. }
  1282. __task_rq_unlock(rq);
  1283. return ret;
  1284. }
  1285. #ifdef CONFIG_SMP
  1286. void sched_ttwu_pending(void)
  1287. {
  1288. struct rq *rq = this_rq();
  1289. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1290. struct task_struct *p;
  1291. unsigned long flags;
  1292. if (!llist)
  1293. return;
  1294. raw_spin_lock_irqsave(&rq->lock, flags);
  1295. while (llist) {
  1296. p = llist_entry(llist, struct task_struct, wake_entry);
  1297. llist = llist_next(llist);
  1298. ttwu_do_activate(rq, p, 0);
  1299. }
  1300. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1301. }
  1302. void scheduler_ipi(void)
  1303. {
  1304. /*
  1305. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1306. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1307. * this IPI.
  1308. */
  1309. preempt_fold_need_resched();
  1310. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1311. return;
  1312. /*
  1313. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1314. * traditionally all their work was done from the interrupt return
  1315. * path. Now that we actually do some work, we need to make sure
  1316. * we do call them.
  1317. *
  1318. * Some archs already do call them, luckily irq_enter/exit nest
  1319. * properly.
  1320. *
  1321. * Arguably we should visit all archs and update all handlers,
  1322. * however a fair share of IPIs are still resched only so this would
  1323. * somewhat pessimize the simple resched case.
  1324. */
  1325. irq_enter();
  1326. sched_ttwu_pending();
  1327. /*
  1328. * Check if someone kicked us for doing the nohz idle load balance.
  1329. */
  1330. if (unlikely(got_nohz_idle_kick())) {
  1331. this_rq()->idle_balance = 1;
  1332. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1333. }
  1334. irq_exit();
  1335. }
  1336. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1337. {
  1338. struct rq *rq = cpu_rq(cpu);
  1339. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1340. if (!set_nr_if_polling(rq->idle))
  1341. smp_send_reschedule(cpu);
  1342. else
  1343. trace_sched_wake_idle_without_ipi(cpu);
  1344. }
  1345. }
  1346. void wake_up_if_idle(int cpu)
  1347. {
  1348. struct rq *rq = cpu_rq(cpu);
  1349. unsigned long flags;
  1350. rcu_read_lock();
  1351. if (!is_idle_task(rcu_dereference(rq->curr)))
  1352. goto out;
  1353. if (set_nr_if_polling(rq->idle)) {
  1354. trace_sched_wake_idle_without_ipi(cpu);
  1355. } else {
  1356. raw_spin_lock_irqsave(&rq->lock, flags);
  1357. if (is_idle_task(rq->curr))
  1358. smp_send_reschedule(cpu);
  1359. /* Else cpu is not in idle, do nothing here */
  1360. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1361. }
  1362. out:
  1363. rcu_read_unlock();
  1364. }
  1365. bool cpus_share_cache(int this_cpu, int that_cpu)
  1366. {
  1367. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1368. }
  1369. #endif /* CONFIG_SMP */
  1370. static void ttwu_queue(struct task_struct *p, int cpu)
  1371. {
  1372. struct rq *rq = cpu_rq(cpu);
  1373. #if defined(CONFIG_SMP)
  1374. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1375. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1376. ttwu_queue_remote(p, cpu);
  1377. return;
  1378. }
  1379. #endif
  1380. raw_spin_lock(&rq->lock);
  1381. ttwu_do_activate(rq, p, 0);
  1382. raw_spin_unlock(&rq->lock);
  1383. }
  1384. /**
  1385. * try_to_wake_up - wake up a thread
  1386. * @p: the thread to be awakened
  1387. * @state: the mask of task states that can be woken
  1388. * @wake_flags: wake modifier flags (WF_*)
  1389. *
  1390. * Put it on the run-queue if it's not already there. The "current"
  1391. * thread is always on the run-queue (except when the actual
  1392. * re-schedule is in progress), and as such you're allowed to do
  1393. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1394. * runnable without the overhead of this.
  1395. *
  1396. * Return: %true if @p was woken up, %false if it was already running.
  1397. * or @state didn't match @p's state.
  1398. */
  1399. static int
  1400. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1401. {
  1402. unsigned long flags;
  1403. int cpu, success = 0;
  1404. /*
  1405. * If we are going to wake up a thread waiting for CONDITION we
  1406. * need to ensure that CONDITION=1 done by the caller can not be
  1407. * reordered with p->state check below. This pairs with mb() in
  1408. * set_current_state() the waiting thread does.
  1409. */
  1410. smp_mb__before_spinlock();
  1411. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1412. if (!(p->state & state))
  1413. goto out;
  1414. success = 1; /* we're going to change ->state */
  1415. cpu = task_cpu(p);
  1416. if (p->on_rq && ttwu_remote(p, wake_flags))
  1417. goto stat;
  1418. #ifdef CONFIG_SMP
  1419. /*
  1420. * If the owning (remote) cpu is still in the middle of schedule() with
  1421. * this task as prev, wait until its done referencing the task.
  1422. */
  1423. while (p->on_cpu)
  1424. cpu_relax();
  1425. /*
  1426. * Pairs with the smp_wmb() in finish_lock_switch().
  1427. */
  1428. smp_rmb();
  1429. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1430. p->state = TASK_WAKING;
  1431. if (p->sched_class->task_waking)
  1432. p->sched_class->task_waking(p);
  1433. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1434. if (task_cpu(p) != cpu) {
  1435. wake_flags |= WF_MIGRATED;
  1436. set_task_cpu(p, cpu);
  1437. }
  1438. #endif /* CONFIG_SMP */
  1439. ttwu_queue(p, cpu);
  1440. stat:
  1441. ttwu_stat(p, cpu, wake_flags);
  1442. out:
  1443. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1444. return success;
  1445. }
  1446. /**
  1447. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1448. * @p: the thread to be awakened
  1449. *
  1450. * Put @p on the run-queue if it's not already there. The caller must
  1451. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1452. * the current task.
  1453. */
  1454. static void try_to_wake_up_local(struct task_struct *p)
  1455. {
  1456. struct rq *rq = task_rq(p);
  1457. if (WARN_ON_ONCE(rq != this_rq()) ||
  1458. WARN_ON_ONCE(p == current))
  1459. return;
  1460. lockdep_assert_held(&rq->lock);
  1461. if (!raw_spin_trylock(&p->pi_lock)) {
  1462. raw_spin_unlock(&rq->lock);
  1463. raw_spin_lock(&p->pi_lock);
  1464. raw_spin_lock(&rq->lock);
  1465. }
  1466. if (!(p->state & TASK_NORMAL))
  1467. goto out;
  1468. if (!task_on_rq_queued(p))
  1469. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1470. ttwu_do_wakeup(rq, p, 0);
  1471. ttwu_stat(p, smp_processor_id(), 0);
  1472. out:
  1473. raw_spin_unlock(&p->pi_lock);
  1474. }
  1475. /**
  1476. * wake_up_process - Wake up a specific process
  1477. * @p: The process to be woken up.
  1478. *
  1479. * Attempt to wake up the nominated process and move it to the set of runnable
  1480. * processes.
  1481. *
  1482. * Return: 1 if the process was woken up, 0 if it was already running.
  1483. *
  1484. * It may be assumed that this function implies a write memory barrier before
  1485. * changing the task state if and only if any tasks are woken up.
  1486. */
  1487. int wake_up_process(struct task_struct *p)
  1488. {
  1489. WARN_ON(task_is_stopped_or_traced(p));
  1490. return try_to_wake_up(p, TASK_NORMAL, 0);
  1491. }
  1492. EXPORT_SYMBOL(wake_up_process);
  1493. int wake_up_state(struct task_struct *p, unsigned int state)
  1494. {
  1495. return try_to_wake_up(p, state, 0);
  1496. }
  1497. /*
  1498. * This function clears the sched_dl_entity static params.
  1499. */
  1500. void __dl_clear_params(struct task_struct *p)
  1501. {
  1502. struct sched_dl_entity *dl_se = &p->dl;
  1503. dl_se->dl_runtime = 0;
  1504. dl_se->dl_deadline = 0;
  1505. dl_se->dl_period = 0;
  1506. dl_se->flags = 0;
  1507. dl_se->dl_bw = 0;
  1508. dl_se->dl_throttled = 0;
  1509. dl_se->dl_new = 1;
  1510. dl_se->dl_yielded = 0;
  1511. }
  1512. /*
  1513. * Perform scheduler related setup for a newly forked process p.
  1514. * p is forked by current.
  1515. *
  1516. * __sched_fork() is basic setup used by init_idle() too:
  1517. */
  1518. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1519. {
  1520. p->on_rq = 0;
  1521. p->se.on_rq = 0;
  1522. p->se.exec_start = 0;
  1523. p->se.sum_exec_runtime = 0;
  1524. p->se.prev_sum_exec_runtime = 0;
  1525. p->se.nr_migrations = 0;
  1526. p->se.vruntime = 0;
  1527. #ifdef CONFIG_SMP
  1528. p->se.avg.decay_count = 0;
  1529. #endif
  1530. INIT_LIST_HEAD(&p->se.group_node);
  1531. #ifdef CONFIG_SCHEDSTATS
  1532. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1533. #endif
  1534. RB_CLEAR_NODE(&p->dl.rb_node);
  1535. init_dl_task_timer(&p->dl);
  1536. __dl_clear_params(p);
  1537. INIT_LIST_HEAD(&p->rt.run_list);
  1538. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1539. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1540. #endif
  1541. #ifdef CONFIG_NUMA_BALANCING
  1542. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1543. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1544. p->mm->numa_scan_seq = 0;
  1545. }
  1546. if (clone_flags & CLONE_VM)
  1547. p->numa_preferred_nid = current->numa_preferred_nid;
  1548. else
  1549. p->numa_preferred_nid = -1;
  1550. p->node_stamp = 0ULL;
  1551. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1552. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1553. p->numa_work.next = &p->numa_work;
  1554. p->numa_faults = NULL;
  1555. p->last_task_numa_placement = 0;
  1556. p->last_sum_exec_runtime = 0;
  1557. p->numa_group = NULL;
  1558. #endif /* CONFIG_NUMA_BALANCING */
  1559. }
  1560. #ifdef CONFIG_NUMA_BALANCING
  1561. #ifdef CONFIG_SCHED_DEBUG
  1562. void set_numabalancing_state(bool enabled)
  1563. {
  1564. if (enabled)
  1565. sched_feat_set("NUMA");
  1566. else
  1567. sched_feat_set("NO_NUMA");
  1568. }
  1569. #else
  1570. __read_mostly bool numabalancing_enabled;
  1571. void set_numabalancing_state(bool enabled)
  1572. {
  1573. numabalancing_enabled = enabled;
  1574. }
  1575. #endif /* CONFIG_SCHED_DEBUG */
  1576. #ifdef CONFIG_PROC_SYSCTL
  1577. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1578. void __user *buffer, size_t *lenp, loff_t *ppos)
  1579. {
  1580. struct ctl_table t;
  1581. int err;
  1582. int state = numabalancing_enabled;
  1583. if (write && !capable(CAP_SYS_ADMIN))
  1584. return -EPERM;
  1585. t = *table;
  1586. t.data = &state;
  1587. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1588. if (err < 0)
  1589. return err;
  1590. if (write)
  1591. set_numabalancing_state(state);
  1592. return err;
  1593. }
  1594. #endif
  1595. #endif
  1596. /*
  1597. * fork()/clone()-time setup:
  1598. */
  1599. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1600. {
  1601. unsigned long flags;
  1602. int cpu = get_cpu();
  1603. __sched_fork(clone_flags, p);
  1604. /*
  1605. * We mark the process as running here. This guarantees that
  1606. * nobody will actually run it, and a signal or other external
  1607. * event cannot wake it up and insert it on the runqueue either.
  1608. */
  1609. p->state = TASK_RUNNING;
  1610. /*
  1611. * Make sure we do not leak PI boosting priority to the child.
  1612. */
  1613. p->prio = current->normal_prio;
  1614. /*
  1615. * Revert to default priority/policy on fork if requested.
  1616. */
  1617. if (unlikely(p->sched_reset_on_fork)) {
  1618. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1619. p->policy = SCHED_NORMAL;
  1620. p->static_prio = NICE_TO_PRIO(0);
  1621. p->rt_priority = 0;
  1622. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1623. p->static_prio = NICE_TO_PRIO(0);
  1624. p->prio = p->normal_prio = __normal_prio(p);
  1625. set_load_weight(p);
  1626. /*
  1627. * We don't need the reset flag anymore after the fork. It has
  1628. * fulfilled its duty:
  1629. */
  1630. p->sched_reset_on_fork = 0;
  1631. }
  1632. if (dl_prio(p->prio)) {
  1633. put_cpu();
  1634. return -EAGAIN;
  1635. } else if (rt_prio(p->prio)) {
  1636. p->sched_class = &rt_sched_class;
  1637. } else {
  1638. p->sched_class = &fair_sched_class;
  1639. }
  1640. if (p->sched_class->task_fork)
  1641. p->sched_class->task_fork(p);
  1642. /*
  1643. * The child is not yet in the pid-hash so no cgroup attach races,
  1644. * and the cgroup is pinned to this child due to cgroup_fork()
  1645. * is ran before sched_fork().
  1646. *
  1647. * Silence PROVE_RCU.
  1648. */
  1649. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1650. set_task_cpu(p, cpu);
  1651. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1652. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1653. if (likely(sched_info_on()))
  1654. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1655. #endif
  1656. #if defined(CONFIG_SMP)
  1657. p->on_cpu = 0;
  1658. #endif
  1659. init_task_preempt_count(p);
  1660. #ifdef CONFIG_SMP
  1661. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1662. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1663. #endif
  1664. put_cpu();
  1665. return 0;
  1666. }
  1667. unsigned long to_ratio(u64 period, u64 runtime)
  1668. {
  1669. if (runtime == RUNTIME_INF)
  1670. return 1ULL << 20;
  1671. /*
  1672. * Doing this here saves a lot of checks in all
  1673. * the calling paths, and returning zero seems
  1674. * safe for them anyway.
  1675. */
  1676. if (period == 0)
  1677. return 0;
  1678. return div64_u64(runtime << 20, period);
  1679. }
  1680. #ifdef CONFIG_SMP
  1681. inline struct dl_bw *dl_bw_of(int i)
  1682. {
  1683. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1684. "sched RCU must be held");
  1685. return &cpu_rq(i)->rd->dl_bw;
  1686. }
  1687. static inline int dl_bw_cpus(int i)
  1688. {
  1689. struct root_domain *rd = cpu_rq(i)->rd;
  1690. int cpus = 0;
  1691. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1692. "sched RCU must be held");
  1693. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1694. cpus++;
  1695. return cpus;
  1696. }
  1697. #else
  1698. inline struct dl_bw *dl_bw_of(int i)
  1699. {
  1700. return &cpu_rq(i)->dl.dl_bw;
  1701. }
  1702. static inline int dl_bw_cpus(int i)
  1703. {
  1704. return 1;
  1705. }
  1706. #endif
  1707. /*
  1708. * We must be sure that accepting a new task (or allowing changing the
  1709. * parameters of an existing one) is consistent with the bandwidth
  1710. * constraints. If yes, this function also accordingly updates the currently
  1711. * allocated bandwidth to reflect the new situation.
  1712. *
  1713. * This function is called while holding p's rq->lock.
  1714. *
  1715. * XXX we should delay bw change until the task's 0-lag point, see
  1716. * __setparam_dl().
  1717. */
  1718. static int dl_overflow(struct task_struct *p, int policy,
  1719. const struct sched_attr *attr)
  1720. {
  1721. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1722. u64 period = attr->sched_period ?: attr->sched_deadline;
  1723. u64 runtime = attr->sched_runtime;
  1724. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1725. int cpus, err = -1;
  1726. if (new_bw == p->dl.dl_bw)
  1727. return 0;
  1728. /*
  1729. * Either if a task, enters, leave, or stays -deadline but changes
  1730. * its parameters, we may need to update accordingly the total
  1731. * allocated bandwidth of the container.
  1732. */
  1733. raw_spin_lock(&dl_b->lock);
  1734. cpus = dl_bw_cpus(task_cpu(p));
  1735. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1736. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1737. __dl_add(dl_b, new_bw);
  1738. err = 0;
  1739. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1740. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1741. __dl_clear(dl_b, p->dl.dl_bw);
  1742. __dl_add(dl_b, new_bw);
  1743. err = 0;
  1744. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1745. __dl_clear(dl_b, p->dl.dl_bw);
  1746. err = 0;
  1747. }
  1748. raw_spin_unlock(&dl_b->lock);
  1749. return err;
  1750. }
  1751. extern void init_dl_bw(struct dl_bw *dl_b);
  1752. /*
  1753. * wake_up_new_task - wake up a newly created task for the first time.
  1754. *
  1755. * This function will do some initial scheduler statistics housekeeping
  1756. * that must be done for every newly created context, then puts the task
  1757. * on the runqueue and wakes it.
  1758. */
  1759. void wake_up_new_task(struct task_struct *p)
  1760. {
  1761. unsigned long flags;
  1762. struct rq *rq;
  1763. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1764. #ifdef CONFIG_SMP
  1765. /*
  1766. * Fork balancing, do it here and not earlier because:
  1767. * - cpus_allowed can change in the fork path
  1768. * - any previously selected cpu might disappear through hotplug
  1769. */
  1770. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1771. #endif
  1772. /* Initialize new task's runnable average */
  1773. init_task_runnable_average(p);
  1774. rq = __task_rq_lock(p);
  1775. activate_task(rq, p, 0);
  1776. p->on_rq = TASK_ON_RQ_QUEUED;
  1777. trace_sched_wakeup_new(p, true);
  1778. check_preempt_curr(rq, p, WF_FORK);
  1779. #ifdef CONFIG_SMP
  1780. if (p->sched_class->task_woken)
  1781. p->sched_class->task_woken(rq, p);
  1782. #endif
  1783. task_rq_unlock(rq, p, &flags);
  1784. }
  1785. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1786. /**
  1787. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1788. * @notifier: notifier struct to register
  1789. */
  1790. void preempt_notifier_register(struct preempt_notifier *notifier)
  1791. {
  1792. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1793. }
  1794. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1795. /**
  1796. * preempt_notifier_unregister - no longer interested in preemption notifications
  1797. * @notifier: notifier struct to unregister
  1798. *
  1799. * This is safe to call from within a preemption notifier.
  1800. */
  1801. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1802. {
  1803. hlist_del(&notifier->link);
  1804. }
  1805. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1806. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1807. {
  1808. struct preempt_notifier *notifier;
  1809. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1810. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1811. }
  1812. static void
  1813. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1814. struct task_struct *next)
  1815. {
  1816. struct preempt_notifier *notifier;
  1817. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1818. notifier->ops->sched_out(notifier, next);
  1819. }
  1820. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1821. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1822. {
  1823. }
  1824. static void
  1825. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1826. struct task_struct *next)
  1827. {
  1828. }
  1829. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1830. /**
  1831. * prepare_task_switch - prepare to switch tasks
  1832. * @rq: the runqueue preparing to switch
  1833. * @prev: the current task that is being switched out
  1834. * @next: the task we are going to switch to.
  1835. *
  1836. * This is called with the rq lock held and interrupts off. It must
  1837. * be paired with a subsequent finish_task_switch after the context
  1838. * switch.
  1839. *
  1840. * prepare_task_switch sets up locking and calls architecture specific
  1841. * hooks.
  1842. */
  1843. static inline void
  1844. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1845. struct task_struct *next)
  1846. {
  1847. trace_sched_switch(prev, next);
  1848. sched_info_switch(rq, prev, next);
  1849. perf_event_task_sched_out(prev, next);
  1850. fire_sched_out_preempt_notifiers(prev, next);
  1851. prepare_lock_switch(rq, next);
  1852. prepare_arch_switch(next);
  1853. }
  1854. /**
  1855. * finish_task_switch - clean up after a task-switch
  1856. * @prev: the thread we just switched away from.
  1857. *
  1858. * finish_task_switch must be called after the context switch, paired
  1859. * with a prepare_task_switch call before the context switch.
  1860. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1861. * and do any other architecture-specific cleanup actions.
  1862. *
  1863. * Note that we may have delayed dropping an mm in context_switch(). If
  1864. * so, we finish that here outside of the runqueue lock. (Doing it
  1865. * with the lock held can cause deadlocks; see schedule() for
  1866. * details.)
  1867. *
  1868. * The context switch have flipped the stack from under us and restored the
  1869. * local variables which were saved when this task called schedule() in the
  1870. * past. prev == current is still correct but we need to recalculate this_rq
  1871. * because prev may have moved to another CPU.
  1872. */
  1873. static struct rq *finish_task_switch(struct task_struct *prev)
  1874. __releases(rq->lock)
  1875. {
  1876. struct rq *rq = this_rq();
  1877. struct mm_struct *mm = rq->prev_mm;
  1878. long prev_state;
  1879. rq->prev_mm = NULL;
  1880. /*
  1881. * A task struct has one reference for the use as "current".
  1882. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1883. * schedule one last time. The schedule call will never return, and
  1884. * the scheduled task must drop that reference.
  1885. * The test for TASK_DEAD must occur while the runqueue locks are
  1886. * still held, otherwise prev could be scheduled on another cpu, die
  1887. * there before we look at prev->state, and then the reference would
  1888. * be dropped twice.
  1889. * Manfred Spraul <manfred@colorfullife.com>
  1890. */
  1891. prev_state = prev->state;
  1892. vtime_task_switch(prev);
  1893. finish_arch_switch(prev);
  1894. perf_event_task_sched_in(prev, current);
  1895. finish_lock_switch(rq, prev);
  1896. finish_arch_post_lock_switch();
  1897. fire_sched_in_preempt_notifiers(current);
  1898. if (mm)
  1899. mmdrop(mm);
  1900. if (unlikely(prev_state == TASK_DEAD)) {
  1901. if (prev->sched_class->task_dead)
  1902. prev->sched_class->task_dead(prev);
  1903. /*
  1904. * Remove function-return probe instances associated with this
  1905. * task and put them back on the free list.
  1906. */
  1907. kprobe_flush_task(prev);
  1908. put_task_struct(prev);
  1909. }
  1910. tick_nohz_task_switch(current);
  1911. return rq;
  1912. }
  1913. #ifdef CONFIG_SMP
  1914. /* rq->lock is NOT held, but preemption is disabled */
  1915. static inline void post_schedule(struct rq *rq)
  1916. {
  1917. if (rq->post_schedule) {
  1918. unsigned long flags;
  1919. raw_spin_lock_irqsave(&rq->lock, flags);
  1920. if (rq->curr->sched_class->post_schedule)
  1921. rq->curr->sched_class->post_schedule(rq);
  1922. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1923. rq->post_schedule = 0;
  1924. }
  1925. }
  1926. #else
  1927. static inline void post_schedule(struct rq *rq)
  1928. {
  1929. }
  1930. #endif
  1931. /**
  1932. * schedule_tail - first thing a freshly forked thread must call.
  1933. * @prev: the thread we just switched away from.
  1934. */
  1935. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  1936. __releases(rq->lock)
  1937. {
  1938. struct rq *rq;
  1939. /* finish_task_switch() drops rq->lock and enables preemtion */
  1940. preempt_disable();
  1941. rq = finish_task_switch(prev);
  1942. post_schedule(rq);
  1943. preempt_enable();
  1944. if (current->set_child_tid)
  1945. put_user(task_pid_vnr(current), current->set_child_tid);
  1946. }
  1947. /*
  1948. * context_switch - switch to the new MM and the new thread's register state.
  1949. */
  1950. static inline struct rq *
  1951. context_switch(struct rq *rq, struct task_struct *prev,
  1952. struct task_struct *next)
  1953. {
  1954. struct mm_struct *mm, *oldmm;
  1955. prepare_task_switch(rq, prev, next);
  1956. mm = next->mm;
  1957. oldmm = prev->active_mm;
  1958. /*
  1959. * For paravirt, this is coupled with an exit in switch_to to
  1960. * combine the page table reload and the switch backend into
  1961. * one hypercall.
  1962. */
  1963. arch_start_context_switch(prev);
  1964. if (!mm) {
  1965. next->active_mm = oldmm;
  1966. atomic_inc(&oldmm->mm_count);
  1967. enter_lazy_tlb(oldmm, next);
  1968. } else
  1969. switch_mm(oldmm, mm, next);
  1970. if (!prev->mm) {
  1971. prev->active_mm = NULL;
  1972. rq->prev_mm = oldmm;
  1973. }
  1974. /*
  1975. * Since the runqueue lock will be released by the next
  1976. * task (which is an invalid locking op but in the case
  1977. * of the scheduler it's an obvious special-case), so we
  1978. * do an early lockdep release here:
  1979. */
  1980. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1981. context_tracking_task_switch(prev, next);
  1982. /* Here we just switch the register state and the stack. */
  1983. switch_to(prev, next, prev);
  1984. barrier();
  1985. return finish_task_switch(prev);
  1986. }
  1987. /*
  1988. * nr_running and nr_context_switches:
  1989. *
  1990. * externally visible scheduler statistics: current number of runnable
  1991. * threads, total number of context switches performed since bootup.
  1992. */
  1993. unsigned long nr_running(void)
  1994. {
  1995. unsigned long i, sum = 0;
  1996. for_each_online_cpu(i)
  1997. sum += cpu_rq(i)->nr_running;
  1998. return sum;
  1999. }
  2000. /*
  2001. * Check if only the current task is running on the cpu.
