pci.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/aer.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/blk-mq.h>
  17. #include <linux/blk-mq-pci.h>
  18. #include <linux/dmi.h>
  19. #include <linux/init.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/io.h>
  22. #include <linux/mm.h>
  23. #include <linux/module.h>
  24. #include <linux/mutex.h>
  25. #include <linux/once.h>
  26. #include <linux/pci.h>
  27. #include <linux/t10-pi.h>
  28. #include <linux/types.h>
  29. #include <linux/io-64-nonatomic-lo-hi.h>
  30. #include <linux/sed-opal.h>
  31. #include "nvme.h"
  32. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  33. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  34. #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
  35. static int use_threaded_interrupts;
  36. module_param(use_threaded_interrupts, int, 0);
  37. static bool use_cmb_sqes = true;
  38. module_param(use_cmb_sqes, bool, 0644);
  39. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  40. static unsigned int max_host_mem_size_mb = 128;
  41. module_param(max_host_mem_size_mb, uint, 0444);
  42. MODULE_PARM_DESC(max_host_mem_size_mb,
  43. "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  44. static unsigned int sgl_threshold = SZ_32K;
  45. module_param(sgl_threshold, uint, 0644);
  46. MODULE_PARM_DESC(sgl_threshold,
  47. "Use SGLs when average request segment size is larger or equal to "
  48. "this size. Use 0 to disable SGLs.");
  49. static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  50. static const struct kernel_param_ops io_queue_depth_ops = {
  51. .set = io_queue_depth_set,
  52. .get = param_get_int,
  53. };
  54. static int io_queue_depth = 1024;
  55. module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  56. MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
  57. struct nvme_dev;
  58. struct nvme_queue;
  59. static void nvme_process_cq(struct nvme_queue *nvmeq);
  60. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  61. /*
  62. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  63. */
  64. struct nvme_dev {
  65. struct nvme_queue *queues;
  66. struct blk_mq_tag_set tagset;
  67. struct blk_mq_tag_set admin_tagset;
  68. u32 __iomem *dbs;
  69. struct device *dev;
  70. struct dma_pool *prp_page_pool;
  71. struct dma_pool *prp_small_pool;
  72. unsigned online_queues;
  73. unsigned max_qid;
  74. int q_depth;
  75. u32 db_stride;
  76. void __iomem *bar;
  77. unsigned long bar_mapped_size;
  78. struct work_struct remove_work;
  79. struct mutex shutdown_lock;
  80. bool subsystem;
  81. void __iomem *cmb;
  82. pci_bus_addr_t cmb_bus_addr;
  83. u64 cmb_size;
  84. u32 cmbsz;
  85. u32 cmbloc;
  86. struct nvme_ctrl ctrl;
  87. struct completion ioq_wait;
  88. /* shadow doorbell buffer support: */
  89. u32 *dbbuf_dbs;
  90. dma_addr_t dbbuf_dbs_dma_addr;
  91. u32 *dbbuf_eis;
  92. dma_addr_t dbbuf_eis_dma_addr;
  93. /* host memory buffer support: */
  94. u64 host_mem_size;
  95. u32 nr_host_mem_descs;
  96. dma_addr_t host_mem_descs_dma;
  97. struct nvme_host_mem_buf_desc *host_mem_descs;
  98. void **host_mem_desc_bufs;
  99. };
  100. static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
  101. {
  102. int n = 0, ret;
  103. ret = kstrtoint(val, 10, &n);
  104. if (ret != 0 || n < 2)
  105. return -EINVAL;
  106. return param_set_int(val, kp);
  107. }
  108. static inline unsigned int sq_idx(unsigned int qid, u32 stride)
  109. {
  110. return qid * 2 * stride;
  111. }
  112. static inline unsigned int cq_idx(unsigned int qid, u32 stride)
  113. {
  114. return (qid * 2 + 1) * stride;
  115. }
  116. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  117. {
  118. return container_of(ctrl, struct nvme_dev, ctrl);
  119. }
  120. /*
  121. * An NVM Express queue. Each device has at least two (one for admin
  122. * commands and one for I/O commands).
  123. */
  124. struct nvme_queue {
  125. struct device *q_dmadev;
  126. struct nvme_dev *dev;
  127. spinlock_t q_lock;
  128. struct nvme_command *sq_cmds;
  129. struct nvme_command __iomem *sq_cmds_io;
  130. volatile struct nvme_completion *cqes;
  131. struct blk_mq_tags **tags;
  132. dma_addr_t sq_dma_addr;
  133. dma_addr_t cq_dma_addr;
  134. u32 __iomem *q_db;
  135. u16 q_depth;
  136. s16 cq_vector;
  137. u16 sq_tail;
  138. u16 cq_head;
  139. u16 qid;
  140. u8 cq_phase;
  141. u8 cqe_seen;
  142. u32 *dbbuf_sq_db;
  143. u32 *dbbuf_cq_db;
  144. u32 *dbbuf_sq_ei;
  145. u32 *dbbuf_cq_ei;
  146. };
  147. /*
  148. * The nvme_iod describes the data in an I/O, including the list of PRP
  149. * entries. You can't see it in this data structure because C doesn't let
  150. * me express that. Use nvme_init_iod to ensure there's enough space
  151. * allocated to store the PRP list.
  152. */
  153. struct nvme_iod {
  154. struct nvme_request req;
  155. struct nvme_queue *nvmeq;
  156. bool use_sgl;
  157. int aborted;
  158. int npages; /* In the PRP list. 0 means small pool in use */
  159. int nents; /* Used in scatterlist */
  160. int length; /* Of data, in bytes */
  161. dma_addr_t first_dma;
  162. struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
  163. struct scatterlist *sg;
  164. struct scatterlist inline_sg[0];
  165. };
  166. /*
  167. * Check we didin't inadvertently grow the command struct
  168. */
  169. static inline void _nvme_check_size(void)
  170. {
  171. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  172. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  173. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  174. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  175. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  176. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  177. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  178. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  179. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
  180. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
  181. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  182. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  183. BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
  184. }
  185. static inline unsigned int nvme_dbbuf_size(u32 stride)
  186. {
  187. return ((num_possible_cpus() + 1) * 8 * stride);
  188. }
  189. static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
  190. {
  191. unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
  192. if (dev->dbbuf_dbs)
  193. return 0;
  194. dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
  195. &dev->dbbuf_dbs_dma_addr,
  196. GFP_KERNEL);
  197. if (!dev->dbbuf_dbs)
  198. return -ENOMEM;
  199. dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
  200. &dev->dbbuf_eis_dma_addr,
  201. GFP_KERNEL);
  202. if (!dev->dbbuf_eis) {
  203. dma_free_coherent(dev->dev, mem_size,
  204. dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
  205. dev->dbbuf_dbs = NULL;
  206. return -ENOMEM;
  207. }
  208. return 0;
  209. }
  210. static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
  211. {
  212. unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
  213. if (dev->dbbuf_dbs) {
  214. dma_free_coherent(dev->dev, mem_size,
  215. dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
  216. dev->dbbuf_dbs = NULL;
  217. }
  218. if (dev->dbbuf_eis) {
  219. dma_free_coherent(dev->dev, mem_size,
  220. dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
  221. dev->dbbuf_eis = NULL;
  222. }
  223. }
  224. static void nvme_dbbuf_init(struct nvme_dev *dev,
  225. struct nvme_queue *nvmeq, int qid)
  226. {
  227. if (!dev->dbbuf_dbs || !qid)
  228. return;
  229. nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
  230. nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
  231. nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
  232. nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
  233. }
  234. static void nvme_dbbuf_set(struct nvme_dev *dev)
  235. {
  236. struct nvme_command c;
  237. if (!dev->dbbuf_dbs)
  238. return;
  239. memset(&c, 0, sizeof(c));
  240. c.dbbuf.opcode = nvme_admin_dbbuf;
  241. c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
  242. c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
  243. if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
  244. dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
  245. /* Free memory and continue on */
  246. nvme_dbbuf_dma_free(dev);
  247. }
  248. }
  249. static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
  250. {
  251. return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
  252. }
  253. /* Update dbbuf and return true if an MMIO is required */
  254. static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
  255. volatile u32 *dbbuf_ei)
  256. {
  257. if (dbbuf_db) {
  258. u16 old_value;
  259. /*
  260. * Ensure that the queue is written before updating
  261. * the doorbell in memory
  262. */
  263. wmb();
  264. old_value = *dbbuf_db;
  265. *dbbuf_db = value;
  266. if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
  267. return false;
  268. }
  269. return true;
  270. }
  271. /*
  272. * Max size of iod being embedded in the request payload
  273. */
  274. #define NVME_INT_PAGES 2
  275. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  276. /*
  277. * Will slightly overestimate the number of pages needed. This is OK
  278. * as it only leads to a small amount of wasted memory for the lifetime of
  279. * the I/O.
  280. */
  281. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  282. {
  283. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  284. dev->ctrl.page_size);
  285. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  286. }
  287. /*
  288. * Calculates the number of pages needed for the SGL segments. For example a 4k
  289. * page can accommodate 256 SGL descriptors.
