vc4_dsi.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716
  1. /*
  2. * Copyright (C) 2016 Broadcom
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License version 2 as published by
  6. * the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /**
  17. * DOC: VC4 DSI0/DSI1 module
  18. *
  19. * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
  20. * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  21. * controller.
  22. *
  23. * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  24. * while the compute module brings both DSI0 and DSI1 out.
  25. *
  26. * This driver has been tested for DSI1 video-mode display only
  27. * currently, with most of the information necessary for DSI0
  28. * hopefully present.
  29. */
  30. #include <drm/drm_atomic_helper.h>
  31. #include <drm/drm_crtc_helper.h>
  32. #include <drm/drm_edid.h>
  33. #include <drm/drm_mipi_dsi.h>
  34. #include <drm/drm_of.h>
  35. #include <drm/drm_panel.h>
  36. #include <linux/clk.h>
  37. #include <linux/clk-provider.h>
  38. #include <linux/completion.h>
  39. #include <linux/component.h>
  40. #include <linux/dmaengine.h>
  41. #include <linux/i2c.h>
  42. #include <linux/of_address.h>
  43. #include <linux/of_platform.h>
  44. #include <linux/pm_runtime.h>
  45. #include "vc4_drv.h"
  46. #include "vc4_regs.h"
  47. #define DSI_CMD_FIFO_DEPTH 16
  48. #define DSI_PIX_FIFO_DEPTH 256
  49. #define DSI_PIX_FIFO_WIDTH 4
  50. #define DSI0_CTRL 0x00
  51. /* Command packet control. */
  52. #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
  53. #define DSI1_TXPKT1C 0x04
  54. # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
  55. # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
  56. # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
  57. # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
  58. # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
  59. # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
  60. /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  61. # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
  62. /* Primary display where cmdfifo provides part of the payload and
  63. * pixelvalve the rest.
  64. */
  65. # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
  66. /* Secondary display where cmdfifo provides part of the payload and
  67. * pixfifo the rest.
  68. */
  69. # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
  70. # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
  71. # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
  72. # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
  73. # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
  74. /* Command only. Uses TXPKT1H and DISPLAY_NO */
  75. # define DSI_TXPKT1C_CMD_CTRL_TX 0
  76. /* Command with BTA for either ack or read data. */
  77. # define DSI_TXPKT1C_CMD_CTRL_RX 1
  78. /* Trigger according to TRIG_CMD */
  79. # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
  80. /* BTA alone for getting error status after a command, or a TE trigger
  81. * without a previous command.
  82. */
  83. # define DSI_TXPKT1C_CMD_CTRL_BTA 3
  84. # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
  85. # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
  86. # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
  87. # define DSI_TXPKT1C_CMD_EN BIT(0)
  88. /* Command packet header. */
  89. #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
  90. #define DSI1_TXPKT1H 0x08
  91. # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
  92. # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
  93. # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  94. # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
  95. # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
  96. # define DSI_TXPKT1H_BC_DT_SHIFT 0
  97. #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
  98. #define DSI1_RXPKT1H 0x14
  99. # define DSI_RXPKT1H_CRC_ERR BIT(31)
  100. # define DSI_RXPKT1H_DET_ERR BIT(30)
  101. # define DSI_RXPKT1H_ECC_ERR BIT(29)
  102. # define DSI_RXPKT1H_COR_ERR BIT(28)
  103. # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
  104. # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
  105. /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
  106. # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  107. # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
  108. /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
  109. # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
  110. # define DSI_RXPKT1H_SHORT_1_SHIFT 16
  111. # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
  112. # define DSI_RXPKT1H_SHORT_0_SHIFT 8
  113. # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
  114. # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
  115. #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
  116. #define DSI1_RXPKT2H 0x18
  117. # define DSI_RXPKT1H_DET_ERR BIT(30)
  118. # define DSI_RXPKT1H_ECC_ERR BIT(29)
  119. # define DSI_RXPKT1H_COR_ERR BIT(28)
  120. # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
  121. # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  122. # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
  123. # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
  124. # define DSI_RXPKT1H_DT_SHIFT 0
  125. #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
  126. #define DSI1_TXPKT_CMD_FIFO 0x1c
  127. #define DSI0_DISP0_CTRL 0x18
  128. # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
  129. # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
  130. # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
  131. # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
  132. # define DSI_DISP0_LP_STOP_DISABLE 0
  133. # define DSI_DISP0_LP_STOP_PERLINE 1
  134. # define DSI_DISP0_LP_STOP_PERFRAME 2
  135. /* Transmit RGB pixels and null packets only during HACTIVE, instead
  136. * of going to LP-STOP.
  137. */
  138. # define DSI_DISP_HACTIVE_NULL BIT(10)
  139. /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
  140. # define DSI_DISP_VBLP_CTRL BIT(9)
  141. /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
  142. # define DSI_DISP_HFP_CTRL BIT(8)
  143. /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
  144. # define DSI_DISP_HBP_CTRL BIT(7)
  145. # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
  146. # define DSI_DISP0_CHANNEL_SHIFT 5
  147. /* Enables end events for HSYNC/VSYNC, not just start events. */
  148. # define DSI_DISP0_ST_END BIT(4)
  149. # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
  150. # define DSI_DISP0_PFORMAT_SHIFT 2
  151. # define DSI_PFORMAT_RGB565 0
  152. # define DSI_PFORMAT_RGB666_PACKED 1
  153. # define DSI_PFORMAT_RGB666 2
  154. # define DSI_PFORMAT_RGB888 3
  155. /* Default is VIDEO mode. */
  156. # define DSI_DISP0_COMMAND_MODE BIT(1)
  157. # define DSI_DISP0_ENABLE BIT(0)
  158. #define DSI0_DISP1_CTRL 0x1c
  159. #define DSI1_DISP1_CTRL 0x2c
  160. /* Format of the data written to TXPKT_PIX_FIFO. */
  161. # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
  162. # define DSI_DISP1_PFORMAT_SHIFT 1
  163. # define DSI_DISP1_PFORMAT_16BIT 0
  164. # define DSI_DISP1_PFORMAT_24BIT 1
  165. # define DSI_DISP1_PFORMAT_32BIT_LE 2
  166. # define DSI_DISP1_PFORMAT_32BIT_BE 3
  167. /* DISP1 is always command mode. */
  168. # define DSI_DISP1_ENABLE BIT(0)
  169. #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
  170. #define DSI0_INT_STAT 0x24
  171. #define DSI0_INT_EN 0x28
  172. # define DSI1_INT_PHY_D3_ULPS BIT(30)
  173. # define DSI1_INT_PHY_D3_STOP BIT(29)
  174. # define DSI1_INT_PHY_D2_ULPS BIT(28)
  175. # define DSI1_INT_PHY_D2_STOP BIT(27)
  176. # define DSI1_INT_PHY_D1_ULPS BIT(26)
  177. # define DSI1_INT_PHY_D1_STOP BIT(25)
  178. # define DSI1_INT_PHY_D0_ULPS BIT(24)
  179. # define DSI1_INT_PHY_D0_STOP BIT(23)
  180. # define DSI1_INT_FIFO_ERR BIT(22)
  181. # define DSI1_INT_PHY_DIR_RTF BIT(21)
  182. # define DSI1_INT_PHY_RXLPDT BIT(20)
  183. # define DSI1_INT_PHY_RXTRIG BIT(19)
  184. # define DSI1_INT_PHY_D0_LPDT BIT(18)
  185. # define DSI1_INT_PHY_DIR_FTR BIT(17)
  186. /* Signaled when the clock lane enters the given state. */
  187. # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
  188. # define DSI1_INT_PHY_CLOCK_HS BIT(15)
  189. # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
  190. /* Signaled on timeouts */
  191. # define DSI1_INT_PR_TO BIT(13)
  192. # define DSI1_INT_TA_TO BIT(12)
  193. # define DSI1_INT_LPRX_TO BIT(11)
  194. # define DSI1_INT_HSTX_TO BIT(10)
  195. /* Contention on a line when trying to drive the line low */
  196. # define DSI1_INT_ERR_CONT_LP1 BIT(9)
  197. # define DSI1_INT_ERR_CONT_LP0 BIT(8)
  198. /* Control error: incorrect line state sequence on data lane 0. */
  199. # define DSI1_INT_ERR_CONTROL BIT(7)
  200. /* LPDT synchronization error (bits received not a multiple of 8. */
  201. # define DSI1_INT_ERR_SYNC_ESC BIT(6)
  202. /* Signaled after receiving an error packet from the display in
  203. * response to a read.