  2002. */
  2003. bool single_task_running(void)
  2004. {
  2005. if (cpu_rq(smp_processor_id())->nr_running == 1)
  2006. return true;
  2007. else
  2008. return false;
  2009. }
  2010. EXPORT_SYMBOL(single_task_running);
  2011. unsigned long long nr_context_switches(void)
  2012. {
  2013. int i;
  2014. unsigned long long sum = 0;
  2015. for_each_possible_cpu(i)
  2016. sum += cpu_rq(i)->nr_switches;
  2017. return sum;
  2018. }
  2019. unsigned long nr_iowait(void)
  2020. {
  2021. unsigned long i, sum = 0;
  2022. for_each_possible_cpu(i)
  2023. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2024. return sum;
  2025. }
  2026. unsigned long nr_iowait_cpu(int cpu)
  2027. {
  2028. struct rq *this = cpu_rq(cpu);
  2029. return atomic_read(&this->nr_iowait);
  2030. }
  2031. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2032. {
  2033. struct rq *this = this_rq();
  2034. *nr_waiters = atomic_read(&this->nr_iowait);
  2035. *load = this->cpu_load[0];
  2036. }
  2037. #ifdef CONFIG_SMP
  2038. /*
  2039. * sched_exec - execve() is a valuable balancing opportunity, because at
  2040. * this point the task has the smallest effective memory and cache footprint.
  2041. */
  2042. void sched_exec(void)
  2043. {
  2044. struct task_struct *p = current;
  2045. unsigned long flags;
  2046. int dest_cpu;
  2047. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2048. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2049. if (dest_cpu == smp_processor_id())
  2050. goto unlock;
  2051. if (likely(cpu_active(dest_cpu))) {
  2052. struct migration_arg arg = { p, dest_cpu };
  2053. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2054. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2055. return;
  2056. }
  2057. unlock:
  2058. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2059. }
  2060. #endif
  2061. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2062. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2063. EXPORT_PER_CPU_SYMBOL(kstat);
  2064. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2065. /*
  2066. * Return accounted runtime for the task.
  2067. * In case the task is currently running, return the runtime plus current's
  2068. * pending runtime that have not been accounted yet.
  2069. */
  2070. unsigned long long task_sched_runtime(struct task_struct *p)
  2071. {
  2072. unsigned long flags;
  2073. struct rq *rq;
  2074. u64 ns;
  2075. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2076. /*
  2077. * 64-bit doesn't need locks to atomically read a 64bit value.
  2078. * So we have a optimization chance when the task's delta_exec is 0.
  2079. * Reading ->on_cpu is racy, but this is ok.
  2080. *
  2081. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2082. * If we race with it entering cpu, unaccounted time is 0. This is
  2083. * indistinguishable from the read occurring a few cycles earlier.
  2084. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2085. * been accounted, so we're correct here as well.
  2086. */
  2087. if (!p->on_cpu || !task_on_rq_queued(p))
  2088. return p->se.sum_exec_runtime;
  2089. #endif
  2090. rq = task_rq_lock(p, &flags);
  2091. /*
  2092. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2093. * project cycles that may never be accounted to this
  2094. * thread, breaking clock_gettime().
  2095. */
  2096. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2097. update_rq_clock(rq);
  2098. p->sched_class->update_curr(rq);
  2099. }
  2100. ns = p->se.sum_exec_runtime;
  2101. task_rq_unlock(rq, p, &flags);
  2102. return ns;
  2103. }
  2104. /*
  2105. * This function gets called by the timer code, with HZ frequency.
  2106. * We call it with interrupts disabled.
  2107. */
  2108. void scheduler_tick(void)
  2109. {
  2110. int cpu = smp_processor_id();
  2111. struct rq *rq = cpu_rq(cpu);
  2112. struct task_struct *curr = rq->curr;
  2113. sched_clock_tick();
  2114. raw_spin_lock(&rq->lock);
  2115. update_rq_clock(rq);
  2116. curr->sched_class->task_tick(rq, curr, 0);
  2117. update_cpu_load_active(rq);
  2118. raw_spin_unlock(&rq->lock);
  2119. perf_event_task_tick();
  2120. #ifdef CONFIG_SMP
  2121. rq->idle_balance = idle_cpu(cpu);
  2122. trigger_load_balance(rq);
  2123. #endif
  2124. rq_last_tick_reset(rq);
  2125. }
  2126. #ifdef CONFIG_NO_HZ_FULL
  2127. /**
  2128. * scheduler_tick_max_deferment
  2129. *
  2130. * Keep at least one tick per second when a single
  2131. * active task is running because the scheduler doesn't
  2132. * yet completely support full dynticks environment.
  2133. *
  2134. * This makes sure that uptime, CFS vruntime, load
  2135. * balancing, etc... continue to move forward, even
  2136. * with a very low granularity.
  2137. *
  2138. * Return: Maximum deferment in nanoseconds.
  2139. */
  2140. u64 scheduler_tick_max_deferment(void)
  2141. {
  2142. struct rq *rq = this_rq();
  2143. unsigned long next, now = ACCESS_ONCE(jiffies);
  2144. next = rq->last_sched_tick + HZ;
  2145. if (time_before_eq(next, now))
  2146. return 0;
  2147. return jiffies_to_nsecs(next - now);
  2148. }
  2149. #endif
  2150. notrace unsigned long get_parent_ip(unsigned long addr)
  2151. {
  2152. if (in_lock_functions(addr)) {
  2153. addr = CALLER_ADDR2;
  2154. if (in_lock_functions(addr))
  2155. addr = CALLER_ADDR3;
  2156. }
  2157. return addr;
  2158. }
  2159. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2160. defined(CONFIG_PREEMPT_TRACER))
  2161. void preempt_count_add(int val)
  2162. {
  2163. #ifdef CONFIG_DEBUG_PREEMPT
  2164. /*
  2165. * Underflow?
  2166. */
  2167. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2168. return;
  2169. #endif
  2170. __preempt_count_add(val);
  2171. #ifdef CONFIG_DEBUG_PREEMPT
  2172. /*
  2173. * Spinlock count overflowing soon?
  2174. */
  2175. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2176. PREEMPT_MASK - 10);
  2177. #endif
  2178. if (preempt_count() == val) {
  2179. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2180. #ifdef CONFIG_DEBUG_PREEMPT
  2181. current->preempt_disable_ip = ip;
  2182. #endif
  2183. trace_preempt_off(CALLER_ADDR0, ip);
  2184. }
  2185. }
  2186. EXPORT_SYMBOL(preempt_count_add);
  2187. NOKPROBE_SYMBOL(preempt_count_add);
  2188. void preempt_count_sub(int val)
  2189. {
  2190. #ifdef CONFIG_DEBUG_PREEMPT
  2191. /*
  2192. * Underflow?
  2193. */
  2194. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2195. return;
  2196. /*
  2197. * Is the spinlock portion underflowing?
  2198. */
  2199. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2200. !(preempt_count() & PREEMPT_MASK)))
  2201. return;
  2202. #endif
  2203. if (preempt_count() == val)
  2204. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2205. __preempt_count_sub(val);
  2206. }
  2207. EXPORT_SYMBOL(preempt_count_sub);
  2208. NOKPROBE_SYMBOL(preempt_count_sub);
  2209. #endif
  2210. /*
  2211. * Print scheduling while atomic bug:
  2212. */
  2213. static noinline void __schedule_bug(struct task_struct *prev)
  2214. {
  2215. if (oops_in_progress)
  2216. return;
  2217. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2218. prev->comm, prev->pid, preempt_count());
  2219. debug_show_held_locks(prev);
  2220. print_modules();
  2221. if (irqs_disabled())
  2222. print_irqtrace_events(prev);
  2223. #ifdef CONFIG_DEBUG_PREEMPT
  2224. if (in_atomic_preempt_off()) {
  2225. pr_err("Preemption disabled at:");
  2226. print_ip_sym(current->preempt_disable_ip);
  2227. pr_cont("\n");
  2228. }
  2229. #endif
  2230. dump_stack();
  2231. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2232. }
  2233. /*
  2234. * Various schedule()-time debugging checks and statistics:
  2235. */
  2236. static inline void schedule_debug(struct task_struct *prev)
  2237. {
  2238. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2239. BUG_ON(unlikely(task_stack_end_corrupted(prev)));
  2240. #endif
  2241. /*
  2242. * Test if we are atomic. Since do_exit() needs to call into
  2243. * schedule() atomically, we ignore that path. Otherwise whine
  2244. * if we are scheduling when we should not.
  2245. */
  2246. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2247. __schedule_bug(prev);
  2248. rcu_sleep_check();
  2249. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2250. schedstat_inc(this_rq(), sched_count);
  2251. }
  2252. /*
  2253. * Pick up the highest-prio task:
  2254. */
  2255. static inline struct task_struct *
  2256. pick_next_task(struct rq *rq, struct task_struct *prev)
  2257. {
  2258. const struct sched_class *class = &fair_sched_class;
  2259. struct task_struct *p;
  2260. /*
  2261. * Optimization: we know that if all tasks are in
  2262. * the fair class we can call that function directly:
  2263. */
  2264. if (likely(prev->sched_class == class &&
  2265. rq->nr_running == rq->cfs.h_nr_running)) {
  2266. p = fair_sched_class.pick_next_task(rq, prev);
  2267. if (unlikely(p == RETRY_TASK))
  2268. goto again;
  2269. /* assumes fair_sched_class->next == idle_sched_class */
  2270. if (unlikely(!p))
  2271. p = idle_sched_class.pick_next_task(rq, prev);
  2272. return p;
  2273. }
  2274. again:
  2275. for_each_class(class) {
  2276. p = class->pick_next_task(rq, prev);
  2277. if (p) {
  2278. if (unlikely(p == RETRY_TASK))
  2279. goto again;
  2280. return p;
  2281. }
  2282. }
  2283. BUG(); /* the idle class will always have a runnable task */
  2284. }
  2285. /*
  2286. * __schedule() is the main scheduler function.
  2287. *
  2288. * The main means of driving the scheduler and thus entering this function are:
  2289. *
  2290. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2291. *
  2292. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2293. * paths. For example, see arch/x86/entry_64.S.
  2294. *
  2295. * To drive preemption between tasks, the scheduler sets the flag in timer
  2296. * interrupt handler scheduler_tick().
  2297. *
  2298. * 3. Wakeups don't really cause entry into schedule(). They add a
  2299. * task to the run-queue and that's it.
  2300. *
  2301. * Now, if the new task added to the run-queue preempts the current
  2302. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2303. * called on the nearest possible occasion:
  2304. *
  2305. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2306. *
  2307. * - in syscall or exception context, at the next outmost
  2308. * preempt_enable(). (this might be as soon as the wake_up()'s
  2309. * spin_unlock()!)
  2310. *
  2311. * - in IRQ context, return from interrupt-handler to
  2312. * preemptible context
  2313. *
  2314. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2315. * then at the next:
  2316. *
  2317. * - cond_resched() call
  2318. * - explicit schedule() call
  2319. * - return from syscall or exception to user-space
  2320. * - return from interrupt-handler to user-space
  2321. *
  2322. * WARNING: all callers must re-check need_resched() afterward and reschedule
  2323. * accordingly in case an event triggered the need for rescheduling (such as
  2324. * an interrupt waking up a task) while preemption was disabled in __schedule().
  2325. */
  2326. static void __sched __schedule(void)
  2327. {
  2328. struct task_struct *prev, *next;
  2329. unsigned long *switch_count;
  2330. struct rq *rq;
  2331. int cpu;
  2332. preempt_disable();
  2333. cpu = smp_processor_id();
  2334. rq = cpu_rq(cpu);
  2335. rcu_note_context_switch();
  2336. prev = rq->curr;
  2337. schedule_debug(prev);
  2338. if (sched_feat(HRTICK))
  2339. hrtick_clear(rq);
  2340. /*
  2341. * Make sure that signal_pending_state()->signal_pending() below
  2342. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2343. * done by the caller to avoid the race with signal_wake_up().
  2344. */
  2345. smp_mb__before_spinlock();
  2346. raw_spin_lock_irq(&rq->lock);
  2347. rq->clock_skip_update <<= 1; /* promote REQ to ACT */
  2348. switch_count = &prev->nivcsw;
  2349. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2350. if (unlikely(signal_pending_state(prev->state, prev))) {
  2351. prev->state = TASK_RUNNING;
  2352. } else {
  2353. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2354. prev->on_rq = 0;
  2355. /*
  2356. * If a worker went to sleep, notify and ask workqueue
  2357. * whether it wants to wake up a task to maintain
  2358. * concurrency.
  2359. */
  2360. if (prev->flags & PF_WQ_WORKER) {
  2361. struct task_struct *to_wakeup;
  2362. to_wakeup = wq_worker_sleeping(prev, cpu);
  2363. if (to_wakeup)
  2364. try_to_wake_up_local(to_wakeup);
  2365. }
  2366. }
  2367. switch_count = &prev->nvcsw;
  2368. }
  2369. if (task_on_rq_queued(prev))
  2370. update_rq_clock(rq);
  2371. next = pick_next_task(rq, prev);
  2372. clear_tsk_need_resched(prev);
  2373. clear_preempt_need_resched();
  2374. rq->clock_skip_update = 0;
  2375. if (likely(prev != next)) {
  2376. rq->nr_switches++;
  2377. rq->curr = next;
  2378. ++*switch_count;
  2379. rq = context_switch(rq, prev, next); /* unlocks the rq */
  2380. cpu = cpu_of(rq);
  2381. } else
  2382. raw_spin_unlock_irq(&rq->lock);
  2383. post_schedule(rq);
  2384. sched_preempt_enable_no_resched();
  2385. }
  2386. static inline void sched_submit_work(struct task_struct *tsk)
  2387. {
  2388. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2389. return;
  2390. /*
  2391. * If we are going to sleep and we have plugged IO queued,
  2392. * make sure to submit it to avoid deadlocks.
  2393. */
  2394. if (blk_needs_flush_plug(tsk))
  2395. blk_schedule_flush_plug(tsk);
  2396. }
  2397. asmlinkage __visible void __sched schedule(void)
  2398. {
  2399. struct task_struct *tsk = current;
  2400. sched_submit_work(tsk);
  2401. do {
  2402. __schedule();
  2403. } while (need_resched());
  2404. }
  2405. EXPORT_SYMBOL(schedule);
  2406. #ifdef CONFIG_CONTEXT_TRACKING
  2407. asmlinkage __visible void __sched schedule_user(void)
  2408. {
  2409. /*
  2410. * If we come here after a random call to set_need_resched(),
  2411. * or we have been woken up remotely but the IPI has not yet arrived,
  2412. * we haven't yet exited the RCU idle mode. Do it here manually until
  2413. * we find a better solution.
  2414. *
  2415. * NB: There are buggy callers of this function. Ideally we
  2416. * should warn if prev_state != IN_USER, but that will trigger
  2417. * too frequently to make sense yet.
  2418. */
  2419. enum ctx_state prev_state = exception_enter();
  2420. schedule();
  2421. exception_exit(prev_state);
  2422. }
  2423. #endif
  2424. /**
  2425. * schedule_preempt_disabled - called with preemption disabled
  2426. *
  2427. * Returns with preemption disabled. Note: preempt_count must be 1
  2428. */
  2429. void __sched schedule_preempt_disabled(void)
  2430. {
  2431. sched_preempt_enable_no_resched();
  2432. schedule();
  2433. preempt_disable();
  2434. }
  2435. static void __sched notrace preempt_schedule_common(void)
  2436. {
  2437. do {
  2438. __preempt_count_add(PREEMPT_ACTIVE);
  2439. __schedule();
  2440. __preempt_count_sub(PREEMPT_ACTIVE);
  2441. /*
  2442. * Check again in case we missed a preemption opportunity
  2443. * between schedule and now.
  2444. */
  2445. barrier();
  2446. } while (need_resched());
  2447. }
  2448. #ifdef CONFIG_PREEMPT
  2449. /*
  2450. * this is the entry point to schedule() from in-kernel preemption
  2451. * off of preempt_enable. Kernel preemptions off return from interrupt
  2452. * occur there and call schedule directly.
  2453. */
  2454. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2455. {
  2456. /*
  2457. * If there is a non-zero preempt_count or interrupts are disabled,
  2458. * we do not want to preempt the current task. Just return..
  2459. */
  2460. if (likely(!preemptible()))
  2461. return;
  2462. preempt_schedule_common();
  2463. }
  2464. NOKPROBE_SYMBOL(preempt_schedule);
  2465. EXPORT_SYMBOL(preempt_schedule);
  2466. #ifdef CONFIG_CONTEXT_TRACKING
  2467. /**
  2468. * preempt_schedule_context - preempt_schedule called by tracing
  2469. *
  2470. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2471. * recursion and tracing preempt enabling caused by the tracing
  2472. * infrastructure itself. But as tracing can happen in areas coming
  2473. * from userspace or just about to enter userspace, a preempt enable
  2474. * can occur before user_exit() is called. This will cause the scheduler
  2475. * to be called when the system is still in usermode.
  2476. *
  2477. * To prevent this, the preempt_enable_notrace will use this function
  2478. * instead of preempt_schedule() to exit user context if needed before
  2479. * calling the scheduler.
  2480. */
  2481. asmlinkage __visible void __sched notrace preempt_schedule_context(void)
  2482. {
  2483. enum ctx_state prev_ctx;
  2484. if (likely(!preemptible()))
  2485. return;
  2486. do {
  2487. __preempt_count_add(PREEMPT_ACTIVE);
  2488. /*
  2489. * Needs preempt disabled in case user_exit() is traced
  2490. * and the tracer calls preempt_enable_notrace() causing
  2491. * an infinite recursion.
  2492. */
  2493. prev_ctx = exception_enter();
  2494. __schedule();
  2495. exception_exit(prev_ctx);
  2496. __preempt_count_sub(PREEMPT_ACTIVE);
  2497. barrier();
  2498. } while (need_resched());
  2499. }
  2500. EXPORT_SYMBOL_GPL(preempt_schedule_context);
  2501. #endif /* CONFIG_CONTEXT_TRACKING */
  2502. #endif /* CONFIG_PREEMPT */
  2503. /*
  2504. * this is the entry point to schedule() from kernel preemption
  2505. * off of irq context.
  2506. * Note, that this is called and return with irqs disabled. This will
  2507. * protect us against recursive calling from irq.
  2508. */
  2509. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2510. {
  2511. enum ctx_state prev_state;
  2512. /* Catch callers which need to be fixed */
  2513. BUG_ON(preempt_count() || !irqs_disabled());
  2514. prev_state = exception_enter();
  2515. do {
  2516. __preempt_count_add(PREEMPT_ACTIVE);
  2517. local_irq_enable();
  2518. __schedule();
  2519. local_irq_disable();
  2520. __preempt_count_sub(PREEMPT_ACTIVE);
  2521. /*
  2522. * Check again in case we missed a preemption opportunity
  2523. * between schedule and now.
  2524. */
  2525. barrier();
  2526. } while (need_resched());
  2527. exception_exit(prev_state);
  2528. }
  2529. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2530. void *key)
  2531. {
  2532. return try_to_wake_up(curr->private, mode, wake_flags);
  2533. }
  2534. EXPORT_SYMBOL(default_wake_function);
  2535. #ifdef CONFIG_RT_MUTEXES
  2536. /*
  2537. * rt_mutex_setprio - set the current priority of a task
  2538. * @p: task
  2539. * @prio: prio value (kernel-internal form)
  2540. *
  2541. * This function changes the 'effective' priority of a task. It does
  2542. * not touch ->normal_prio like __setscheduler().
  2543. *
  2544. * Used by the rt_mutex code to implement priority inheritance
  2545. * logic. Call site only calls if the priority of the task changed.
  2546. */
  2547. void rt_mutex_setprio(struct task_struct *p, int prio)
  2548. {
  2549. int oldprio, queued, running, enqueue_flag = 0;
  2550. struct rq *rq;
  2551. const struct sched_class *prev_class;
  2552. BUG_ON(prio > MAX_PRIO);
  2553. rq = __task_rq_lock(p);
  2554. /*
  2555. * Idle task boosting is a nono in general. There is one
  2556. * exception, when PREEMPT_RT and NOHZ is active:
  2557. *
  2558. * The idle task calls get_next_timer_interrupt() and holds
  2559. * the timer wheel base->lock on the CPU and another CPU wants
  2560. * to access the timer (probably to cancel it). We can safely
  2561. * ignore the boosting request, as the idle CPU runs this code
  2562. * with interrupts disabled and will complete the lock
  2563. * protected section without being interrupted. So there is no
  2564. * real need to boost.
  2565. */
  2566. if (unlikely(p == rq->idle)) {
  2567. WARN_ON(p != rq->curr);
  2568. WARN_ON(p->pi_blocked_on);
  2569. goto out_unlock;
  2570. }
  2571. trace_sched_pi_setprio(p, prio);
  2572. oldprio = p->prio;
  2573. prev_class = p->sched_class;
  2574. queued = task_on_rq_queued(p);
  2575. running = task_current(rq, p);
  2576. if (queued)
  2577. dequeue_task(rq, p, 0);
  2578. if (running)
  2579. put_prev_task(rq, p);
  2580. /*
  2581. * Boosting condition are:
  2582. * 1. -rt task is running and holds mutex A
  2583. * --> -dl task blocks on mutex A
  2584. *
  2585. * 2. -dl task is running and holds mutex A
  2586. * --> -dl task blocks on mutex A and could preempt the
  2587. * running task
  2588. */
  2589. if (dl_prio(prio)) {
  2590. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2591. if (!dl_prio(p->normal_prio) ||
  2592. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2593. p->dl.dl_boosted = 1;
  2594. p->dl.dl_throttled = 0;
  2595. enqueue_flag = ENQUEUE_REPLENISH;
  2596. } else
  2597. p->dl.dl_boosted = 0;
  2598. p->sched_class = &dl_sched_class;
  2599. } else if (rt_prio(prio)) {
  2600. if (dl_prio(oldprio))
  2601. p->dl.dl_boosted = 0;
  2602. if (oldprio < prio)
  2603. enqueue_flag = ENQUEUE_HEAD;
  2604. p->sched_class = &rt_sched_class;
  2605. } else {
  2606. if (dl_prio(oldprio))
  2607. p->dl.dl_boosted = 0;
  2608. p->sched_class = &fair_sched_class;
  2609. }
  2610. p->prio = prio;
  2611. if (running)
  2612. p->sched_class->set_curr_task(rq);
  2613. if (queued)
  2614. enqueue_task(rq, p, enqueue_flag);
  2615. check_class_changed(rq, p, prev_class, oldprio);
  2616. out_unlock:
  2617. __task_rq_unlock(rq);
  2618. }
  2619. #endif
  2620. void set_user_nice(struct task_struct *p, long nice)
  2621. {
  2622. int old_prio, delta, queued;
  2623. unsigned long flags;
  2624. struct rq *rq;
  2625. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2626. return;
  2627. /*
  2628. * We have to be careful, if called from sys_setpriority(),
  2629. * the task might be in the middle of scheduling on another CPU.
  2630. */
  2631. rq = task_rq_lock(p, &flags);
  2632. /*
  2633. * The RT priorities are set via sched_setscheduler(), but we still
  2634. * allow the 'normal' nice value to be set - but as expected
  2635. * it wont have any effect on scheduling until the task is
  2636. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2637. */
  2638. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2639. p->static_prio = NICE_TO_PRIO(nice);
  2640. goto out_unlock;
  2641. }
  2642. queued = task_on_rq_queued(p);
  2643. if (queued)
  2644. dequeue_task(rq, p, 0);
  2645. p->static_prio = NICE_TO_PRIO(nice);
  2646. set_load_weight(p);
  2647. old_prio = p->prio;
  2648. p->prio = effective_prio(p);
  2649. delta = p->prio - old_prio;
  2650. if (queued) {
  2651. enqueue_task(rq, p, 0);
  2652. /*
  2653. * If the task increased its priority or is running and
  2654. * lowered its priority, then reschedule its CPU:
  2655. */
  2656. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2657. resched_curr(rq);
  2658. }
  2659. out_unlock:
  2660. task_rq_unlock(rq, p, &flags);
  2661. }
  2662. EXPORT_SYMBOL(set_user_nice);
  2663. /*
  2664. * can_nice - check if a task can reduce its nice value
  2665. * @p: task
  2666. * @nice: nice value
  2667. */
  2668. int can_nice(const struct task_struct *p, const int nice)
  2669. {
  2670. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2671. int nice_rlim = nice_to_rlimit(nice);
  2672. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2673. capable(CAP_SYS_NICE));
  2674. }
  2675. #ifdef __ARCH_WANT_SYS_NICE
  2676. /*
  2677. * sys_nice - change the priority of the current process.
  2678. * @increment: priority increment
  2679. *
  2680. * sys_setpriority is a more generic, but much slower function that
  2681. * does similar things.
  2682. */
  2683. SYSCALL_DEFINE1(nice, int, increment)
  2684. {
  2685. long nice, retval;
  2686. /*
  2687. * Setpriority might change our priority at the same moment.
  2688. * We don't have to worry. Conceptually one call occurs first
  2689. * and we have a single winner.
  2690. */
  2691. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2692. nice = task_nice(current) + increment;
  2693. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2694. if (increment < 0 && !can_nice(current, nice))
  2695. return -EPERM;
  2696. retval = security_task_setnice(current, nice);
  2697. if (retval)
  2698. return retval;
  2699. set_user_nice(current, nice);
  2700. return 0;
  2701. }
  2702. #endif
  2703. /**
  2704. * task_prio - return the priority value of a given task.