  290. */
  291. static int nvme_pci_npages_sgl(unsigned int num_seg)
  292. {
  293. return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
  294. }
  295. static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
  296. unsigned int size, unsigned int nseg, bool use_sgl)
  297. {
  298. size_t alloc_size;
  299. if (use_sgl)
  300. alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
  301. else
  302. alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
  303. return alloc_size + sizeof(struct scatterlist) * nseg;
  304. }
  305. static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
  306. {
  307. unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
  308. NVME_INT_BYTES(dev), NVME_INT_PAGES,
  309. use_sgl);
  310. return sizeof(struct nvme_iod) + alloc_size;
  311. }
  312. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  313. unsigned int hctx_idx)
  314. {
  315. struct nvme_dev *dev = data;
  316. struct nvme_queue *nvmeq = &dev->queues[0];
  317. WARN_ON(hctx_idx != 0);
  318. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  319. WARN_ON(nvmeq->tags);
  320. hctx->driver_data = nvmeq;
  321. nvmeq->tags = &dev->admin_tagset.tags[0];
  322. return 0;
  323. }
  324. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  325. {
  326. struct nvme_queue *nvmeq = hctx->driver_data;
  327. nvmeq->tags = NULL;
  328. }
  329. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  330. unsigned int hctx_idx)
  331. {
  332. struct nvme_dev *dev = data;
  333. struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
  334. if (!nvmeq->tags)
  335. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  336. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  337. hctx->driver_data = nvmeq;
  338. return 0;
  339. }
  340. static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
  341. unsigned int hctx_idx, unsigned int numa_node)
  342. {
  343. struct nvme_dev *dev = set->driver_data;
  344. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  345. int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
  346. struct nvme_queue *nvmeq = &dev->queues[queue_idx];
  347. BUG_ON(!nvmeq);
  348. iod->nvmeq = nvmeq;
  349. return 0;
  350. }
  351. static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
  352. {
  353. struct nvme_dev *dev = set->driver_data;
  354. return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
  355. }
  356. /**
  357. * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  358. * @nvmeq: The queue to use
  359. * @cmd: The command to send
  360. *
  361. * Safe to use from interrupt context
  362. */
  363. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  364. struct nvme_command *cmd)
  365. {
  366. u16 tail = nvmeq->sq_tail;
  367. if (nvmeq->sq_cmds_io)
  368. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  369. else
  370. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  371. if (++tail == nvmeq->q_depth)
  372. tail = 0;
  373. if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
  374. nvmeq->dbbuf_sq_ei))
  375. writel(tail, nvmeq->q_db);
  376. nvmeq->sq_tail = tail;
  377. }
  378. static void **nvme_pci_iod_list(struct request *req)
  379. {
  380. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  381. return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
  382. }
  383. static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
  384. {
  385. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  386. int nseg = blk_rq_nr_phys_segments(req);
  387. unsigned int avg_seg_size;
  388. if (nseg == 0)
  389. return false;
  390. avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
  391. if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
  392. return false;
  393. if (!iod->nvmeq->qid)
  394. return false;
  395. if (!sgl_threshold || avg_seg_size < sgl_threshold)
  396. return false;
  397. return true;
  398. }
  399. static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
  400. {
  401. struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
  402. int nseg = blk_rq_nr_phys_segments(rq);
  403. unsigned int size = blk_rq_payload_bytes(rq);
  404. iod->use_sgl = nvme_pci_use_sgls(dev, rq);
  405. if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
  406. size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
  407. iod->use_sgl);
  408. iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
  409. if (!iod->sg)
  410. return BLK_STS_RESOURCE;
  411. } else {
  412. iod->sg = iod->inline_sg;
  413. }
  414. iod->aborted = 0;
  415. iod->npages = -1;
  416. iod->nents = 0;
  417. iod->length = size;
  418. return BLK_STS_OK;
  419. }
  420. static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
  421. {
  422. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  423. const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
  424. dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
  425. int i;
  426. if (iod->npages == 0)
  427. dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
  428. dma_addr);
  429. for (i = 0; i < iod->npages; i++) {
  430. void *addr = nvme_pci_iod_list(req)[i];
  431. if (iod->use_sgl) {
  432. struct nvme_sgl_desc *sg_list = addr;
  433. next_dma_addr =
  434. le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
  435. } else {
  436. __le64 *prp_list = addr;
  437. next_dma_addr = le64_to_cpu(prp_list[last_prp]);
  438. }
  439. dma_pool_free(dev->prp_page_pool, addr, dma_addr);
  440. dma_addr = next_dma_addr;
  441. }
  442. if (iod->sg != iod->inline_sg)
  443. kfree(iod->sg);
  444. }
  445. #ifdef CONFIG_BLK_DEV_INTEGRITY
  446. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  447. {
  448. if (be32_to_cpu(pi->ref_tag) == v)
  449. pi->ref_tag = cpu_to_be32(p);
  450. }
  451. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  452. {
  453. if (be32_to_cpu(pi->ref_tag) == p)
  454. pi->ref_tag = cpu_to_be32(v);
  455. }
  456. /**
  457. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  458. *
  459. * The virtual start sector is the one that was originally submitted by the
  460. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  461. * start sector may be different. Remap protection information to match the
  462. * physical LBA on writes, and back to the original seed on reads.
  463. *
  464. * Type 0 and 3 do not have a ref tag, so no remapping required.
  465. */
  466. static void nvme_dif_remap(struct request *req,
  467. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  468. {
  469. struct nvme_ns *ns = req->rq_disk->private_data;
  470. struct bio_integrity_payload *bip;
  471. struct t10_pi_tuple *pi;
  472. void *p, *pmap;
  473. u32 i, nlb, ts, phys, virt;
  474. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  475. return;
  476. bip = bio_integrity(req->bio);
  477. if (!bip)
  478. return;
  479. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  480. p = pmap;
  481. virt = bip_get_seed(bip);
  482. phys = nvme_block_nr(ns, blk_rq_pos(req));
  483. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  484. ts = ns->disk->queue->integrity.tuple_size;
  485. for (i = 0; i < nlb; i++, virt++, phys++) {
  486. pi = (struct t10_pi_tuple *)p;
  487. dif_swap(phys, virt, pi);
  488. p += ts;
  489. }
  490. kunmap_atomic(pmap);
  491. }
  492. #else /* CONFIG_BLK_DEV_INTEGRITY */
  493. static void nvme_dif_remap(struct request *req,
  494. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  495. {
  496. }
  497. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  498. {
  499. }
  500. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  501. {
  502. }
  503. #endif
  504. static void nvme_print_sgl(struct scatterlist *sgl, int nents)
  505. {
  506. int i;
  507. struct scatterlist *sg;
  508. for_each_sg(sgl, sg, nents, i) {
  509. dma_addr_t phys = sg_phys(sg);
  510. pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
  511. "dma_address:%pad dma_length:%d\n",
  512. i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
  513. sg_dma_len(sg));
  514. }
  515. }
  516. static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
  517. struct request *req, struct nvme_rw_command *cmnd)
  518. {
  519. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  520. struct dma_pool *pool;
  521. int length = blk_rq_payload_bytes(req);
  522. struct scatterlist *sg = iod->sg;
  523. int dma_len = sg_dma_len(sg);
  524. u64 dma_addr = sg_dma_address(sg);
  525. u32 page_size = dev->ctrl.page_size;
  526. int offset = dma_addr & (page_size - 1);
  527. __le64 *prp_list;
  528. void **list = nvme_pci_iod_list(req);
  529. dma_addr_t prp_dma;
  530. int nprps, i;
  531. length -= (page_size - offset);
  532. if (length <= 0) {
  533. iod->first_dma = 0;
  534. goto done;
  535. }
  536. dma_len -= (page_size - offset);
  537. if (dma_len) {
  538. dma_addr += (page_size - offset);
  539. } else {
  540. sg = sg_next(sg);
  541. dma_addr = sg_dma_address(sg);
  542. dma_len = sg_dma_len(sg);
  543. }
  544. if (length <= page_size) {
  545. iod->first_dma = dma_addr;
  546. goto done;
  547. }
  548. nprps = DIV_ROUND_UP(length, page_size);
  549. if (nprps <= (256 / 8)) {
  550. pool = dev->prp_small_pool;
  551. iod->npages = 0;
  552. } else {
  553. pool = dev->prp_page_pool;
  554. iod->npages = 1;
  555. }
  556. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  557. if (!prp_list) {
  558. iod->first_dma = dma_addr;
  559. iod->npages = -1;
  560. return BLK_STS_RESOURCE;
  561. }
  562. list[0] = prp_list;
  563. iod->first_dma = prp_dma;
  564. i = 0;
  565. for (;;) {
  566. if (i == page_size >> 3) {
  567. __le64 *old_prp_list = prp_list;
  568. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  569. if (!prp_list)
  570. return BLK_STS_RESOURCE;
  571. list[iod->npages++] = prp_list;
  572. prp_list[0] = old_prp_list[i - 1];
  573. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  574. i = 1;
  575. }
  576. prp_list[i++] = cpu_to_le64(dma_addr);
  577. dma_len -= page_size;
  578. dma_addr += page_size;
  579. length -= page_size;
  580. if (length <= 0)
  581. break;
  582. if (dma_len > 0)
  583. continue;
  584. if (unlikely(dma_len < 0))
  585. goto bad_sgl;
  586. sg = sg_next(sg);
  587. dma_addr = sg_dma_address(sg);
  588. dma_len = sg_dma_len(sg);
  589. }
  590. done:
  591. cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  592. cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
  593. return BLK_STS_OK;
  594. bad_sgl:
  595. WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
  596. "Invalid SGL for payload:%d nents:%d\n",
  597. blk_rq_payload_bytes(req), iod->nents);
  598. return BLK_STS_IOERR;
  599. }
  600. static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
  601. struct scatterlist *sg)
  602. {
  603. sge->addr = cpu_to_le64(sg_dma_address(sg));
  604. sge->length = cpu_to_le32(sg_dma_len(sg));
  605. sge->type = NVME_SGL_FMT_DATA_DESC << 4;
  606. }
  607. static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
  608. dma_addr_t dma_addr, int entries)
  609. {