  204. */
  205. # define DSI1_INT_RXPKT2 BIT(5)
  206. /* Signaled after receiving a packet. The header and optional short
  207. * response will be in RXPKT1H, and a long response will be in the
  208. * RXPKT_FIFO.
  209. */
  210. # define DSI1_INT_RXPKT1 BIT(4)
  211. # define DSI1_INT_TXPKT2_DONE BIT(3)
  212. # define DSI1_INT_TXPKT2_END BIT(2)
  213. /* Signaled after all repeats of TXPKT1 are transferred. */
  214. # define DSI1_INT_TXPKT1_DONE BIT(1)
  215. /* Signaled after each TXPKT1 repeat is scheduled. */
  216. # define DSI1_INT_TXPKT1_END BIT(0)
  217. #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
  218. DSI1_INT_ERR_CONTROL | \
  219. DSI1_INT_ERR_CONT_LP0 | \
  220. DSI1_INT_ERR_CONT_LP1 | \
  221. DSI1_INT_HSTX_TO | \
  222. DSI1_INT_LPRX_TO | \
  223. DSI1_INT_TA_TO | \
  224. DSI1_INT_PR_TO)
  225. #define DSI0_STAT 0x2c
  226. #define DSI0_HSTX_TO_CNT 0x30
  227. #define DSI0_LPRX_TO_CNT 0x34
  228. #define DSI0_TA_TO_CNT 0x38
  229. #define DSI0_PR_TO_CNT 0x3c
  230. #define DSI0_PHYC 0x40
  231. # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
  232. # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
  233. # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
  234. # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
  235. # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
  236. # define DSI1_PHYC_CLANE_ULPS BIT(17)
  237. # define DSI1_PHYC_CLANE_ENABLE BIT(16)
  238. # define DSI_PHYC_DLANE3_ULPS BIT(13)
  239. # define DSI_PHYC_DLANE3_ENABLE BIT(12)
  240. # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
  241. # define DSI0_PHYC_CLANE_ULPS BIT(9)
  242. # define DSI_PHYC_DLANE2_ULPS BIT(9)
  243. # define DSI0_PHYC_CLANE_ENABLE BIT(8)
  244. # define DSI_PHYC_DLANE2_ENABLE BIT(8)
  245. # define DSI_PHYC_DLANE1_ULPS BIT(5)
  246. # define DSI_PHYC_DLANE1_ENABLE BIT(4)
  247. # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
  248. # define DSI_PHYC_DLANE0_ULPS BIT(1)
  249. # define DSI_PHYC_DLANE0_ENABLE BIT(0)
  250. #define DSI0_HS_CLT0 0x44
  251. #define DSI0_HS_CLT1 0x48
  252. #define DSI0_HS_CLT2 0x4c
  253. #define DSI0_HS_DLT3 0x50
  254. #define DSI0_HS_DLT4 0x54
  255. #define DSI0_HS_DLT5 0x58
  256. #define DSI0_HS_DLT6 0x5c
  257. #define DSI0_HS_DLT7 0x60
  258. #define DSI0_PHY_AFEC0 0x64
  259. # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
  260. # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
  261. # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
  262. # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
  263. # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
  264. # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
  265. # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
  266. # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
  267. # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
  268. # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
  269. # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
  270. # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
  271. # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
  272. # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
  273. # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
  274. # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
  275. # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
  276. # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
  277. # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
  278. # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
  279. # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
  280. # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
  281. # define DSI1_PHY_AFEC0_RESET BIT(13)
  282. # define DSI1_PHY_AFEC0_PD BIT(12)
  283. # define DSI0_PHY_AFEC0_RESET BIT(11)
  284. # define DSI1_PHY_AFEC0_PD_BG BIT(11)
  285. # define DSI0_PHY_AFEC0_PD BIT(10)
  286. # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
  287. # define DSI0_PHY_AFEC0_PD_BG BIT(9)
  288. # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
  289. # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
  290. # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
  291. # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
  292. # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
  293. # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
  294. # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
  295. #define DSI0_PHY_AFEC1 0x68
  296. # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
  297. # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
  298. # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
  299. # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
  300. # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
  301. # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
  302. #define DSI0_TST_SEL 0x6c
  303. #define DSI0_TST_MON 0x70
  304. #define DSI0_ID 0x74
  305. # define DSI_ID_VALUE 0x00647369
  306. #define DSI1_CTRL 0x00
  307. # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
  308. # define DSI_CTRL_HS_CLKC_SHIFT 14
  309. # define DSI_CTRL_HS_CLKC_BYTE 0
  310. # define DSI_CTRL_HS_CLKC_DDR2 1
  311. # define DSI_CTRL_HS_CLKC_DDR 2
  312. # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
  313. # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
  314. # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
  315. # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
  316. # define DSI_CTRL_CAL_BYTE BIT(9)
  317. # define DSI_CTRL_INV_BYTE BIT(8)
  318. # define DSI_CTRL_CLR_LDF BIT(7)
  319. # define DSI0_CTRL_CLR_PBCF BIT(6)
  320. # define DSI1_CTRL_CLR_RXF BIT(6)
  321. # define DSI0_CTRL_CLR_CPBCF BIT(5)
  322. # define DSI1_CTRL_CLR_PDF BIT(5)
  323. # define DSI0_CTRL_CLR_PDF BIT(4)
  324. # define DSI1_CTRL_CLR_CDF BIT(4)
  325. # define DSI0_CTRL_CLR_CDF BIT(3)
  326. # define DSI0_CTRL_CTRL2 BIT(2)
  327. # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
  328. # define DSI0_CTRL_CTRL1 BIT(1)
  329. # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
  330. # define DSI0_CTRL_CTRL0 BIT(0)
  331. # define DSI1_CTRL_EN BIT(0)
  332. # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
  333. DSI0_CTRL_CLR_PBCF | \
  334. DSI0_CTRL_CLR_CPBCF | \
  335. DSI0_CTRL_CLR_PDF | \
  336. DSI0_CTRL_CLR_CDF)
  337. # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
  338. DSI1_CTRL_CLR_RXF | \
  339. DSI1_CTRL_CLR_PDF | \
  340. DSI1_CTRL_CLR_CDF)
  341. #define DSI1_TXPKT2C 0x0c
  342. #define DSI1_TXPKT2H 0x10
  343. #define DSI1_TXPKT_PIX_FIFO 0x20
  344. #define DSI1_RXPKT_FIFO 0x24
  345. #define DSI1_DISP0_CTRL 0x28
  346. #define DSI1_INT_STAT 0x30
  347. #define DSI1_INT_EN 0x34
  348. /* State reporting bits. These mostly behave like INT_STAT, where
  349. * writing a 1 clears the bit.
