swap_state.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496
  1. /*
  2. * linux/mm/swap_state.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. *
  7. * Rewritten to use page cache, (C) 1998 Stephen Tweedie
  8. */
  9. #include <linux/mm.h>
  10. #include <linux/gfp.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <linux/init.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/pagevec.h>
  19. #include <linux/migrate.h>
  20. #include <linux/page_cgroup.h>
  21. #include <asm/pgtable.h>
  22. /*
  23. * swapper_space is a fiction, retained to simplify the path through
  24. * vmscan's shrink_page_list.
  25. */
  26. static const struct address_space_operations swap_aops = {
  27. .writepage = swap_writepage,
  28. .set_page_dirty = swap_set_page_dirty,
  29. .migratepage = migrate_page,
  30. };
  31. static struct backing_dev_info swap_backing_dev_info = {
  32. .name = "swap",
  33. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
  34. };
  35. struct address_space swapper_spaces[MAX_SWAPFILES] = {
  36. [0 ... MAX_SWAPFILES - 1] = {
  37. .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
  38. .a_ops = &swap_aops,
  39. .backing_dev_info = &swap_backing_dev_info,
  40. }
  41. };
  42. #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
  43. static struct {
  44. unsigned long add_total;
  45. unsigned long del_total;
  46. unsigned long find_success;
  47. unsigned long find_total;
  48. } swap_cache_info;
  49. unsigned long total_swapcache_pages(void)
  50. {
  51. int i;
  52. unsigned long ret = 0;
  53. for (i = 0; i < MAX_SWAPFILES; i++)
  54. ret += swapper_spaces[i].nrpages;
  55. return ret;
  56. }
  57. static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
  58. void show_swap_cache_info(void)
  59. {
  60. printk("%lu pages in swap cache\n", total_swapcache_pages());
  61. printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
  62. swap_cache_info.add_total, swap_cache_info.del_total,
  63. swap_cache_info.find_success, swap_cache_info.find_total);
  64. printk("Free swap = %ldkB\n",
  65. get_nr_swap_pages() << (PAGE_SHIFT - 10));
  66. printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
  67. }
  68. /*
  69. * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
  70. * but sets SwapCache flag and private instead of mapping and index.
  71. */
  72. int __add_to_swap_cache(struct page *page, swp_entry_t entry)
  73. {
  74. int error;
  75. struct address_space *address_space;
  76. VM_BUG_ON_PAGE(!PageLocked(page), page);
  77. VM_BUG_ON_PAGE(PageSwapCache(page), page);
  78. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  79. page_cache_get(page);
  80. SetPageSwapCache(page);
  81. set_page_private(page, entry.val);
  82. address_space = swap_address_space(entry);
  83. spin_lock_irq(&address_space->tree_lock);
  84. error = radix_tree_insert(&address_space->page_tree,
  85. entry.val, page);
  86. if (likely(!error)) {
  87. address_space->nrpages++;
  88. __inc_zone_page_state(page, NR_FILE_PAGES);
  89. INC_CACHE_INFO(add_total);
  90. }
  91. spin_unlock_irq(&address_space->tree_lock);
  92. if (unlikely(error)) {
  93. /*
  94. * Only the context which have set SWAP_HAS_CACHE flag
  95. * would call add_to_swap_cache().
  96. * So add_to_swap_cache() doesn't returns -EEXIST.
  97. */
  98. VM_BUG_ON(error == -EEXIST);
  99. set_page_private(page, 0UL);
  100. ClearPageSwapCache(page);
  101. page_cache_release(page);
  102. }
  103. return error;
  104. }
  105. int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
  106. {
  107. int error;
  108. error = radix_tree_maybe_preload(gfp_mask);
  109. if (!error) {
  110. error = __add_to_swap_cache(page, entry);
  111. radix_tree_preload_end();
  112. }
  113. return error;
  114. }
  115. /*
  116. * This must be called only on pages that have
  117. * been verified to be in the swap cache.