  610. sge->addr = cpu_to_le64(dma_addr);
  611. if (entries < SGES_PER_PAGE) {
  612. sge->length = cpu_to_le32(entries * sizeof(*sge));
  613. sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
  614. } else {
  615. sge->length = cpu_to_le32(PAGE_SIZE);
  616. sge->type = NVME_SGL_FMT_SEG_DESC << 4;
  617. }
  618. }
  619. static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
  620. struct request *req, struct nvme_rw_command *cmd, int entries)
  621. {
  622. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  623. struct dma_pool *pool;
  624. struct nvme_sgl_desc *sg_list;
  625. struct scatterlist *sg = iod->sg;
  626. dma_addr_t sgl_dma;
  627. int i = 0;
  628. /* setting the transfer type as SGL */
  629. cmd->flags = NVME_CMD_SGL_METABUF;
  630. if (entries == 1) {
  631. nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
  632. return BLK_STS_OK;
  633. }
  634. if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
  635. pool = dev->prp_small_pool;
  636. iod->npages = 0;
  637. } else {
  638. pool = dev->prp_page_pool;
  639. iod->npages = 1;
  640. }
  641. sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
  642. if (!sg_list) {
  643. iod->npages = -1;
  644. return BLK_STS_RESOURCE;
  645. }
  646. nvme_pci_iod_list(req)[0] = sg_list;
  647. iod->first_dma = sgl_dma;
  648. nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
  649. do {
  650. if (i == SGES_PER_PAGE) {
  651. struct nvme_sgl_desc *old_sg_desc = sg_list;
  652. struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
  653. sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
  654. if (!sg_list)
  655. return BLK_STS_RESOURCE;
  656. i = 0;
  657. nvme_pci_iod_list(req)[iod->npages++] = sg_list;
  658. sg_list[i++] = *link;
  659. nvme_pci_sgl_set_seg(link, sgl_dma, entries);
  660. }
  661. nvme_pci_sgl_set_data(&sg_list[i++], sg);
  662. sg = sg_next(sg);
  663. } while (--entries > 0);
  664. return BLK_STS_OK;
  665. }
  666. static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
  667. struct nvme_command *cmnd)
  668. {
  669. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  670. struct request_queue *q = req->q;
  671. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  672. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  673. blk_status_t ret = BLK_STS_IOERR;
  674. int nr_mapped;
  675. sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
  676. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  677. if (!iod->nents)
  678. goto out;
  679. ret = BLK_STS_RESOURCE;
  680. nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
  681. DMA_ATTR_NO_WARN);
  682. if (!nr_mapped)
  683. goto out;
  684. if (iod->use_sgl)
  685. ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
  686. else
  687. ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
  688. if (ret != BLK_STS_OK)
  689. goto out_unmap;
  690. ret = BLK_STS_IOERR;
  691. if (blk_integrity_rq(req)) {
  692. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  693. goto out_unmap;
  694. sg_init_table(&iod->meta_sg, 1);
  695. if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
  696. goto out_unmap;
  697. if (req_op(req) == REQ_OP_WRITE)
  698. nvme_dif_remap(req, nvme_dif_prep);
  699. if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
  700. goto out_unmap;
  701. }
  702. if (blk_integrity_rq(req))
  703. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
  704. return BLK_STS_OK;
  705. out_unmap:
  706. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  707. out:
  708. return ret;
  709. }
  710. static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
  711. {
  712. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  713. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  714. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  715. if (iod->nents) {
  716. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  717. if (blk_integrity_rq(req)) {
  718. if (req_op(req) == REQ_OP_READ)
  719. nvme_dif_remap(req, nvme_dif_complete);
  720. dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
  721. }
  722. }
  723. nvme_cleanup_cmd(req);
  724. nvme_free_iod(dev, req);
  725. }
  726. /*
  727. * NOTE: ns is NULL when called on the admin queue.
  728. */
  729. static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  730. const struct blk_mq_queue_data *bd)
  731. {
  732. struct nvme_ns *ns = hctx->queue->queuedata;
  733. struct nvme_queue *nvmeq = hctx->driver_data;
  734. struct nvme_dev *dev = nvmeq->dev;
  735. struct request *req = bd->rq;
  736. struct nvme_command cmnd;
  737. blk_status_t ret;
  738. ret = nvme_setup_cmd(ns, req, &cmnd);
  739. if (ret)
  740. return ret;
  741. ret = nvme_init_iod(req, dev);
  742. if (ret)
  743. goto out_free_cmd;
  744. if (blk_rq_nr_phys_segments(req)) {
  745. ret = nvme_map_data(dev, req, &cmnd);
  746. if (ret)
  747. goto out_cleanup_iod;
  748. }
  749. blk_mq_start_request(req);
  750. spin_lock_irq(&nvmeq->q_lock);
  751. if (unlikely(nvmeq->cq_vector < 0)) {
  752. ret = BLK_STS_IOERR;
  753. spin_unlock_irq(&nvmeq->q_lock);
  754. goto out_cleanup_iod;
  755. }
  756. __nvme_submit_cmd(nvmeq, &cmnd);
  757. nvme_process_cq(nvmeq);
  758. spin_unlock_irq(&nvmeq->q_lock);
  759. return BLK_STS_OK;
  760. out_cleanup_iod:
  761. nvme_free_iod(dev, req);
  762. out_free_cmd:
  763. nvme_cleanup_cmd(req);
  764. return ret;
  765. }
  766. static void nvme_pci_complete_rq(struct request *req)
  767. {
  768. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  769. nvme_unmap_data(iod->nvmeq->dev, req);
  770. nvme_complete_rq(req);
  771. }
  772. /* We read the CQE phase first to check if the rest of the entry is valid */
  773. static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
  774. u16 phase)
  775. {
  776. return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
  777. }
  778. static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
  779. {
  780. u16 head = nvmeq->cq_head;
  781. if (likely(nvmeq->cq_vector >= 0)) {
  782. if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
  783. nvmeq->dbbuf_cq_ei))
  784. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  785. }
  786. }
  787. static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
  788. struct nvme_completion *cqe)
  789. {
  790. struct request *req;
  791. if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
  792. dev_warn(nvmeq->dev->ctrl.device,
  793. "invalid id %d completed on queue %d\n",
  794. cqe->command_id, le16_to_cpu(cqe->sq_id));
  795. return;
  796. }
  797. /*
  798. * AEN requests are special as they don't time out and can
  799. * survive any kind of queue freeze and often don't respond to
  800. * aborts. We don't even bother to allocate a struct request
  801. * for them but rather special case them here.
  802. */
  803. if (unlikely(nvmeq->qid == 0 &&
  804. cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
  805. nvme_complete_async_event(&nvmeq->dev->ctrl,
  806. cqe->status, &cqe->result);
  807. return;
  808. }
  809. nvmeq->cqe_seen = 1;
  810. req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
  811. nvme_end_request(req, cqe->status, cqe->result);
  812. }
  813. static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
  814. struct nvme_completion *cqe)
  815. {
  816. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
  817. *cqe = nvmeq->cqes[nvmeq->cq_head];
  818. if (++nvmeq->cq_head == nvmeq->q_depth) {
  819. nvmeq->cq_head = 0;
  820. nvmeq->cq_phase = !nvmeq->cq_phase;
  821. }
  822. return true;
  823. }
  824. return false;
  825. }
  826. static void nvme_process_cq(struct nvme_queue *nvmeq)
  827. {
  828. struct nvme_completion cqe;
  829. int consumed = 0;
  830. while (nvme_read_cqe(nvmeq, &cqe)) {
  831. nvme_handle_cqe(nvmeq, &cqe);
  832. consumed++;
  833. }
  834. if (consumed)
  835. nvme_ring_cq_doorbell(nvmeq);
  836. }
  837. static irqreturn_t nvme_irq(int irq, void *data)
  838. {
  839. irqreturn_t result;
  840. struct nvme_queue *nvmeq = data;
  841. spin_lock(&nvmeq->q_lock);
  842. nvme_process_cq(nvmeq);
  843. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  844. nvmeq->cqe_seen = 0;
  845. spin_unlock(&nvmeq->q_lock);
  846. return result;
  847. }
  848. static irqreturn_t nvme_irq_check(int irq, void *data)
  849. {
  850. struct nvme_queue *nvmeq = data;
  851. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
  852. return IRQ_WAKE_THREAD;
  853. return IRQ_NONE;
  854. }
  855. static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
  856. {
  857. struct nvme_completion cqe;
  858. int found = 0, consumed = 0;
  859. if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
  860. return 0;
  861. spin_lock_irq(&nvmeq->q_lock);
  862. while (nvme_read_cqe(nvmeq, &cqe)) {
  863. nvme_handle_cqe(nvmeq, &cqe);
  864. consumed++;
  865. if (tag == cqe.command_id) {
  866. found = 1;
  867. break;
  868. }
  869. }
  870. if (consumed)
  871. nvme_ring_cq_doorbell(nvmeq);
  872. spin_unlock_irq(&nvmeq->q_lock);
  873. return found;
  874. }
  875. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  876. {
  877. struct nvme_queue *nvmeq = hctx->driver_data;
  878. return __nvme_poll(nvmeq, tag);
  879. }
  880. static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
  881. {
  882. struct nvme_dev *dev = to_nvme_dev(ctrl);
  883. struct nvme_queue *nvmeq = &dev->queues[0];
  884. struct nvme_command c;
  885. memset(&c, 0, sizeof(c));
  886. c.common.opcode = nvme_admin_async_event;
  887. c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
  888. spin_lock_irq(&nvmeq->q_lock);
  889. __nvme_submit_cmd(nvmeq, &c);
  890. spin_unlock_irq(&nvmeq->q_lock);
  891. }
  892. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  893. {
  894. struct nvme_command c;
  895. memset(&c, 0, sizeof(c));
  896. c.delete_queue.opcode = opcode;
  897. c.delete_queue.qid = cpu_to_le16(id);
  898. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  899. }
  900. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  901. struct nvme_queue *nvmeq)
  902. {
  903. struct nvme_command c;
  904. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  905. /*
  906. * Note: we (ab)use the fact that the prp fields survive if no data
  907. * is attached to the request.
  908. */
  909. memset(&c, 0, sizeof(c));
  910. c.create_cq.opcode = nvme_admin_create_cq;
  911. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  912. c.create_cq.cqid = cpu_to_le16(qid);
  913. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  914. c.create_cq.cq_flags = cpu_to_le16(flags);
  915. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  916. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  917. }
  918. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  919. struct nvme_queue *nvmeq)
  920. {
  921. struct nvme_command c;
  922. int flags = NVME_QUEUE_PHYS_CONTIG;
  923. /*
  924. * Note: we (ab)use the fact that the prp fields survive if no data
  925. * is attached to the request.