  350. */
  351. #define DSI1_STAT 0x38
  352. # define DSI1_STAT_PHY_D3_ULPS BIT(31)
  353. # define DSI1_STAT_PHY_D3_STOP BIT(30)
  354. # define DSI1_STAT_PHY_D2_ULPS BIT(29)
  355. # define DSI1_STAT_PHY_D2_STOP BIT(28)
  356. # define DSI1_STAT_PHY_D1_ULPS BIT(27)
  357. # define DSI1_STAT_PHY_D1_STOP BIT(26)
  358. # define DSI1_STAT_PHY_D0_ULPS BIT(25)
  359. # define DSI1_STAT_PHY_D0_STOP BIT(24)
  360. # define DSI1_STAT_FIFO_ERR BIT(23)
  361. # define DSI1_STAT_PHY_RXLPDT BIT(22)
  362. # define DSI1_STAT_PHY_RXTRIG BIT(21)
  363. # define DSI1_STAT_PHY_D0_LPDT BIT(20)
  364. /* Set when in forward direction */
  365. # define DSI1_STAT_PHY_DIR BIT(19)
  366. # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
  367. # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
  368. # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
  369. # define DSI1_STAT_PR_TO BIT(15)
  370. # define DSI1_STAT_TA_TO BIT(14)
  371. # define DSI1_STAT_LPRX_TO BIT(13)
  372. # define DSI1_STAT_HSTX_TO BIT(12)
  373. # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
  374. # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
  375. # define DSI1_STAT_ERR_CONTROL BIT(9)
  376. # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
  377. # define DSI1_STAT_RXPKT2 BIT(7)
  378. # define DSI1_STAT_RXPKT1 BIT(6)
  379. # define DSI1_STAT_TXPKT2_BUSY BIT(5)
  380. # define DSI1_STAT_TXPKT2_DONE BIT(4)
  381. # define DSI1_STAT_TXPKT2_END BIT(3)
  382. # define DSI1_STAT_TXPKT1_BUSY BIT(2)
  383. # define DSI1_STAT_TXPKT1_DONE BIT(1)
  384. # define DSI1_STAT_TXPKT1_END BIT(0)
  385. #define DSI1_HSTX_TO_CNT 0x3c
  386. #define DSI1_LPRX_TO_CNT 0x40
  387. #define DSI1_TA_TO_CNT 0x44
  388. #define DSI1_PR_TO_CNT 0x48
  389. #define DSI1_PHYC 0x4c
  390. #define DSI1_HS_CLT0 0x50
  391. # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
  392. # define DSI_HS_CLT0_CZERO_SHIFT 18
  393. # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
  394. # define DSI_HS_CLT0_CPRE_SHIFT 9
  395. # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
  396. # define DSI_HS_CLT0_CPREP_SHIFT 0
  397. #define DSI1_HS_CLT1 0x54
  398. # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
  399. # define DSI_HS_CLT1_CTRAIL_SHIFT 9
  400. # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
  401. # define DSI_HS_CLT1_CPOST_SHIFT 0
  402. #define DSI1_HS_CLT2 0x58
  403. # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
  404. # define DSI_HS_CLT2_WUP_SHIFT 0
  405. #define DSI1_HS_DLT3 0x5c
  406. # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
  407. # define DSI_HS_DLT3_EXIT_SHIFT 18
  408. # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
  409. # define DSI_HS_DLT3_ZERO_SHIFT 9
  410. # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
  411. # define DSI_HS_DLT3_PRE_SHIFT 0
  412. #define DSI1_HS_DLT4 0x60
  413. # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
  414. # define DSI_HS_DLT4_ANLAT_SHIFT 18
  415. # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
  416. # define DSI_HS_DLT4_TRAIL_SHIFT 9
  417. # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
  418. # define DSI_HS_DLT4_LPX_SHIFT 0
  419. #define DSI1_HS_DLT5 0x64
  420. # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
  421. # define DSI_HS_DLT5_INIT_SHIFT 0
  422. #define DSI1_HS_DLT6 0x68
  423. # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
  424. # define DSI_HS_DLT6_TA_GET_SHIFT 24
  425. # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
  426. # define DSI_HS_DLT6_TA_SURE_SHIFT 16
  427. # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
  428. # define DSI_HS_DLT6_TA_GO_SHIFT 8
  429. # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
  430. # define DSI_HS_DLT6_LP_LPX_SHIFT 0
  431. #define DSI1_HS_DLT7 0x6c
  432. # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
  433. # define DSI_HS_DLT7_LP_WUP_SHIFT 0
  434. #define DSI1_PHY_AFEC0 0x70
  435. #define DSI1_PHY_AFEC1 0x74
  436. # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
  437. # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
  438. # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
  439. # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
  440. # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
  441. # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
  442. # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
  443. # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
  444. # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
  445. # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
  446. #define DSI1_TST_SEL 0x78
  447. #define DSI1_TST_MON 0x7c
  448. #define DSI1_PHY_TST1 0x80
  449. #define DSI1_PHY_TST2 0x84
  450. #define DSI1_PHY_FIFO_STAT 0x88
  451. /* Actually, all registers in the range that aren't otherwise claimed
  452. * will return the ID.
  453. */
  454. #define DSI1_ID 0x8c
  455. /* General DSI hardware state. */
  456. struct vc4_dsi {
  457. struct platform_device *pdev;
  458. struct mipi_dsi_host dsi_host;
  459. struct drm_encoder *encoder;
  460. struct drm_bridge *bridge;
  461. void __iomem *regs;
  462. struct dma_chan *reg_dma_chan;
  463. dma_addr_t reg_dma_paddr;
  464. u32 *reg_dma_mem;
  465. dma_addr_t reg_paddr;
  466. /* Whether we're on bcm2835's DSI0 or DSI1. */
  467. int port;
  468. /* DSI channel for the panel we're connected to. */
  469. u32 channel;
  470. u32 lanes;
  471. u32 format;
  472. u32 divider;
  473. u32 mode_flags;
  474. /* Input clock from CPRMAN to the digital PHY, for the DSI
  475. * escape clock.
  476. */
  477. struct clk *escape_clock;
  478. /* Input clock to the analog PHY, used to generate the DSI bit
  479. * clock.
  480. */
  481. struct clk *pll_phy_clock;
  482. /* HS Clocks generated within the DSI analog PHY. */
  483. struct clk_fixed_factor phy_clocks[3];
  484. struct clk_hw_onecell_data *clk_onecell;
  485. /* Pixel clock output to the pixelvalve, generated from the HS
  486. * clock.