  118. */
  119. void __delete_from_swap_cache(struct page *page)
  120. {
  121. swp_entry_t entry;
  122. struct address_space *address_space;
  123. VM_BUG_ON_PAGE(!PageLocked(page), page);
  124. VM_BUG_ON_PAGE(!PageSwapCache(page), page);
  125. VM_BUG_ON_PAGE(PageWriteback(page), page);
  126. entry.val = page_private(page);
  127. address_space = swap_address_space(entry);
  128. radix_tree_delete(&address_space->page_tree, page_private(page));
  129. set_page_private(page, 0);
  130. ClearPageSwapCache(page);
  131. address_space->nrpages--;
  132. __dec_zone_page_state(page, NR_FILE_PAGES);
  133. INC_CACHE_INFO(del_total);
  134. }
  135. /**
  136. * add_to_swap - allocate swap space for a page
  137. * @page: page we want to move to swap
  138. *
  139. * Allocate swap space for the page and add the page to the
  140. * swap cache. Caller needs to hold the page lock.
  141. */
  142. int add_to_swap(struct page *page, struct list_head *list)
  143. {
  144. swp_entry_t entry;
  145. int err;
  146. VM_BUG_ON_PAGE(!PageLocked(page), page);
  147. VM_BUG_ON_PAGE(!PageUptodate(page), page);
  148. entry = get_swap_page();
  149. if (!entry.val)
  150. return 0;
  151. if (unlikely(PageTransHuge(page)))
  152. if (unlikely(split_huge_page_to_list(page, list))) {
  153. swapcache_free(entry);
  154. return 0;
  155. }
  156. /*
  157. * Radix-tree node allocations from PF_MEMALLOC contexts could
  158. * completely exhaust the page allocator. __GFP_NOMEMALLOC
  159. * stops emergency reserves from being allocated.
  160. *
  161. * TODO: this could cause a theoretical memory reclaim
  162. * deadlock in the swap out path.
  163. */
  164. /*
  165. * Add it to the swap cache and mark it dirty
  166. */
  167. err = add_to_swap_cache(page, entry,
  168. __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
  169. if (!err) { /* Success */
  170. SetPageDirty(page);
  171. return 1;
  172. } else { /* -ENOMEM radix-tree allocation failure */
  173. /*
  174. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  175. * clear SWAP_HAS_CACHE flag.
  176. */
  177. swapcache_free(entry);
  178. return 0;
  179. }
  180. }
  181. /*
  182. * This must be called only on pages that have
  183. * been verified to be in the swap cache and locked.
  184. * It will never put the page into the free list,
  185. * the caller has a reference on the page.
  186. */
  187. void delete_from_swap_cache(struct page *page)
  188. {
  189. swp_entry_t entry;
  190. struct address_space *address_space;
  191. entry.val = page_private(page);
  192. address_space = swap_address_space(entry);
  193. spin_lock_irq(&address_space->tree_lock);
  194. __delete_from_swap_cache(page);
  195. spin_unlock_irq(&address_space->tree_lock);
  196. swapcache_free(entry);
  197. page_cache_release(page);
  198. }
  199. /*
  200. * If we are the only user, then try to free up the swap cache.
  201. *
  202. * Its ok to check for PageSwapCache without the page lock
  203. * here because we are going to recheck again inside
  204. * try_to_free_swap() _with_ the lock.
  205. * - Marcelo
  206. */
  207. static inline void free_swap_cache(struct page *page)
  208. {
  209. if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
  210. try_to_free_swap(page);
  211. unlock_page(page);
  212. }
  213. }
  214. /*
  215. * Perform a free_page(), also freeing any swap cache associated with
  216. * this page if it is the last user of the page.
  217. */
  218. void free_page_and_swap_cache(struct page *page)
  219. {
  220. free_swap_cache(page);
  221. page_cache_release(page);
  222. }
  223. /*
  224. * Passed an array of pages, drop them all from swapcache and then release
  225. * them. They are removed from the LRU and freed if this is their last use.