  926. */
  927. memset(&c, 0, sizeof(c));
  928. c.create_sq.opcode = nvme_admin_create_sq;
  929. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  930. c.create_sq.sqid = cpu_to_le16(qid);
  931. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  932. c.create_sq.sq_flags = cpu_to_le16(flags);
  933. c.create_sq.cqid = cpu_to_le16(qid);
  934. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  935. }
  936. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  937. {
  938. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  939. }
  940. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  941. {
  942. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  943. }
  944. static void abort_endio(struct request *req, blk_status_t error)
  945. {
  946. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  947. struct nvme_queue *nvmeq = iod->nvmeq;
  948. dev_warn(nvmeq->dev->ctrl.device,
  949. "Abort status: 0x%x", nvme_req(req)->status);
  950. atomic_inc(&nvmeq->dev->ctrl.abort_limit);
  951. blk_mq_free_request(req);
  952. }
  953. static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
  954. {
  955. /* If true, indicates loss of adapter communication, possibly by a
  956. * NVMe Subsystem reset.
  957. */
  958. bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
  959. /* If there is a reset/reinit ongoing, we shouldn't reset again. */
  960. switch (dev->ctrl.state) {
  961. case NVME_CTRL_RESETTING:
  962. case NVME_CTRL_RECONNECTING:
  963. return false;
  964. default:
  965. break;
  966. }
  967. /* We shouldn't reset unless the controller is on fatal error state
  968. * _or_ if we lost the communication with it.
  969. */
  970. if (!(csts & NVME_CSTS_CFS) && !nssro)
  971. return false;
  972. /* If PCI error recovery process is happening, we cannot reset or
  973. * the recovery mechanism will surely fail.
  974. */
  975. if (pci_channel_offline(to_pci_dev(dev->dev)))
  976. return false;
  977. return true;
  978. }
  979. static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
  980. {
  981. /* Read a config register to help see what died. */
  982. u16 pci_status;
  983. int result;
  984. result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
  985. &pci_status);
  986. if (result == PCIBIOS_SUCCESSFUL)
  987. dev_warn(dev->ctrl.device,
  988. "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
  989. csts, pci_status);
  990. else
  991. dev_warn(dev->ctrl.device,
  992. "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
  993. csts, result);
  994. }
  995. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  996. {
  997. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  998. struct nvme_queue *nvmeq = iod->nvmeq;
  999. struct nvme_dev *dev = nvmeq->dev;
  1000. struct request *abort_req;
  1001. struct nvme_command cmd;
  1002. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1003. /*
  1004. * Reset immediately if the controller is failed
  1005. */
  1006. if (nvme_should_reset(dev, csts)) {
  1007. nvme_warn_reset(dev, csts);
  1008. nvme_dev_disable(dev, false);
  1009. nvme_reset_ctrl(&dev->ctrl);
  1010. return BLK_EH_HANDLED;
  1011. }
  1012. /*
  1013. * Did we miss an interrupt?
  1014. */
  1015. if (__nvme_poll(nvmeq, req->tag)) {
  1016. dev_warn(dev->ctrl.device,
  1017. "I/O %d QID %d timeout, completion polled\n",
  1018. req->tag, nvmeq->qid);
  1019. return BLK_EH_HANDLED;
  1020. }
  1021. /*
  1022. * Shutdown immediately if controller times out while starting. The
  1023. * reset work will see the pci device disabled when it gets the forced
  1024. * cancellation error. All outstanding requests are completed on
  1025. * shutdown, so we return BLK_EH_HANDLED.
  1026. */
  1027. if (dev->ctrl.state == NVME_CTRL_RESETTING) {
  1028. dev_warn(dev->ctrl.device,
  1029. "I/O %d QID %d timeout, disable controller\n",
  1030. req->tag, nvmeq->qid);
  1031. nvme_dev_disable(dev, false);
  1032. nvme_req(req)->flags |= NVME_REQ_CANCELLED;
  1033. return BLK_EH_HANDLED;
  1034. }
  1035. /*
  1036. * Shutdown the controller immediately and schedule a reset if the
  1037. * command was already aborted once before and still hasn't been
  1038. * returned to the driver, or if this is the admin queue.
  1039. */
  1040. if (!nvmeq->qid || iod->aborted) {
  1041. dev_warn(dev->ctrl.device,
  1042. "I/O %d QID %d timeout, reset controller\n",
  1043. req->tag, nvmeq->qid);
  1044. nvme_dev_disable(dev, false);
  1045. nvme_reset_ctrl(&dev->ctrl);
  1046. /*
  1047. * Mark the request as handled, since the inline shutdown
  1048. * forces all outstanding requests to complete.
  1049. */
  1050. nvme_req(req)->flags |= NVME_REQ_CANCELLED;
  1051. return BLK_EH_HANDLED;
  1052. }
  1053. if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
  1054. atomic_inc(&dev->ctrl.abort_limit);
  1055. return BLK_EH_RESET_TIMER;
  1056. }
  1057. iod->aborted = 1;
  1058. memset(&cmd, 0, sizeof(cmd));
  1059. cmd.abort.opcode = nvme_admin_abort_cmd;
  1060. cmd.abort.cid = req->tag;
  1061. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  1062. dev_warn(nvmeq->dev->ctrl.device,
  1063. "I/O %d QID %d timeout, aborting\n",
  1064. req->tag, nvmeq->qid);
  1065. abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
  1066. BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  1067. if (IS_ERR(abort_req)) {
  1068. atomic_inc(&dev->ctrl.abort_limit);
  1069. return BLK_EH_RESET_TIMER;
  1070. }
  1071. abort_req->timeout = ADMIN_TIMEOUT;
  1072. abort_req->end_io_data = NULL;
  1073. blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
  1074. /*
  1075. * The aborted req will be completed on receiving the abort req.
  1076. * We enable the timer again. If hit twice, it'll cause a device reset,
  1077. * as the device then is in a faulty state.
  1078. */
  1079. return BLK_EH_RESET_TIMER;
  1080. }
  1081. static void nvme_free_queue(struct nvme_queue *nvmeq)
  1082. {
  1083. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  1084. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  1085. if (nvmeq->sq_cmds)
  1086. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  1087. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  1088. }
  1089. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  1090. {
  1091. int i;
  1092. for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
  1093. dev->ctrl.queue_count--;
  1094. nvme_free_queue(&dev->queues[i]);
  1095. }
  1096. }
  1097. /**
  1098. * nvme_suspend_queue - put queue into suspended state
  1099. * @nvmeq - queue to suspend
  1100. */
  1101. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  1102. {
  1103. int vector;
  1104. spin_lock_irq(&nvmeq->q_lock);
  1105. if (nvmeq->cq_vector == -1) {
  1106. spin_unlock_irq(&nvmeq->q_lock);
  1107. return 1;
  1108. }
  1109. vector = nvmeq->cq_vector;
  1110. nvmeq->dev->online_queues--;
  1111. nvmeq->cq_vector = -1;
  1112. spin_unlock_irq(&nvmeq->q_lock);
  1113. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  1114. blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
  1115. pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
  1116. return 0;
  1117. }
  1118. static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
  1119. {
  1120. struct nvme_queue *nvmeq = &dev->queues[0];
  1121. if (shutdown)
  1122. nvme_shutdown_ctrl(&dev->ctrl);
  1123. else
  1124. nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1125. spin_lock_irq(&nvmeq->q_lock);
  1126. nvme_process_cq(nvmeq);
  1127. spin_unlock_irq(&nvmeq->q_lock);
  1128. }
  1129. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  1130. int entry_size)
  1131. {
  1132. int q_depth = dev->q_depth;
  1133. unsigned q_size_aligned = roundup(q_depth * entry_size,
  1134. dev->ctrl.page_size);
  1135. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  1136. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  1137. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  1138. q_depth = div_u64(mem_per_q, entry_size);
  1139. /*
  1140. * Ensure the reduced q_depth is above some threshold where it
  1141. * would be better to map queues in system memory with the
  1142. * original depth
  1143. */
  1144. if (q_depth < 64)
  1145. return -ENOMEM;
  1146. }
  1147. return q_depth;
  1148. }
  1149. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  1150. int qid, int depth)
  1151. {
  1152. if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
  1153. unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
  1154. dev->ctrl.page_size);
  1155. nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
  1156. nvmeq->sq_cmds_io = dev->cmb + offset;
  1157. } else {
  1158. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  1159. &nvmeq->sq_dma_addr, GFP_KERNEL);
  1160. if (!nvmeq->sq_cmds)
  1161. return -ENOMEM;
  1162. }
  1163. return 0;
  1164. }
  1165. static int nvme_alloc_queue(struct nvme_dev *dev, int qid,
  1166. int depth, int node)
  1167. {
  1168. struct nvme_queue *nvmeq = &dev->queues[qid];
  1169. if (dev->ctrl.queue_count > qid)
  1170. return 0;
  1171. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  1172. &nvmeq->cq_dma_addr, GFP_KERNEL);
  1173. if (!nvmeq->cqes)
  1174. goto free_nvmeq;
  1175. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  1176. goto free_cqdma;
  1177. nvmeq->q_dmadev = dev->dev;
  1178. nvmeq->dev = dev;
  1179. spin_lock_init(&nvmeq->q_lock);
  1180. nvmeq->cq_head = 0;
  1181. nvmeq->cq_phase = 1;
  1182. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1183. nvmeq->q_depth = depth;
  1184. nvmeq->qid = qid;
  1185. nvmeq->cq_vector = -1;
  1186. dev->ctrl.queue_count++;
  1187. return 0;
  1188. free_cqdma:
  1189. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  1190. nvmeq->cq_dma_addr);
  1191. free_nvmeq:
  1192. return -ENOMEM;
  1193. }
  1194. static int queue_request_irq(struct nvme_queue *nvmeq)
  1195. {
  1196. struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
  1197. int nr = nvmeq->dev->ctrl.instance;
  1198. if (use_threaded_interrupts) {
  1199. return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
  1200. nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
  1201. } else {
  1202. return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
  1203. NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
  1204. }
  1205. }
  1206. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  1207. {
  1208. struct nvme_dev *dev = nvmeq->dev;
  1209. spin_lock_irq(&nvmeq->q_lock);
  1210. nvmeq->sq_tail = 0;
  1211. nvmeq->cq_head = 0;
  1212. nvmeq->cq_phase = 1;
  1213. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1214. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  1215. nvme_dbbuf_init(dev, nvmeq, qid);
  1216. dev->online_queues++;
  1217. spin_unlock_irq(&nvmeq->q_lock);
  1218. }
  1219. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  1220. {
  1221. struct nvme_dev *dev = nvmeq->dev;
  1222. int result;
  1223. nvmeq->cq_vector = qid - 1;
  1224. result = adapter_alloc_cq(dev, qid, nvmeq);
  1225. if (result < 0)
  1226. return result;
  1227. result = adapter_alloc_sq(dev, qid, nvmeq);
  1228. if (result < 0)
  1229. goto release_cq;
  1230. nvme_init_queue(nvmeq, qid);
  1231. result = queue_request_irq(nvmeq);
  1232. if (result < 0)
  1233. goto release_sq;
  1234. return result;
  1235. release_sq:
  1236. adapter_delete_sq(dev, qid);
  1237. release_cq:
  1238. adapter_delete_cq(dev, qid);
  1239. return result;
  1240. }
  1241. static const struct blk_mq_ops nvme_mq_admin_ops = {
  1242. .queue_rq = nvme_queue_rq,
  1243. .complete = nvme_pci_complete_rq,
  1244. .init_hctx = nvme_admin_init_hctx,
  1245. .exit_hctx = nvme_admin_exit_hctx,
  1246. .init_request = nvme_init_request,
  1247. .timeout = nvme_timeout,
  1248. };
  1249. static const struct blk_mq_ops nvme_mq_ops = {
  1250. .queue_rq = nvme_queue_rq,
  1251. .complete = nvme_pci_complete_rq,
  1252. .init_hctx = nvme_init_hctx,
  1253. .init_request = nvme_init_request,
  1254. .map_queues = nvme_pci_map_queues,
  1255. .timeout = nvme_timeout,
  1256. .poll = nvme_poll,
  1257. };
  1258. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  1259. {
  1260. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  1261. /*
  1262. * If the controller was reset during removal, it's possible
  1263. * user requests may be waiting on a stopped queue. Start the
  1264. * queue to flush these to completion.