  487. */
  488. struct clk *pixel_clock;
  489. struct completion xfer_completion;
  490. int xfer_result;
  491. };
  492. #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
  493. static inline void
  494. dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
  495. {
  496. struct dma_chan *chan = dsi->reg_dma_chan;
  497. struct dma_async_tx_descriptor *tx;
  498. dma_cookie_t cookie;
  499. int ret;
  500. /* DSI0 should be able to write normally. */
  501. if (!chan) {
  502. writel(val, dsi->regs + offset);
  503. return;
  504. }
  505. *dsi->reg_dma_mem = val;
  506. tx = chan->device->device_prep_dma_memcpy(chan,
  507. dsi->reg_paddr + offset,
  508. dsi->reg_dma_paddr,
  509. 4, 0);
  510. if (!tx) {
  511. DRM_ERROR("Failed to set up DMA register write\n");
  512. return;
  513. }
  514. cookie = tx->tx_submit(tx);
  515. ret = dma_submit_error(cookie);
  516. if (ret) {
  517. DRM_ERROR("Failed to submit DMA: %d\n", ret);
  518. return;
  519. }
  520. ret = dma_sync_wait(chan, cookie);
  521. if (ret)
  522. DRM_ERROR("Failed to wait for DMA: %d\n", ret);
  523. }
  524. #define DSI_READ(offset) readl(dsi->regs + (offset))
  525. #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
  526. #define DSI_PORT_READ(offset) \
  527. DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
  528. #define DSI_PORT_WRITE(offset, val) \
  529. DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
  530. #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
  531. /* VC4 DSI encoder KMS struct */
  532. struct vc4_dsi_encoder {
  533. struct vc4_encoder base;
  534. struct vc4_dsi *dsi;
  535. };
  536. static inline struct vc4_dsi_encoder *
  537. to_vc4_dsi_encoder(struct drm_encoder *encoder)
  538. {
  539. return container_of(encoder, struct vc4_dsi_encoder, base.base);
  540. }
  541. #define DSI_REG(reg) { reg, #reg }
  542. static const struct {
  543. u32 reg;
  544. const char *name;
  545. } dsi0_regs[] = {
  546. DSI_REG(DSI0_CTRL),
  547. DSI_REG(DSI0_STAT),
  548. DSI_REG(DSI0_HSTX_TO_CNT),
  549. DSI_REG(DSI0_LPRX_TO_CNT),
  550. DSI_REG(DSI0_TA_TO_CNT),
  551. DSI_REG(DSI0_PR_TO_CNT),
  552. DSI_REG(DSI0_DISP0_CTRL),
  553. DSI_REG(DSI0_DISP1_CTRL),
  554. DSI_REG(DSI0_INT_STAT),
  555. DSI_REG(DSI0_INT_EN),
  556. DSI_REG(DSI0_PHYC),
  557. DSI_REG(DSI0_HS_CLT0),
  558. DSI_REG(DSI0_HS_CLT1),
  559. DSI_REG(DSI0_HS_CLT2),
  560. DSI_REG(DSI0_HS_DLT3),
  561. DSI_REG(DSI0_HS_DLT4),
  562. DSI_REG(DSI0_HS_DLT5),
  563. DSI_REG(DSI0_HS_DLT6),
  564. DSI_REG(DSI0_HS_DLT7),
  565. DSI_REG(DSI0_PHY_AFEC0),
  566. DSI_REG(DSI0_PHY_AFEC1),
  567. DSI_REG(DSI0_ID),
  568. };
  569. static const struct {
  570. u32 reg;
  571. const char *name;
  572. } dsi1_regs[] = {
  573. DSI_REG(DSI1_CTRL),
  574. DSI_REG(DSI1_STAT),
  575. DSI_REG(DSI1_HSTX_TO_CNT),
  576. DSI_REG(DSI1_LPRX_TO_CNT),
  577. DSI_REG(DSI1_TA_TO_CNT),
  578. DSI_REG(DSI1_PR_TO_CNT),
  579. DSI_REG(DSI1_DISP0_CTRL),
  580. DSI_REG(DSI1_DISP1_CTRL),
  581. DSI_REG(DSI1_INT_STAT),
  582. DSI_REG(DSI1_INT_EN),
  583. DSI_REG(DSI1_PHYC),
  584. DSI_REG(DSI1_HS_CLT0),
  585. DSI_REG(DSI1_HS_CLT1),
  586. DSI_REG(DSI1_HS_CLT2),
  587. DSI_REG(DSI1_HS_DLT3),
  588. DSI_REG(DSI1_HS_DLT4),
  589. DSI_REG(DSI1_HS_DLT5),
  590. DSI_REG(DSI1_HS_DLT6),
  591. DSI_REG(DSI1_HS_DLT7),
  592. DSI_REG(DSI1_PHY_AFEC0),
  593. DSI_REG(DSI1_PHY_AFEC1),
  594. DSI_REG(DSI1_ID),
  595. };
  596. static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
  597. {
  598. int i;
  599. if (dsi->port == 0) {
  600. for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
  601. DRM_INFO("0x%04x (%s): 0x%08x\n",
  602. dsi0_regs[i].reg, dsi0_regs[i].name,
  603. DSI_READ(dsi0_regs[i].reg));
  604. }
  605. } else {
  606. for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
  607. DRM_INFO("0x%04x (%s): 0x%08x\n",
  608. dsi1_regs[i].reg, dsi1_regs[i].name,
  609. DSI_READ(dsi1_regs[i].reg));
  610. }
  611. }
  612. }
  613. #ifdef CONFIG_DEBUG_FS
  614. int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
  615. {
  616. struct drm_info_node *node = (struct drm_info_node *)m->private;
  617. struct drm_device *drm = node->minor->dev;
  618. struct vc4_dev *vc4 = to_vc4_dev(drm);
  619. int dsi_index = (uintptr_t)node->info_ent->data;
  620. struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
  621. int i;
  622. if (!dsi)
  623. return 0;
  624. if (dsi->port == 0) {
  625. for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
  626. seq_printf(m, "0x%04x (%s): 0x%08x\n",
  627. dsi0_regs[i].reg, dsi0_regs[i].name,
  628. DSI_READ(dsi0_regs[i].reg));
  629. }
  630. } else {
  631. for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
  632. seq_printf(m, "0x%04x (%s): 0x%08x\n",
  633. dsi1_regs[i].reg, dsi1_regs[i].name,
  634. DSI_READ(dsi1_regs[i].reg));
  635. }
  636. }
  637. return 0;
  638. }
  639. #endif
  640. static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
  641. {
  642. drm_encoder_cleanup(encoder);
  643. }
  644. static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
  645. .destroy = vc4_dsi_encoder_destroy,
  646. };
  647. static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
  648. {
  649. u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
  650. if (latch)
  651. afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
  652. else
  653. afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
  654. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  655. }
  656. /* Enters or exits Ultra Low Power State. */
  657. static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
  658. {
  659. bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
  660. u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
  661. DSI_PHYC_DLANE0_ULPS |
  662. (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
  663. (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
  664. (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
  665. u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
  666. DSI1_STAT_PHY_D0_ULPS |
  667. (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
  668. (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
  669. (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
  670. u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
  671. DSI1_STAT_PHY_D0_STOP |
  672. (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
  673. (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
  674. (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
  675. int ret;
  676. DSI_PORT_WRITE(STAT, stat_ulps);
  677. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
  678. ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
  679. if (ret) {
  680. dev_warn(&dsi->pdev->dev,
  681. "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
  682. DSI_PORT_READ(STAT));
  683. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  684. vc4_dsi_latch_ulps(dsi, false);
  685. return;
  686. }
  687. /* The DSI module can't be disabled while the module is
  688. * generating ULPS state. So, to be able to disable the
  689. * module, we have the AFE latch the ULPS state and continue
  690. * on to having the module enter STOP.
  691. */
  692. vc4_dsi_latch_ulps(dsi, ulps);
  693. DSI_PORT_WRITE(STAT, stat_stop);
  694. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  695. ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
  696. if (ret) {
  697. dev_warn(&dsi->pdev->dev,
  698. "Timeout waiting for DSI STOP entry: STAT 0x%08x",
  699. DSI_PORT_READ(STAT));
  700. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  701. return;
  702. }
  703. }
  704. static u32
  705. dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
  706. {
  707. /* The HS timings have to be rounded up to a multiple of 8
  708. * because we're using the byte clock.
  709. */
  710. return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
  711. }
  712. /* ESC always runs at 100Mhz. */
  713. #define ESC_TIME_NS 10
  714. static u32
  715. dsi_esc_timing(u32 ns)
  716. {
  717. return DIV_ROUND_UP(ns, ESC_TIME_NS);
  718. }
  719. static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
  720. {
  721. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  722. struct vc4_dsi *dsi = vc4_encoder->dsi;
  723. struct device *dev = &dsi->pdev->dev;
  724. vc4_dsi_ulps(dsi, true);
  725. clk_disable_unprepare(dsi->pll_phy_clock);
  726. clk_disable_unprepare(dsi->escape_clock);
  727. clk_disable_unprepare(dsi->pixel_clock);
  728. pm_runtime_put(dev);
  729. }
  730. /* Extends the mode's blank intervals to handle BCM2835's integer-only
  731. * DSI PLL divider.