  2705. * @p: the task in question.
  2706. *
  2707. * Return: The priority value as seen by users in /proc.
  2708. * RT tasks are offset by -200. Normal tasks are centered
  2709. * around 0, value goes from -16 to +15.
  2710. */
  2711. int task_prio(const struct task_struct *p)
  2712. {
  2713. return p->prio - MAX_RT_PRIO;
  2714. }
  2715. /**
  2716. * idle_cpu - is a given cpu idle currently?
  2717. * @cpu: the processor in question.
  2718. *
  2719. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2720. */
  2721. int idle_cpu(int cpu)
  2722. {
  2723. struct rq *rq = cpu_rq(cpu);
  2724. if (rq->curr != rq->idle)
  2725. return 0;
  2726. if (rq->nr_running)
  2727. return 0;
  2728. #ifdef CONFIG_SMP
  2729. if (!llist_empty(&rq->wake_list))
  2730. return 0;
  2731. #endif
  2732. return 1;
  2733. }
  2734. /**
  2735. * idle_task - return the idle task for a given cpu.
  2736. * @cpu: the processor in question.
  2737. *
  2738. * Return: The idle task for the cpu @cpu.
  2739. */
  2740. struct task_struct *idle_task(int cpu)
  2741. {
  2742. return cpu_rq(cpu)->idle;
  2743. }
  2744. /**
  2745. * find_process_by_pid - find a process with a matching PID value.
  2746. * @pid: the pid in question.
  2747. *
  2748. * The task of @pid, if found. %NULL otherwise.
  2749. */
  2750. static struct task_struct *find_process_by_pid(pid_t pid)
  2751. {
  2752. return pid ? find_task_by_vpid(pid) : current;
  2753. }
  2754. /*
  2755. * This function initializes the sched_dl_entity of a newly becoming
  2756. * SCHED_DEADLINE task.
  2757. *
  2758. * Only the static values are considered here, the actual runtime and the
  2759. * absolute deadline will be properly calculated when the task is enqueued
  2760. * for the first time with its new policy.
  2761. */
  2762. static void
  2763. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2764. {
  2765. struct sched_dl_entity *dl_se = &p->dl;
  2766. dl_se->dl_runtime = attr->sched_runtime;
  2767. dl_se->dl_deadline = attr->sched_deadline;
  2768. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2769. dl_se->flags = attr->sched_flags;
  2770. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2771. /*
  2772. * Changing the parameters of a task is 'tricky' and we're not doing
  2773. * the correct thing -- also see task_dead_dl() and switched_from_dl().
  2774. *
  2775. * What we SHOULD do is delay the bandwidth release until the 0-lag
  2776. * point. This would include retaining the task_struct until that time
  2777. * and change dl_overflow() to not immediately decrement the current
  2778. * amount.
  2779. *
  2780. * Instead we retain the current runtime/deadline and let the new
  2781. * parameters take effect after the current reservation period lapses.
  2782. * This is safe (albeit pessimistic) because the 0-lag point is always
  2783. * before the current scheduling deadline.
  2784. *
  2785. * We can still have temporary overloads because we do not delay the
  2786. * change in bandwidth until that time; so admission control is
  2787. * not on the safe side. It does however guarantee tasks will never
  2788. * consume more than promised.
  2789. */
  2790. }
  2791. /*
  2792. * sched_setparam() passes in -1 for its policy, to let the functions
  2793. * it calls know not to change it.
  2794. */
  2795. #define SETPARAM_POLICY -1
  2796. static void __setscheduler_params(struct task_struct *p,
  2797. const struct sched_attr *attr)
  2798. {
  2799. int policy = attr->sched_policy;
  2800. if (policy == SETPARAM_POLICY)
  2801. policy = p->policy;
  2802. p->policy = policy;
  2803. if (dl_policy(policy))
  2804. __setparam_dl(p, attr);
  2805. else if (fair_policy(policy))
  2806. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2807. /*
  2808. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2809. * !rt_policy. Always setting this ensures that things like
  2810. * getparam()/getattr() don't report silly values for !rt tasks.
  2811. */
  2812. p->rt_priority = attr->sched_priority;
  2813. p->normal_prio = normal_prio(p);
  2814. set_load_weight(p);
  2815. }
  2816. /* Actually do priority change: must hold pi & rq lock. */
  2817. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2818. const struct sched_attr *attr)
  2819. {
  2820. __setscheduler_params(p, attr);
  2821. /*
  2822. * If we get here, there was no pi waiters boosting the
  2823. * task. It is safe to use the normal prio.
  2824. */
  2825. p->prio = normal_prio(p);
  2826. if (dl_prio(p->prio))
  2827. p->sched_class = &dl_sched_class;
  2828. else if (rt_prio(p->prio))
  2829. p->sched_class = &rt_sched_class;
  2830. else
  2831. p->sched_class = &fair_sched_class;
  2832. }
  2833. static void
  2834. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2835. {
  2836. struct sched_dl_entity *dl_se = &p->dl;
  2837. attr->sched_priority = p->rt_priority;
  2838. attr->sched_runtime = dl_se->dl_runtime;
  2839. attr->sched_deadline = dl_se->dl_deadline;
  2840. attr->sched_period = dl_se->dl_period;
  2841. attr->sched_flags = dl_se->flags;
  2842. }
  2843. /*
  2844. * This function validates the new parameters of a -deadline task.
  2845. * We ask for the deadline not being zero, and greater or equal
  2846. * than the runtime, as well as the period of being zero or
  2847. * greater than deadline. Furthermore, we have to be sure that
  2848. * user parameters are above the internal resolution of 1us (we
  2849. * check sched_runtime only since it is always the smaller one) and
  2850. * below 2^63 ns (we have to check both sched_deadline and
  2851. * sched_period, as the latter can be zero).
  2852. */
  2853. static bool
  2854. __checkparam_dl(const struct sched_attr *attr)
  2855. {
  2856. /* deadline != 0 */
  2857. if (attr->sched_deadline == 0)
  2858. return false;
  2859. /*
  2860. * Since we truncate DL_SCALE bits, make sure we're at least
  2861. * that big.
  2862. */
  2863. if (attr->sched_runtime < (1ULL << DL_SCALE))
  2864. return false;
  2865. /*
  2866. * Since we use the MSB for wrap-around and sign issues, make
  2867. * sure it's not set (mind that period can be equal to zero).
  2868. */
  2869. if (attr->sched_deadline & (1ULL << 63) ||
  2870. attr->sched_period & (1ULL << 63))
  2871. return false;
  2872. /* runtime <= deadline <= period (if period != 0) */
  2873. if ((attr->sched_period != 0 &&
  2874. attr->sched_period < attr->sched_deadline) ||
  2875. attr->sched_deadline < attr->sched_runtime)
  2876. return false;
  2877. return true;
  2878. }
  2879. /*
  2880. * check the target process has a UID that matches the current process's
  2881. */
  2882. static bool check_same_owner(struct task_struct *p)
  2883. {
  2884. const struct cred *cred = current_cred(), *pcred;
  2885. bool match;
  2886. rcu_read_lock();
  2887. pcred = __task_cred(p);
  2888. match = (uid_eq(cred->euid, pcred->euid) ||
  2889. uid_eq(cred->euid, pcred->uid));
  2890. rcu_read_unlock();
  2891. return match;
  2892. }
  2893. static bool dl_param_changed(struct task_struct *p,
  2894. const struct sched_attr *attr)
  2895. {
  2896. struct sched_dl_entity *dl_se = &p->dl;
  2897. if (dl_se->dl_runtime != attr->sched_runtime ||
  2898. dl_se->dl_deadline != attr->sched_deadline ||
  2899. dl_se->dl_period != attr->sched_period ||
  2900. dl_se->flags != attr->sched_flags)
  2901. return true;
  2902. return false;
  2903. }
  2904. static int __sched_setscheduler(struct task_struct *p,
  2905. const struct sched_attr *attr,
  2906. bool user)
  2907. {
  2908. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  2909. MAX_RT_PRIO - 1 - attr->sched_priority;
  2910. int retval, oldprio, oldpolicy = -1, queued, running;
  2911. int policy = attr->sched_policy;
  2912. unsigned long flags;
  2913. const struct sched_class *prev_class;
  2914. struct rq *rq;
  2915. int reset_on_fork;
  2916. /* may grab non-irq protected spin_locks */
  2917. BUG_ON(in_interrupt());
  2918. recheck:
  2919. /* double check policy once rq lock held */
  2920. if (policy < 0) {
  2921. reset_on_fork = p->sched_reset_on_fork;
  2922. policy = oldpolicy = p->policy;
  2923. } else {
  2924. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2925. if (policy != SCHED_DEADLINE &&
  2926. policy != SCHED_FIFO && policy != SCHED_RR &&
  2927. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2928. policy != SCHED_IDLE)
  2929. return -EINVAL;
  2930. }
  2931. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2932. return -EINVAL;
  2933. /*
  2934. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2935. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2936. * SCHED_BATCH and SCHED_IDLE is 0.
  2937. */
  2938. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2939. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2940. return -EINVAL;
  2941. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2942. (rt_policy(policy) != (attr->sched_priority != 0)))
  2943. return -EINVAL;
  2944. /*
  2945. * Allow unprivileged RT tasks to decrease priority:
  2946. */
  2947. if (user && !capable(CAP_SYS_NICE)) {
  2948. if (fair_policy(policy)) {
  2949. if (attr->sched_nice < task_nice(p) &&
  2950. !can_nice(p, attr->sched_nice))
  2951. return -EPERM;
  2952. }
  2953. if (rt_policy(policy)) {
  2954. unsigned long rlim_rtprio =
  2955. task_rlimit(p, RLIMIT_RTPRIO);
  2956. /* can't set/change the rt policy */
  2957. if (policy != p->policy && !rlim_rtprio)
  2958. return -EPERM;
  2959. /* can't increase priority */
  2960. if (attr->sched_priority > p->rt_priority &&
  2961. attr->sched_priority > rlim_rtprio)
  2962. return -EPERM;
  2963. }
  2964. /*
  2965. * Can't set/change SCHED_DEADLINE policy at all for now
  2966. * (safest behavior); in the future we would like to allow
  2967. * unprivileged DL tasks to increase their relative deadline
  2968. * or reduce their runtime (both ways reducing utilization)
  2969. */
  2970. if (dl_policy(policy))
  2971. return -EPERM;
  2972. /*
  2973. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2974. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2975. */
  2976. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2977. if (!can_nice(p, task_nice(p)))
  2978. return -EPERM;
  2979. }
  2980. /* can't change other user's priorities */
  2981. if (!check_same_owner(p))
  2982. return -EPERM;
  2983. /* Normal users shall not reset the sched_reset_on_fork flag */
  2984. if (p->sched_reset_on_fork && !reset_on_fork)
  2985. return -EPERM;
  2986. }
  2987. if (user) {
  2988. retval = security_task_setscheduler(p);
  2989. if (retval)
  2990. return retval;
  2991. }
  2992. /*
  2993. * make sure no PI-waiters arrive (or leave) while we are
  2994. * changing the priority of the task:
  2995. *
  2996. * To be able to change p->policy safely, the appropriate
  2997. * runqueue lock must be held.
  2998. */
  2999. rq = task_rq_lock(p, &flags);
  3000. /*
  3001. * Changing the policy of the stop threads its a very bad idea
  3002. */
  3003. if (p == rq->stop) {
  3004. task_rq_unlock(rq, p, &flags);
  3005. return -EINVAL;
  3006. }
  3007. /*
  3008. * If not changing anything there's no need to proceed further,
  3009. * but store a possible modification of reset_on_fork.
  3010. */
  3011. if (unlikely(policy == p->policy)) {
  3012. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3013. goto change;
  3014. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3015. goto change;
  3016. if (dl_policy(policy) && dl_param_changed(p, attr))
  3017. goto change;
  3018. p->sched_reset_on_fork = reset_on_fork;
  3019. task_rq_unlock(rq, p, &flags);
  3020. return 0;
  3021. }
  3022. change:
  3023. if (user) {
  3024. #ifdef CONFIG_RT_GROUP_SCHED
  3025. /*
  3026. * Do not allow realtime tasks into groups that have no runtime
  3027. * assigned.
  3028. */
  3029. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3030. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3031. !task_group_is_autogroup(task_group(p))) {
  3032. task_rq_unlock(rq, p, &flags);
  3033. return -EPERM;
  3034. }
  3035. #endif
  3036. #ifdef CONFIG_SMP
  3037. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3038. cpumask_t *span = rq->rd->span;
  3039. /*
  3040. * Don't allow tasks with an affinity mask smaller than
  3041. * the entire root_domain to become SCHED_DEADLINE. We
  3042. * will also fail if there's no bandwidth available.
  3043. */
  3044. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3045. rq->rd->dl_bw.bw == 0) {
  3046. task_rq_unlock(rq, p, &flags);
  3047. return -EPERM;
  3048. }
  3049. }
  3050. #endif
  3051. }
  3052. /* recheck policy now with rq lock held */
  3053. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3054. policy = oldpolicy = -1;
  3055. task_rq_unlock(rq, p, &flags);
  3056. goto recheck;
  3057. }
  3058. /*
  3059. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3060. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3061. * is available.
  3062. */
  3063. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3064. task_rq_unlock(rq, p, &flags);
  3065. return -EBUSY;
  3066. }
  3067. p->sched_reset_on_fork = reset_on_fork;
  3068. oldprio = p->prio;
  3069. /*
  3070. * Special case for priority boosted tasks.
  3071. *
  3072. * If the new priority is lower or equal (user space view)
  3073. * than the current (boosted) priority, we just store the new
  3074. * normal parameters and do not touch the scheduler class and
  3075. * the runqueue. This will be done when the task deboost
  3076. * itself.
  3077. */
  3078. if (rt_mutex_check_prio(p, newprio)) {
  3079. __setscheduler_params(p, attr);
  3080. task_rq_unlock(rq, p, &flags);
  3081. return 0;
  3082. }
  3083. queued = task_on_rq_queued(p);
  3084. running = task_current(rq, p);
  3085. if (queued)
  3086. dequeue_task(rq, p, 0);
  3087. if (running)
  3088. put_prev_task(rq, p);
  3089. prev_class = p->sched_class;
  3090. __setscheduler(rq, p, attr);
  3091. if (running)
  3092. p->sched_class->set_curr_task(rq);
  3093. if (queued) {
  3094. /*
  3095. * We enqueue to tail when the priority of a task is
  3096. * increased (user space view).
  3097. */
  3098. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3099. }
  3100. check_class_changed(rq, p, prev_class, oldprio);
  3101. task_rq_unlock(rq, p, &flags);
  3102. rt_mutex_adjust_pi(p);
  3103. return 0;
  3104. }
  3105. static int _sched_setscheduler(struct task_struct *p, int policy,
  3106. const struct sched_param *param, bool check)
  3107. {
  3108. struct sched_attr attr = {
  3109. .sched_policy = policy,
  3110. .sched_priority = param->sched_priority,
  3111. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3112. };
  3113. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3114. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3115. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3116. policy &= ~SCHED_RESET_ON_FORK;
  3117. attr.sched_policy = policy;
  3118. }
  3119. return __sched_setscheduler(p, &attr, check);
  3120. }
  3121. /**
  3122. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3123. * @p: the task in question.
  3124. * @policy: new policy.
  3125. * @param: structure containing the new RT priority.
  3126. *
  3127. * Return: 0 on success. An error code otherwise.
  3128. *
  3129. * NOTE that the task may be already dead.
  3130. */
  3131. int sched_setscheduler(struct task_struct *p, int policy,
  3132. const struct sched_param *param)
  3133. {
  3134. return _sched_setscheduler(p, policy, param, true);
  3135. }
  3136. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3137. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3138. {
  3139. return __sched_setscheduler(p, attr, true);
  3140. }
  3141. EXPORT_SYMBOL_GPL(sched_setattr);
  3142. /**
  3143. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3144. * @p: the task in question.
  3145. * @policy: new policy.
  3146. * @param: structure containing the new RT priority.
  3147. *
  3148. * Just like sched_setscheduler, only don't bother checking if the
  3149. * current context has permission. For example, this is needed in
  3150. * stop_machine(): we create temporary high priority worker threads,
  3151. * but our caller might not have that capability.
  3152. *
  3153. * Return: 0 on success. An error code otherwise.
  3154. */
  3155. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3156. const struct sched_param *param)
  3157. {
  3158. return _sched_setscheduler(p, policy, param, false);
  3159. }
  3160. static int
  3161. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3162. {
  3163. struct sched_param lparam;
  3164. struct task_struct *p;
  3165. int retval;
  3166. if (!param || pid < 0)
  3167. return -EINVAL;
  3168. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3169. return -EFAULT;
  3170. rcu_read_lock();
  3171. retval = -ESRCH;
  3172. p = find_process_by_pid(pid);
  3173. if (p != NULL)
  3174. retval = sched_setscheduler(p, policy, &lparam);
  3175. rcu_read_unlock();
  3176. return retval;
  3177. }
  3178. /*
  3179. * Mimics kernel/events/core.c perf_copy_attr().
  3180. */
  3181. static int sched_copy_attr(struct sched_attr __user *uattr,
  3182. struct sched_attr *attr)
  3183. {
  3184. u32 size;
  3185. int ret;
  3186. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3187. return -EFAULT;
  3188. /*
  3189. * zero the full structure, so that a short copy will be nice.
  3190. */
  3191. memset(attr, 0, sizeof(*attr));
  3192. ret = get_user(size, &uattr->size);
  3193. if (ret)
  3194. return ret;
  3195. if (size > PAGE_SIZE) /* silly large */
  3196. goto err_size;
  3197. if (!size) /* abi compat */
  3198. size = SCHED_ATTR_SIZE_VER0;
  3199. if (size < SCHED_ATTR_SIZE_VER0)
  3200. goto err_size;
  3201. /*
  3202. * If we're handed a bigger struct than we know of,
  3203. * ensure all the unknown bits are 0 - i.e. new
  3204. * user-space does not rely on any kernel feature
  3205. * extensions we dont know about yet.
  3206. */
  3207. if (size > sizeof(*attr)) {
  3208. unsigned char __user *addr;
  3209. unsigned char __user *end;
  3210. unsigned char val;
  3211. addr = (void __user *)uattr + sizeof(*attr);
  3212. end = (void __user *)uattr + size;
  3213. for (; addr < end; addr++) {
  3214. ret = get_user(val, addr);
  3215. if (ret)
  3216. return ret;
  3217. if (val)
  3218. goto err_size;
  3219. }
  3220. size = sizeof(*attr);
  3221. }
  3222. ret = copy_from_user(attr, uattr, size);
  3223. if (ret)
  3224. return -EFAULT;
  3225. /*
  3226. * XXX: do we want to be lenient like existing syscalls; or do we want
  3227. * to be strict and return an error on out-of-bounds values?
  3228. */
  3229. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3230. return 0;
  3231. err_size:
  3232. put_user(sizeof(*attr), &uattr->size);
  3233. return -E2BIG;
  3234. }
  3235. /**
  3236. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3237. * @pid: the pid in question.
  3238. * @policy: new policy.
  3239. * @param: structure containing the new RT priority.
  3240. *
  3241. * Return: 0 on success. An error code otherwise.
  3242. */
  3243. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3244. struct sched_param __user *, param)
  3245. {
  3246. /* negative values for policy are not valid */
  3247. if (policy < 0)
  3248. return -EINVAL;
  3249. return do_sched_setscheduler(pid, policy, param);
  3250. }
  3251. /**
  3252. * sys_sched_setparam - set/change the RT priority of a thread
  3253. * @pid: the pid in question.
  3254. * @param: structure containing the new RT priority.
  3255. *
  3256. * Return: 0 on success. An error code otherwise.
  3257. */
  3258. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3259. {
  3260. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3261. }
  3262. /**
  3263. * sys_sched_setattr - same as above, but with extended sched_attr
  3264. * @pid: the pid in question.
  3265. * @uattr: structure containing the extended parameters.
  3266. * @flags: for future extension.
  3267. */
  3268. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3269. unsigned int, flags)
  3270. {
  3271. struct sched_attr attr;
  3272. struct task_struct *p;
  3273. int retval;
  3274. if (!uattr || pid < 0 || flags)
  3275. return -EINVAL;
  3276. retval = sched_copy_attr(uattr, &attr);
  3277. if (retval)
  3278. return retval;
  3279. if ((int)attr.sched_policy < 0)
  3280. return -EINVAL;
  3281. rcu_read_lock();
  3282. retval = -ESRCH;
  3283. p = find_process_by_pid(pid);
  3284. if (p != NULL)
  3285. retval = sched_setattr(p, &attr);
  3286. rcu_read_unlock();
  3287. return retval;
  3288. }
  3289. /**
  3290. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3291. * @pid: the pid in question.
  3292. *
  3293. * Return: On success, the policy of the thread. Otherwise, a negative error
  3294. * code.
  3295. */
  3296. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3297. {
  3298. struct task_struct *p;
  3299. int retval;
  3300. if (pid < 0)
  3301. return -EINVAL;
  3302. retval = -ESRCH;
  3303. rcu_read_lock();
  3304. p = find_process_by_pid(pid);
  3305. if (p) {
  3306. retval = security_task_getscheduler(p);
  3307. if (!retval)
  3308. retval = p->policy
  3309. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3310. }
  3311. rcu_read_unlock();
  3312. return retval;
  3313. }
  3314. /**
  3315. * sys_sched_getparam - get the RT priority of a thread
  3316. * @pid: the pid in question.
  3317. * @param: structure containing the RT priority.
  3318. *
  3319. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3320. * code.
  3321. */
  3322. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3323. {
  3324. struct sched_param lp = { .sched_priority = 0 };
  3325. struct task_struct *p;
  3326. int retval;
  3327. if (!param || pid < 0)
  3328. return -EINVAL;
  3329. rcu_read_lock();
  3330. p = find_process_by_pid(pid);
  3331. retval = -ESRCH;
  3332. if (!p)
  3333. goto out_unlock;
  3334. retval = security_task_getscheduler(p);
  3335. if (retval)
  3336. goto out_unlock;
  3337. if (task_has_rt_policy(p))
  3338. lp.sched_priority = p->rt_priority;
  3339. rcu_read_unlock();
  3340. /*
  3341. * This one might sleep, we cannot do it with a spinlock held ...
  3342. */
  3343. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3344. return retval;
  3345. out_unlock:
  3346. rcu_read_unlock();
  3347. return retval;
  3348. }
  3349. static int sched_read_attr(struct sched_attr __user *uattr,
  3350. struct sched_attr *attr,
  3351. unsigned int usize)
  3352. {
  3353. int ret;
  3354. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3355. return -EFAULT;
  3356. /*
  3357. * If we're handed a smaller struct than we know of,
  3358. * ensure all the unknown bits are 0 - i.e. old
  3359. * user-space does not get uncomplete information.
  3360. */
  3361. if (usize < sizeof(*attr)) {
  3362. unsigned char *addr;
  3363. unsigned char *end;
  3364. addr = (void *)attr + usize;
  3365. end = (void *)attr + sizeof(*attr);
  3366. for (; addr < end; addr++) {
  3367. if (*addr)
  3368. return -EFBIG;
  3369. }
  3370. attr->size = usize;
  3371. }
  3372. ret = copy_to_user(uattr, attr, attr->size);
  3373. if (ret)
  3374. return -EFAULT;
  3375. return 0;
  3376. }
  3377. /**
  3378. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3379. * @pid: the pid in question.
  3380. * @uattr: structure containing the extended parameters.
  3381. * @size: sizeof(attr) for fwd/bwd comp.
  3382. * @flags: for future extension.
  3383. */
  3384. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3385. unsigned int, size, unsigned int, flags)
  3386. {
  3387. struct sched_attr attr = {
  3388. .size = sizeof(struct sched_attr),
  3389. };
  3390. struct task_struct *p;
  3391. int retval;
  3392. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3393. size < SCHED_ATTR_SIZE_VER0 || flags)
  3394. return -EINVAL;
  3395. rcu_read_lock();
  3396. p = find_process_by_pid(pid);
  3397. retval = -ESRCH;
  3398. if (!p)
  3399. goto out_unlock;
  3400. retval = security_task_getscheduler(p);
  3401. if (retval)
  3402. goto out_unlock;
  3403. attr.sched_policy = p->policy;
  3404. if (p->sched_reset_on_fork)
  3405. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3406. if (task_has_dl_policy(p))
  3407. __getparam_dl(p, &attr);
  3408. else if (task_has_rt_policy(p))
  3409. attr.sched_priority = p->rt_priority;
  3410. else
  3411. attr.sched_nice = task_nice(p);
  3412. rcu_read_unlock();
  3413. retval = sched_read_attr(uattr, &attr, size);
  3414. return retval;
  3415. out_unlock:
  3416. rcu_read_unlock();
  3417. return retval;
  3418. }
  3419. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3420. {
  3421. cpumask_var_t cpus_allowed, new_mask;
  3422. struct task_struct *p;
  3423. int retval;
  3424. rcu_read_lock();
  3425. p = find_process_by_pid(pid);
  3426. if (!p) {
  3427. rcu_read_unlock();
  3428. return -ESRCH;
  3429. }
  3430. /* Prevent p going away */
  3431. get_task_struct(p);
  3432. rcu_read_unlock();
  3433. if (p->flags & PF_NO_SETAFFINITY) {
  3434. retval = -EINVAL;
  3435. goto out_put_task;
  3436. }
  3437. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3438. retval = -ENOMEM;
  3439. goto out_put_task;
  3440. }
  3441. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3442. retval = -ENOMEM;
  3443. goto out_free_cpus_allowed;
  3444. }
  3445. retval = -EPERM;
  3446. if (!check_same_owner(p)) {
  3447. rcu_read_lock();
  3448. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3449. rcu_read_unlock();
  3450. goto out_free_new_mask;
  3451. }
  3452. rcu_read_unlock();
  3453. }
  3454. retval = security_task_setscheduler(p);
  3455. if (retval)
  3456. goto out_free_new_mask;
  3457. cpuset_cpus_allowed(p, cpus_allowed);
  3458. cpumask_and(new_mask, in_mask, cpus_allowed);
  3459. /*
  3460. * Since bandwidth control happens on root_domain basis,
  3461. * if admission test is enabled, we only admit -deadline
  3462. * tasks allowed to run on all the CPUs in the task's
  3463. * root_domain.