  1265. */
  1266. blk_mq_unquiesce_queue(dev->ctrl.admin_q);
  1267. blk_cleanup_queue(dev->ctrl.admin_q);
  1268. blk_mq_free_tag_set(&dev->admin_tagset);
  1269. }
  1270. }
  1271. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  1272. {
  1273. if (!dev->ctrl.admin_q) {
  1274. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1275. dev->admin_tagset.nr_hw_queues = 1;
  1276. dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
  1277. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1278. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1279. dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
  1280. dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
  1281. dev->admin_tagset.driver_data = dev;
  1282. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1283. return -ENOMEM;
  1284. dev->ctrl.admin_tagset = &dev->admin_tagset;
  1285. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1286. if (IS_ERR(dev->ctrl.admin_q)) {
  1287. blk_mq_free_tag_set(&dev->admin_tagset);
  1288. return -ENOMEM;
  1289. }
  1290. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1291. nvme_dev_remove_admin(dev);
  1292. dev->ctrl.admin_q = NULL;
  1293. return -ENODEV;
  1294. }
  1295. } else
  1296. blk_mq_unquiesce_queue(dev->ctrl.admin_q);
  1297. return 0;
  1298. }
  1299. static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1300. {
  1301. return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1302. }
  1303. static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
  1304. {
  1305. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1306. if (size <= dev->bar_mapped_size)
  1307. return 0;
  1308. if (size > pci_resource_len(pdev, 0))
  1309. return -ENOMEM;
  1310. if (dev->bar)
  1311. iounmap(dev->bar);
  1312. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1313. if (!dev->bar) {
  1314. dev->bar_mapped_size = 0;
  1315. return -ENOMEM;
  1316. }
  1317. dev->bar_mapped_size = size;
  1318. dev->dbs = dev->bar + NVME_REG_DBS;
  1319. return 0;
  1320. }
  1321. static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
  1322. {
  1323. int result;
  1324. u32 aqa;
  1325. struct nvme_queue *nvmeq;
  1326. result = nvme_remap_bar(dev, db_bar_size(dev, 0));
  1327. if (result < 0)
  1328. return result;
  1329. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
  1330. NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
  1331. if (dev->subsystem &&
  1332. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1333. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1334. result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1335. if (result < 0)
  1336. return result;
  1337. result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
  1338. dev_to_node(dev->dev));
  1339. if (result)
  1340. return result;
  1341. nvmeq = &dev->queues[0];
  1342. aqa = nvmeq->q_depth - 1;
  1343. aqa |= aqa << 16;
  1344. writel(aqa, dev->bar + NVME_REG_AQA);
  1345. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1346. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1347. result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1348. if (result)
  1349. return result;
  1350. nvmeq->cq_vector = 0;
  1351. nvme_init_queue(nvmeq, 0);
  1352. result = queue_request_irq(nvmeq);
  1353. if (result) {
  1354. nvmeq->cq_vector = -1;
  1355. return result;
  1356. }
  1357. return result;
  1358. }
  1359. static int nvme_create_io_queues(struct nvme_dev *dev)
  1360. {
  1361. unsigned i, max;
  1362. int ret = 0;
  1363. for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
  1364. /* vector == qid - 1, match nvme_create_queue */
  1365. if (nvme_alloc_queue(dev, i, dev->q_depth,
  1366. pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
  1367. ret = -ENOMEM;
  1368. break;
  1369. }
  1370. }
  1371. max = min(dev->max_qid, dev->ctrl.queue_count - 1);
  1372. for (i = dev->online_queues; i <= max; i++) {
  1373. ret = nvme_create_queue(&dev->queues[i], i);
  1374. if (ret)
  1375. break;
  1376. }
  1377. /*
  1378. * Ignore failing Create SQ/CQ commands, we can continue with less
  1379. * than the desired amount of queues, and even a controller without
  1380. * I/O queues can still be used to issue admin commands. This might
  1381. * be useful to upgrade a buggy firmware for example.
  1382. */
  1383. return ret >= 0 ? 0 : ret;
  1384. }
  1385. static ssize_t nvme_cmb_show(struct device *dev,
  1386. struct device_attribute *attr,
  1387. char *buf)
  1388. {
  1389. struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
  1390. return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
  1391. ndev->cmbloc, ndev->cmbsz);
  1392. }
  1393. static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
  1394. static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
  1395. {
  1396. u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
  1397. return 1ULL << (12 + 4 * szu);
  1398. }
  1399. static u32 nvme_cmb_size(struct nvme_dev *dev)
  1400. {
  1401. return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
  1402. }
  1403. static void nvme_map_cmb(struct nvme_dev *dev)
  1404. {
  1405. u64 size, offset;
  1406. resource_size_t bar_size;
  1407. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1408. int bar;
  1409. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1410. if (!dev->cmbsz)
  1411. return;
  1412. dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1413. if (!use_cmb_sqes)
  1414. return;
  1415. size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
  1416. offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
  1417. bar = NVME_CMB_BIR(dev->cmbloc);
  1418. bar_size = pci_resource_len(pdev, bar);
  1419. if (offset > bar_size)
  1420. return;
  1421. /*
  1422. * Controllers may support a CMB size larger than their BAR,
  1423. * for example, due to being behind a bridge. Reduce the CMB to
  1424. * the reported size of the BAR
  1425. */
  1426. if (size > bar_size - offset)
  1427. size = bar_size - offset;
  1428. dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
  1429. if (!dev->cmb)
  1430. return;
  1431. dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
  1432. dev->cmb_size = size;
  1433. if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
  1434. &dev_attr_cmb.attr, NULL))
  1435. dev_warn(dev->ctrl.device,
  1436. "failed to add sysfs attribute for CMB\n");
  1437. }
  1438. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1439. {
  1440. if (dev->cmb) {
  1441. iounmap(dev->cmb);
  1442. dev->cmb = NULL;
  1443. sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
  1444. &dev_attr_cmb.attr, NULL);
  1445. dev->cmbsz = 0;
  1446. }
  1447. }
  1448. static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
  1449. {
  1450. u64 dma_addr = dev->host_mem_descs_dma;
  1451. struct nvme_command c;
  1452. int ret;
  1453. memset(&c, 0, sizeof(c));
  1454. c.features.opcode = nvme_admin_set_features;
  1455. c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
  1456. c.features.dword11 = cpu_to_le32(bits);
  1457. c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
  1458. ilog2(dev->ctrl.page_size));
  1459. c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
  1460. c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
  1461. c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
  1462. ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  1463. if (ret) {
  1464. dev_warn(dev->ctrl.device,
  1465. "failed to set host mem (err %d, flags %#x).\n",
  1466. ret, bits);
  1467. }
  1468. return ret;
  1469. }
  1470. static void nvme_free_host_mem(struct nvme_dev *dev)
  1471. {
  1472. int i;
  1473. for (i = 0; i < dev->nr_host_mem_descs; i++) {
  1474. struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
  1475. size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
  1476. dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
  1477. le64_to_cpu(desc->addr));
  1478. }
  1479. kfree(dev->host_mem_desc_bufs);
  1480. dev->host_mem_desc_bufs = NULL;
  1481. dma_free_coherent(dev->dev,
  1482. dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
  1483. dev->host_mem_descs, dev->host_mem_descs_dma);
  1484. dev->host_mem_descs = NULL;
  1485. dev->nr_host_mem_descs = 0;
  1486. }
  1487. static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
  1488. u32 chunk_size)
  1489. {
  1490. struct nvme_host_mem_buf_desc *descs;
  1491. u32 max_entries, len;
  1492. dma_addr_t descs_dma;
  1493. int i = 0;
  1494. void **bufs;
  1495. u64 size, tmp;
  1496. tmp = (preferred + chunk_size - 1);
  1497. do_div(tmp, chunk_size);
  1498. max_entries = tmp;
  1499. if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
  1500. max_entries = dev->ctrl.hmmaxd;
  1501. descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
  1502. &descs_dma, GFP_KERNEL);
  1503. if (!descs)
  1504. goto out;
  1505. bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
  1506. if (!bufs)
  1507. goto out_free_descs;
  1508. for (size = 0; size < preferred && i < max_entries; size += len) {