  732. *
  733. * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
  734. * driver since most peripherals are hanging off of the PLLD_PER
  735. * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
  736. * the pixel clock), only has an integer divider off of DSI.
  737. *
  738. * To get our panel mode to refresh at the expected 60Hz, we need to
  739. * extend the horizontal blank time. This means we drive a
  740. * higher-than-expected clock rate to the panel, but that's what the
  741. * firmware does too.
  742. */
  743. static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
  744. const struct drm_display_mode *mode,
  745. struct drm_display_mode *adjusted_mode)
  746. {
  747. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  748. struct vc4_dsi *dsi = vc4_encoder->dsi;
  749. struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
  750. unsigned long parent_rate = clk_get_rate(phy_parent);
  751. unsigned long pixel_clock_hz = mode->clock * 1000;
  752. unsigned long pll_clock = pixel_clock_hz * dsi->divider;
  753. int divider;
  754. /* Find what divider gets us a faster clock than the requested
  755. * pixel clock.
  756. */
  757. for (divider = 1; divider < 8; divider++) {
  758. if (parent_rate / divider < pll_clock) {
  759. divider--;
  760. break;
  761. }
  762. }
  763. /* Now that we've picked a PLL divider, calculate back to its
  764. * pixel clock.
  765. */
  766. pll_clock = parent_rate / divider;
  767. pixel_clock_hz = pll_clock / dsi->divider;
  768. adjusted_mode->clock = pixel_clock_hz / 1000;
  769. /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
  770. adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
  771. mode->clock;
  772. adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
  773. adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
  774. return true;
  775. }
  776. static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
  777. {
  778. struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
  779. struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
  780. struct vc4_dsi *dsi = vc4_encoder->dsi;
  781. struct device *dev = &dsi->pdev->dev;
  782. bool debug_dump_regs = false;
  783. unsigned long hs_clock;
  784. u32 ui_ns;
  785. /* Minimum LP state duration in escape clock cycles. */
  786. u32 lpx = dsi_esc_timing(60);
  787. unsigned long pixel_clock_hz = mode->clock * 1000;
  788. unsigned long dsip_clock;
  789. unsigned long phy_clock;
  790. int ret;
  791. ret = pm_runtime_get_sync(dev);
  792. if (ret) {
  793. DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
  794. return;
  795. }
  796. if (debug_dump_regs) {
  797. DRM_INFO("DSI regs before:\n");
  798. vc4_dsi_dump_regs(dsi);
  799. }
  800. /* Round up the clk_set_rate() request slightly, since
  801. * PLLD_DSI1 is an integer divider and its rate selection will
  802. * never round up.
  803. */
  804. phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
  805. ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
  806. if (ret) {
  807. dev_err(&dsi->pdev->dev,
  808. "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
  809. }
  810. /* Reset the DSI and all its fifos. */
  811. DSI_PORT_WRITE(CTRL,
  812. DSI_CTRL_SOFT_RESET_CFG |
  813. DSI_PORT_BIT(CTRL_RESET_FIFOS));
  814. DSI_PORT_WRITE(CTRL,
  815. DSI_CTRL_HSDT_EOT_DISABLE |
  816. DSI_CTRL_RX_LPDT_EOT_DISABLE);
  817. /* Clear all stat bits so we see what has happened during enable. */
  818. DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
  819. /* Set AFE CTR00/CTR1 to release powerdown of analog. */
  820. if (dsi->port == 0) {
  821. u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
  822. VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
  823. if (dsi->lanes < 2)
  824. afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
  825. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
  826. afec0 |= DSI0_PHY_AFEC0_RESET;
  827. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  828. DSI_PORT_WRITE(PHY_AFEC1,
  829. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
  830. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
  831. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
  832. } else {
  833. u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
  834. VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
  835. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
  836. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
  837. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
  838. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
  839. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
  840. if (dsi->lanes < 4)
  841. afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
  842. if (dsi->lanes < 3)
  843. afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
  844. if (dsi->lanes < 2)
  845. afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
  846. afec0 |= DSI1_PHY_AFEC0_RESET;
  847. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  848. DSI_PORT_WRITE(PHY_AFEC1, 0);
  849. /* AFEC reset hold time */
  850. mdelay(1);
  851. }
  852. ret = clk_prepare_enable(dsi->escape_clock);
  853. if (ret) {
  854. DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
  855. return;
  856. }
  857. ret = clk_prepare_enable(dsi->pll_phy_clock);
  858. if (ret) {
  859. DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
  860. return;
  861. }
  862. hs_clock = clk_get_rate(dsi->pll_phy_clock);
  863. /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
  864. * not the pixel clock rate. DSIxP take from the APHY's byte,
  865. * DDR2, or DDR4 clock (we use byte) and feed into the PV at
  866. * that rate. Separately, a value derived from PIX_CLK_DIV
  867. * and HS_CLKC is fed into the PV to divide down to the actual
  868. * pixel clock for pushing pixels into DSI.
  869. */
  870. dsip_clock = phy_clock / 8;
  871. ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
  872. if (ret) {
  873. dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
  874. dsip_clock, ret);
  875. }
  876. ret = clk_prepare_enable(dsi->pixel_clock);
  877. if (ret) {
  878. DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
  879. return;
  880. }
  881. /* How many ns one DSI unit interval is. Note that the clock
  882. * is DDR, so there's an extra divide by 2.
  883. */
  884. ui_ns = DIV_ROUND_UP(500000000, hs_clock);
  885. DSI_PORT_WRITE(HS_CLT0,
  886. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
  887. DSI_HS_CLT0_CZERO) |
  888. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
  889. DSI_HS_CLT0_CPRE) |
  890. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
  891. DSI_HS_CLT0_CPREP));
  892. DSI_PORT_WRITE(HS_CLT1,
  893. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
  894. DSI_HS_CLT1_CTRAIL) |
  895. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
  896. DSI_HS_CLT1_CPOST));
  897. DSI_PORT_WRITE(HS_CLT2,
  898. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
  899. DSI_HS_CLT2_WUP));
  900. DSI_PORT_WRITE(HS_DLT3,
  901. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
  902. DSI_HS_DLT3_EXIT) |
  903. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
  904. DSI_HS_DLT3_ZERO) |
  905. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
  906. DSI_HS_DLT3_PRE));
  907. DSI_PORT_WRITE(HS_DLT4,
  908. VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
  909. DSI_HS_DLT4_LPX) |
  910. VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
  911. dsi_hs_timing(ui_ns, 60, 4)),
  912. DSI_HS_DLT4_TRAIL) |
  913. VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
  914. /* T_INIT is how long STOP is driven after power-up to
  915. * indicate to the slave (also coming out of power-up) that
  916. * master init is complete, and should be greater than the
  917. * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
  918. * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
  919. * T_INIT,SLAVE, while allowing protocols on top of it to give
  920. * greater minimums. The vc4 firmware uses an extremely
  921. * conservative 5ms, and we maintain that here.
  922. */
  923. DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
  924. 5 * 1000 * 1000, 0),
  925. DSI_HS_DLT5_INIT));
  926. DSI_PORT_WRITE(HS_DLT6,
  927. VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
  928. VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
  929. VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
  930. VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
  931. DSI_PORT_WRITE(HS_DLT7,
  932. VC4_SET_FIELD(dsi_esc_timing(1000000),
  933. DSI_HS_DLT7_LP_WUP));
  934. DSI_PORT_WRITE(PHYC,
  935. DSI_PHYC_DLANE0_ENABLE |
  936. (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
  937. (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
  938. (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
  939. DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
  940. ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
  941. 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
  942. (dsi->port == 0 ?