  3464. */
  3465. #ifdef CONFIG_SMP
  3466. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3467. rcu_read_lock();
  3468. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3469. retval = -EBUSY;
  3470. rcu_read_unlock();
  3471. goto out_free_new_mask;
  3472. }
  3473. rcu_read_unlock();
  3474. }
  3475. #endif
  3476. again:
  3477. retval = set_cpus_allowed_ptr(p, new_mask);
  3478. if (!retval) {
  3479. cpuset_cpus_allowed(p, cpus_allowed);
  3480. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3481. /*
  3482. * We must have raced with a concurrent cpuset
  3483. * update. Just reset the cpus_allowed to the
  3484. * cpuset's cpus_allowed
  3485. */
  3486. cpumask_copy(new_mask, cpus_allowed);
  3487. goto again;
  3488. }
  3489. }
  3490. out_free_new_mask:
  3491. free_cpumask_var(new_mask);
  3492. out_free_cpus_allowed:
  3493. free_cpumask_var(cpus_allowed);
  3494. out_put_task:
  3495. put_task_struct(p);
  3496. return retval;
  3497. }
  3498. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3499. struct cpumask *new_mask)
  3500. {
  3501. if (len < cpumask_size())
  3502. cpumask_clear(new_mask);
  3503. else if (len > cpumask_size())
  3504. len = cpumask_size();
  3505. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3506. }
  3507. /**
  3508. * sys_sched_setaffinity - set the cpu affinity of a process
  3509. * @pid: pid of the process
  3510. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3511. * @user_mask_ptr: user-space pointer to the new cpu mask
  3512. *
  3513. * Return: 0 on success. An error code otherwise.
  3514. */
  3515. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3516. unsigned long __user *, user_mask_ptr)
  3517. {
  3518. cpumask_var_t new_mask;
  3519. int retval;
  3520. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3521. return -ENOMEM;
  3522. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3523. if (retval == 0)
  3524. retval = sched_setaffinity(pid, new_mask);
  3525. free_cpumask_var(new_mask);
  3526. return retval;
  3527. }
  3528. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3529. {
  3530. struct task_struct *p;
  3531. unsigned long flags;
  3532. int retval;
  3533. rcu_read_lock();
  3534. retval = -ESRCH;
  3535. p = find_process_by_pid(pid);
  3536. if (!p)
  3537. goto out_unlock;
  3538. retval = security_task_getscheduler(p);
  3539. if (retval)
  3540. goto out_unlock;
  3541. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3542. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3543. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3544. out_unlock:
  3545. rcu_read_unlock();
  3546. return retval;
  3547. }
  3548. /**
  3549. * sys_sched_getaffinity - get the cpu affinity of a process
  3550. * @pid: pid of the process
  3551. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3552. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3553. *
  3554. * Return: 0 on success. An error code otherwise.
  3555. */
  3556. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3557. unsigned long __user *, user_mask_ptr)
  3558. {
  3559. int ret;
  3560. cpumask_var_t mask;
  3561. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3562. return -EINVAL;
  3563. if (len & (sizeof(unsigned long)-1))
  3564. return -EINVAL;
  3565. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3566. return -ENOMEM;
  3567. ret = sched_getaffinity(pid, mask);
  3568. if (ret == 0) {
  3569. size_t retlen = min_t(size_t, len, cpumask_size());
  3570. if (copy_to_user(user_mask_ptr, mask, retlen))
  3571. ret = -EFAULT;
  3572. else
  3573. ret = retlen;
  3574. }
  3575. free_cpumask_var(mask);
  3576. return ret;
  3577. }
  3578. /**
  3579. * sys_sched_yield - yield the current processor to other threads.
  3580. *
  3581. * This function yields the current CPU to other tasks. If there are no
  3582. * other threads running on this CPU then this function will return.
  3583. *
  3584. * Return: 0.
  3585. */
  3586. SYSCALL_DEFINE0(sched_yield)
  3587. {
  3588. struct rq *rq = this_rq_lock();
  3589. schedstat_inc(rq, yld_count);
  3590. current->sched_class->yield_task(rq);
  3591. /*
  3592. * Since we are going to call schedule() anyway, there's
  3593. * no need to preempt or enable interrupts:
  3594. */
  3595. __release(rq->lock);
  3596. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3597. do_raw_spin_unlock(&rq->lock);
  3598. sched_preempt_enable_no_resched();
  3599. schedule();
  3600. return 0;
  3601. }
  3602. int __sched _cond_resched(void)
  3603. {
  3604. if (should_resched()) {
  3605. preempt_schedule_common();
  3606. return 1;
  3607. }
  3608. return 0;
  3609. }
  3610. EXPORT_SYMBOL(_cond_resched);
  3611. /*
  3612. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3613. * call schedule, and on return reacquire the lock.
  3614. *
  3615. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3616. * operations here to prevent schedule() from being called twice (once via
  3617. * spin_unlock(), once by hand).
  3618. */
  3619. int __cond_resched_lock(spinlock_t *lock)
  3620. {
  3621. int resched = should_resched();
  3622. int ret = 0;
  3623. lockdep_assert_held(lock);
  3624. if (spin_needbreak(lock) || resched) {
  3625. spin_unlock(lock);
  3626. if (resched)
  3627. preempt_schedule_common();
  3628. else
  3629. cpu_relax();
  3630. ret = 1;
  3631. spin_lock(lock);
  3632. }
  3633. return ret;
  3634. }
  3635. EXPORT_SYMBOL(__cond_resched_lock);
  3636. int __sched __cond_resched_softirq(void)
  3637. {
  3638. BUG_ON(!in_softirq());
  3639. if (should_resched()) {
  3640. local_bh_enable();
  3641. preempt_schedule_common();
  3642. local_bh_disable();
  3643. return 1;
  3644. }
  3645. return 0;
  3646. }
  3647. EXPORT_SYMBOL(__cond_resched_softirq);
  3648. /**
  3649. * yield - yield the current processor to other threads.
  3650. *
  3651. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3652. *
  3653. * The scheduler is at all times free to pick the calling task as the most
  3654. * eligible task to run, if removing the yield() call from your code breaks
  3655. * it, its already broken.
  3656. *
  3657. * Typical broken usage is:
  3658. *
  3659. * while (!event)
  3660. * yield();
  3661. *
  3662. * where one assumes that yield() will let 'the other' process run that will
  3663. * make event true. If the current task is a SCHED_FIFO task that will never
  3664. * happen. Never use yield() as a progress guarantee!!
  3665. *
  3666. * If you want to use yield() to wait for something, use wait_event().
  3667. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3668. * If you still want to use yield(), do not!
  3669. */
  3670. void __sched yield(void)
  3671. {
  3672. set_current_state(TASK_RUNNING);
  3673. sys_sched_yield();
  3674. }
  3675. EXPORT_SYMBOL(yield);
  3676. /**
  3677. * yield_to - yield the current processor to another thread in
  3678. * your thread group, or accelerate that thread toward the
  3679. * processor it's on.
  3680. * @p: target task
  3681. * @preempt: whether task preemption is allowed or not
  3682. *
  3683. * It's the caller's job to ensure that the target task struct
  3684. * can't go away on us before we can do any checks.
  3685. *
  3686. * Return:
  3687. * true (>0) if we indeed boosted the target task.
  3688. * false (0) if we failed to boost the target.
  3689. * -ESRCH if there's no task to yield to.
  3690. */
  3691. int __sched yield_to(struct task_struct *p, bool preempt)
  3692. {
  3693. struct task_struct *curr = current;
  3694. struct rq *rq, *p_rq;
  3695. unsigned long flags;
  3696. int yielded = 0;
  3697. local_irq_save(flags);
  3698. rq = this_rq();
  3699. again:
  3700. p_rq = task_rq(p);
  3701. /*
  3702. * If we're the only runnable task on the rq and target rq also
  3703. * has only one task, there's absolutely no point in yielding.
  3704. */
  3705. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3706. yielded = -ESRCH;
  3707. goto out_irq;
  3708. }
  3709. double_rq_lock(rq, p_rq);
  3710. if (task_rq(p) != p_rq) {
  3711. double_rq_unlock(rq, p_rq);
  3712. goto again;
  3713. }
  3714. if (!curr->sched_class->yield_to_task)
  3715. goto out_unlock;
  3716. if (curr->sched_class != p->sched_class)
  3717. goto out_unlock;
  3718. if (task_running(p_rq, p) || p->state)
  3719. goto out_unlock;
  3720. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3721. if (yielded) {
  3722. schedstat_inc(rq, yld_count);
  3723. /*
  3724. * Make p's CPU reschedule; pick_next_entity takes care of
  3725. * fairness.
  3726. */
  3727. if (preempt && rq != p_rq)
  3728. resched_curr(p_rq);
  3729. }
  3730. out_unlock:
  3731. double_rq_unlock(rq, p_rq);
  3732. out_irq:
  3733. local_irq_restore(flags);
  3734. if (yielded > 0)
  3735. schedule();
  3736. return yielded;
  3737. }
  3738. EXPORT_SYMBOL_GPL(yield_to);
  3739. /*
  3740. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3741. * that process accounting knows that this is a task in IO wait state.
  3742. */
  3743. long __sched io_schedule_timeout(long timeout)
  3744. {
  3745. int old_iowait = current->in_iowait;
  3746. struct rq *rq;
  3747. long ret;
  3748. current->in_iowait = 1;
  3749. if (old_iowait)
  3750. blk_schedule_flush_plug(current);
  3751. else
  3752. blk_flush_plug(current);
  3753. delayacct_blkio_start();
  3754. rq = raw_rq();
  3755. atomic_inc(&rq->nr_iowait);
  3756. ret = schedule_timeout(timeout);
  3757. current->in_iowait = old_iowait;
  3758. atomic_dec(&rq->nr_iowait);
  3759. delayacct_blkio_end();
  3760. return ret;
  3761. }
  3762. EXPORT_SYMBOL(io_schedule_timeout);
  3763. /**
  3764. * sys_sched_get_priority_max - return maximum RT priority.
  3765. * @policy: scheduling class.
  3766. *
  3767. * Return: On success, this syscall returns the maximum
  3768. * rt_priority that can be used by a given scheduling class.
  3769. * On failure, a negative error code is returned.
  3770. */
  3771. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3772. {
  3773. int ret = -EINVAL;
  3774. switch (policy) {
  3775. case SCHED_FIFO:
  3776. case SCHED_RR:
  3777. ret = MAX_USER_RT_PRIO-1;
  3778. break;
  3779. case SCHED_DEADLINE:
  3780. case SCHED_NORMAL:
  3781. case SCHED_BATCH:
  3782. case SCHED_IDLE:
  3783. ret = 0;
  3784. break;
  3785. }
  3786. return ret;
  3787. }
  3788. /**
  3789. * sys_sched_get_priority_min - return minimum RT priority.
  3790. * @policy: scheduling class.
  3791. *
  3792. * Return: On success, this syscall returns the minimum
  3793. * rt_priority that can be used by a given scheduling class.
  3794. * On failure, a negative error code is returned.
  3795. */
  3796. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3797. {
  3798. int ret = -EINVAL;
  3799. switch (policy) {
  3800. case SCHED_FIFO:
  3801. case SCHED_RR:
  3802. ret = 1;
  3803. break;
  3804. case SCHED_DEADLINE:
  3805. case SCHED_NORMAL:
  3806. case SCHED_BATCH:
  3807. case SCHED_IDLE:
  3808. ret = 0;
  3809. }
  3810. return ret;
  3811. }
  3812. /**
  3813. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3814. * @pid: pid of the process.
  3815. * @interval: userspace pointer to the timeslice value.
  3816. *
  3817. * this syscall writes the default timeslice value of a given process
  3818. * into the user-space timespec buffer. A value of '0' means infinity.
  3819. *
  3820. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3821. * an error code.
  3822. */
  3823. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3824. struct timespec __user *, interval)
  3825. {
  3826. struct task_struct *p;
  3827. unsigned int time_slice;
  3828. unsigned long flags;
  3829. struct rq *rq;
  3830. int retval;
  3831. struct timespec t;
  3832. if (pid < 0)
  3833. return -EINVAL;
  3834. retval = -ESRCH;
  3835. rcu_read_lock();
  3836. p = find_process_by_pid(pid);
  3837. if (!p)
  3838. goto out_unlock;
  3839. retval = security_task_getscheduler(p);
  3840. if (retval)
  3841. goto out_unlock;
  3842. rq = task_rq_lock(p, &flags);
  3843. time_slice = 0;
  3844. if (p->sched_class->get_rr_interval)
  3845. time_slice = p->sched_class->get_rr_interval(rq, p);
  3846. task_rq_unlock(rq, p, &flags);
  3847. rcu_read_unlock();
  3848. jiffies_to_timespec(time_slice, &t);
  3849. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3850. return retval;
  3851. out_unlock:
  3852. rcu_read_unlock();
  3853. return retval;
  3854. }
  3855. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3856. void sched_show_task(struct task_struct *p)
  3857. {
  3858. unsigned long free = 0;
  3859. int ppid;
  3860. unsigned long state = p->state;
  3861. if (state)
  3862. state = __ffs(state) + 1;
  3863. printk(KERN_INFO "%-15.15s %c", p->comm,
  3864. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3865. #if BITS_PER_LONG == 32
  3866. if (state == TASK_RUNNING)
  3867. printk(KERN_CONT " running ");
  3868. else
  3869. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3870. #else
  3871. if (state == TASK_RUNNING)
  3872. printk(KERN_CONT " running task ");
  3873. else
  3874. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3875. #endif
  3876. #ifdef CONFIG_DEBUG_STACK_USAGE
  3877. free = stack_not_used(p);
  3878. #endif
  3879. ppid = 0;
  3880. rcu_read_lock();
  3881. if (pid_alive(p))
  3882. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3883. rcu_read_unlock();
  3884. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3885. task_pid_nr(p), ppid,
  3886. (unsigned long)task_thread_info(p)->flags);
  3887. print_worker_info(KERN_INFO, p);
  3888. show_stack(p, NULL);
  3889. }
  3890. void show_state_filter(unsigned long state_filter)
  3891. {
  3892. struct task_struct *g, *p;
  3893. #if BITS_PER_LONG == 32
  3894. printk(KERN_INFO
  3895. " task PC stack pid father\n");
  3896. #else
  3897. printk(KERN_INFO
  3898. " task PC stack pid father\n");
  3899. #endif
  3900. rcu_read_lock();
  3901. for_each_process_thread(g, p) {
  3902. /*
  3903. * reset the NMI-timeout, listing all files on a slow
  3904. * console might take a lot of time:
  3905. */
  3906. touch_nmi_watchdog();
  3907. if (!state_filter || (p->state & state_filter))
  3908. sched_show_task(p);
  3909. }
  3910. touch_all_softlockup_watchdogs();
  3911. #ifdef CONFIG_SCHED_DEBUG
  3912. sysrq_sched_debug_show();
  3913. #endif
  3914. rcu_read_unlock();
  3915. /*
  3916. * Only show locks if all tasks are dumped:
  3917. */
  3918. if (!state_filter)
  3919. debug_show_all_locks();
  3920. }
  3921. void init_idle_bootup_task(struct task_struct *idle)
  3922. {
  3923. idle->sched_class = &idle_sched_class;
  3924. }
  3925. /**
  3926. * init_idle - set up an idle thread for a given CPU
  3927. * @idle: task in question
  3928. * @cpu: cpu the idle task belongs to
  3929. *
  3930. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3931. * flag, to make booting more robust.
  3932. */
  3933. void init_idle(struct task_struct *idle, int cpu)
  3934. {
  3935. struct rq *rq = cpu_rq(cpu);
  3936. unsigned long flags;
  3937. raw_spin_lock_irqsave(&rq->lock, flags);
  3938. __sched_fork(0, idle);
  3939. idle->state = TASK_RUNNING;
  3940. idle->se.exec_start = sched_clock();
  3941. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3942. /*
  3943. * We're having a chicken and egg problem, even though we are
  3944. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3945. * lockdep check in task_group() will fail.
  3946. *
  3947. * Similar case to sched_fork(). / Alternatively we could
  3948. * use task_rq_lock() here and obtain the other rq->lock.
  3949. *
  3950. * Silence PROVE_RCU
  3951. */
  3952. rcu_read_lock();
  3953. __set_task_cpu(idle, cpu);
  3954. rcu_read_unlock();
  3955. rq->curr = rq->idle = idle;
  3956. idle->on_rq = TASK_ON_RQ_QUEUED;
  3957. #if defined(CONFIG_SMP)
  3958. idle->on_cpu = 1;
  3959. #endif
  3960. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3961. /* Set the preempt count _outside_ the spinlocks! */
  3962. init_idle_preempt_count(idle, cpu);
  3963. /*
  3964. * The idle tasks have their own, simple scheduling class:
  3965. */
  3966. idle->sched_class = &idle_sched_class;
  3967. ftrace_graph_init_idle_task(idle, cpu);
  3968. vtime_init_idle(idle, cpu);
  3969. #if defined(CONFIG_SMP)
  3970. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3971. #endif
  3972. }
  3973. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  3974. const struct cpumask *trial)
  3975. {
  3976. int ret = 1, trial_cpus;
  3977. struct dl_bw *cur_dl_b;
  3978. unsigned long flags;
  3979. if (!cpumask_weight(cur))
  3980. return ret;
  3981. rcu_read_lock_sched();
  3982. cur_dl_b = dl_bw_of(cpumask_any(cur));
  3983. trial_cpus = cpumask_weight(trial);
  3984. raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
  3985. if (cur_dl_b->bw != -1 &&
  3986. cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
  3987. ret = 0;
  3988. raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
  3989. rcu_read_unlock_sched();
  3990. return ret;
  3991. }
  3992. int task_can_attach(struct task_struct *p,
  3993. const struct cpumask *cs_cpus_allowed)
  3994. {
  3995. int ret = 0;
  3996. /*
  3997. * Kthreads which disallow setaffinity shouldn't be moved
  3998. * to a new cpuset; we don't want to change their cpu
  3999. * affinity and isolating such threads by their set of
  4000. * allowed nodes is unnecessary. Thus, cpusets are not
  4001. * applicable for such threads. This prevents checking for
  4002. * success of set_cpus_allowed_ptr() on all attached tasks
  4003. * before cpus_allowed may be changed.
  4004. */
  4005. if (p->flags & PF_NO_SETAFFINITY) {
  4006. ret = -EINVAL;
  4007. goto out;
  4008. }
  4009. #ifdef CONFIG_SMP
  4010. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4011. cs_cpus_allowed)) {
  4012. unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
  4013. cs_cpus_allowed);
  4014. struct dl_bw *dl_b;
  4015. bool overflow;
  4016. int cpus;
  4017. unsigned long flags;
  4018. rcu_read_lock_sched();
  4019. dl_b = dl_bw_of(dest_cpu);
  4020. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4021. cpus = dl_bw_cpus(dest_cpu);
  4022. overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
  4023. if (overflow)
  4024. ret = -EBUSY;
  4025. else {
  4026. /*
  4027. * We reserve space for this task in the destination
  4028. * root_domain, as we can't fail after this point.
  4029. * We will free resources in the source root_domain
  4030. * later on (see set_cpus_allowed_dl()).
  4031. */
  4032. __dl_add(dl_b, p->dl.dl_bw);
  4033. }
  4034. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4035. rcu_read_unlock_sched();
  4036. }
  4037. #endif
  4038. out:
  4039. return ret;
  4040. }
  4041. #ifdef CONFIG_SMP
  4042. /*
  4043. * move_queued_task - move a queued task to new rq.
  4044. *
  4045. * Returns (locked) new rq. Old rq's lock is released.
  4046. */
  4047. static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
  4048. {
  4049. struct rq *rq = task_rq(p);
  4050. lockdep_assert_held(&rq->lock);
  4051. dequeue_task(rq, p, 0);
  4052. p->on_rq = TASK_ON_RQ_MIGRATING;
  4053. set_task_cpu(p, new_cpu);
  4054. raw_spin_unlock(&rq->lock);
  4055. rq = cpu_rq(new_cpu);
  4056. raw_spin_lock(&rq->lock);
  4057. BUG_ON(task_cpu(p) != new_cpu);
  4058. p->on_rq = TASK_ON_RQ_QUEUED;
  4059. enqueue_task(rq, p, 0);
  4060. check_preempt_curr(rq, p, 0);
  4061. return rq;
  4062. }
  4063. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4064. {
  4065. if (p->sched_class->set_cpus_allowed)
  4066. p->sched_class->set_cpus_allowed(p, new_mask);
  4067. cpumask_copy(&p->cpus_allowed, new_mask);
  4068. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4069. }
  4070. /*
  4071. * This is how migration works:
  4072. *
  4073. * 1) we invoke migration_cpu_stop() on the target CPU using
  4074. * stop_one_cpu().
  4075. * 2) stopper starts to run (implicitly forcing the migrated thread
  4076. * off the CPU)
  4077. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4078. * 4) if it's in the wrong runqueue then the migration thread removes
  4079. * it and puts it into the right queue.
  4080. * 5) stopper completes and stop_one_cpu() returns and the migration
  4081. * is done.
  4082. */
  4083. /*
  4084. * Change a given task's CPU affinity. Migrate the thread to a
  4085. * proper CPU and schedule it away if the CPU it's executing on
  4086. * is removed from the allowed bitmask.
  4087. *
  4088. * NOTE: the caller must have a valid reference to the task, the
  4089. * task must not exit() & deallocate itself prematurely. The
  4090. * call is not atomic; no spinlocks may be held.
  4091. */
  4092. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4093. {
  4094. unsigned long flags;
  4095. struct rq *rq;
  4096. unsigned int dest_cpu;
  4097. int ret = 0;
  4098. rq = task_rq_lock(p, &flags);
  4099. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4100. goto out;
  4101. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4102. ret = -EINVAL;
  4103. goto out;
  4104. }
  4105. do_set_cpus_allowed(p, new_mask);
  4106. /* Can the task run on the task's current CPU? If so, we're done */
  4107. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4108. goto out;
  4109. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4110. if (task_running(rq, p) || p->state == TASK_WAKING) {
  4111. struct migration_arg arg = { p, dest_cpu };
  4112. /* Need help from migration thread: drop lock and wait. */
  4113. task_rq_unlock(rq, p, &flags);
  4114. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4115. tlb_migrate_finish(p->mm);
  4116. return 0;
  4117. } else if (task_on_rq_queued(p))
  4118. rq = move_queued_task(p, dest_cpu);
  4119. out:
  4120. task_rq_unlock(rq, p, &flags);
  4121. return ret;
  4122. }
  4123. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4124. /*
  4125. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4126. * this because either it can't run here any more (set_cpus_allowed()
  4127. * away from this CPU, or CPU going down), or because we're
  4128. * attempting to rebalance this task on exec (sched_exec).
  4129. *
  4130. * So we race with normal scheduler movements, but that's OK, as long
  4131. * as the task is no longer on this CPU.
  4132. *
  4133. * Returns non-zero if task was successfully migrated.
  4134. */
  4135. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4136. {
  4137. struct rq *rq;
  4138. int ret = 0;
  4139. if (unlikely(!cpu_active(dest_cpu)))
  4140. return ret;
  4141. rq = cpu_rq(src_cpu);
  4142. raw_spin_lock(&p->pi_lock);
  4143. raw_spin_lock(&rq->lock);
  4144. /* Already moved. */
  4145. if (task_cpu(p) != src_cpu)
  4146. goto done;
  4147. /* Affinity changed (again). */
  4148. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4149. goto fail;
  4150. /*
  4151. * If we're not on a rq, the next wake-up will ensure we're
  4152. * placed properly.
  4153. */
  4154. if (task_on_rq_queued(p))
  4155. rq = move_queued_task(p, dest_cpu);
  4156. done:
  4157. ret = 1;
  4158. fail:
  4159. raw_spin_unlock(&rq->lock);
  4160. raw_spin_unlock(&p->pi_lock);
  4161. return ret;
  4162. }
  4163. #ifdef CONFIG_NUMA_BALANCING
  4164. /* Migrate current task p to target_cpu */
  4165. int migrate_task_to(struct task_struct *p, int target_cpu)
  4166. {
  4167. struct migration_arg arg = { p, target_cpu };
  4168. int curr_cpu = task_cpu(p);
  4169. if (curr_cpu == target_cpu)
  4170. return 0;
  4171. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4172. return -EINVAL;
  4173. /* TODO: This is not properly updating schedstats */
  4174. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4175. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4176. }
  4177. /*
  4178. * Requeue a task on a given node and accurately track the number of NUMA
  4179. * tasks on the runqueues
  4180. */
  4181. void sched_setnuma(struct task_struct *p, int nid)
  4182. {
  4183. struct rq *rq;
  4184. unsigned long flags;
  4185. bool queued, running;
  4186. rq = task_rq_lock(p, &flags);
  4187. queued = task_on_rq_queued(p);
  4188. running = task_current(rq, p);
  4189. if (queued)
  4190. dequeue_task(rq, p, 0);
  4191. if (running)
  4192. put_prev_task(rq, p);
  4193. p->numa_preferred_nid = nid;
  4194. if (running)
  4195. p->sched_class->set_curr_task(rq);
  4196. if (queued)
  4197. enqueue_task(rq, p, 0);
  4198. task_rq_unlock(rq, p, &flags);
  4199. }
  4200. #endif
  4201. /*
  4202. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4203. * and performs thread migration by bumping thread off CPU then
  4204. * 'pushing' onto another runqueue.