  226. */
  227. void free_pages_and_swap_cache(struct page **pages, int nr)
  228. {
  229. struct page **pagep = pages;
  230. lru_add_drain();
  231. while (nr) {
  232. int todo = min(nr, PAGEVEC_SIZE);
  233. int i;
  234. for (i = 0; i < todo; i++)
  235. free_swap_cache(pagep[i]);
  236. release_pages(pagep, todo, false);
  237. pagep += todo;
  238. nr -= todo;
  239. }
  240. }
  241. /*
  242. * Lookup a swap entry in the swap cache. A found page will be returned
  243. * unlocked and with its refcount incremented - we rely on the kernel
  244. * lock getting page table operations atomic even if we drop the page
  245. * lock before returning.
  246. */
  247. struct page * lookup_swap_cache(swp_entry_t entry)
  248. {
  249. struct page *page;
  250. page = find_get_page(swap_address_space(entry), entry.val);
  251. if (page) {
  252. INC_CACHE_INFO(find_success);
  253. if (TestClearPageReadahead(page))
  254. atomic_inc(&swapin_readahead_hits);
  255. }
  256. INC_CACHE_INFO(find_total);
  257. return page;
  258. }
  259. /*
  260. * Locate a page of swap in physical memory, reserving swap cache space
  261. * and reading the disk if it is not already cached.
  262. * A failure return means that either the page allocation failed or that
  263. * the swap entry is no longer in use.
  264. */
  265. struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
  266. struct vm_area_struct *vma, unsigned long addr)
  267. {
  268. struct page *found_page, *new_page = NULL;
  269. int err;
  270. do {
  271. /*
  272. * First check the swap cache. Since this is normally
  273. * called after lookup_swap_cache() failed, re-calling
  274. * that would confuse statistics.
  275. */
  276. found_page = find_get_page(swap_address_space(entry),
  277. entry.val);
  278. if (found_page)
  279. break;
  280. /*
  281. * Get a new page to read into from swap.
  282. */
  283. if (!new_page) {
  284. new_page = alloc_page_vma(gfp_mask, vma, addr);
  285. if (!new_page)
  286. break; /* Out of memory */
  287. }
  288. /*
  289. * call radix_tree_preload() while we can wait.
  290. */
  291. err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
  292. if (err)
  293. break;
  294. /*
  295. * Swap entry may have been freed since our caller observed it.
  296. */
  297. err = swapcache_prepare(entry);
  298. if (err == -EEXIST) {
  299. radix_tree_preload_end();
  300. /*
  301. * We might race against get_swap_page() and stumble
  302. * across a SWAP_HAS_CACHE swap_map entry whose page
  303. * has not been brought into the swapcache yet, while
  304. * the other end is scheduled away waiting on discard
  305. * I/O completion at scan_swap_map().
  306. *
  307. * In order to avoid turning this transitory state
  308. * into a permanent loop around this -EEXIST case
  309. * if !CONFIG_PREEMPT and the I/O completion happens
  310. * to be waiting on the CPU waitqueue where we are now
  311. * busy looping, we just conditionally invoke the
  312. * scheduler here, if there are some more important
  313. * tasks to run.
  314. */
  315. cond_resched();
  316. continue;
  317. }
  318. if (err) { /* swp entry is obsolete ? */
  319. radix_tree_preload_end();
  320. break;
  321. }
  322. /* May fail (-ENOMEM) if radix-tree node allocation failed. */
  323. __set_page_locked(new_page);
  324. SetPageSwapBacked(new_page);
  325. err = __add_to_swap_cache(new_page, entry);
  326. if (likely(!err)) {
  327. radix_tree_preload_end();
  328. /*
  329. * Initiate read into locked page and return.