  943. VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
  944. VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
  945. DSI_PORT_WRITE(CTRL,
  946. DSI_PORT_READ(CTRL) |
  947. DSI_CTRL_CAL_BYTE);
  948. /* HS timeout in HS clock cycles: disabled. */
  949. DSI_PORT_WRITE(HSTX_TO_CNT, 0);
  950. /* LP receive timeout in HS clocks. */
  951. DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
  952. /* Bus turnaround timeout */
  953. DSI_PORT_WRITE(TA_TO_CNT, 100000);
  954. /* Display reset sequence timeout */
  955. DSI_PORT_WRITE(PR_TO_CNT, 100000);
  956. if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
  957. DSI_PORT_WRITE(DISP0_CTRL,
  958. VC4_SET_FIELD(dsi->divider,
  959. DSI_DISP0_PIX_CLK_DIV) |
  960. VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
  961. VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
  962. DSI_DISP0_LP_STOP_CTRL) |
  963. DSI_DISP0_ST_END |
  964. DSI_DISP0_ENABLE);
  965. } else {
  966. DSI_PORT_WRITE(DISP0_CTRL,
  967. DSI_DISP0_COMMAND_MODE |
  968. DSI_DISP0_ENABLE);
  969. }
  970. /* Set up DISP1 for transferring long command payloads through
  971. * the pixfifo.
  972. */
  973. DSI_PORT_WRITE(DISP1_CTRL,
  974. VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
  975. DSI_DISP1_PFORMAT) |
  976. DSI_DISP1_ENABLE);
  977. /* Ungate the block. */
  978. if (dsi->port == 0)
  979. DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
  980. else
  981. DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
  982. /* Bring AFE out of reset. */
  983. if (dsi->port == 0) {
  984. } else {
  985. DSI_PORT_WRITE(PHY_AFEC0,
  986. DSI_PORT_READ(PHY_AFEC0) &
  987. ~DSI1_PHY_AFEC0_RESET);
  988. }
  989. vc4_dsi_ulps(dsi, false);
  990. if (debug_dump_regs) {
  991. DRM_INFO("DSI regs after:\n");
  992. vc4_dsi_dump_regs(dsi);
  993. }
  994. }
  995. static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
  996. const struct mipi_dsi_msg *msg)
  997. {
  998. struct vc4_dsi *dsi = host_to_dsi(host);
  999. struct mipi_dsi_packet packet;
  1000. u32 pkth = 0, pktc = 0;
  1001. int i, ret;
  1002. bool is_long = mipi_dsi_packet_format_is_long(msg->type);
  1003. u32 cmd_fifo_len = 0, pix_fifo_len = 0;
  1004. mipi_dsi_create_packet(&packet, msg);
  1005. pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
  1006. pkth |= VC4_SET_FIELD(packet.header[1] |
  1007. (packet.header[2] << 8),
  1008. DSI_TXPKT1H_BC_PARAM);
  1009. if (is_long) {
  1010. /* Divide data across the various FIFOs we have available.
  1011. * The command FIFO takes byte-oriented data, but is of
  1012. * limited size. The pixel FIFO (never actually used for
  1013. * pixel data in reality) is word oriented, and substantially
  1014. * larger. So, we use the pixel FIFO for most of the data,
  1015. * sending the residual bytes in the command FIFO at the start.
  1016. *
  1017. * With this arrangement, the command FIFO will never get full.
  1018. */
  1019. if (packet.payload_length <= 16) {
  1020. cmd_fifo_len = packet.payload_length;
  1021. pix_fifo_len = 0;
  1022. } else {
  1023. cmd_fifo_len = (packet.payload_length %
  1024. DSI_PIX_FIFO_WIDTH);
  1025. pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
  1026. DSI_PIX_FIFO_WIDTH);
  1027. }
  1028. WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
  1029. pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
  1030. }
  1031. if (msg->rx_len) {
  1032. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
  1033. DSI_TXPKT1C_CMD_CTRL);
  1034. } else {
  1035. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
  1036. DSI_TXPKT1C_CMD_CTRL);
  1037. }
  1038. for (i = 0; i < cmd_fifo_len; i++)
  1039. DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
  1040. for (i = 0; i < pix_fifo_len; i++) {
  1041. const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
  1042. DSI_PORT_WRITE(TXPKT_PIX_FIFO,
  1043. pix[0] |
  1044. pix[1] << 8 |
  1045. pix[2] << 16 |
  1046. pix[3] << 24);
  1047. }
  1048. if (msg->flags & MIPI_DSI_MSG_USE_LPM)
  1049. pktc |= DSI_TXPKT1C_CMD_MODE_LP;
  1050. if (is_long)
  1051. pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
  1052. /* Send one copy of the packet. Larger repeats are used for pixel
  1053. * data in command mode.
  1054. */
  1055. pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
  1056. pktc |= DSI_TXPKT1C_CMD_EN;
  1057. if (pix_fifo_len) {
  1058. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
  1059. DSI_TXPKT1C_DISPLAY_NO);
  1060. } else {
  1061. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
  1062. DSI_TXPKT1C_DISPLAY_NO);
  1063. }
  1064. /* Enable the appropriate interrupt for the transfer completion. */
  1065. dsi->xfer_result = 0;
  1066. reinit_completion(&dsi->xfer_completion);
  1067. DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
  1068. if (msg->rx_len) {
  1069. DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
  1070. DSI1_INT_PHY_DIR_RTF));
  1071. } else {
  1072. DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
  1073. DSI1_INT_TXPKT1_DONE));
  1074. }
  1075. /* Send the packet. */
  1076. DSI_PORT_WRITE(TXPKT1H, pkth);
  1077. DSI_PORT_WRITE(TXPKT1C, pktc);
  1078. if (!wait_for_completion_timeout(&dsi->xfer_completion,
  1079. msecs_to_jiffies(1000))) {
  1080. dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
  1081. dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
  1082. DSI_PORT_READ(INT_STAT));
  1083. ret = -ETIMEDOUT;
  1084. } else {
  1085. ret = dsi->xfer_result;
  1086. }
  1087. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1088. if (ret)
  1089. goto reset_fifo_and_return;
  1090. if (ret == 0 && msg->rx_len) {
  1091. u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
  1092. u8 *msg_rx = msg->rx_buf;
  1093. if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
  1094. u32 rxlen = VC4_GET_FIELD(rxpkt1h,
  1095. DSI_RXPKT1H_BC_PARAM);
  1096. if (rxlen != msg->rx_len) {
  1097. DRM_ERROR("DSI returned %db, expecting %db\n",
  1098. rxlen, (int)msg->rx_len);
  1099. ret = -ENXIO;
  1100. goto reset_fifo_and_return;
  1101. }
  1102. for (i = 0; i < msg->rx_len; i++)
  1103. msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
  1104. } else {
  1105. /* FINISHME: Handle AWER */
  1106. msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
  1107. DSI_RXPKT1H_SHORT_0);
  1108. if (msg->rx_len > 1) {
  1109. msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
  1110. DSI_RXPKT1H_SHORT_1);
  1111. }
  1112. }
  1113. }
  1114. return ret;
  1115. reset_fifo_and_return:
  1116. DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
  1117. DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
  1118. udelay(1);
  1119. DSI_PORT_WRITE(CTRL,
  1120. DSI_PORT_READ(CTRL) |
  1121. DSI_PORT_BIT(CTRL_RESET_FIFOS));
  1122. DSI_PORT_WRITE(TXPKT1C, 0);
  1123. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1124. return ret;
  1125. }
  1126. static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
  1127. struct mipi_dsi_device *device)
  1128. {
  1129. struct vc4_dsi *dsi = host_to_dsi(host);
  1130. dsi->lanes = device->lanes;
  1131. dsi->channel = device->channel;
  1132. dsi->mode_flags = device->mode_flags;
  1133. switch (device->format) {
  1134. case MIPI_DSI_FMT_RGB888:
  1135. dsi->format = DSI_PFORMAT_RGB888;
  1136. dsi->divider = 24 / dsi->lanes;
  1137. break;