  4205. */
  4206. static int migration_cpu_stop(void *data)
  4207. {
  4208. struct migration_arg *arg = data;
  4209. /*
  4210. * The original target cpu might have gone down and we might
  4211. * be on another cpu but it doesn't matter.
  4212. */
  4213. local_irq_disable();
  4214. /*
  4215. * We need to explicitly wake pending tasks before running
  4216. * __migrate_task() such that we will not miss enforcing cpus_allowed
  4217. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  4218. */
  4219. sched_ttwu_pending();
  4220. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4221. local_irq_enable();
  4222. return 0;
  4223. }
  4224. #ifdef CONFIG_HOTPLUG_CPU
  4225. /*
  4226. * Ensures that the idle task is using init_mm right before its cpu goes
  4227. * offline.
  4228. */
  4229. void idle_task_exit(void)
  4230. {
  4231. struct mm_struct *mm = current->active_mm;
  4232. BUG_ON(cpu_online(smp_processor_id()));
  4233. if (mm != &init_mm) {
  4234. switch_mm(mm, &init_mm, current);
  4235. finish_arch_post_lock_switch();
  4236. }
  4237. mmdrop(mm);
  4238. }
  4239. /*
  4240. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4241. * we might have. Assumes we're called after migrate_tasks() so that the
  4242. * nr_active count is stable.
  4243. *
  4244. * Also see the comment "Global load-average calculations".
  4245. */
  4246. static void calc_load_migrate(struct rq *rq)
  4247. {
  4248. long delta = calc_load_fold_active(rq);
  4249. if (delta)
  4250. atomic_long_add(delta, &calc_load_tasks);
  4251. }
  4252. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4253. {
  4254. }
  4255. static const struct sched_class fake_sched_class = {
  4256. .put_prev_task = put_prev_task_fake,
  4257. };
  4258. static struct task_struct fake_task = {
  4259. /*
  4260. * Avoid pull_{rt,dl}_task()
  4261. */
  4262. .prio = MAX_PRIO + 1,
  4263. .sched_class = &fake_sched_class,
  4264. };
  4265. /*
  4266. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4267. * try_to_wake_up()->select_task_rq().
  4268. *
  4269. * Called with rq->lock held even though we'er in stop_machine() and
  4270. * there's no concurrency possible, we hold the required locks anyway
  4271. * because of lock validation efforts.
  4272. */
  4273. static void migrate_tasks(unsigned int dead_cpu)
  4274. {
  4275. struct rq *rq = cpu_rq(dead_cpu);
  4276. struct task_struct *next, *stop = rq->stop;
  4277. int dest_cpu;
  4278. /*
  4279. * Fudge the rq selection such that the below task selection loop
  4280. * doesn't get stuck on the currently eligible stop task.
  4281. *
  4282. * We're currently inside stop_machine() and the rq is either stuck
  4283. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4284. * either way we should never end up calling schedule() until we're
  4285. * done here.
  4286. */
  4287. rq->stop = NULL;
  4288. /*
  4289. * put_prev_task() and pick_next_task() sched
  4290. * class method both need to have an up-to-date
  4291. * value of rq->clock[_task]
  4292. */
  4293. update_rq_clock(rq);
  4294. for ( ; ; ) {
  4295. /*
  4296. * There's this thread running, bail when that's the only
  4297. * remaining thread.
  4298. */
  4299. if (rq->nr_running == 1)
  4300. break;
  4301. next = pick_next_task(rq, &fake_task);
  4302. BUG_ON(!next);
  4303. next->sched_class->put_prev_task(rq, next);
  4304. /* Find suitable destination for @next, with force if needed. */
  4305. dest_cpu = select_fallback_rq(dead_cpu, next);
  4306. raw_spin_unlock(&rq->lock);
  4307. __migrate_task(next, dead_cpu, dest_cpu);
  4308. raw_spin_lock(&rq->lock);
  4309. }
  4310. rq->stop = stop;
  4311. }
  4312. #endif /* CONFIG_HOTPLUG_CPU */
  4313. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4314. static struct ctl_table sd_ctl_dir[] = {
  4315. {
  4316. .procname = "sched_domain",
  4317. .mode = 0555,
  4318. },
  4319. {}
  4320. };
  4321. static struct ctl_table sd_ctl_root[] = {
  4322. {
  4323. .procname = "kernel",
  4324. .mode = 0555,
  4325. .child = sd_ctl_dir,
  4326. },
  4327. {}
  4328. };
  4329. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4330. {
  4331. struct ctl_table *entry =
  4332. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4333. return entry;
  4334. }
  4335. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4336. {
  4337. struct ctl_table *entry;
  4338. /*
  4339. * In the intermediate directories, both the child directory and
  4340. * procname are dynamically allocated and could fail but the mode
  4341. * will always be set. In the lowest directory the names are
  4342. * static strings and all have proc handlers.
  4343. */
  4344. for (entry = *tablep; entry->mode; entry++) {
  4345. if (entry->child)
  4346. sd_free_ctl_entry(&entry->child);
  4347. if (entry->proc_handler == NULL)
  4348. kfree(entry->procname);
  4349. }
  4350. kfree(*tablep);
  4351. *tablep = NULL;
  4352. }
  4353. static int min_load_idx = 0;
  4354. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4355. static void
  4356. set_table_entry(struct ctl_table *entry,
  4357. const char *procname, void *data, int maxlen,
  4358. umode_t mode, proc_handler *proc_handler,
  4359. bool load_idx)
  4360. {
  4361. entry->procname = procname;
  4362. entry->data = data;
  4363. entry->maxlen = maxlen;
  4364. entry->mode = mode;
  4365. entry->proc_handler = proc_handler;
  4366. if (load_idx) {
  4367. entry->extra1 = &min_load_idx;
  4368. entry->extra2 = &max_load_idx;
  4369. }
  4370. }
  4371. static struct ctl_table *
  4372. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4373. {
  4374. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4375. if (table == NULL)
  4376. return NULL;
  4377. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4378. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4379. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4380. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4381. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4382. sizeof(int), 0644, proc_dointvec_minmax, true);
  4383. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4384. sizeof(int), 0644, proc_dointvec_minmax, true);
  4385. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4386. sizeof(int), 0644, proc_dointvec_minmax, true);
  4387. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4388. sizeof(int), 0644, proc_dointvec_minmax, true);
  4389. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4390. sizeof(int), 0644, proc_dointvec_minmax, true);
  4391. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4392. sizeof(int), 0644, proc_dointvec_minmax, false);
  4393. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4394. sizeof(int), 0644, proc_dointvec_minmax, false);
  4395. set_table_entry(&table[9], "cache_nice_tries",
  4396. &sd->cache_nice_tries,
  4397. sizeof(int), 0644, proc_dointvec_minmax, false);
  4398. set_table_entry(&table[10], "flags", &sd->flags,
  4399. sizeof(int), 0644, proc_dointvec_minmax, false);
  4400. set_table_entry(&table[11], "max_newidle_lb_cost",
  4401. &sd->max_newidle_lb_cost,
  4402. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4403. set_table_entry(&table[12], "name", sd->name,
  4404. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4405. /* &table[13] is terminator */
  4406. return table;
  4407. }
  4408. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4409. {
  4410. struct ctl_table *entry, *table;
  4411. struct sched_domain *sd;
  4412. int domain_num = 0, i;
  4413. char buf[32];
  4414. for_each_domain(cpu, sd)
  4415. domain_num++;
  4416. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4417. if (table == NULL)
  4418. return NULL;
  4419. i = 0;
  4420. for_each_domain(cpu, sd) {
  4421. snprintf(buf, 32, "domain%d", i);
  4422. entry->procname = kstrdup(buf, GFP_KERNEL);
  4423. entry->mode = 0555;
  4424. entry->child = sd_alloc_ctl_domain_table(sd);
  4425. entry++;
  4426. i++;
  4427. }
  4428. return table;
  4429. }
  4430. static struct ctl_table_header *sd_sysctl_header;
  4431. static void register_sched_domain_sysctl(void)
  4432. {
  4433. int i, cpu_num = num_possible_cpus();
  4434. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4435. char buf[32];
  4436. WARN_ON(sd_ctl_dir[0].child);
  4437. sd_ctl_dir[0].child = entry;
  4438. if (entry == NULL)
  4439. return;
  4440. for_each_possible_cpu(i) {
  4441. snprintf(buf, 32, "cpu%d", i);
  4442. entry->procname = kstrdup(buf, GFP_KERNEL);
  4443. entry->mode = 0555;
  4444. entry->child = sd_alloc_ctl_cpu_table(i);
  4445. entry++;
  4446. }
  4447. WARN_ON(sd_sysctl_header);
  4448. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4449. }
  4450. /* may be called multiple times per register */
  4451. static void unregister_sched_domain_sysctl(void)
  4452. {
  4453. if (sd_sysctl_header)
  4454. unregister_sysctl_table(sd_sysctl_header);
  4455. sd_sysctl_header = NULL;
  4456. if (sd_ctl_dir[0].child)
  4457. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4458. }
  4459. #else
  4460. static void register_sched_domain_sysctl(void)
  4461. {
  4462. }
  4463. static void unregister_sched_domain_sysctl(void)
  4464. {
  4465. }
  4466. #endif
  4467. static void set_rq_online(struct rq *rq)
  4468. {
  4469. if (!rq->online) {
  4470. const struct sched_class *class;
  4471. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4472. rq->online = 1;
  4473. for_each_class(class) {
  4474. if (class->rq_online)
  4475. class->rq_online(rq);
  4476. }
  4477. }
  4478. }
  4479. static void set_rq_offline(struct rq *rq)
  4480. {
  4481. if (rq->online) {
  4482. const struct sched_class *class;
  4483. for_each_class(class) {
  4484. if (class->rq_offline)
  4485. class->rq_offline(rq);
  4486. }
  4487. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4488. rq->online = 0;
  4489. }
  4490. }
  4491. /*
  4492. * migration_call - callback that gets triggered when a CPU is added.
  4493. * Here we can start up the necessary migration thread for the new CPU.
  4494. */
  4495. static int
  4496. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4497. {
  4498. int cpu = (long)hcpu;
  4499. unsigned long flags;
  4500. struct rq *rq = cpu_rq(cpu);
  4501. switch (action & ~CPU_TASKS_FROZEN) {
  4502. case CPU_UP_PREPARE:
  4503. rq->calc_load_update = calc_load_update;
  4504. break;
  4505. case CPU_ONLINE:
  4506. /* Update our root-domain */
  4507. raw_spin_lock_irqsave(&rq->lock, flags);
  4508. if (rq->rd) {
  4509. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4510. set_rq_online(rq);
  4511. }
  4512. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4513. break;
  4514. #ifdef CONFIG_HOTPLUG_CPU
  4515. case CPU_DYING:
  4516. sched_ttwu_pending();
  4517. /* Update our root-domain */
  4518. raw_spin_lock_irqsave(&rq->lock, flags);
  4519. if (rq->rd) {
  4520. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4521. set_rq_offline(rq);
  4522. }
  4523. migrate_tasks(cpu);
  4524. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4525. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4526. break;
  4527. case CPU_DEAD:
  4528. calc_load_migrate(rq);
  4529. break;
  4530. #endif
  4531. }
  4532. update_max_interval();
  4533. return NOTIFY_OK;
  4534. }
  4535. /*
  4536. * Register at high priority so that task migration (migrate_all_tasks)
  4537. * happens before everything else. This has to be lower priority than
  4538. * the notifier in the perf_event subsystem, though.
  4539. */
  4540. static struct notifier_block migration_notifier = {
  4541. .notifier_call = migration_call,
  4542. .priority = CPU_PRI_MIGRATION,
  4543. };
  4544. static void __cpuinit set_cpu_rq_start_time(void)
  4545. {
  4546. int cpu = smp_processor_id();
  4547. struct rq *rq = cpu_rq(cpu);
  4548. rq->age_stamp = sched_clock_cpu(cpu);
  4549. }
  4550. static int sched_cpu_active(struct notifier_block *nfb,
  4551. unsigned long action, void *hcpu)
  4552. {
  4553. switch (action & ~CPU_TASKS_FROZEN) {
  4554. case CPU_STARTING:
  4555. set_cpu_rq_start_time();
  4556. return NOTIFY_OK;
  4557. case CPU_DOWN_FAILED:
  4558. set_cpu_active((long)hcpu, true);
  4559. return NOTIFY_OK;
  4560. default:
  4561. return NOTIFY_DONE;
  4562. }
  4563. }
  4564. static int sched_cpu_inactive(struct notifier_block *nfb,
  4565. unsigned long action, void *hcpu)
  4566. {
  4567. unsigned long flags;
  4568. long cpu = (long)hcpu;
  4569. struct dl_bw *dl_b;
  4570. switch (action & ~CPU_TASKS_FROZEN) {
  4571. case CPU_DOWN_PREPARE:
  4572. set_cpu_active(cpu, false);
  4573. /* explicitly allow suspend */
  4574. if (!(action & CPU_TASKS_FROZEN)) {
  4575. bool overflow;
  4576. int cpus;
  4577. rcu_read_lock_sched();
  4578. dl_b = dl_bw_of(cpu);
  4579. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4580. cpus = dl_bw_cpus(cpu);
  4581. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4582. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4583. rcu_read_unlock_sched();
  4584. if (overflow)
  4585. return notifier_from_errno(-EBUSY);
  4586. }
  4587. return NOTIFY_OK;
  4588. }
  4589. return NOTIFY_DONE;
  4590. }
  4591. static int __init migration_init(void)
  4592. {
  4593. void *cpu = (void *)(long)smp_processor_id();
  4594. int err;
  4595. /* Initialize migration for the boot CPU */
  4596. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4597. BUG_ON(err == NOTIFY_BAD);
  4598. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4599. register_cpu_notifier(&migration_notifier);
  4600. /* Register cpu active notifiers */
  4601. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4602. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4603. return 0;
  4604. }
  4605. early_initcall(migration_init);
  4606. #endif
  4607. #ifdef CONFIG_SMP
  4608. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4609. #ifdef CONFIG_SCHED_DEBUG
  4610. static __read_mostly int sched_debug_enabled;
  4611. static int __init sched_debug_setup(char *str)
  4612. {
  4613. sched_debug_enabled = 1;
  4614. return 0;
  4615. }
  4616. early_param("sched_debug", sched_debug_setup);
  4617. static inline bool sched_debug(void)
  4618. {
  4619. return sched_debug_enabled;
  4620. }
  4621. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4622. struct cpumask *groupmask)
  4623. {
  4624. struct sched_group *group = sd->groups;
  4625. cpumask_clear(groupmask);
  4626. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4627. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4628. printk("does not load-balance\n");
  4629. if (sd->parent)
  4630. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4631. " has parent");
  4632. return -1;
  4633. }
  4634. printk(KERN_CONT "span %*pbl level %s\n",
  4635. cpumask_pr_args(sched_domain_span(sd)), sd->name);
  4636. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4637. printk(KERN_ERR "ERROR: domain->span does not contain "
  4638. "CPU%d\n", cpu);
  4639. }
  4640. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4641. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4642. " CPU%d\n", cpu);
  4643. }
  4644. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4645. do {
  4646. if (!group) {
  4647. printk("\n");
  4648. printk(KERN_ERR "ERROR: group is NULL\n");
  4649. break;
  4650. }
  4651. /*
  4652. * Even though we initialize ->capacity to something semi-sane,
  4653. * we leave capacity_orig unset. This allows us to detect if
  4654. * domain iteration is still funny without causing /0 traps.
  4655. */
  4656. if (!group->sgc->capacity_orig) {
  4657. printk(KERN_CONT "\n");
  4658. printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
  4659. break;
  4660. }
  4661. if (!cpumask_weight(sched_group_cpus(group))) {
  4662. printk(KERN_CONT "\n");
  4663. printk(KERN_ERR "ERROR: empty group\n");
  4664. break;
  4665. }
  4666. if (!(sd->flags & SD_OVERLAP) &&
  4667. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4668. printk(KERN_CONT "\n");
  4669. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4670. break;
  4671. }
  4672. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4673. printk(KERN_CONT " %*pbl",
  4674. cpumask_pr_args(sched_group_cpus(group)));
  4675. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4676. printk(KERN_CONT " (cpu_capacity = %d)",
  4677. group->sgc->capacity);
  4678. }
  4679. group = group->next;
  4680. } while (group != sd->groups);
  4681. printk(KERN_CONT "\n");
  4682. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4683. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4684. if (sd->parent &&
  4685. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4686. printk(KERN_ERR "ERROR: parent span is not a superset "
  4687. "of domain->span\n");
  4688. return 0;
  4689. }
  4690. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4691. {
  4692. int level = 0;
  4693. if (!sched_debug_enabled)
  4694. return;
  4695. if (!sd) {
  4696. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4697. return;
  4698. }
  4699. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4700. for (;;) {
  4701. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4702. break;
  4703. level++;
  4704. sd = sd->parent;
  4705. if (!sd)
  4706. break;
  4707. }
  4708. }
  4709. #else /* !CONFIG_SCHED_DEBUG */
  4710. # define sched_domain_debug(sd, cpu) do { } while (0)
  4711. static inline bool sched_debug(void)
  4712. {
  4713. return false;
  4714. }
  4715. #endif /* CONFIG_SCHED_DEBUG */
  4716. static int sd_degenerate(struct sched_domain *sd)
  4717. {
  4718. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4719. return 1;
  4720. /* Following flags need at least 2 groups */
  4721. if (sd->flags & (SD_LOAD_BALANCE |
  4722. SD_BALANCE_NEWIDLE |
  4723. SD_BALANCE_FORK |
  4724. SD_BALANCE_EXEC |
  4725. SD_SHARE_CPUCAPACITY |
  4726. SD_SHARE_PKG_RESOURCES |
  4727. SD_SHARE_POWERDOMAIN)) {
  4728. if (sd->groups != sd->groups->next)
  4729. return 0;
  4730. }
  4731. /* Following flags don't use groups */
  4732. if (sd->flags & (SD_WAKE_AFFINE))
  4733. return 0;
  4734. return 1;
  4735. }
  4736. static int
  4737. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4738. {
  4739. unsigned long cflags = sd->flags, pflags = parent->flags;
  4740. if (sd_degenerate(parent))
  4741. return 1;
  4742. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4743. return 0;
  4744. /* Flags needing groups don't count if only 1 group in parent */
  4745. if (parent->groups == parent->groups->next) {
  4746. pflags &= ~(SD_LOAD_BALANCE |
  4747. SD_BALANCE_NEWIDLE |
  4748. SD_BALANCE_FORK |
  4749. SD_BALANCE_EXEC |
  4750. SD_SHARE_CPUCAPACITY |
  4751. SD_SHARE_PKG_RESOURCES |
  4752. SD_PREFER_SIBLING |
  4753. SD_SHARE_POWERDOMAIN);
  4754. if (nr_node_ids == 1)
  4755. pflags &= ~SD_SERIALIZE;
  4756. }
  4757. if (~cflags & pflags)
  4758. return 0;
  4759. return 1;
  4760. }
  4761. static void free_rootdomain(struct rcu_head *rcu)
  4762. {
  4763. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4764. cpupri_cleanup(&rd->cpupri);
  4765. cpudl_cleanup(&rd->cpudl);
  4766. free_cpumask_var(rd->dlo_mask);
  4767. free_cpumask_var(rd->rto_mask);
  4768. free_cpumask_var(rd->online);
  4769. free_cpumask_var(rd->span);
  4770. kfree(rd);
  4771. }
  4772. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4773. {
  4774. struct root_domain *old_rd = NULL;
  4775. unsigned long flags;
  4776. raw_spin_lock_irqsave(&rq->lock, flags);
  4777. if (rq->rd) {
  4778. old_rd = rq->rd;
  4779. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4780. set_rq_offline(rq);
  4781. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4782. /*
  4783. * If we dont want to free the old_rd yet then
  4784. * set old_rd to NULL to skip the freeing later
  4785. * in this function:
  4786. */
  4787. if (!atomic_dec_and_test(&old_rd->refcount))
  4788. old_rd = NULL;
  4789. }
  4790. atomic_inc(&rd->refcount);
  4791. rq->rd = rd;
  4792. cpumask_set_cpu(rq->cpu, rd->span);
  4793. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4794. set_rq_online(rq);
  4795. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4796. if (old_rd)
  4797. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4798. }
  4799. static int init_rootdomain(struct root_domain *rd)
  4800. {
  4801. memset(rd, 0, sizeof(*rd));
  4802. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4803. goto out;
  4804. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4805. goto free_span;
  4806. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4807. goto free_online;
  4808. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4809. goto free_dlo_mask;
  4810. init_dl_bw(&rd->dl_bw);
  4811. if (cpudl_init(&rd->cpudl) != 0)
  4812. goto free_dlo_mask;
  4813. if (cpupri_init(&rd->cpupri) != 0)
  4814. goto free_rto_mask;
  4815. return 0;
  4816. free_rto_mask:
  4817. free_cpumask_var(rd->rto_mask);
  4818. free_dlo_mask:
  4819. free_cpumask_var(rd->dlo_mask);
  4820. free_online:
  4821. free_cpumask_var(rd->online);
  4822. free_span:
  4823. free_cpumask_var(rd->span);
  4824. out:
  4825. return -ENOMEM;
  4826. }
  4827. /*
  4828. * By default the system creates a single root-domain with all cpus as
  4829. * members (mimicking the global state we have today).
  4830. */
  4831. struct root_domain def_root_domain;
  4832. static void init_defrootdomain(void)
  4833. {
  4834. init_rootdomain(&def_root_domain);
  4835. atomic_set(&def_root_domain.refcount, 1);
  4836. }
  4837. static struct root_domain *alloc_rootdomain(void)
  4838. {
  4839. struct root_domain *rd;
  4840. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4841. if (!rd)
  4842. return NULL;
  4843. if (init_rootdomain(rd) != 0) {
  4844. kfree(rd);
  4845. return NULL;
  4846. }
  4847. return rd;
  4848. }
  4849. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  4850. {
  4851. struct sched_group *tmp, *first;
  4852. if (!sg)
  4853. return;
  4854. first = sg;
  4855. do {
  4856. tmp = sg->next;
  4857. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  4858. kfree(sg->sgc);
  4859. kfree(sg);
  4860. sg = tmp;
  4861. } while (sg != first);
  4862. }
  4863. static void free_sched_domain(struct rcu_head *rcu)
  4864. {
  4865. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4866. /*
  4867. * If its an overlapping domain it has private groups, iterate and
  4868. * nuke them all.
  4869. */
  4870. if (sd->flags & SD_OVERLAP) {
  4871. free_sched_groups(sd->groups, 1);
  4872. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4873. kfree(sd->groups->sgc);
  4874. kfree(sd->groups);
  4875. }
  4876. kfree(sd);
  4877. }
  4878. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4879. {
  4880. call_rcu(&sd->rcu, free_sched_domain);
  4881. }
  4882. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4883. {
  4884. for (; sd; sd = sd->parent)
  4885. destroy_sched_domain(sd, cpu);
  4886. }
  4887. /*
  4888. * Keep a special pointer to the highest sched_domain that has
  4889. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4890. * allows us to avoid some pointer chasing select_idle_sibling().
  4891. *
  4892. * Also keep a unique ID per domain (we use the first cpu number in
  4893. * the cpumask of the domain), this allows us to quickly tell if
  4894. * two cpus are in the same cache domain, see cpus_share_cache().
  4895. */
  4896. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4897. DEFINE_PER_CPU(int, sd_llc_size);
  4898. DEFINE_PER_CPU(int, sd_llc_id);
  4899. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4900. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4901. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4902. static void update_top_cache_domain(int cpu)
  4903. {
  4904. struct sched_domain *sd;
  4905. struct sched_domain *busy_sd = NULL;
  4906. int id = cpu;
  4907. int size = 1;
  4908. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4909. if (sd) {
  4910. id = cpumask_first(sched_domain_span(sd));
  4911. size = cpumask_weight(sched_domain_span(sd));
  4912. busy_sd = sd->parent; /* sd_busy */
  4913. }
  4914. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4915. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4916. per_cpu(sd_llc_size, cpu) = size;
  4917. per_cpu(sd_llc_id, cpu) = id;
  4918. sd = lowest_flag_domain(cpu, SD_NUMA);
  4919. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4920. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4921. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4922. }
  4923. /*
  4924. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4925. * hold the hotplug lock.