  1509. dma_addr_t dma_addr;
  1510. len = min_t(u64, chunk_size, preferred - size);
  1511. bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
  1512. DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
  1513. if (!bufs[i])
  1514. break;
  1515. descs[i].addr = cpu_to_le64(dma_addr);
  1516. descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
  1517. i++;
  1518. }
  1519. if (!size)
  1520. goto out_free_bufs;
  1521. dev->nr_host_mem_descs = i;
  1522. dev->host_mem_size = size;
  1523. dev->host_mem_descs = descs;
  1524. dev->host_mem_descs_dma = descs_dma;
  1525. dev->host_mem_desc_bufs = bufs;
  1526. return 0;
  1527. out_free_bufs:
  1528. while (--i >= 0) {
  1529. size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
  1530. dma_free_coherent(dev->dev, size, bufs[i],
  1531. le64_to_cpu(descs[i].addr));
  1532. }
  1533. kfree(bufs);
  1534. out_free_descs:
  1535. dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
  1536. descs_dma);
  1537. out:
  1538. dev->host_mem_descs = NULL;
  1539. return -ENOMEM;
  1540. }
  1541. static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
  1542. {
  1543. u32 chunk_size;
  1544. /* start big and work our way down */
  1545. for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
  1546. chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
  1547. chunk_size /= 2) {
  1548. if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
  1549. if (!min || dev->host_mem_size >= min)
  1550. return 0;
  1551. nvme_free_host_mem(dev);
  1552. }
  1553. }
  1554. return -ENOMEM;
  1555. }
  1556. static int nvme_setup_host_mem(struct nvme_dev *dev)
  1557. {
  1558. u64 max = (u64)max_host_mem_size_mb * SZ_1M;
  1559. u64 preferred = (u64)dev->ctrl.hmpre * 4096;
  1560. u64 min = (u64)dev->ctrl.hmmin * 4096;
  1561. u32 enable_bits = NVME_HOST_MEM_ENABLE;
  1562. int ret;
  1563. preferred = min(preferred, max);
  1564. if (min > max) {
  1565. dev_warn(dev->ctrl.device,
  1566. "min host memory (%lld MiB) above limit (%d MiB).\n",
  1567. min >> ilog2(SZ_1M), max_host_mem_size_mb);
  1568. nvme_free_host_mem(dev);
  1569. return 0;
  1570. }
  1571. /*
  1572. * If we already have a buffer allocated check if we can reuse it.
  1573. */
  1574. if (dev->host_mem_descs) {
  1575. if (dev->host_mem_size >= min)
  1576. enable_bits |= NVME_HOST_MEM_RETURN;
  1577. else
  1578. nvme_free_host_mem(dev);
  1579. }
  1580. if (!dev->host_mem_descs) {
  1581. if (nvme_alloc_host_mem(dev, min, preferred)) {
  1582. dev_warn(dev->ctrl.device,
  1583. "failed to allocate host memory buffer.\n");
  1584. return 0; /* controller must work without HMB */
  1585. }
  1586. dev_info(dev->ctrl.device,
  1587. "allocated %lld MiB host memory buffer.\n",
  1588. dev->host_mem_size >> ilog2(SZ_1M));
  1589. }
  1590. ret = nvme_set_host_mem(dev, enable_bits);
  1591. if (ret)
  1592. nvme_free_host_mem(dev);
  1593. return ret;
  1594. }
  1595. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1596. {
  1597. struct nvme_queue *adminq = &dev->queues[0];
  1598. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1599. int result, nr_io_queues;
  1600. unsigned long size;
  1601. nr_io_queues = num_present_cpus();
  1602. result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
  1603. if (result < 0)
  1604. return result;
  1605. if (nr_io_queues == 0)
  1606. return 0;
  1607. if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
  1608. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1609. sizeof(struct nvme_command));
  1610. if (result > 0)
  1611. dev->q_depth = result;
  1612. else
  1613. nvme_release_cmb(dev);
  1614. }
  1615. do {
  1616. size = db_bar_size(dev, nr_io_queues);
  1617. result = nvme_remap_bar(dev, size);
  1618. if (!result)
  1619. break;
  1620. if (!--nr_io_queues)
  1621. return -ENOMEM;
  1622. } while (1);
  1623. adminq->q_db = dev->dbs;
  1624. /* Deregister the admin queue's interrupt */
  1625. pci_free_irq(pdev, 0, adminq);
  1626. /*
  1627. * If we enable msix early due to not intx, disable it again before
  1628. * setting up the full range we need.
  1629. */
  1630. pci_free_irq_vectors(pdev);
  1631. nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
  1632. PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
  1633. if (nr_io_queues <= 0)
  1634. return -EIO;
  1635. dev->max_qid = nr_io_queues;
  1636. /*
  1637. * Should investigate if there's a performance win from allocating
  1638. * more queues than interrupt vectors; it might allow the submission
  1639. * path to scale better, even if the receive path is limited by the
  1640. * number of interrupts.
  1641. */
  1642. result = queue_request_irq(adminq);
  1643. if (result) {
  1644. adminq->cq_vector = -1;
  1645. return result;
  1646. }
  1647. return nvme_create_io_queues(dev);
  1648. }
  1649. static void nvme_del_queue_end(struct request *req, blk_status_t error)
  1650. {
  1651. struct nvme_queue *nvmeq = req->end_io_data;
  1652. blk_mq_free_request(req);
  1653. complete(&nvmeq->dev->ioq_wait);
  1654. }
  1655. static void nvme_del_cq_end(struct request *req, blk_status_t error)
  1656. {
  1657. struct nvme_queue *nvmeq = req->end_io_data;
  1658. if (!error) {
  1659. unsigned long flags;
  1660. /*
  1661. * We might be called with the AQ q_lock held
  1662. * and the I/O queue q_lock should always
  1663. * nest inside the AQ one.
  1664. */
  1665. spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
  1666. SINGLE_DEPTH_NESTING);
  1667. nvme_process_cq(nvmeq);
  1668. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  1669. }
  1670. nvme_del_queue_end(req, error);
  1671. }
  1672. static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
  1673. {
  1674. struct request_queue *q = nvmeq->dev->ctrl.admin_q;
  1675. struct request *req;
  1676. struct nvme_command cmd;
  1677. memset(&cmd, 0, sizeof(cmd));
  1678. cmd.delete_queue.opcode = opcode;
  1679. cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1680. req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  1681. if (IS_ERR(req))
  1682. return PTR_ERR(req);
  1683. req->timeout = ADMIN_TIMEOUT;
  1684. req->end_io_data = nvmeq;
  1685. blk_execute_rq_nowait(q, NULL, req, false,
  1686. opcode == nvme_admin_delete_cq ?
  1687. nvme_del_cq_end : nvme_del_queue_end);
  1688. return 0;
  1689. }
  1690. static void nvme_disable_io_queues(struct nvme_dev *dev)
  1691. {
  1692. int pass, queues = dev->online_queues - 1;
  1693. unsigned long timeout;
  1694. u8 opcode = nvme_admin_delete_sq;
  1695. for (pass = 0; pass < 2; pass++) {
  1696. int sent = 0, i = queues;
  1697. reinit_completion(&dev->ioq_wait);
  1698. retry:
  1699. timeout = ADMIN_TIMEOUT;
  1700. for (; i > 0; i--, sent++)
  1701. if (nvme_delete_queue(&dev->queues[i], opcode))
  1702. break;
  1703. while (sent--) {
  1704. timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
  1705. if (timeout == 0)
  1706. return;
  1707. if (i)
  1708. goto retry;
  1709. }
  1710. opcode = nvme_admin_delete_cq;
  1711. }
  1712. }
  1713. /*
  1714. * return error value only when tagset allocation failed
  1715. */
  1716. static int nvme_dev_add(struct nvme_dev *dev)
  1717. {
  1718. int ret;
  1719. if (!dev->ctrl.tagset) {
  1720. dev->tagset.ops = &nvme_mq_ops;
  1721. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1722. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1723. dev->tagset.numa_node = dev_to_node(dev->dev);
  1724. dev->tagset.queue_depth =
  1725. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1726. dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
  1727. if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
  1728. dev->tagset.cmd_size = max(dev->tagset.cmd_size,
  1729. nvme_pci_cmd_size(dev, true));
  1730. }
  1731. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1732. dev->tagset.driver_data = dev;
  1733. ret = blk_mq_alloc_tag_set(&dev->tagset);
  1734. if (ret) {
  1735. dev_warn(dev->ctrl.device,
  1736. "IO queues tagset allocation failed %d\n", ret);
  1737. return ret;
  1738. }
  1739. dev->ctrl.tagset = &dev->tagset;
  1740. nvme_dbbuf_set(dev);
  1741. } else {
  1742. blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
  1743. /* Free previously allocated queues that are no longer usable */
  1744. nvme_free_queues(dev, dev->online_queues);
  1745. }
  1746. return 0;
  1747. }
  1748. static int nvme_pci_enable(struct nvme_dev *dev)
  1749. {
  1750. int result = -ENOMEM;
  1751. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1752. if (pci_enable_device_mem(pdev))
  1753. return result;
  1754. pci_set_master(pdev);
  1755. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1756. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1757. goto disable;
  1758. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1759. result = -ENODEV;
  1760. goto disable;
  1761. }
  1762. /*
  1763. * Some devices and/or platforms don't advertise or work with INTx
  1764. * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
  1765. * adjust this later.