  1138. case MIPI_DSI_FMT_RGB666:
  1139. dsi->format = DSI_PFORMAT_RGB666;
  1140. dsi->divider = 24 / dsi->lanes;
  1141. break;
  1142. case MIPI_DSI_FMT_RGB666_PACKED:
  1143. dsi->format = DSI_PFORMAT_RGB666_PACKED;
  1144. dsi->divider = 18 / dsi->lanes;
  1145. break;
  1146. case MIPI_DSI_FMT_RGB565:
  1147. dsi->format = DSI_PFORMAT_RGB565;
  1148. dsi->divider = 16 / dsi->lanes;
  1149. break;
  1150. default:
  1151. dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
  1152. dsi->format);
  1153. return 0;
  1154. }
  1155. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
  1156. dev_err(&dsi->pdev->dev,
  1157. "Only VIDEO mode panels supported currently.\n");
  1158. return 0;
  1159. }
  1160. return 0;
  1161. }
  1162. static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
  1163. struct mipi_dsi_device *device)
  1164. {
  1165. return 0;
  1166. }
  1167. static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
  1168. .attach = vc4_dsi_host_attach,
  1169. .detach = vc4_dsi_host_detach,
  1170. .transfer = vc4_dsi_host_transfer,
  1171. };
  1172. static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
  1173. .disable = vc4_dsi_encoder_disable,
  1174. .enable = vc4_dsi_encoder_enable,
  1175. .mode_fixup = vc4_dsi_encoder_mode_fixup,
  1176. };
  1177. static const struct of_device_id vc4_dsi_dt_match[] = {
  1178. { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
  1179. {}
  1180. };
  1181. static void dsi_handle_error(struct vc4_dsi *dsi,
  1182. irqreturn_t *ret, u32 stat, u32 bit,
  1183. const char *type)
  1184. {
  1185. if (!(stat & bit))
  1186. return;
  1187. DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
  1188. *ret = IRQ_HANDLED;
  1189. }
  1190. /*
  1191. * Initial handler for port 1 where we need the reg_dma workaround.
  1192. * The register DMA writes sleep, so we can't do it in the top half.
  1193. * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
  1194. * parent interrupt contrller until our interrupt thread is done.
  1195. */
  1196. static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
  1197. {
  1198. struct vc4_dsi *dsi = data;
  1199. u32 stat = DSI_PORT_READ(INT_STAT);
  1200. if (!stat)
  1201. return IRQ_NONE;
  1202. return IRQ_WAKE_THREAD;
  1203. }
  1204. /*
  1205. * Normal IRQ handler for port 0, or the threaded IRQ handler for port
  1206. * 1 where we need the reg_dma workaround.
  1207. */
  1208. static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
  1209. {
  1210. struct vc4_dsi *dsi = data;
  1211. u32 stat = DSI_PORT_READ(INT_STAT);
  1212. irqreturn_t ret = IRQ_NONE;
  1213. DSI_PORT_WRITE(INT_STAT, stat);
  1214. dsi_handle_error(dsi, &ret, stat,
  1215. DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
  1216. dsi_handle_error(dsi, &ret, stat,
  1217. DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
  1218. dsi_handle_error(dsi, &ret, stat,
  1219. DSI1_INT_ERR_CONT_LP0, "LP0 contention");
  1220. dsi_handle_error(dsi, &ret, stat,
  1221. DSI1_INT_ERR_CONT_LP1, "LP1 contention");
  1222. dsi_handle_error(dsi, &ret, stat,
  1223. DSI1_INT_HSTX_TO, "HSTX timeout");
  1224. dsi_handle_error(dsi, &ret, stat,
  1225. DSI1_INT_LPRX_TO, "LPRX timeout");
  1226. dsi_handle_error(dsi, &ret, stat,
  1227. DSI1_INT_TA_TO, "turnaround timeout");
  1228. dsi_handle_error(dsi, &ret, stat,
  1229. DSI1_INT_PR_TO, "peripheral reset timeout");
  1230. if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
  1231. complete(&dsi->xfer_completion);
  1232. ret = IRQ_HANDLED;
  1233. } else if (stat & DSI1_INT_HSTX_TO) {
  1234. complete(&dsi->xfer_completion);
  1235. dsi->xfer_result = -ETIMEDOUT;
  1236. ret = IRQ_HANDLED;
  1237. }
  1238. return ret;
  1239. }
  1240. /**
  1241. * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
  1242. * PHY that are consumed by CPRMAN (clk-bcm2835.c).
  1243. * @dsi: DSI encoder
  1244. */
  1245. static int
  1246. vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
  1247. {
  1248. struct device *dev = &dsi->pdev->dev;
  1249. const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
  1250. static const struct {
  1251. const char *dsi0_name, *dsi1_name;
  1252. int div;
  1253. } phy_clocks[] = {
  1254. { "dsi0_byte", "dsi1_byte", 8 },
  1255. { "dsi0_ddr2", "dsi1_ddr2", 4 },
  1256. { "dsi0_ddr", "dsi1_ddr", 2 },
  1257. };
  1258. int i;
  1259. dsi->clk_onecell = devm_kzalloc(dev,
  1260. sizeof(*dsi->clk_onecell) +
  1261. ARRAY_SIZE(phy_clocks) *
  1262. sizeof(struct clk_hw *),
  1263. GFP_KERNEL);
  1264. if (!dsi->clk_onecell)
  1265. return -ENOMEM;
  1266. dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
  1267. for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
  1268. struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
  1269. struct clk_init_data init;
  1270. int ret;
  1271. /* We just use core fixed factor clock ops for the PHY
  1272. * clocks. The clocks are actually gated by the
  1273. * PHY_AFEC0_DDRCLK_EN bits, which we should be
  1274. * setting if we use the DDR/DDR2 clocks. However,
  1275. * vc4_dsi_encoder_enable() is setting up both AFEC0,
  1276. * setting both our parent DSI PLL's rate and this
  1277. * clock's rate, so it knows if DDR/DDR2 are going to
  1278. * be used and could enable the gates itself.
  1279. */
  1280. fix->mult = 1;
  1281. fix->div = phy_clocks[i].div;
  1282. fix->hw.init = &init;
  1283. memset(&init, 0, sizeof(init));
  1284. init.parent_names = &parent_name;
  1285. init.num_parents = 1;
  1286. if (dsi->port == 1)
  1287. init.name = phy_clocks[i].dsi1_name;
  1288. else
  1289. init.name = phy_clocks[i].dsi0_name;
  1290. init.ops = &clk_fixed_factor_ops;
  1291. ret = devm_clk_hw_register(dev, &fix->hw);
  1292. if (ret)
  1293. return ret;
  1294. dsi->clk_onecell->hws[i] = &fix->hw;
  1295. }
  1296. return of_clk_add_hw_provider(dev->of_node,
  1297. of_clk_hw_onecell_get,
  1298. dsi->clk_onecell);
  1299. }
  1300. static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
  1301. {
  1302. struct platform_device *pdev = to_platform_device(dev);
  1303. struct drm_device *drm = dev_get_drvdata(master);
  1304. struct vc4_dev *vc4 = to_vc4_dev(drm);
  1305. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1306. struct vc4_dsi_encoder *vc4_dsi_encoder;
  1307. struct drm_panel *panel;
  1308. const struct of_device_id *match;
  1309. dma_cap_mask_t dma_mask;
  1310. int ret;
  1311. match = of_match_device(vc4_dsi_dt_match, dev);
  1312. if (!match)
  1313. return -ENODEV;
  1314. dsi->port = (uintptr_t)match->data;
  1315. vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
  1316. GFP_KERNEL);
  1317. if (!vc4_dsi_encoder)
  1318. return -ENOMEM;
  1319. vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
  1320. vc4_dsi_encoder->dsi = dsi;
  1321. dsi->encoder = &vc4_dsi_encoder->base.base;
  1322. dsi->regs = vc4_ioremap_regs(pdev, 0);
  1323. if (IS_ERR(dsi->regs))
  1324. return PTR_ERR(dsi->regs);
  1325. if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
  1326. dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
  1327. DSI_PORT_READ(ID), DSI_ID_VALUE);
  1328. return -ENODEV;
  1329. }
  1330. /* DSI1 has a broken AXI slave that doesn't respond to writes
  1331. * from the ARM. It does handle writes from the DMA engine,
  1332. * so set up a channel for talking to it.