  4926. */
  4927. static void
  4928. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4929. {
  4930. struct rq *rq = cpu_rq(cpu);
  4931. struct sched_domain *tmp;
  4932. /* Remove the sched domains which do not contribute to scheduling. */
  4933. for (tmp = sd; tmp; ) {
  4934. struct sched_domain *parent = tmp->parent;
  4935. if (!parent)
  4936. break;
  4937. if (sd_parent_degenerate(tmp, parent)) {
  4938. tmp->parent = parent->parent;
  4939. if (parent->parent)
  4940. parent->parent->child = tmp;
  4941. /*
  4942. * Transfer SD_PREFER_SIBLING down in case of a
  4943. * degenerate parent; the spans match for this
  4944. * so the property transfers.
  4945. */
  4946. if (parent->flags & SD_PREFER_SIBLING)
  4947. tmp->flags |= SD_PREFER_SIBLING;
  4948. destroy_sched_domain(parent, cpu);
  4949. } else
  4950. tmp = tmp->parent;
  4951. }
  4952. if (sd && sd_degenerate(sd)) {
  4953. tmp = sd;
  4954. sd = sd->parent;
  4955. destroy_sched_domain(tmp, cpu);
  4956. if (sd)
  4957. sd->child = NULL;
  4958. }
  4959. sched_domain_debug(sd, cpu);
  4960. rq_attach_root(rq, rd);
  4961. tmp = rq->sd;
  4962. rcu_assign_pointer(rq->sd, sd);
  4963. destroy_sched_domains(tmp, cpu);
  4964. update_top_cache_domain(cpu);
  4965. }
  4966. /* cpus with isolated domains */
  4967. static cpumask_var_t cpu_isolated_map;
  4968. /* Setup the mask of cpus configured for isolated domains */
  4969. static int __init isolated_cpu_setup(char *str)
  4970. {
  4971. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4972. cpulist_parse(str, cpu_isolated_map);
  4973. return 1;
  4974. }
  4975. __setup("isolcpus=", isolated_cpu_setup);
  4976. struct s_data {
  4977. struct sched_domain ** __percpu sd;
  4978. struct root_domain *rd;
  4979. };
  4980. enum s_alloc {
  4981. sa_rootdomain,
  4982. sa_sd,
  4983. sa_sd_storage,
  4984. sa_none,
  4985. };
  4986. /*
  4987. * Build an iteration mask that can exclude certain CPUs from the upwards
  4988. * domain traversal.
  4989. *
  4990. * Asymmetric node setups can result in situations where the domain tree is of
  4991. * unequal depth, make sure to skip domains that already cover the entire
  4992. * range.
  4993. *
  4994. * In that case build_sched_domains() will have terminated the iteration early
  4995. * and our sibling sd spans will be empty. Domains should always include the
  4996. * cpu they're built on, so check that.
  4997. *
  4998. */
  4999. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  5000. {
  5001. const struct cpumask *span = sched_domain_span(sd);
  5002. struct sd_data *sdd = sd->private;
  5003. struct sched_domain *sibling;
  5004. int i;
  5005. for_each_cpu(i, span) {
  5006. sibling = *per_cpu_ptr(sdd->sd, i);
  5007. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5008. continue;
  5009. cpumask_set_cpu(i, sched_group_mask(sg));
  5010. }
  5011. }
  5012. /*
  5013. * Return the canonical balance cpu for this group, this is the first cpu
  5014. * of this group that's also in the iteration mask.
  5015. */
  5016. int group_balance_cpu(struct sched_group *sg)
  5017. {
  5018. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  5019. }
  5020. static int
  5021. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5022. {
  5023. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5024. const struct cpumask *span = sched_domain_span(sd);
  5025. struct cpumask *covered = sched_domains_tmpmask;
  5026. struct sd_data *sdd = sd->private;
  5027. struct sched_domain *sibling;
  5028. int i;
  5029. cpumask_clear(covered);
  5030. for_each_cpu(i, span) {
  5031. struct cpumask *sg_span;
  5032. if (cpumask_test_cpu(i, covered))
  5033. continue;
  5034. sibling = *per_cpu_ptr(sdd->sd, i);
  5035. /* See the comment near build_group_mask(). */
  5036. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5037. continue;
  5038. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5039. GFP_KERNEL, cpu_to_node(cpu));
  5040. if (!sg)
  5041. goto fail;
  5042. sg_span = sched_group_cpus(sg);
  5043. if (sibling->child)
  5044. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5045. else
  5046. cpumask_set_cpu(i, sg_span);
  5047. cpumask_or(covered, covered, sg_span);
  5048. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5049. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5050. build_group_mask(sd, sg);
  5051. /*
  5052. * Initialize sgc->capacity such that even if we mess up the
  5053. * domains and no possible iteration will get us here, we won't
  5054. * die on a /0 trap.
  5055. */
  5056. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5057. sg->sgc->capacity_orig = sg->sgc->capacity;
  5058. /*
  5059. * Make sure the first group of this domain contains the
  5060. * canonical balance cpu. Otherwise the sched_domain iteration
  5061. * breaks. See update_sg_lb_stats().
  5062. */
  5063. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5064. group_balance_cpu(sg) == cpu)
  5065. groups = sg;
  5066. if (!first)
  5067. first = sg;
  5068. if (last)
  5069. last->next = sg;
  5070. last = sg;
  5071. last->next = first;
  5072. }
  5073. sd->groups = groups;
  5074. return 0;
  5075. fail:
  5076. free_sched_groups(first, 0);
  5077. return -ENOMEM;
  5078. }
  5079. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5080. {
  5081. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5082. struct sched_domain *child = sd->child;
  5083. if (child)
  5084. cpu = cpumask_first(sched_domain_span(child));
  5085. if (sg) {
  5086. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5087. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5088. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5089. }
  5090. return cpu;
  5091. }
  5092. /*
  5093. * build_sched_groups will build a circular linked list of the groups
  5094. * covered by the given span, and will set each group's ->cpumask correctly,
  5095. * and ->cpu_capacity to 0.
  5096. *
  5097. * Assumes the sched_domain tree is fully constructed
  5098. */
  5099. static int
  5100. build_sched_groups(struct sched_domain *sd, int cpu)
  5101. {
  5102. struct sched_group *first = NULL, *last = NULL;
  5103. struct sd_data *sdd = sd->private;
  5104. const struct cpumask *span = sched_domain_span(sd);
  5105. struct cpumask *covered;
  5106. int i;
  5107. get_group(cpu, sdd, &sd->groups);
  5108. atomic_inc(&sd->groups->ref);
  5109. if (cpu != cpumask_first(span))
  5110. return 0;
  5111. lockdep_assert_held(&sched_domains_mutex);
  5112. covered = sched_domains_tmpmask;
  5113. cpumask_clear(covered);
  5114. for_each_cpu(i, span) {
  5115. struct sched_group *sg;
  5116. int group, j;
  5117. if (cpumask_test_cpu(i, covered))
  5118. continue;
  5119. group = get_group(i, sdd, &sg);
  5120. cpumask_setall(sched_group_mask(sg));
  5121. for_each_cpu(j, span) {
  5122. if (get_group(j, sdd, NULL) != group)
  5123. continue;
  5124. cpumask_set_cpu(j, covered);
  5125. cpumask_set_cpu(j, sched_group_cpus(sg));
  5126. }
  5127. if (!first)
  5128. first = sg;
  5129. if (last)
  5130. last->next = sg;
  5131. last = sg;
  5132. }
  5133. last->next = first;
  5134. return 0;
  5135. }
  5136. /*
  5137. * Initialize sched groups cpu_capacity.
  5138. *
  5139. * cpu_capacity indicates the capacity of sched group, which is used while
  5140. * distributing the load between different sched groups in a sched domain.
  5141. * Typically cpu_capacity for all the groups in a sched domain will be same
  5142. * unless there are asymmetries in the topology. If there are asymmetries,
  5143. * group having more cpu_capacity will pickup more load compared to the
  5144. * group having less cpu_capacity.
  5145. */
  5146. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5147. {
  5148. struct sched_group *sg = sd->groups;
  5149. WARN_ON(!sg);
  5150. do {
  5151. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5152. sg = sg->next;
  5153. } while (sg != sd->groups);
  5154. if (cpu != group_balance_cpu(sg))
  5155. return;
  5156. update_group_capacity(sd, cpu);
  5157. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5158. }
  5159. /*
  5160. * Initializers for schedule domains
  5161. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5162. */
  5163. static int default_relax_domain_level = -1;
  5164. int sched_domain_level_max;
  5165. static int __init setup_relax_domain_level(char *str)
  5166. {
  5167. if (kstrtoint(str, 0, &default_relax_domain_level))
  5168. pr_warn("Unable to set relax_domain_level\n");
  5169. return 1;
  5170. }
  5171. __setup("relax_domain_level=", setup_relax_domain_level);
  5172. static void set_domain_attribute(struct sched_domain *sd,
  5173. struct sched_domain_attr *attr)
  5174. {
  5175. int request;
  5176. if (!attr || attr->relax_domain_level < 0) {
  5177. if (default_relax_domain_level < 0)
  5178. return;
  5179. else
  5180. request = default_relax_domain_level;
  5181. } else
  5182. request = attr->relax_domain_level;
  5183. if (request < sd->level) {
  5184. /* turn off idle balance on this domain */
  5185. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5186. } else {
  5187. /* turn on idle balance on this domain */
  5188. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5189. }
  5190. }
  5191. static void __sdt_free(const struct cpumask *cpu_map);
  5192. static int __sdt_alloc(const struct cpumask *cpu_map);
  5193. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5194. const struct cpumask *cpu_map)
  5195. {
  5196. switch (what) {
  5197. case sa_rootdomain:
  5198. if (!atomic_read(&d->rd->refcount))
  5199. free_rootdomain(&d->rd->rcu); /* fall through */
  5200. case sa_sd:
  5201. free_percpu(d->sd); /* fall through */
  5202. case sa_sd_storage:
  5203. __sdt_free(cpu_map); /* fall through */
  5204. case sa_none:
  5205. break;
  5206. }
  5207. }
  5208. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5209. const struct cpumask *cpu_map)
  5210. {
  5211. memset(d, 0, sizeof(*d));
  5212. if (__sdt_alloc(cpu_map))
  5213. return sa_sd_storage;
  5214. d->sd = alloc_percpu(struct sched_domain *);
  5215. if (!d->sd)
  5216. return sa_sd_storage;
  5217. d->rd = alloc_rootdomain();
  5218. if (!d->rd)
  5219. return sa_sd;
  5220. return sa_rootdomain;
  5221. }
  5222. /*
  5223. * NULL the sd_data elements we've used to build the sched_domain and
  5224. * sched_group structure so that the subsequent __free_domain_allocs()
  5225. * will not free the data we're using.
  5226. */
  5227. static void claim_allocations(int cpu, struct sched_domain *sd)
  5228. {
  5229. struct sd_data *sdd = sd->private;
  5230. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5231. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5232. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5233. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5234. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5235. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5236. }
  5237. #ifdef CONFIG_NUMA
  5238. static int sched_domains_numa_levels;
  5239. enum numa_topology_type sched_numa_topology_type;
  5240. static int *sched_domains_numa_distance;
  5241. int sched_max_numa_distance;
  5242. static struct cpumask ***sched_domains_numa_masks;
  5243. static int sched_domains_curr_level;
  5244. #endif
  5245. /*
  5246. * SD_flags allowed in topology descriptions.
  5247. *
  5248. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5249. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5250. * SD_NUMA - describes NUMA topologies
  5251. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5252. *
  5253. * Odd one out:
  5254. * SD_ASYM_PACKING - describes SMT quirks
  5255. */
  5256. #define TOPOLOGY_SD_FLAGS \
  5257. (SD_SHARE_CPUCAPACITY | \
  5258. SD_SHARE_PKG_RESOURCES | \
  5259. SD_NUMA | \
  5260. SD_ASYM_PACKING | \
  5261. SD_SHARE_POWERDOMAIN)
  5262. static struct sched_domain *
  5263. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5264. {
  5265. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5266. int sd_weight, sd_flags = 0;
  5267. #ifdef CONFIG_NUMA
  5268. /*
  5269. * Ugly hack to pass state to sd_numa_mask()...
  5270. */
  5271. sched_domains_curr_level = tl->numa_level;
  5272. #endif
  5273. sd_weight = cpumask_weight(tl->mask(cpu));
  5274. if (tl->sd_flags)
  5275. sd_flags = (*tl->sd_flags)();
  5276. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5277. "wrong sd_flags in topology description\n"))
  5278. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5279. *sd = (struct sched_domain){
  5280. .min_interval = sd_weight,
  5281. .max_interval = 2*sd_weight,
  5282. .busy_factor = 32,
  5283. .imbalance_pct = 125,
  5284. .cache_nice_tries = 0,
  5285. .busy_idx = 0,
  5286. .idle_idx = 0,
  5287. .newidle_idx = 0,
  5288. .wake_idx = 0,
  5289. .forkexec_idx = 0,
  5290. .flags = 1*SD_LOAD_BALANCE
  5291. | 1*SD_BALANCE_NEWIDLE
  5292. | 1*SD_BALANCE_EXEC
  5293. | 1*SD_BALANCE_FORK
  5294. | 0*SD_BALANCE_WAKE
  5295. | 1*SD_WAKE_AFFINE
  5296. | 0*SD_SHARE_CPUCAPACITY
  5297. | 0*SD_SHARE_PKG_RESOURCES
  5298. | 0*SD_SERIALIZE
  5299. | 0*SD_PREFER_SIBLING
  5300. | 0*SD_NUMA
  5301. | sd_flags
  5302. ,
  5303. .last_balance = jiffies,
  5304. .balance_interval = sd_weight,
  5305. .smt_gain = 0,
  5306. .max_newidle_lb_cost = 0,
  5307. .next_decay_max_lb_cost = jiffies,
  5308. #ifdef CONFIG_SCHED_DEBUG
  5309. .name = tl->name,
  5310. #endif
  5311. };
  5312. /*
  5313. * Convert topological properties into behaviour.
  5314. */
  5315. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5316. sd->imbalance_pct = 110;
  5317. sd->smt_gain = 1178; /* ~15% */
  5318. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5319. sd->imbalance_pct = 117;
  5320. sd->cache_nice_tries = 1;
  5321. sd->busy_idx = 2;
  5322. #ifdef CONFIG_NUMA
  5323. } else if (sd->flags & SD_NUMA) {
  5324. sd->cache_nice_tries = 2;
  5325. sd->busy_idx = 3;
  5326. sd->idle_idx = 2;
  5327. sd->flags |= SD_SERIALIZE;
  5328. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5329. sd->flags &= ~(SD_BALANCE_EXEC |
  5330. SD_BALANCE_FORK |
  5331. SD_WAKE_AFFINE);
  5332. }
  5333. #endif
  5334. } else {
  5335. sd->flags |= SD_PREFER_SIBLING;
  5336. sd->cache_nice_tries = 1;
  5337. sd->busy_idx = 2;
  5338. sd->idle_idx = 1;
  5339. }
  5340. sd->private = &tl->data;
  5341. return sd;
  5342. }
  5343. /*
  5344. * Topology list, bottom-up.
  5345. */
  5346. static struct sched_domain_topology_level default_topology[] = {
  5347. #ifdef CONFIG_SCHED_SMT
  5348. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5349. #endif
  5350. #ifdef CONFIG_SCHED_MC
  5351. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5352. #endif
  5353. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5354. { NULL, },
  5355. };
  5356. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5357. #define for_each_sd_topology(tl) \
  5358. for (tl = sched_domain_topology; tl->mask; tl++)
  5359. void set_sched_topology(struct sched_domain_topology_level *tl)
  5360. {
  5361. sched_domain_topology = tl;
  5362. }
  5363. #ifdef CONFIG_NUMA
  5364. static const struct cpumask *sd_numa_mask(int cpu)
  5365. {
  5366. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5367. }
  5368. static void sched_numa_warn(const char *str)
  5369. {
  5370. static int done = false;
  5371. int i,j;
  5372. if (done)
  5373. return;
  5374. done = true;
  5375. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5376. for (i = 0; i < nr_node_ids; i++) {
  5377. printk(KERN_WARNING " ");
  5378. for (j = 0; j < nr_node_ids; j++)
  5379. printk(KERN_CONT "%02d ", node_distance(i,j));
  5380. printk(KERN_CONT "\n");
  5381. }
  5382. printk(KERN_WARNING "\n");
  5383. }
  5384. bool find_numa_distance(int distance)
  5385. {
  5386. int i;
  5387. if (distance == node_distance(0, 0))
  5388. return true;
  5389. for (i = 0; i < sched_domains_numa_levels; i++) {
  5390. if (sched_domains_numa_distance[i] == distance)
  5391. return true;
  5392. }
  5393. return false;
  5394. }
  5395. /*
  5396. * A system can have three types of NUMA topology:
  5397. * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
  5398. * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
  5399. * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
  5400. *
  5401. * The difference between a glueless mesh topology and a backplane
  5402. * topology lies in whether communication between not directly
  5403. * connected nodes goes through intermediary nodes (where programs
  5404. * could run), or through backplane controllers. This affects
  5405. * placement of programs.
  5406. *
  5407. * The type of topology can be discerned with the following tests:
  5408. * - If the maximum distance between any nodes is 1 hop, the system
  5409. * is directly connected.
  5410. * - If for two nodes A and B, located N > 1 hops away from each other,
  5411. * there is an intermediary node C, which is < N hops away from both
  5412. * nodes A and B, the system is a glueless mesh.
  5413. */
  5414. static void init_numa_topology_type(void)
  5415. {
  5416. int a, b, c, n;
  5417. n = sched_max_numa_distance;
  5418. if (n <= 1)
  5419. sched_numa_topology_type = NUMA_DIRECT;
  5420. for_each_online_node(a) {
  5421. for_each_online_node(b) {
  5422. /* Find two nodes furthest removed from each other. */
  5423. if (node_distance(a, b) < n)
  5424. continue;
  5425. /* Is there an intermediary node between a and b? */
  5426. for_each_online_node(c) {
  5427. if (node_distance(a, c) < n &&
  5428. node_distance(b, c) < n) {
  5429. sched_numa_topology_type =
  5430. NUMA_GLUELESS_MESH;
  5431. return;
  5432. }
  5433. }
  5434. sched_numa_topology_type = NUMA_BACKPLANE;
  5435. return;
  5436. }
  5437. }
  5438. }
  5439. static void sched_init_numa(void)
  5440. {
  5441. int next_distance, curr_distance = node_distance(0, 0);
  5442. struct sched_domain_topology_level *tl;
  5443. int level = 0;
  5444. int i, j, k;
  5445. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5446. if (!sched_domains_numa_distance)
  5447. return;
  5448. /*
  5449. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5450. * unique distances in the node_distance() table.
  5451. *
  5452. * Assumes node_distance(0,j) includes all distances in
  5453. * node_distance(i,j) in order to avoid cubic time.
  5454. */
  5455. next_distance = curr_distance;
  5456. for (i = 0; i < nr_node_ids; i++) {
  5457. for (j = 0; j < nr_node_ids; j++) {
  5458. for (k = 0; k < nr_node_ids; k++) {
  5459. int distance = node_distance(i, k);
  5460. if (distance > curr_distance &&
  5461. (distance < next_distance ||
  5462. next_distance == curr_distance))
  5463. next_distance = distance;
  5464. /*
  5465. * While not a strong assumption it would be nice to know
  5466. * about cases where if node A is connected to B, B is not
  5467. * equally connected to A.
  5468. */
  5469. if (sched_debug() && node_distance(k, i) != distance)
  5470. sched_numa_warn("Node-distance not symmetric");
  5471. if (sched_debug() && i && !find_numa_distance(distance))
  5472. sched_numa_warn("Node-0 not representative");
  5473. }
  5474. if (next_distance != curr_distance) {
  5475. sched_domains_numa_distance[level++] = next_distance;
  5476. sched_domains_numa_levels = level;
  5477. curr_distance = next_distance;
  5478. } else break;
  5479. }
  5480. /*
  5481. * In case of sched_debug() we verify the above assumption.
  5482. */
  5483. if (!sched_debug())
  5484. break;
  5485. }
  5486. if (!level)
  5487. return;
  5488. /*
  5489. * 'level' contains the number of unique distances, excluding the
  5490. * identity distance node_distance(i,i).
  5491. *
  5492. * The sched_domains_numa_distance[] array includes the actual distance
  5493. * numbers.
  5494. */
  5495. /*
  5496. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5497. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5498. * the array will contain less then 'level' members. This could be
  5499. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5500. * in other functions.
  5501. *
  5502. * We reset it to 'level' at the end of this function.
  5503. */
  5504. sched_domains_numa_levels = 0;
  5505. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5506. if (!sched_domains_numa_masks)
  5507. return;
  5508. /*
  5509. * Now for each level, construct a mask per node which contains all
  5510. * cpus of nodes that are that many hops away from us.
  5511. */
  5512. for (i = 0; i < level; i++) {
  5513. sched_domains_numa_masks[i] =
  5514. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5515. if (!sched_domains_numa_masks[i])
  5516. return;
  5517. for (j = 0; j < nr_node_ids; j++) {
  5518. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5519. if (!mask)
  5520. return;
  5521. sched_domains_numa_masks[i][j] = mask;
  5522. for (k = 0; k < nr_node_ids; k++) {
  5523. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5524. continue;
  5525. cpumask_or(mask, mask, cpumask_of_node(k));
  5526. }
  5527. }
  5528. }
  5529. /* Compute default topology size */
  5530. for (i = 0; sched_domain_topology[i].mask; i++);
  5531. tl = kzalloc((i + level + 1) *
  5532. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5533. if (!tl)
  5534. return;
  5535. /*
  5536. * Copy the default topology bits..
  5537. */
  5538. for (i = 0; sched_domain_topology[i].mask; i++)
  5539. tl[i] = sched_domain_topology[i];
  5540. /*
  5541. * .. and append 'j' levels of NUMA goodness.
  5542. */
  5543. for (j = 0; j < level; i++, j++) {
  5544. tl[i] = (struct sched_domain_topology_level){
  5545. .mask = sd_numa_mask,
  5546. .sd_flags = cpu_numa_flags,
  5547. .flags = SDTL_OVERLAP,
  5548. .numa_level = j,
  5549. SD_INIT_NAME(NUMA)
  5550. };
  5551. }
  5552. sched_domain_topology = tl;
  5553. sched_domains_numa_levels = level;
  5554. sched_max_numa_distance = sched_domains_numa_distance[level - 1];
  5555. init_numa_topology_type();
  5556. }
  5557. static void sched_domains_numa_masks_set(int cpu)
  5558. {
  5559. int i, j;
  5560. int node = cpu_to_node(cpu);
  5561. for (i = 0; i < sched_domains_numa_levels; i++) {
  5562. for (j = 0; j < nr_node_ids; j++) {
  5563. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5564. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5565. }
  5566. }
  5567. }
  5568. static void sched_domains_numa_masks_clear(int cpu)
  5569. {
  5570. int i, j;
  5571. for (i = 0; i < sched_domains_numa_levels; i++) {
  5572. for (j = 0; j < nr_node_ids; j++)
  5573. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5574. }
  5575. }
  5576. /*
  5577. * Update sched_domains_numa_masks[level][node] array when new cpus
  5578. * are onlined.