  1766. */
  1767. result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
  1768. if (result < 0)
  1769. return result;
  1770. dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1771. dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
  1772. io_queue_depth);
  1773. dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
  1774. dev->dbs = dev->bar + 4096;
  1775. /*
  1776. * Temporary fix for the Apple controller found in the MacBook8,1 and
  1777. * some MacBook7,1 to avoid controller resets and data loss.
  1778. */
  1779. if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
  1780. dev->q_depth = 2;
  1781. dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
  1782. "set queue depth=%u to work around controller resets\n",
  1783. dev->q_depth);
  1784. } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
  1785. (pdev->device == 0xa821 || pdev->device == 0xa822) &&
  1786. NVME_CAP_MQES(dev->ctrl.cap) == 0) {
  1787. dev->q_depth = 64;
  1788. dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
  1789. "set queue depth=%u\n", dev->q_depth);
  1790. }
  1791. nvme_map_cmb(dev);
  1792. pci_enable_pcie_error_reporting(pdev);
  1793. pci_save_state(pdev);
  1794. return 0;
  1795. disable:
  1796. pci_disable_device(pdev);
  1797. return result;
  1798. }
  1799. static void nvme_dev_unmap(struct nvme_dev *dev)
  1800. {
  1801. if (dev->bar)
  1802. iounmap(dev->bar);
  1803. pci_release_mem_regions(to_pci_dev(dev->dev));
  1804. }
  1805. static void nvme_pci_disable(struct nvme_dev *dev)
  1806. {
  1807. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1808. nvme_release_cmb(dev);
  1809. pci_free_irq_vectors(pdev);
  1810. if (pci_is_enabled(pdev)) {
  1811. pci_disable_pcie_error_reporting(pdev);
  1812. pci_disable_device(pdev);
  1813. }
  1814. }
  1815. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
  1816. {
  1817. int i;
  1818. bool dead = true;
  1819. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1820. mutex_lock(&dev->shutdown_lock);
  1821. if (pci_is_enabled(pdev)) {
  1822. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1823. if (dev->ctrl.state == NVME_CTRL_LIVE ||
  1824. dev->ctrl.state == NVME_CTRL_RESETTING)
  1825. nvme_start_freeze(&dev->ctrl);
  1826. dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
  1827. pdev->error_state != pci_channel_io_normal);
  1828. }
  1829. /*
  1830. * Give the controller a chance to complete all entered requests if
  1831. * doing a safe shutdown.
  1832. */
  1833. if (!dead) {
  1834. if (shutdown)
  1835. nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
  1836. /*
  1837. * If the controller is still alive tell it to stop using the
  1838. * host memory buffer. In theory the shutdown / reset should
  1839. * make sure that it doesn't access the host memoery anymore,
  1840. * but I'd rather be safe than sorry..
  1841. */
  1842. if (dev->host_mem_descs)
  1843. nvme_set_host_mem(dev, 0);
  1844. }
  1845. nvme_stop_queues(&dev->ctrl);
  1846. if (!dead) {
  1847. nvme_disable_io_queues(dev);
  1848. nvme_disable_admin_queue(dev, shutdown);
  1849. }
  1850. for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
  1851. nvme_suspend_queue(&dev->queues[i]);
  1852. nvme_pci_disable(dev);
  1853. blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
  1854. blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
  1855. /*
  1856. * The driver will not be starting up queues again if shutting down so
  1857. * must flush all entered requests to their failed completion to avoid
  1858. * deadlocking blk-mq hot-cpu notifier.
  1859. */
  1860. if (shutdown)
  1861. nvme_start_queues(&dev->ctrl);
  1862. mutex_unlock(&dev->shutdown_lock);
  1863. }
  1864. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1865. {
  1866. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1867. PAGE_SIZE, PAGE_SIZE, 0);
  1868. if (!dev->prp_page_pool)
  1869. return -ENOMEM;
  1870. /* Optimisation for I/Os between 4k and 128k */
  1871. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1872. 256, 256, 0);
  1873. if (!dev->prp_small_pool) {
  1874. dma_pool_destroy(dev->prp_page_pool);
  1875. return -ENOMEM;
  1876. }
  1877. return 0;
  1878. }
  1879. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1880. {
  1881. dma_pool_destroy(dev->prp_page_pool);
  1882. dma_pool_destroy(dev->prp_small_pool);
  1883. }
  1884. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1885. {
  1886. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1887. nvme_dbbuf_dma_free(dev);
  1888. put_device(dev->dev);
  1889. if (dev->tagset.tags)
  1890. blk_mq_free_tag_set(&dev->tagset);
  1891. if (dev->ctrl.admin_q)
  1892. blk_put_queue(dev->ctrl.admin_q);
  1893. kfree(dev->queues);
  1894. free_opal_dev(dev->ctrl.opal_dev);
  1895. kfree(dev);
  1896. }
  1897. static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
  1898. {
  1899. dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
  1900. nvme_get_ctrl(&dev->ctrl);
  1901. nvme_dev_disable(dev, false);
  1902. if (!queue_work(nvme_wq, &dev->remove_work))
  1903. nvme_put_ctrl(&dev->ctrl);
  1904. }
  1905. static void nvme_reset_work(struct work_struct *work)
  1906. {
  1907. struct nvme_dev *dev =
  1908. container_of(work, struct nvme_dev, ctrl.reset_work);
  1909. bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
  1910. int result = -ENODEV;
  1911. enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
  1912. if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
  1913. goto out;
  1914. /*
  1915. * If we're called to reset a live controller first shut it down before
  1916. * moving on.
  1917. */
  1918. if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
  1919. nvme_dev_disable(dev, false);
  1920. /*
  1921. * Introduce RECONNECTING state from nvme-fc/rdma transports to mark the
  1922. * initializing procedure here.
  1923. */
  1924. if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RECONNECTING)) {
  1925. dev_warn(dev->ctrl.device,
  1926. "failed to mark controller RECONNECTING\n");
  1927. goto out;
  1928. }
  1929. result = nvme_pci_enable(dev);
  1930. if (result)
  1931. goto out;
  1932. result = nvme_pci_configure_admin_queue(dev);
  1933. if (result)
  1934. goto out;
  1935. result = nvme_alloc_admin_tags(dev);
  1936. if (result)
  1937. goto out;
  1938. result = nvme_init_identify(&dev->ctrl);
  1939. if (result)
  1940. goto out;
  1941. if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
  1942. if (!dev->ctrl.opal_dev)
  1943. dev->ctrl.opal_dev =
  1944. init_opal_dev(&dev->ctrl, &nvme_sec_submit);
  1945. else if (was_suspend)
  1946. opal_unlock_from_suspend(dev->ctrl.opal_dev);
  1947. } else {
  1948. free_opal_dev(dev->ctrl.opal_dev);
  1949. dev->ctrl.opal_dev = NULL;
  1950. }
  1951. if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
  1952. result = nvme_dbbuf_dma_alloc(dev);
  1953. if (result)
  1954. dev_warn(dev->dev,
  1955. "unable to allocate dma for dbbuf\n");
  1956. }
  1957. if (dev->ctrl.hmpre) {
  1958. result = nvme_setup_host_mem(dev);
  1959. if (result < 0)
  1960. goto out;
  1961. }
  1962. result = nvme_setup_io_queues(dev);
  1963. if (result)
  1964. goto out;
  1965. /*
  1966. * Keep the controller around but remove all namespaces if we don't have
  1967. * any working I/O queue.
  1968. */
  1969. if (dev->online_queues < 2) {
  1970. dev_warn(dev->ctrl.device, "IO queues not created\n");
  1971. nvme_kill_queues(&dev->ctrl);
  1972. nvme_remove_namespaces(&dev->ctrl);
  1973. new_state = NVME_CTRL_ADMIN_ONLY;
  1974. } else {
  1975. nvme_start_queues(&dev->ctrl);
  1976. nvme_wait_freeze(&dev->ctrl);
  1977. /* hit this only when allocate tagset fails */
  1978. if (nvme_dev_add(dev))
  1979. new_state = NVME_CTRL_ADMIN_ONLY;
  1980. nvme_unfreeze(&dev->ctrl);
  1981. }
  1982. /*
  1983. * If only admin queue live, keep it to do further investigation or
  1984. * recovery.
  1985. */
  1986. if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
  1987. dev_warn(dev->ctrl.device,
  1988. "failed to mark controller state %d\n", new_state);
  1989. goto out;
  1990. }
  1991. nvme_start_ctrl(&dev->ctrl);
  1992. return;
  1993. out:
  1994. nvme_remove_dead_ctrl(dev, result);
  1995. }
  1996. static void nvme_remove_dead_ctrl_work(struct work_struct *work)
  1997. {
  1998. struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
  1999. struct pci_dev *pdev = to_pci_dev(dev->dev);
  2000. nvme_kill_queues(&dev->ctrl);
  2001. if (pci_get_drvdata(pdev))
  2002. device_release_driver(&pdev->dev);
  2003. nvme_put_ctrl(&dev->ctrl);
  2004. }
  2005. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  2006. {
  2007. *val = readl(to_nvme_dev(ctrl)->bar + off);
  2008. return 0;
  2009. }
  2010. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  2011. {
  2012. writel(val, to_nvme_dev(ctrl)->bar + off);
  2013. return 0;
  2014. }
  2015. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  2016. {
  2017. *val = readq(to_nvme_dev(ctrl)->bar + off);
  2018. return 0;
  2019. }
  2020. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  2021. .name = "pcie",
  2022. .module = THIS_MODULE,
  2023. .flags = NVME_F_METADATA_SUPPORTED,
  2024. .reg_read32 = nvme_pci_reg_read32,
  2025. .reg_write32 = nvme_pci_reg_write32,
  2026. .reg_read64 = nvme_pci_reg_read64,
  2027. .free_ctrl = nvme_pci_free_ctrl,
  2028. .submit_async_event = nvme_pci_submit_async_event,
  2029. };
  2030. static int nvme_dev_map(struct nvme_dev *dev)
  2031. {
  2032. struct pci_dev *pdev = to_pci_dev(dev->dev);
  2033. if (pci_request_mem_regions(pdev, "nvme"))
  2034. return -ENODEV;
  2035. if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
  2036. goto release;
  2037. return 0;
  2038. release:
  2039. pci_release_mem_regions(pdev);
  2040. return -ENODEV;
  2041. }
  2042. static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
  2043. {
  2044. if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
  2045. /*
  2046. * Several Samsung devices seem to drop off the PCIe bus
  2047. * randomly when APST is on and uses the deepest sleep state.