  1333. */
  1334. if (dsi->port == 1) {
  1335. dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
  1336. &dsi->reg_dma_paddr,
  1337. GFP_KERNEL);
  1338. if (!dsi->reg_dma_mem) {
  1339. DRM_ERROR("Failed to get DMA memory\n");
  1340. return -ENOMEM;
  1341. }
  1342. dma_cap_zero(dma_mask);
  1343. dma_cap_set(DMA_MEMCPY, dma_mask);
  1344. dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
  1345. if (IS_ERR(dsi->reg_dma_chan)) {
  1346. ret = PTR_ERR(dsi->reg_dma_chan);
  1347. if (ret != -EPROBE_DEFER)
  1348. DRM_ERROR("Failed to get DMA channel: %d\n",
  1349. ret);
  1350. return ret;
  1351. }
  1352. /* Get the physical address of the device's registers. The
  1353. * struct resource for the regs gives us the bus address
  1354. * instead.
  1355. */
  1356. dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
  1357. 0, NULL, NULL));
  1358. }
  1359. init_completion(&dsi->xfer_completion);
  1360. /* At startup enable error-reporting interrupts and nothing else. */
  1361. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1362. /* Clear any existing interrupt state. */
  1363. DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
  1364. if (dsi->reg_dma_mem)
  1365. ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
  1366. vc4_dsi_irq_defer_to_thread_handler,
  1367. vc4_dsi_irq_handler,
  1368. IRQF_ONESHOT,
  1369. "vc4 dsi", dsi);
  1370. else
  1371. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  1372. vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
  1373. if (ret) {
  1374. if (ret != -EPROBE_DEFER)
  1375. dev_err(dev, "Failed to get interrupt: %d\n", ret);
  1376. return ret;
  1377. }
  1378. dsi->escape_clock = devm_clk_get(dev, "escape");
  1379. if (IS_ERR(dsi->escape_clock)) {
  1380. ret = PTR_ERR(dsi->escape_clock);
  1381. if (ret != -EPROBE_DEFER)
  1382. dev_err(dev, "Failed to get escape clock: %d\n", ret);
  1383. return ret;
  1384. }
  1385. dsi->pll_phy_clock = devm_clk_get(dev, "phy");
  1386. if (IS_ERR(dsi->pll_phy_clock)) {
  1387. ret = PTR_ERR(dsi->pll_phy_clock);
  1388. if (ret != -EPROBE_DEFER)
  1389. dev_err(dev, "Failed to get phy clock: %d\n", ret);
  1390. return ret;
  1391. }
  1392. dsi->pixel_clock = devm_clk_get(dev, "pixel");
  1393. if (IS_ERR(dsi->pixel_clock)) {
  1394. ret = PTR_ERR(dsi->pixel_clock);
  1395. if (ret != -EPROBE_DEFER)
  1396. dev_err(dev, "Failed to get pixel clock: %d\n", ret);
  1397. return ret;
  1398. }
  1399. ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
  1400. &panel, &dsi->bridge);
  1401. if (ret)
  1402. return ret;
  1403. if (panel) {
  1404. dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
  1405. DRM_MODE_CONNECTOR_DSI);
  1406. if (IS_ERR(dsi->bridge))
  1407. return PTR_ERR(dsi->bridge);
  1408. }
  1409. /* The esc clock rate is supposed to always be 100Mhz. */
  1410. ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
  1411. if (ret) {
  1412. dev_err(dev, "Failed to set esc clock: %d\n", ret);
  1413. return ret;
  1414. }
  1415. ret = vc4_dsi_init_phy_clocks(dsi);
  1416. if (ret)
  1417. return ret;
  1418. if (dsi->port == 1)
  1419. vc4->dsi1 = dsi;
  1420. drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
  1421. DRM_MODE_ENCODER_DSI, NULL);
  1422. drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
  1423. ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
  1424. if (ret) {
  1425. dev_err(dev, "bridge attach failed: %d\n", ret);
  1426. return ret;
  1427. }
  1428. pm_runtime_enable(dev);
  1429. return 0;
  1430. }
  1431. static void vc4_dsi_unbind(struct device *dev, struct device *master,
  1432. void *data)
  1433. {
  1434. struct drm_device *drm = dev_get_drvdata(master);
  1435. struct vc4_dev *vc4 = to_vc4_dev(drm);
  1436. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1437. pm_runtime_disable(dev);
  1438. vc4_dsi_encoder_destroy(dsi->encoder);
  1439. if (dsi->port == 1)
  1440. vc4->dsi1 = NULL;
  1441. }
  1442. static const struct component_ops vc4_dsi_ops = {
  1443. .bind = vc4_dsi_bind,
  1444. .unbind = vc4_dsi_unbind,
  1445. };
  1446. static int vc4_dsi_dev_probe(struct platform_device *pdev)
  1447. {
  1448. struct device *dev = &pdev->dev;
  1449. struct vc4_dsi *dsi;
  1450. int ret;
  1451. dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
  1452. if (!dsi)
  1453. return -ENOMEM;
  1454. dev_set_drvdata(dev, dsi);
  1455. dsi->pdev = pdev;
  1456. /* Note, the initialization sequence for DSI and panels is
  1457. * tricky. The component bind above won't get past its
  1458. * -EPROBE_DEFER until the panel/bridge probes. The
  1459. * panel/bridge will return -EPROBE_DEFER until it has a
  1460. * mipi_dsi_host to register its device to. So, we register
  1461. * the host during pdev probe time, so vc4 as a whole can then
  1462. * -EPROBE_DEFER its component bind process until the panel
  1463. * successfully attaches.
  1464. */
  1465. dsi->dsi_host.ops = &vc4_dsi_host_ops;
  1466. dsi->dsi_host.dev = dev;
  1467. mipi_dsi_host_register(&dsi->dsi_host);
  1468. ret = component_add(&pdev->dev, &vc4_dsi_ops);
  1469. if (ret) {
  1470. mipi_dsi_host_unregister(&dsi->dsi_host);
  1471. return ret;
  1472. }
  1473. return 0;
  1474. }
  1475. static int vc4_dsi_dev_remove(struct platform_device *pdev)
  1476. {
  1477. struct device *dev = &pdev->dev;
  1478. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1479. component_del(&pdev->dev, &vc4_dsi_ops);
  1480. mipi_dsi_host_unregister(&dsi->dsi_host);
  1481. return 0;
  1482. }
  1483. struct platform_driver vc4_dsi_driver = {
  1484. .probe = vc4_dsi_dev_probe,
  1485. .remove = vc4_dsi_dev_remove,
  1486. .driver = {
  1487. .name = "vc4_dsi",
  1488. .of_match_table = vc4_dsi_dt_match,
  1489. },
  1490. };