  5579. */
  5580. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5581. unsigned long action,
  5582. void *hcpu)
  5583. {
  5584. int cpu = (long)hcpu;
  5585. switch (action & ~CPU_TASKS_FROZEN) {
  5586. case CPU_ONLINE:
  5587. sched_domains_numa_masks_set(cpu);
  5588. break;
  5589. case CPU_DEAD:
  5590. sched_domains_numa_masks_clear(cpu);
  5591. break;
  5592. default:
  5593. return NOTIFY_DONE;
  5594. }
  5595. return NOTIFY_OK;
  5596. }
  5597. #else
  5598. static inline void sched_init_numa(void)
  5599. {
  5600. }
  5601. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5602. unsigned long action,
  5603. void *hcpu)
  5604. {
  5605. return 0;
  5606. }
  5607. #endif /* CONFIG_NUMA */
  5608. static int __sdt_alloc(const struct cpumask *cpu_map)
  5609. {
  5610. struct sched_domain_topology_level *tl;
  5611. int j;
  5612. for_each_sd_topology(tl) {
  5613. struct sd_data *sdd = &tl->data;
  5614. sdd->sd = alloc_percpu(struct sched_domain *);
  5615. if (!sdd->sd)
  5616. return -ENOMEM;
  5617. sdd->sg = alloc_percpu(struct sched_group *);
  5618. if (!sdd->sg)
  5619. return -ENOMEM;
  5620. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5621. if (!sdd->sgc)
  5622. return -ENOMEM;
  5623. for_each_cpu(j, cpu_map) {
  5624. struct sched_domain *sd;
  5625. struct sched_group *sg;
  5626. struct sched_group_capacity *sgc;
  5627. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5628. GFP_KERNEL, cpu_to_node(j));
  5629. if (!sd)
  5630. return -ENOMEM;
  5631. *per_cpu_ptr(sdd->sd, j) = sd;
  5632. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5633. GFP_KERNEL, cpu_to_node(j));
  5634. if (!sg)
  5635. return -ENOMEM;
  5636. sg->next = sg;
  5637. *per_cpu_ptr(sdd->sg, j) = sg;
  5638. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5639. GFP_KERNEL, cpu_to_node(j));
  5640. if (!sgc)
  5641. return -ENOMEM;
  5642. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5643. }
  5644. }
  5645. return 0;
  5646. }
  5647. static void __sdt_free(const struct cpumask *cpu_map)
  5648. {
  5649. struct sched_domain_topology_level *tl;
  5650. int j;
  5651. for_each_sd_topology(tl) {
  5652. struct sd_data *sdd = &tl->data;
  5653. for_each_cpu(j, cpu_map) {
  5654. struct sched_domain *sd;
  5655. if (sdd->sd) {
  5656. sd = *per_cpu_ptr(sdd->sd, j);
  5657. if (sd && (sd->flags & SD_OVERLAP))
  5658. free_sched_groups(sd->groups, 0);
  5659. kfree(*per_cpu_ptr(sdd->sd, j));
  5660. }
  5661. if (sdd->sg)
  5662. kfree(*per_cpu_ptr(sdd->sg, j));
  5663. if (sdd->sgc)
  5664. kfree(*per_cpu_ptr(sdd->sgc, j));
  5665. }
  5666. free_percpu(sdd->sd);
  5667. sdd->sd = NULL;
  5668. free_percpu(sdd->sg);
  5669. sdd->sg = NULL;
  5670. free_percpu(sdd->sgc);
  5671. sdd->sgc = NULL;
  5672. }
  5673. }
  5674. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5675. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5676. struct sched_domain *child, int cpu)
  5677. {
  5678. struct sched_domain *sd = sd_init(tl, cpu);
  5679. if (!sd)
  5680. return child;
  5681. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5682. if (child) {
  5683. sd->level = child->level + 1;
  5684. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5685. child->parent = sd;
  5686. sd->child = child;
  5687. if (!cpumask_subset(sched_domain_span(child),
  5688. sched_domain_span(sd))) {
  5689. pr_err("BUG: arch topology borken\n");
  5690. #ifdef CONFIG_SCHED_DEBUG
  5691. pr_err(" the %s domain not a subset of the %s domain\n",
  5692. child->name, sd->name);
  5693. #endif
  5694. /* Fixup, ensure @sd has at least @child cpus. */
  5695. cpumask_or(sched_domain_span(sd),
  5696. sched_domain_span(sd),
  5697. sched_domain_span(child));
  5698. }
  5699. }
  5700. set_domain_attribute(sd, attr);
  5701. return sd;
  5702. }
  5703. /*
  5704. * Build sched domains for a given set of cpus and attach the sched domains
  5705. * to the individual cpus
  5706. */
  5707. static int build_sched_domains(const struct cpumask *cpu_map,
  5708. struct sched_domain_attr *attr)
  5709. {
  5710. enum s_alloc alloc_state;
  5711. struct sched_domain *sd;
  5712. struct s_data d;
  5713. int i, ret = -ENOMEM;
  5714. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5715. if (alloc_state != sa_rootdomain)
  5716. goto error;
  5717. /* Set up domains for cpus specified by the cpu_map. */
  5718. for_each_cpu(i, cpu_map) {
  5719. struct sched_domain_topology_level *tl;
  5720. sd = NULL;
  5721. for_each_sd_topology(tl) {
  5722. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5723. if (tl == sched_domain_topology)
  5724. *per_cpu_ptr(d.sd, i) = sd;
  5725. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5726. sd->flags |= SD_OVERLAP;
  5727. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5728. break;
  5729. }
  5730. }
  5731. /* Build the groups for the domains */
  5732. for_each_cpu(i, cpu_map) {
  5733. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5734. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5735. if (sd->flags & SD_OVERLAP) {
  5736. if (build_overlap_sched_groups(sd, i))
  5737. goto error;
  5738. } else {
  5739. if (build_sched_groups(sd, i))
  5740. goto error;
  5741. }
  5742. }
  5743. }
  5744. /* Calculate CPU capacity for physical packages and nodes */
  5745. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5746. if (!cpumask_test_cpu(i, cpu_map))
  5747. continue;
  5748. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5749. claim_allocations(i, sd);
  5750. init_sched_groups_capacity(i, sd);
  5751. }
  5752. }
  5753. /* Attach the domains */
  5754. rcu_read_lock();
  5755. for_each_cpu(i, cpu_map) {
  5756. sd = *per_cpu_ptr(d.sd, i);
  5757. cpu_attach_domain(sd, d.rd, i);
  5758. }
  5759. rcu_read_unlock();
  5760. ret = 0;
  5761. error:
  5762. __free_domain_allocs(&d, alloc_state, cpu_map);
  5763. return ret;
  5764. }
  5765. static cpumask_var_t *doms_cur; /* current sched domains */
  5766. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5767. static struct sched_domain_attr *dattr_cur;
  5768. /* attribues of custom domains in 'doms_cur' */
  5769. /*
  5770. * Special case: If a kmalloc of a doms_cur partition (array of
  5771. * cpumask) fails, then fallback to a single sched domain,
  5772. * as determined by the single cpumask fallback_doms.
  5773. */
  5774. static cpumask_var_t fallback_doms;
  5775. /*
  5776. * arch_update_cpu_topology lets virtualized architectures update the
  5777. * cpu core maps. It is supposed to return 1 if the topology changed
  5778. * or 0 if it stayed the same.
  5779. */
  5780. int __weak arch_update_cpu_topology(void)
  5781. {
  5782. return 0;
  5783. }
  5784. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5785. {
  5786. int i;
  5787. cpumask_var_t *doms;
  5788. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5789. if (!doms)
  5790. return NULL;
  5791. for (i = 0; i < ndoms; i++) {
  5792. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5793. free_sched_domains(doms, i);
  5794. return NULL;
  5795. }
  5796. }
  5797. return doms;
  5798. }
  5799. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5800. {
  5801. unsigned int i;
  5802. for (i = 0; i < ndoms; i++)
  5803. free_cpumask_var(doms[i]);
  5804. kfree(doms);
  5805. }
  5806. /*
  5807. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5808. * For now this just excludes isolated cpus, but could be used to
  5809. * exclude other special cases in the future.
  5810. */
  5811. static int init_sched_domains(const struct cpumask *cpu_map)
  5812. {
  5813. int err;
  5814. arch_update_cpu_topology();
  5815. ndoms_cur = 1;
  5816. doms_cur = alloc_sched_domains(ndoms_cur);
  5817. if (!doms_cur)
  5818. doms_cur = &fallback_doms;
  5819. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5820. err = build_sched_domains(doms_cur[0], NULL);
  5821. register_sched_domain_sysctl();
  5822. return err;
  5823. }
  5824. /*
  5825. * Detach sched domains from a group of cpus specified in cpu_map
  5826. * These cpus will now be attached to the NULL domain
  5827. */
  5828. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5829. {
  5830. int i;
  5831. rcu_read_lock();
  5832. for_each_cpu(i, cpu_map)
  5833. cpu_attach_domain(NULL, &def_root_domain, i);
  5834. rcu_read_unlock();
  5835. }
  5836. /* handle null as "default" */
  5837. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5838. struct sched_domain_attr *new, int idx_new)
  5839. {
  5840. struct sched_domain_attr tmp;
  5841. /* fast path */
  5842. if (!new && !cur)
  5843. return 1;
  5844. tmp = SD_ATTR_INIT;
  5845. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5846. new ? (new + idx_new) : &tmp,
  5847. sizeof(struct sched_domain_attr));
  5848. }
  5849. /*
  5850. * Partition sched domains as specified by the 'ndoms_new'
  5851. * cpumasks in the array doms_new[] of cpumasks. This compares
  5852. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5853. * It destroys each deleted domain and builds each new domain.
  5854. *
  5855. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5856. * The masks don't intersect (don't overlap.) We should setup one
  5857. * sched domain for each mask. CPUs not in any of the cpumasks will
  5858. * not be load balanced. If the same cpumask appears both in the
  5859. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5860. * it as it is.
  5861. *
  5862. * The passed in 'doms_new' should be allocated using
  5863. * alloc_sched_domains. This routine takes ownership of it and will
  5864. * free_sched_domains it when done with it. If the caller failed the
  5865. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5866. * and partition_sched_domains() will fallback to the single partition
  5867. * 'fallback_doms', it also forces the domains to be rebuilt.
  5868. *
  5869. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5870. * ndoms_new == 0 is a special case for destroying existing domains,
  5871. * and it will not create the default domain.
  5872. *
  5873. * Call with hotplug lock held
  5874. */
  5875. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5876. struct sched_domain_attr *dattr_new)
  5877. {
  5878. int i, j, n;
  5879. int new_topology;
  5880. mutex_lock(&sched_domains_mutex);
  5881. /* always unregister in case we don't destroy any domains */
  5882. unregister_sched_domain_sysctl();
  5883. /* Let architecture update cpu core mappings. */
  5884. new_topology = arch_update_cpu_topology();
  5885. n = doms_new ? ndoms_new : 0;
  5886. /* Destroy deleted domains */
  5887. for (i = 0; i < ndoms_cur; i++) {
  5888. for (j = 0; j < n && !new_topology; j++) {
  5889. if (cpumask_equal(doms_cur[i], doms_new[j])
  5890. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5891. goto match1;
  5892. }
  5893. /* no match - a current sched domain not in new doms_new[] */
  5894. detach_destroy_domains(doms_cur[i]);
  5895. match1:
  5896. ;
  5897. }
  5898. n = ndoms_cur;
  5899. if (doms_new == NULL) {
  5900. n = 0;
  5901. doms_new = &fallback_doms;
  5902. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5903. WARN_ON_ONCE(dattr_new);
  5904. }
  5905. /* Build new domains */
  5906. for (i = 0; i < ndoms_new; i++) {
  5907. for (j = 0; j < n && !new_topology; j++) {
  5908. if (cpumask_equal(doms_new[i], doms_cur[j])
  5909. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5910. goto match2;
  5911. }
  5912. /* no match - add a new doms_new */
  5913. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5914. match2:
  5915. ;
  5916. }
  5917. /* Remember the new sched domains */
  5918. if (doms_cur != &fallback_doms)
  5919. free_sched_domains(doms_cur, ndoms_cur);
  5920. kfree(dattr_cur); /* kfree(NULL) is safe */
  5921. doms_cur = doms_new;
  5922. dattr_cur = dattr_new;
  5923. ndoms_cur = ndoms_new;
  5924. register_sched_domain_sysctl();
  5925. mutex_unlock(&sched_domains_mutex);
  5926. }
  5927. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5928. /*
  5929. * Update cpusets according to cpu_active mask. If cpusets are
  5930. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5931. * around partition_sched_domains().
  5932. *
  5933. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5934. * want to restore it back to its original state upon resume anyway.
  5935. */
  5936. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5937. void *hcpu)
  5938. {
  5939. switch (action) {
  5940. case CPU_ONLINE_FROZEN:
  5941. case CPU_DOWN_FAILED_FROZEN:
  5942. /*
  5943. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5944. * resume sequence. As long as this is not the last online
  5945. * operation in the resume sequence, just build a single sched
  5946. * domain, ignoring cpusets.
  5947. */
  5948. num_cpus_frozen--;
  5949. if (likely(num_cpus_frozen)) {
  5950. partition_sched_domains(1, NULL, NULL);
  5951. break;
  5952. }
  5953. /*
  5954. * This is the last CPU online operation. So fall through and
  5955. * restore the original sched domains by considering the
  5956. * cpuset configurations.
  5957. */
  5958. case CPU_ONLINE:
  5959. case CPU_DOWN_FAILED:
  5960. cpuset_update_active_cpus(true);
  5961. break;
  5962. default:
  5963. return NOTIFY_DONE;
  5964. }
  5965. return NOTIFY_OK;
  5966. }
  5967. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5968. void *hcpu)
  5969. {
  5970. switch (action) {
  5971. case CPU_DOWN_PREPARE:
  5972. cpuset_update_active_cpus(false);
  5973. break;
  5974. case CPU_DOWN_PREPARE_FROZEN:
  5975. num_cpus_frozen++;
  5976. partition_sched_domains(1, NULL, NULL);
  5977. break;
  5978. default:
  5979. return NOTIFY_DONE;
  5980. }
  5981. return NOTIFY_OK;
  5982. }
  5983. void __init sched_init_smp(void)
  5984. {
  5985. cpumask_var_t non_isolated_cpus;
  5986. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5987. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5988. sched_init_numa();
  5989. /*
  5990. * There's no userspace yet to cause hotplug operations; hence all the
  5991. * cpu masks are stable and all blatant races in the below code cannot
  5992. * happen.
  5993. */
  5994. mutex_lock(&sched_domains_mutex);
  5995. init_sched_domains(cpu_active_mask);
  5996. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5997. if (cpumask_empty(non_isolated_cpus))
  5998. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5999. mutex_unlock(&sched_domains_mutex);
  6000. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  6001. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6002. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6003. init_hrtick();
  6004. /* Move init over to a non-isolated CPU */
  6005. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6006. BUG();
  6007. sched_init_granularity();
  6008. free_cpumask_var(non_isolated_cpus);
  6009. init_sched_rt_class();
  6010. init_sched_dl_class();
  6011. }
  6012. #else
  6013. void __init sched_init_smp(void)
  6014. {
  6015. sched_init_granularity();
  6016. }
  6017. #endif /* CONFIG_SMP */
  6018. const_debug unsigned int sysctl_timer_migration = 1;
  6019. int in_sched_functions(unsigned long addr)
  6020. {
  6021. return in_lock_functions(addr) ||
  6022. (addr >= (unsigned long)__sched_text_start
  6023. && addr < (unsigned long)__sched_text_end);
  6024. }
  6025. #ifdef CONFIG_CGROUP_SCHED
  6026. /*
  6027. * Default task group.
  6028. * Every task in system belongs to this group at bootup.
  6029. */
  6030. struct task_group root_task_group;
  6031. LIST_HEAD(task_groups);
  6032. #endif
  6033. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  6034. void __init sched_init(void)
  6035. {
  6036. int i, j;
  6037. unsigned long alloc_size = 0, ptr;
  6038. #ifdef CONFIG_FAIR_GROUP_SCHED
  6039. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6040. #endif
  6041. #ifdef CONFIG_RT_GROUP_SCHED
  6042. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6043. #endif
  6044. if (alloc_size) {
  6045. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6046. #ifdef CONFIG_FAIR_GROUP_SCHED
  6047. root_task_group.se = (struct sched_entity **)ptr;
  6048. ptr += nr_cpu_ids * sizeof(void **);
  6049. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6050. ptr += nr_cpu_ids * sizeof(void **);
  6051. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6052. #ifdef CONFIG_RT_GROUP_SCHED
  6053. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6054. ptr += nr_cpu_ids * sizeof(void **);
  6055. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6056. ptr += nr_cpu_ids * sizeof(void **);
  6057. #endif /* CONFIG_RT_GROUP_SCHED */
  6058. }
  6059. #ifdef CONFIG_CPUMASK_OFFSTACK
  6060. for_each_possible_cpu(i) {
  6061. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  6062. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  6063. }
  6064. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6065. init_rt_bandwidth(&def_rt_bandwidth,
  6066. global_rt_period(), global_rt_runtime());
  6067. init_dl_bandwidth(&def_dl_bandwidth,
  6068. global_rt_period(), global_rt_runtime());
  6069. #ifdef CONFIG_SMP
  6070. init_defrootdomain();
  6071. #endif
  6072. #ifdef CONFIG_RT_GROUP_SCHED
  6073. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6074. global_rt_period(), global_rt_runtime());
  6075. #endif /* CONFIG_RT_GROUP_SCHED */
  6076. #ifdef CONFIG_CGROUP_SCHED
  6077. list_add(&root_task_group.list, &task_groups);
  6078. INIT_LIST_HEAD(&root_task_group.children);
  6079. INIT_LIST_HEAD(&root_task_group.siblings);
  6080. autogroup_init(&init_task);
  6081. #endif /* CONFIG_CGROUP_SCHED */
  6082. for_each_possible_cpu(i) {
  6083. struct rq *rq;
  6084. rq = cpu_rq(i);
  6085. raw_spin_lock_init(&rq->lock);
  6086. rq->nr_running = 0;
  6087. rq->calc_load_active = 0;
  6088. rq->calc_load_update = jiffies + LOAD_FREQ;
  6089. init_cfs_rq(&rq->cfs);
  6090. init_rt_rq(&rq->rt, rq);
  6091. init_dl_rq(&rq->dl, rq);
  6092. #ifdef CONFIG_FAIR_GROUP_SCHED
  6093. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6094. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6095. /*
  6096. * How much cpu bandwidth does root_task_group get?
  6097. *
  6098. * In case of task-groups formed thr' the cgroup filesystem, it
  6099. * gets 100% of the cpu resources in the system. This overall
  6100. * system cpu resource is divided among the tasks of
  6101. * root_task_group and its child task-groups in a fair manner,
  6102. * based on each entity's (task or task-group's) weight
  6103. * (se->load.weight).
  6104. *
  6105. * In other words, if root_task_group has 10 tasks of weight
  6106. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6107. * then A0's share of the cpu resource is:
  6108. *
  6109. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6110. *
  6111. * We achieve this by letting root_task_group's tasks sit
  6112. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6113. */
  6114. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6115. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6116. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6117. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6118. #ifdef CONFIG_RT_GROUP_SCHED
  6119. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6120. #endif
  6121. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6122. rq->cpu_load[j] = 0;
  6123. rq->last_load_update_tick = jiffies;
  6124. #ifdef CONFIG_SMP
  6125. rq->sd = NULL;
  6126. rq->rd = NULL;
  6127. rq->cpu_capacity = SCHED_CAPACITY_SCALE;
  6128. rq->post_schedule = 0;
  6129. rq->active_balance = 0;
  6130. rq->next_balance = jiffies;
  6131. rq->push_cpu = 0;
  6132. rq->cpu = i;
  6133. rq->online = 0;
  6134. rq->idle_stamp = 0;
  6135. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6136. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6137. INIT_LIST_HEAD(&rq->cfs_tasks);
  6138. rq_attach_root(rq, &def_root_domain);
  6139. #ifdef CONFIG_NO_HZ_COMMON
  6140. rq->nohz_flags = 0;
  6141. #endif
  6142. #ifdef CONFIG_NO_HZ_FULL
  6143. rq->last_sched_tick = 0;
  6144. #endif
  6145. #endif
  6146. init_rq_hrtick(rq);
  6147. atomic_set(&rq->nr_iowait, 0);
  6148. }
  6149. set_load_weight(&init_task);
  6150. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6151. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6152. #endif
  6153. /*
  6154. * The boot idle thread does lazy MMU switching as well:
  6155. */
  6156. atomic_inc(&init_mm.mm_count);
  6157. enter_lazy_tlb(&init_mm, current);
  6158. /*
  6159. * During early bootup we pretend to be a normal task:
  6160. */
  6161. current->sched_class = &fair_sched_class;
  6162. /*
  6163. * Make us the idle thread. Technically, schedule() should not be
  6164. * called from this thread, however somewhere below it might be,
  6165. * but because we are the idle thread, we just pick up running again
  6166. * when this runqueue becomes "idle".
  6167. */
  6168. init_idle(current, smp_processor_id());
  6169. calc_load_update = jiffies + LOAD_FREQ;
  6170. #ifdef CONFIG_SMP
  6171. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6172. /* May be allocated at isolcpus cmdline parse time */
  6173. if (cpu_isolated_map == NULL)
  6174. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6175. idle_thread_set_boot_cpu();
  6176. set_cpu_rq_start_time();
  6177. #endif
  6178. init_sched_fair_class();
  6179. scheduler_running = 1;
  6180. }
  6181. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6182. static inline int preempt_count_equals(int preempt_offset)
  6183. {
  6184. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6185. return (nested == preempt_offset);
  6186. }
  6187. void __might_sleep(const char *file, int line, int preempt_offset)
  6188. {
  6189. /*
  6190. * Blocking primitives will set (and therefore destroy) current->state,
  6191. * since we will exit with TASK_RUNNING make sure we enter with it,
  6192. * otherwise we will destroy state.
  6193. */
  6194. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  6195. "do not call blocking ops when !TASK_RUNNING; "
  6196. "state=%lx set at [<%p>] %pS\n",
  6197. current->state,
  6198. (void *)current->task_state_change,
  6199. (void *)current->task_state_change);
  6200. ___might_sleep(file, line, preempt_offset);
  6201. }
  6202. EXPORT_SYMBOL(__might_sleep);
  6203. void ___might_sleep(const char *file, int line, int preempt_offset)
  6204. {
  6205. static unsigned long prev_jiffy; /* ratelimiting */
  6206. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6207. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6208. !is_idle_task(current)) ||
  6209. system_state != SYSTEM_RUNNING || oops_in_progress)
  6210. return;
  6211. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6212. return;
  6213. prev_jiffy = jiffies;
  6214. printk(KERN_ERR
  6215. "BUG: sleeping function called from invalid context at %s:%d\n",
  6216. file, line);
  6217. printk(KERN_ERR
  6218. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6219. in_atomic(), irqs_disabled(),
  6220. current->pid, current->comm);
  6221. if (task_stack_end_corrupted(current))
  6222. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  6223. debug_show_held_locks(current);
  6224. if (irqs_disabled())
  6225. print_irqtrace_events(current);
  6226. #ifdef CONFIG_DEBUG_PREEMPT
  6227. if (!preempt_count_equals(preempt_offset)) {
  6228. pr_err("Preemption disabled at:");
  6229. print_ip_sym(current->preempt_disable_ip);
  6230. pr_cont("\n");
  6231. }
  6232. #endif
  6233. dump_stack();
  6234. }
  6235. EXPORT_SYMBOL(___might_sleep);
  6236. #endif
  6237. #ifdef CONFIG_MAGIC_SYSRQ
  6238. static void normalize_task(struct rq *rq, struct task_struct *p)
  6239. {
  6240. const struct sched_class *prev_class = p->sched_class;
  6241. struct sched_attr attr = {
  6242. .sched_policy = SCHED_NORMAL,
  6243. };
  6244. int old_prio = p->prio;
  6245. int queued;
  6246. queued = task_on_rq_queued(p);
  6247. if (queued)
  6248. dequeue_task(rq, p, 0);
  6249. __setscheduler(rq, p, &attr);
  6250. if (queued) {
  6251. enqueue_task(rq, p, 0);
  6252. resched_curr(rq);
  6253. }
  6254. check_class_changed(rq, p, prev_class, old_prio);
  6255. }
  6256. void normalize_rt_tasks(void)
  6257. {
  6258. struct task_struct *g, *p;
  6259. unsigned long flags;
  6260. struct rq *rq;
  6261. read_lock(&tasklist_lock);
  6262. for_each_process_thread(g, p) {
  6263. /*
  6264. * Only normalize user tasks:
  6265. */
  6266. if (p->flags & PF_KTHREAD)
  6267. continue;
  6268. p->se.exec_start = 0;
  6269. #ifdef CONFIG_SCHEDSTATS
  6270. p->se.statistics.wait_start = 0;
  6271. p->se.statistics.sleep_start = 0;
  6272. p->se.statistics.block_start = 0;
  6273. #endif
  6274. if (!dl_task(p) && !rt_task(p)) {
  6275. /*
  6276. * Renice negative nice level userspace
  6277. * tasks back to 0:
  6278. */
  6279. if (task_nice(p) < 0)
  6280. set_user_nice(p, 0);
  6281. continue;
  6282. }
  6283. rq = task_rq_lock(p, &flags);
  6284. normalize_task(rq, p);
  6285. task_rq_unlock(rq, p, &flags);
  6286. }
  6287. read_unlock(&tasklist_lock);
  6288. }
  6289. #endif /* CONFIG_MAGIC_SYSRQ */
  6290. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6291. /*
  6292. * These functions are only useful for the IA64 MCA handling, or kdb.
  6293. *
  6294. * They can only be called when the whole system has been
  6295. * stopped - every CPU needs to be quiescent, and no scheduling
  6296. * activity can take place. Using them for anything else would
  6297. * be a serious bug, and as a result, they aren't even visible
  6298. * under any other configuration.
  6299. */
  6300. /**
  6301. * curr_task - return the current task for a given cpu.
  6302. * @cpu: the processor in question.
  6303. *
  6304. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6305. *
  6306. * Return: The current task for @cpu.
  6307. */
  6308. struct task_struct *curr_task(int cpu)
  6309. {
  6310. return cpu_curr(cpu);
  6311. }
  6312. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6313. #ifdef CONFIG_IA64
  6314. /**
  6315. * set_curr_task - set the current task for a given cpu.
  6316. * @cpu: the processor in question.
  6317. * @p: the task pointer to set.
  6318. *
  6319. * Description: This function must only be used when non-maskable interrupts
  6320. * are serviced on a separate stack. It allows the architecture to switch the
  6321. * notion of the current task on a cpu in a non-blocking manner. This function
  6322. * must be called with all CPU's synchronized, and interrupts disabled, the
  6323. * and caller must save the original value of the current task (see
  6324. * curr_task() above) and restore that value before reenabling interrupts and
  6325. * re-starting the system.