  330. */
  331. lru_cache_add_anon(new_page);
  332. swap_readpage(new_page);
  333. return new_page;
  334. }
  335. radix_tree_preload_end();
  336. ClearPageSwapBacked(new_page);
  337. __clear_page_locked(new_page);
  338. /*
  339. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  340. * clear SWAP_HAS_CACHE flag.
  341. */
  342. swapcache_free(entry);
  343. } while (err != -ENOMEM);
  344. if (new_page)
  345. page_cache_release(new_page);
  346. return found_page;
  347. }
  348. static unsigned long swapin_nr_pages(unsigned long offset)
  349. {
  350. static unsigned long prev_offset;
  351. unsigned int pages, max_pages, last_ra;
  352. static atomic_t last_readahead_pages;
  353. max_pages = 1 << ACCESS_ONCE(page_cluster);
  354. if (max_pages <= 1)
  355. return 1;
  356. /*
  357. * This heuristic has been found to work well on both sequential and
  358. * random loads, swapping to hard disk or to SSD: please don't ask
  359. * what the "+ 2" means, it just happens to work well, that's all.
  360. */
  361. pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
  362. if (pages == 2) {
  363. /*
  364. * We can have no readahead hits to judge by: but must not get
  365. * stuck here forever, so check for an adjacent offset instead
  366. * (and don't even bother to check whether swap type is same).
  367. */
  368. if (offset != prev_offset + 1 && offset != prev_offset - 1)
  369. pages = 1;
  370. prev_offset = offset;
  371. } else {
  372. unsigned int roundup = 4;
  373. while (roundup < pages)
  374. roundup <<= 1;
  375. pages = roundup;
  376. }
  377. if (pages > max_pages)
  378. pages = max_pages;
  379. /* Don't shrink readahead too fast */
  380. last_ra = atomic_read(&last_readahead_pages) / 2;
  381. if (pages < last_ra)
  382. pages = last_ra;
  383. atomic_set(&last_readahead_pages, pages);
  384. return pages;
  385. }
  386. /**
  387. * swapin_readahead - swap in pages in hope we need them soon
  388. * @entry: swap entry of this memory
  389. * @gfp_mask: memory allocation flags
  390. * @vma: user vma this address belongs to
  391. * @addr: target address for mempolicy
  392. *
  393. * Returns the struct page for entry and addr, after queueing swapin.
  394. *
  395. * Primitive swap readahead code. We simply read an aligned block of
  396. * (1 << page_cluster) entries in the swap area. This method is chosen
  397. * because it doesn't cost us any seek time. We also make sure to queue
  398. * the 'original' request together with the readahead ones...
  399. *
  400. * This has been extended to use the NUMA policies from the mm triggering
  401. * the readahead.
  402. *
  403. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  404. */
  405. struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
  406. struct vm_area_struct *vma, unsigned long addr)
  407. {
  408. struct page *page;
  409. unsigned long entry_offset = swp_offset(entry);
  410. unsigned long offset = entry_offset;
  411. unsigned long start_offset, end_offset;
  412. unsigned long mask;
  413. struct blk_plug plug;
  414. mask = swapin_nr_pages(offset) - 1;
  415. if (!mask)
  416. goto skip;
  417. /* Read a page_cluster sized and aligned cluster around offset. */
  418. start_offset = offset & ~mask;
  419. end_offset = offset | mask;
  420. if (!start_offset) /* First page is swap header. */
  421. start_offset++;
  422. blk_start_plug(&plug);
  423. for (offset = start_offset; offset <= end_offset ; offset++) {
  424. /* Ok, do the async read-ahead now */
  425. page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
  426. gfp_mask, vma, addr);
  427. if (!page)
  428. continue;
  429. if (offset != entry_offset)
  430. SetPageReadahead(page);
  431. page_cache_release(page);
  432. }
  433. blk_finish_plug(&plug);
  434. lru_add_drain(); /* Push any new pages onto the LRU now */
  435. skip:
  436. return read_swap_cache_async(entry, gfp_mask, vma, addr);
  437. }