  2048. * This has been observed on a Samsung "SM951 NVMe SAMSUNG
  2049. * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
  2050. * 950 PRO 256GB", but it seems to be restricted to two Dell
  2051. * laptops.
  2052. */
  2053. if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
  2054. (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
  2055. dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
  2056. return NVME_QUIRK_NO_DEEPEST_PS;
  2057. } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
  2058. /*
  2059. * Samsung SSD 960 EVO drops off the PCIe bus after system
  2060. * suspend on a Ryzen board, ASUS PRIME B350M-A.
  2061. */
  2062. if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
  2063. dmi_match(DMI_BOARD_NAME, "PRIME B350M-A"))
  2064. return NVME_QUIRK_NO_APST;
  2065. }
  2066. return 0;
  2067. }
  2068. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  2069. {
  2070. int node, result = -ENOMEM;
  2071. struct nvme_dev *dev;
  2072. unsigned long quirks = id->driver_data;
  2073. node = dev_to_node(&pdev->dev);
  2074. if (node == NUMA_NO_NODE)
  2075. set_dev_node(&pdev->dev, first_memory_node);
  2076. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  2077. if (!dev)
  2078. return -ENOMEM;
  2079. dev->queues = kcalloc_node(num_possible_cpus() + 1,
  2080. sizeof(struct nvme_queue), GFP_KERNEL, node);
  2081. if (!dev->queues)
  2082. goto free;
  2083. dev->dev = get_device(&pdev->dev);
  2084. pci_set_drvdata(pdev, dev);
  2085. result = nvme_dev_map(dev);
  2086. if (result)
  2087. goto put_pci;
  2088. INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
  2089. INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
  2090. mutex_init(&dev->shutdown_lock);
  2091. init_completion(&dev->ioq_wait);
  2092. result = nvme_setup_prp_pools(dev);
  2093. if (result)
  2094. goto unmap;
  2095. quirks |= check_vendor_combination_bug(pdev);
  2096. result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
  2097. quirks);
  2098. if (result)
  2099. goto release_pools;
  2100. dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
  2101. nvme_reset_ctrl(&dev->ctrl);
  2102. return 0;
  2103. release_pools:
  2104. nvme_release_prp_pools(dev);
  2105. unmap:
  2106. nvme_dev_unmap(dev);
  2107. put_pci:
  2108. put_device(dev->dev);
  2109. free:
  2110. kfree(dev->queues);
  2111. kfree(dev);
  2112. return result;
  2113. }
  2114. static void nvme_reset_prepare(struct pci_dev *pdev)
  2115. {
  2116. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2117. nvme_dev_disable(dev, false);
  2118. }
  2119. static void nvme_reset_done(struct pci_dev *pdev)
  2120. {
  2121. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2122. nvme_reset_ctrl_sync(&dev->ctrl);
  2123. }
  2124. static void nvme_shutdown(struct pci_dev *pdev)
  2125. {
  2126. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2127. nvme_dev_disable(dev, true);
  2128. }
  2129. /*
  2130. * The driver's remove may be called on a device in a partially initialized
  2131. * state. This function must not have any dependencies on the device state in
  2132. * order to proceed.
  2133. */
  2134. static void nvme_remove(struct pci_dev *pdev)
  2135. {
  2136. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2137. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
  2138. cancel_work_sync(&dev->ctrl.reset_work);
  2139. pci_set_drvdata(pdev, NULL);
  2140. if (!pci_device_is_present(pdev)) {
  2141. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
  2142. nvme_dev_disable(dev, false);
  2143. }
  2144. flush_work(&dev->ctrl.reset_work);
  2145. nvme_stop_ctrl(&dev->ctrl);
  2146. nvme_remove_namespaces(&dev->ctrl);
  2147. nvme_dev_disable(dev, true);
  2148. nvme_free_host_mem(dev);
  2149. nvme_dev_remove_admin(dev);
  2150. nvme_free_queues(dev, 0);
  2151. nvme_uninit_ctrl(&dev->ctrl);
  2152. nvme_release_prp_pools(dev);
  2153. nvme_dev_unmap(dev);
  2154. nvme_put_ctrl(&dev->ctrl);
  2155. }
  2156. static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
  2157. {
  2158. int ret = 0;
  2159. if (numvfs == 0) {
  2160. if (pci_vfs_assigned(pdev)) {
  2161. dev_warn(&pdev->dev,
  2162. "Cannot disable SR-IOV VFs while assigned\n");
  2163. return -EPERM;
  2164. }
  2165. pci_disable_sriov(pdev);
  2166. return 0;
  2167. }
  2168. ret = pci_enable_sriov(pdev, numvfs);
  2169. return ret ? ret : numvfs;
  2170. }
  2171. #ifdef CONFIG_PM_SLEEP
  2172. static int nvme_suspend(struct device *dev)
  2173. {
  2174. struct pci_dev *pdev = to_pci_dev(dev);
  2175. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2176. nvme_dev_disable(ndev, true);
  2177. return 0;
  2178. }
  2179. static int nvme_resume(struct device *dev)
  2180. {
  2181. struct pci_dev *pdev = to_pci_dev(dev);
  2182. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2183. nvme_reset_ctrl(&ndev->ctrl);
  2184. return 0;
  2185. }
  2186. #endif
  2187. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  2188. static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
  2189. pci_channel_state_t state)
  2190. {
  2191. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2192. /*
  2193. * A frozen channel requires a reset. When detected, this method will
  2194. * shutdown the controller to quiesce. The controller will be restarted
  2195. * after the slot reset through driver's slot_reset callback.
  2196. */
  2197. switch (state) {
  2198. case pci_channel_io_normal:
  2199. return PCI_ERS_RESULT_CAN_RECOVER;
  2200. case pci_channel_io_frozen:
  2201. dev_warn(dev->ctrl.device,
  2202. "frozen state error detected, reset controller\n");
  2203. nvme_dev_disable(dev, false);
  2204. return PCI_ERS_RESULT_NEED_RESET;
  2205. case pci_channel_io_perm_failure:
  2206. dev_warn(dev->ctrl.device,
  2207. "failure state error detected, request disconnect\n");
  2208. return PCI_ERS_RESULT_DISCONNECT;
  2209. }
  2210. return PCI_ERS_RESULT_NEED_RESET;
  2211. }
  2212. static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
  2213. {
  2214. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2215. dev_info(dev->ctrl.device, "restart after slot reset\n");
  2216. pci_restore_state(pdev);
  2217. nvme_reset_ctrl(&dev->ctrl);
  2218. return PCI_ERS_RESULT_RECOVERED;
  2219. }
  2220. static void nvme_error_resume(struct pci_dev *pdev)
  2221. {
  2222. pci_cleanup_aer_uncorrect_error_status(pdev);
  2223. }
  2224. static const struct pci_error_handlers nvme_err_handler = {
  2225. .error_detected = nvme_error_detected,
  2226. .slot_reset = nvme_slot_reset,
  2227. .resume = nvme_error_resume,
  2228. .reset_prepare = nvme_reset_prepare,
  2229. .reset_done = nvme_reset_done,
  2230. };
  2231. static const struct pci_device_id nvme_id_table[] = {
  2232. { PCI_VDEVICE(INTEL, 0x0953),
  2233. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2234. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2235. { PCI_VDEVICE(INTEL, 0x0a53),
  2236. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2237. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2238. { PCI_VDEVICE(INTEL, 0x0a54),
  2239. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2240. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2241. { PCI_VDEVICE(INTEL, 0x0a55),
  2242. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2243. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2244. { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
  2245. .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
  2246. { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
  2247. .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
  2248. { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
  2249. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2250. { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
  2251. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2252. { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
  2253. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2254. { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
  2255. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2256. { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
  2257. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2258. { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
  2259. .driver_data = NVME_QUIRK_LIGHTNVM, },
  2260. { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
  2261. .driver_data = NVME_QUIRK_LIGHTNVM, },
  2262. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  2263. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  2264. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
  2265. { 0, }
  2266. };
  2267. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  2268. static struct pci_driver nvme_driver = {
  2269. .name = "nvme",
  2270. .id_table = nvme_id_table,
  2271. .probe = nvme_probe,
  2272. .remove = nvme_remove,
  2273. .shutdown = nvme_shutdown,
  2274. .driver = {
  2275. .pm = &nvme_dev_pm_ops,
  2276. },
  2277. .sriov_configure = nvme_pci_sriov_configure,
  2278. .err_handler = &nvme_err_handler,
  2279. };
  2280. static int __init nvme_init(void)
  2281. {
  2282. return pci_register_driver(&nvme_driver);
  2283. }
  2284. static void __exit nvme_exit(void)
  2285. {
  2286. pci_unregister_driver(&nvme_driver);
  2287. flush_workqueue(nvme_wq);
  2288. _nvme_check_size();
  2289. }
  2290. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  2291. MODULE_LICENSE("GPL");
  2292. MODULE_VERSION("1.0");
  2293. module_init(nvme_init);
  2294. module_exit(nvme_exit);