  6326. *
  6327. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6328. */
  6329. void set_curr_task(int cpu, struct task_struct *p)
  6330. {
  6331. cpu_curr(cpu) = p;
  6332. }
  6333. #endif
  6334. #ifdef CONFIG_CGROUP_SCHED
  6335. /* task_group_lock serializes the addition/removal of task groups */
  6336. static DEFINE_SPINLOCK(task_group_lock);
  6337. static void free_sched_group(struct task_group *tg)
  6338. {
  6339. free_fair_sched_group(tg);
  6340. free_rt_sched_group(tg);
  6341. autogroup_free(tg);
  6342. kfree(tg);
  6343. }
  6344. /* allocate runqueue etc for a new task group */
  6345. struct task_group *sched_create_group(struct task_group *parent)
  6346. {
  6347. struct task_group *tg;
  6348. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6349. if (!tg)
  6350. return ERR_PTR(-ENOMEM);
  6351. if (!alloc_fair_sched_group(tg, parent))
  6352. goto err;
  6353. if (!alloc_rt_sched_group(tg, parent))
  6354. goto err;
  6355. return tg;
  6356. err:
  6357. free_sched_group(tg);
  6358. return ERR_PTR(-ENOMEM);
  6359. }
  6360. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6361. {
  6362. unsigned long flags;
  6363. spin_lock_irqsave(&task_group_lock, flags);
  6364. list_add_rcu(&tg->list, &task_groups);
  6365. WARN_ON(!parent); /* root should already exist */
  6366. tg->parent = parent;
  6367. INIT_LIST_HEAD(&tg->children);
  6368. list_add_rcu(&tg->siblings, &parent->children);
  6369. spin_unlock_irqrestore(&task_group_lock, flags);
  6370. }
  6371. /* rcu callback to free various structures associated with a task group */
  6372. static void free_sched_group_rcu(struct rcu_head *rhp)
  6373. {
  6374. /* now it should be safe to free those cfs_rqs */
  6375. free_sched_group(container_of(rhp, struct task_group, rcu));
  6376. }
  6377. /* Destroy runqueue etc associated with a task group */
  6378. void sched_destroy_group(struct task_group *tg)
  6379. {
  6380. /* wait for possible concurrent references to cfs_rqs complete */
  6381. call_rcu(&tg->rcu, free_sched_group_rcu);
  6382. }
  6383. void sched_offline_group(struct task_group *tg)
  6384. {
  6385. unsigned long flags;
  6386. int i;
  6387. /* end participation in shares distribution */
  6388. for_each_possible_cpu(i)
  6389. unregister_fair_sched_group(tg, i);
  6390. spin_lock_irqsave(&task_group_lock, flags);
  6391. list_del_rcu(&tg->list);
  6392. list_del_rcu(&tg->siblings);
  6393. spin_unlock_irqrestore(&task_group_lock, flags);
  6394. }
  6395. /* change task's runqueue when it moves between groups.
  6396. * The caller of this function should have put the task in its new group
  6397. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6398. * reflect its new group.
  6399. */
  6400. void sched_move_task(struct task_struct *tsk)
  6401. {
  6402. struct task_group *tg;
  6403. int queued, running;
  6404. unsigned long flags;
  6405. struct rq *rq;
  6406. rq = task_rq_lock(tsk, &flags);
  6407. running = task_current(rq, tsk);
  6408. queued = task_on_rq_queued(tsk);
  6409. if (queued)
  6410. dequeue_task(rq, tsk, 0);
  6411. if (unlikely(running))
  6412. put_prev_task(rq, tsk);
  6413. /*
  6414. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6415. * which is pointless here. Thus, we pass "true" to task_css_check()
  6416. * to prevent lockdep warnings.
  6417. */
  6418. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6419. struct task_group, css);
  6420. tg = autogroup_task_group(tsk, tg);
  6421. tsk->sched_task_group = tg;
  6422. #ifdef CONFIG_FAIR_GROUP_SCHED
  6423. if (tsk->sched_class->task_move_group)
  6424. tsk->sched_class->task_move_group(tsk, queued);
  6425. else
  6426. #endif
  6427. set_task_rq(tsk, task_cpu(tsk));
  6428. if (unlikely(running))
  6429. tsk->sched_class->set_curr_task(rq);
  6430. if (queued)
  6431. enqueue_task(rq, tsk, 0);
  6432. task_rq_unlock(rq, tsk, &flags);
  6433. }
  6434. #endif /* CONFIG_CGROUP_SCHED */
  6435. #ifdef CONFIG_RT_GROUP_SCHED
  6436. /*
  6437. * Ensure that the real time constraints are schedulable.
  6438. */
  6439. static DEFINE_MUTEX(rt_constraints_mutex);
  6440. /* Must be called with tasklist_lock held */
  6441. static inline int tg_has_rt_tasks(struct task_group *tg)
  6442. {
  6443. struct task_struct *g, *p;
  6444. /*
  6445. * Autogroups do not have RT tasks; see autogroup_create().
  6446. */
  6447. if (task_group_is_autogroup(tg))
  6448. return 0;
  6449. for_each_process_thread(g, p) {
  6450. if (rt_task(p) && task_group(p) == tg)
  6451. return 1;
  6452. }
  6453. return 0;
  6454. }
  6455. struct rt_schedulable_data {
  6456. struct task_group *tg;
  6457. u64 rt_period;
  6458. u64 rt_runtime;
  6459. };
  6460. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6461. {
  6462. struct rt_schedulable_data *d = data;
  6463. struct task_group *child;
  6464. unsigned long total, sum = 0;
  6465. u64 period, runtime;
  6466. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6467. runtime = tg->rt_bandwidth.rt_runtime;
  6468. if (tg == d->tg) {
  6469. period = d->rt_period;
  6470. runtime = d->rt_runtime;
  6471. }
  6472. /*
  6473. * Cannot have more runtime than the period.
  6474. */
  6475. if (runtime > period && runtime != RUNTIME_INF)
  6476. return -EINVAL;
  6477. /*
  6478. * Ensure we don't starve existing RT tasks.
  6479. */
  6480. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6481. return -EBUSY;
  6482. total = to_ratio(period, runtime);
  6483. /*
  6484. * Nobody can have more than the global setting allows.
  6485. */
  6486. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6487. return -EINVAL;
  6488. /*
  6489. * The sum of our children's runtime should not exceed our own.
  6490. */
  6491. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6492. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6493. runtime = child->rt_bandwidth.rt_runtime;
  6494. if (child == d->tg) {
  6495. period = d->rt_period;
  6496. runtime = d->rt_runtime;
  6497. }
  6498. sum += to_ratio(period, runtime);
  6499. }
  6500. if (sum > total)
  6501. return -EINVAL;
  6502. return 0;
  6503. }
  6504. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6505. {
  6506. int ret;
  6507. struct rt_schedulable_data data = {
  6508. .tg = tg,
  6509. .rt_period = period,
  6510. .rt_runtime = runtime,
  6511. };
  6512. rcu_read_lock();
  6513. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6514. rcu_read_unlock();
  6515. return ret;
  6516. }
  6517. static int tg_set_rt_bandwidth(struct task_group *tg,
  6518. u64 rt_period, u64 rt_runtime)
  6519. {
  6520. int i, err = 0;
  6521. /*
  6522. * Disallowing the root group RT runtime is BAD, it would disallow the
  6523. * kernel creating (and or operating) RT threads.
  6524. */
  6525. if (tg == &root_task_group && rt_runtime == 0)
  6526. return -EINVAL;
  6527. /* No period doesn't make any sense. */
  6528. if (rt_period == 0)
  6529. return -EINVAL;
  6530. mutex_lock(&rt_constraints_mutex);
  6531. read_lock(&tasklist_lock);
  6532. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6533. if (err)
  6534. goto unlock;
  6535. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6536. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6537. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6538. for_each_possible_cpu(i) {
  6539. struct rt_rq *rt_rq = tg->rt_rq[i];
  6540. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6541. rt_rq->rt_runtime = rt_runtime;
  6542. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6543. }
  6544. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6545. unlock:
  6546. read_unlock(&tasklist_lock);
  6547. mutex_unlock(&rt_constraints_mutex);
  6548. return err;
  6549. }
  6550. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6551. {
  6552. u64 rt_runtime, rt_period;
  6553. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6554. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6555. if (rt_runtime_us < 0)
  6556. rt_runtime = RUNTIME_INF;
  6557. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6558. }
  6559. static long sched_group_rt_runtime(struct task_group *tg)
  6560. {
  6561. u64 rt_runtime_us;
  6562. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6563. return -1;
  6564. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6565. do_div(rt_runtime_us, NSEC_PER_USEC);
  6566. return rt_runtime_us;
  6567. }
  6568. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6569. {
  6570. u64 rt_runtime, rt_period;
  6571. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6572. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6573. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6574. }
  6575. static long sched_group_rt_period(struct task_group *tg)
  6576. {
  6577. u64 rt_period_us;
  6578. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6579. do_div(rt_period_us, NSEC_PER_USEC);
  6580. return rt_period_us;
  6581. }
  6582. #endif /* CONFIG_RT_GROUP_SCHED */
  6583. #ifdef CONFIG_RT_GROUP_SCHED
  6584. static int sched_rt_global_constraints(void)
  6585. {
  6586. int ret = 0;
  6587. mutex_lock(&rt_constraints_mutex);
  6588. read_lock(&tasklist_lock);
  6589. ret = __rt_schedulable(NULL, 0, 0);
  6590. read_unlock(&tasklist_lock);
  6591. mutex_unlock(&rt_constraints_mutex);
  6592. return ret;
  6593. }
  6594. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6595. {
  6596. /* Don't accept realtime tasks when there is no way for them to run */
  6597. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6598. return 0;
  6599. return 1;
  6600. }
  6601. #else /* !CONFIG_RT_GROUP_SCHED */
  6602. static int sched_rt_global_constraints(void)
  6603. {
  6604. unsigned long flags;
  6605. int i, ret = 0;
  6606. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6607. for_each_possible_cpu(i) {
  6608. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6609. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6610. rt_rq->rt_runtime = global_rt_runtime();
  6611. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6612. }
  6613. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6614. return ret;
  6615. }
  6616. #endif /* CONFIG_RT_GROUP_SCHED */
  6617. static int sched_dl_global_constraints(void)
  6618. {
  6619. u64 runtime = global_rt_runtime();
  6620. u64 period = global_rt_period();
  6621. u64 new_bw = to_ratio(period, runtime);
  6622. struct dl_bw *dl_b;
  6623. int cpu, ret = 0;
  6624. unsigned long flags;
  6625. /*
  6626. * Here we want to check the bandwidth not being set to some
  6627. * value smaller than the currently allocated bandwidth in
  6628. * any of the root_domains.
  6629. *
  6630. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6631. * cycling on root_domains... Discussion on different/better
  6632. * solutions is welcome!
  6633. */
  6634. for_each_possible_cpu(cpu) {
  6635. rcu_read_lock_sched();
  6636. dl_b = dl_bw_of(cpu);
  6637. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6638. if (new_bw < dl_b->total_bw)
  6639. ret = -EBUSY;
  6640. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6641. rcu_read_unlock_sched();
  6642. if (ret)
  6643. break;
  6644. }
  6645. return ret;
  6646. }
  6647. static void sched_dl_do_global(void)
  6648. {
  6649. u64 new_bw = -1;
  6650. struct dl_bw *dl_b;
  6651. int cpu;
  6652. unsigned long flags;
  6653. def_dl_bandwidth.dl_period = global_rt_period();
  6654. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6655. if (global_rt_runtime() != RUNTIME_INF)
  6656. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6657. /*
  6658. * FIXME: As above...
  6659. */
  6660. for_each_possible_cpu(cpu) {
  6661. rcu_read_lock_sched();
  6662. dl_b = dl_bw_of(cpu);
  6663. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6664. dl_b->bw = new_bw;
  6665. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6666. rcu_read_unlock_sched();
  6667. }
  6668. }
  6669. static int sched_rt_global_validate(void)
  6670. {
  6671. if (sysctl_sched_rt_period <= 0)
  6672. return -EINVAL;
  6673. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6674. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6675. return -EINVAL;
  6676. return 0;
  6677. }
  6678. static void sched_rt_do_global(void)
  6679. {
  6680. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6681. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6682. }
  6683. int sched_rt_handler(struct ctl_table *table, int write,
  6684. void __user *buffer, size_t *lenp,
  6685. loff_t *ppos)
  6686. {
  6687. int old_period, old_runtime;
  6688. static DEFINE_MUTEX(mutex);
  6689. int ret;
  6690. mutex_lock(&mutex);
  6691. old_period = sysctl_sched_rt_period;
  6692. old_runtime = sysctl_sched_rt_runtime;
  6693. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6694. if (!ret && write) {
  6695. ret = sched_rt_global_validate();
  6696. if (ret)
  6697. goto undo;
  6698. ret = sched_rt_global_constraints();
  6699. if (ret)
  6700. goto undo;
  6701. ret = sched_dl_global_constraints();
  6702. if (ret)
  6703. goto undo;
  6704. sched_rt_do_global();
  6705. sched_dl_do_global();
  6706. }
  6707. if (0) {
  6708. undo:
  6709. sysctl_sched_rt_period = old_period;
  6710. sysctl_sched_rt_runtime = old_runtime;
  6711. }
  6712. mutex_unlock(&mutex);
  6713. return ret;
  6714. }
  6715. int sched_rr_handler(struct ctl_table *table, int write,
  6716. void __user *buffer, size_t *lenp,
  6717. loff_t *ppos)
  6718. {
  6719. int ret;
  6720. static DEFINE_MUTEX(mutex);
  6721. mutex_lock(&mutex);
  6722. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6723. /* make sure that internally we keep jiffies */
  6724. /* also, writing zero resets timeslice to default */
  6725. if (!ret && write) {
  6726. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6727. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6728. }
  6729. mutex_unlock(&mutex);
  6730. return ret;
  6731. }
  6732. #ifdef CONFIG_CGROUP_SCHED
  6733. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6734. {
  6735. return css ? container_of(css, struct task_group, css) : NULL;
  6736. }
  6737. static struct cgroup_subsys_state *
  6738. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6739. {
  6740. struct task_group *parent = css_tg(parent_css);
  6741. struct task_group *tg;
  6742. if (!parent) {
  6743. /* This is early initialization for the top cgroup */
  6744. return &root_task_group.css;
  6745. }
  6746. tg = sched_create_group(parent);
  6747. if (IS_ERR(tg))
  6748. return ERR_PTR(-ENOMEM);
  6749. return &tg->css;
  6750. }
  6751. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6752. {
  6753. struct task_group *tg = css_tg(css);
  6754. struct task_group *parent = css_tg(css->parent);
  6755. if (parent)
  6756. sched_online_group(tg, parent);
  6757. return 0;
  6758. }
  6759. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6760. {
  6761. struct task_group *tg = css_tg(css);
  6762. sched_destroy_group(tg);
  6763. }
  6764. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6765. {
  6766. struct task_group *tg = css_tg(css);
  6767. sched_offline_group(tg);
  6768. }
  6769. static void cpu_cgroup_fork(struct task_struct *task)
  6770. {
  6771. sched_move_task(task);
  6772. }
  6773. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6774. struct cgroup_taskset *tset)
  6775. {
  6776. struct task_struct *task;
  6777. cgroup_taskset_for_each(task, tset) {
  6778. #ifdef CONFIG_RT_GROUP_SCHED
  6779. if (!sched_rt_can_attach(css_tg(css), task))
  6780. return -EINVAL;
  6781. #else
  6782. /* We don't support RT-tasks being in separate groups */
  6783. if (task->sched_class != &fair_sched_class)
  6784. return -EINVAL;
  6785. #endif
  6786. }
  6787. return 0;
  6788. }
  6789. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6790. struct cgroup_taskset *tset)
  6791. {
  6792. struct task_struct *task;
  6793. cgroup_taskset_for_each(task, tset)
  6794. sched_move_task(task);
  6795. }
  6796. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6797. struct cgroup_subsys_state *old_css,
  6798. struct task_struct *task)
  6799. {
  6800. /*
  6801. * cgroup_exit() is called in the copy_process() failure path.
  6802. * Ignore this case since the task hasn't ran yet, this avoids
  6803. * trying to poke a half freed task state from generic code.
  6804. */
  6805. if (!(task->flags & PF_EXITING))
  6806. return;
  6807. sched_move_task(task);
  6808. }
  6809. #ifdef CONFIG_FAIR_GROUP_SCHED
  6810. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6811. struct cftype *cftype, u64 shareval)
  6812. {
  6813. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6814. }
  6815. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6816. struct cftype *cft)
  6817. {
  6818. struct task_group *tg = css_tg(css);
  6819. return (u64) scale_load_down(tg->shares);
  6820. }
  6821. #ifdef CONFIG_CFS_BANDWIDTH
  6822. static DEFINE_MUTEX(cfs_constraints_mutex);
  6823. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6824. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6825. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6826. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6827. {
  6828. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6829. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6830. if (tg == &root_task_group)
  6831. return -EINVAL;
  6832. /*
  6833. * Ensure we have at some amount of bandwidth every period. This is
  6834. * to prevent reaching a state of large arrears when throttled via
  6835. * entity_tick() resulting in prolonged exit starvation.
  6836. */
  6837. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6838. return -EINVAL;
  6839. /*
  6840. * Likewise, bound things on the otherside by preventing insane quota
  6841. * periods. This also allows us to normalize in computing quota
  6842. * feasibility.
  6843. */
  6844. if (period > max_cfs_quota_period)
  6845. return -EINVAL;
  6846. /*
  6847. * Prevent race between setting of cfs_rq->runtime_enabled and
  6848. * unthrottle_offline_cfs_rqs().
  6849. */
  6850. get_online_cpus();
  6851. mutex_lock(&cfs_constraints_mutex);
  6852. ret = __cfs_schedulable(tg, period, quota);
  6853. if (ret)
  6854. goto out_unlock;
  6855. runtime_enabled = quota != RUNTIME_INF;
  6856. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6857. /*
  6858. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6859. * before making related changes, and on->off must occur afterwards
  6860. */
  6861. if (runtime_enabled && !runtime_was_enabled)
  6862. cfs_bandwidth_usage_inc();
  6863. raw_spin_lock_irq(&cfs_b->lock);
  6864. cfs_b->period = ns_to_ktime(period);
  6865. cfs_b->quota = quota;
  6866. __refill_cfs_bandwidth_runtime(cfs_b);
  6867. /* restart the period timer (if active) to handle new period expiry */
  6868. if (runtime_enabled && cfs_b->timer_active) {
  6869. /* force a reprogram */
  6870. __start_cfs_bandwidth(cfs_b, true);
  6871. }
  6872. raw_spin_unlock_irq(&cfs_b->lock);
  6873. for_each_online_cpu(i) {
  6874. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6875. struct rq *rq = cfs_rq->rq;
  6876. raw_spin_lock_irq(&rq->lock);
  6877. cfs_rq->runtime_enabled = runtime_enabled;
  6878. cfs_rq->runtime_remaining = 0;
  6879. if (cfs_rq->throttled)
  6880. unthrottle_cfs_rq(cfs_rq);
  6881. raw_spin_unlock_irq(&rq->lock);
  6882. }
  6883. if (runtime_was_enabled && !runtime_enabled)
  6884. cfs_bandwidth_usage_dec();
  6885. out_unlock:
  6886. mutex_unlock(&cfs_constraints_mutex);
  6887. put_online_cpus();
  6888. return ret;
  6889. }
  6890. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6891. {
  6892. u64 quota, period;
  6893. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6894. if (cfs_quota_us < 0)
  6895. quota = RUNTIME_INF;
  6896. else
  6897. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6898. return tg_set_cfs_bandwidth(tg, period, quota);
  6899. }
  6900. long tg_get_cfs_quota(struct task_group *tg)
  6901. {
  6902. u64 quota_us;
  6903. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6904. return -1;
  6905. quota_us = tg->cfs_bandwidth.quota;
  6906. do_div(quota_us, NSEC_PER_USEC);
  6907. return quota_us;
  6908. }
  6909. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6910. {
  6911. u64 quota, period;
  6912. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6913. quota = tg->cfs_bandwidth.quota;
  6914. return tg_set_cfs_bandwidth(tg, period, quota);
  6915. }
  6916. long tg_get_cfs_period(struct task_group *tg)
  6917. {
  6918. u64 cfs_period_us;
  6919. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6920. do_div(cfs_period_us, NSEC_PER_USEC);
  6921. return cfs_period_us;
  6922. }
  6923. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6924. struct cftype *cft)
  6925. {
  6926. return tg_get_cfs_quota(css_tg(css));
  6927. }
  6928. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6929. struct cftype *cftype, s64 cfs_quota_us)
  6930. {
  6931. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6932. }
  6933. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6934. struct cftype *cft)
  6935. {
  6936. return tg_get_cfs_period(css_tg(css));
  6937. }
  6938. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6939. struct cftype *cftype, u64 cfs_period_us)
  6940. {
  6941. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6942. }
  6943. struct cfs_schedulable_data {
  6944. struct task_group *tg;
  6945. u64 period, quota;
  6946. };
  6947. /*
  6948. * normalize group quota/period to be quota/max_period
  6949. * note: units are usecs
  6950. */
  6951. static u64 normalize_cfs_quota(struct task_group *tg,
  6952. struct cfs_schedulable_data *d)
  6953. {
  6954. u64 quota, period;
  6955. if (tg == d->tg) {
  6956. period = d->period;
  6957. quota = d->quota;
  6958. } else {
  6959. period = tg_get_cfs_period(tg);
  6960. quota = tg_get_cfs_quota(tg);
  6961. }
  6962. /* note: these should typically be equivalent */
  6963. if (quota == RUNTIME_INF || quota == -1)
  6964. return RUNTIME_INF;
  6965. return to_ratio(period, quota);
  6966. }
  6967. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6968. {
  6969. struct cfs_schedulable_data *d = data;
  6970. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6971. s64 quota = 0, parent_quota = -1;
  6972. if (!tg->parent) {
  6973. quota = RUNTIME_INF;
  6974. } else {
  6975. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6976. quota = normalize_cfs_quota(tg, d);
  6977. parent_quota = parent_b->hierarchical_quota;
  6978. /*
  6979. * ensure max(child_quota) <= parent_quota, inherit when no
  6980. * limit is set
  6981. */
  6982. if (quota == RUNTIME_INF)
  6983. quota = parent_quota;
  6984. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6985. return -EINVAL;
  6986. }
  6987. cfs_b->hierarchical_quota = quota;
  6988. return 0;
  6989. }
  6990. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6991. {
  6992. int ret;
  6993. struct cfs_schedulable_data data = {
  6994. .tg = tg,
  6995. .period = period,
  6996. .quota = quota,
  6997. };
  6998. if (quota != RUNTIME_INF) {
  6999. do_div(data.period, NSEC_PER_USEC);
  7000. do_div(data.quota, NSEC_PER_USEC);
  7001. }
  7002. rcu_read_lock();
  7003. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7004. rcu_read_unlock();
  7005. return ret;
  7006. }
  7007. static int cpu_stats_show(struct seq_file *sf, void *v)
  7008. {
  7009. struct task_group *tg = css_tg(seq_css(sf));
  7010. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7011. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  7012. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  7013. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  7014. return 0;
  7015. }
  7016. #endif /* CONFIG_CFS_BANDWIDTH */
  7017. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7018. #ifdef CONFIG_RT_GROUP_SCHED
  7019. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  7020. struct cftype *cft, s64 val)
  7021. {
  7022. return sched_group_set_rt_runtime(css_tg(css), val);
  7023. }
  7024. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  7025. struct cftype *cft)
  7026. {
  7027. return sched_group_rt_runtime(css_tg(css));
  7028. }
  7029. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  7030. struct cftype *cftype, u64 rt_period_us)
  7031. {
  7032. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  7033. }
  7034. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  7035. struct cftype *cft)
  7036. {
  7037. return sched_group_rt_period(css_tg(css));
  7038. }
  7039. #endif /* CONFIG_RT_GROUP_SCHED */
  7040. static struct cftype cpu_files[] = {
  7041. #ifdef CONFIG_FAIR_GROUP_SCHED
  7042. {
  7043. .name = "shares",
  7044. .read_u64 = cpu_shares_read_u64,
  7045. .write_u64 = cpu_shares_write_u64,
  7046. },
  7047. #endif
  7048. #ifdef CONFIG_CFS_BANDWIDTH
  7049. {
  7050. .name = "cfs_quota_us",
  7051. .read_s64 = cpu_cfs_quota_read_s64,
  7052. .write_s64 = cpu_cfs_quota_write_s64,
  7053. },
  7054. {
  7055. .name = "cfs_period_us",
  7056. .read_u64 = cpu_cfs_period_read_u64,
  7057. .write_u64 = cpu_cfs_period_write_u64,
  7058. },
  7059. {
  7060. .name = "stat",
  7061. .seq_show = cpu_stats_show,
  7062. },
  7063. #endif
  7064. #ifdef CONFIG_RT_GROUP_SCHED
  7065. {
  7066. .name = "rt_runtime_us",
  7067. .read_s64 = cpu_rt_runtime_read,
  7068. .write_s64 = cpu_rt_runtime_write,
  7069. },
  7070. {
  7071. .name = "rt_period_us",
  7072. .read_u64 = cpu_rt_period_read_uint,
  7073. .write_u64 = cpu_rt_period_write_uint,
  7074. },
  7075. #endif
  7076. { } /* terminate */
  7077. };
  7078. struct cgroup_subsys cpu_cgrp_subsys = {
  7079. .css_alloc = cpu_cgroup_css_alloc,
  7080. .css_free = cpu_cgroup_css_free,
  7081. .css_online = cpu_cgroup_css_online,
  7082. .css_offline = cpu_cgroup_css_offline,
  7083. .fork = cpu_cgroup_fork,
  7084. .can_attach = cpu_cgroup_can_attach,
  7085. .attach = cpu_cgroup_attach,
  7086. .exit = cpu_cgroup_exit,
  7087. .legacy_cftypes = cpu_files,
  7088. .early_init = 1,
  7089. };
  7090. #endif /* CONFIG_CGROUP_SCHED */
  7091. void dump_cpu_task(int cpu)
  7092. {
  7093. pr_info("Task dump for CPU %d:\n", cpu);
  7094. sched_show_task(cpu_curr(cpu));
  7095. }